

HW hardware status: 2 SW software status: V90.02.00 Frequency [MHz]: 1920 - 1930 Type of Modulation: Digital (Gaussian Frequency Shift Keying) Number of channels: 5 RF Channels, 5x12 = 60 TDMA Duplex Channels 2 internal, L-type pcb & L-type wire Antenna: Power Supply: 6.5V DC, AC/DC power supply Temperature Range: -20°C to 50°C

Test Report authorised:

Test performed:

2021-10-28 Luckenbill, Andreas Head of Department RC 2021-10-28

Wolf, Joachim Head of Department EPNS

1 Table of contents

1	Table	of contents	2				
2	Gene	ral information	3				
	2.1	Notes and disclaimer					
	2.2	Application details	3				
3	Test s	standard/s:	3				
4	Test E	Environment	4				
5	Sumn	nary of Measurement Results	6				
6	Test S	- Set-up					
•	6.1	Frequency Measurements					
	6.2	Timing Measurements					
	6.3	Conducted Emission Test					
	6.4	Radiated Emission Test					
	6.5	Power Line Conducted Emissions Test	10				
	6.6	Monitoring Tests					
	6.7	Radiated Output Power Test	11				
7	Detail	led Test Results	12				
	7.1	Power Line Conducted Emissions	12				
	7.2	Digital Modulation Techniques					
	7.3	Labeling Requirements					
	7.4	Antenna Requirements					
	7.5	Channel Frequencies					
	7.6	Automatic Discontinuation of Transmission	17				
	7.7	Peak Power Output					
	7.8	Emission Bandwidth B					
	7.9	Power Spectral Density					
	7.10	In-Band Unwanted Emissions, Conducted					
	7.11	Out-of-Band Emissions, Conducted					
	7.12	Carrier Frequency Stability					
	7.13 7.14	Frame Repetition Stability Frame Period and Jitter					
	7.14	Monitoring Threshold, Least Interfered Channel					
	7.15	Threshold Monitoring Bandwidth					
	7.17	Reaction Time and Monitoring Interval					
	7.18	Time and Spectrum Window Access Procedure					
	7.19	Acknowledgments and Transmission duration					
	7.20	Dual Access Criteria Check					
	7.21	Alternative monitoring interval	49				
	7.22	Spurious Emissions (Radiated)					
	7.23	Receiver Spurious Emissions	52				
8	Test e	equipment and ancillaries used for tests	55				
9	Obse	rvations	56				
Anr	nex A:	Photographs of the Test Set-up					
Anr	Annex B: External Photographs of the EUT						
	Annex C: Internal Photographs of the EUT						
		Document History					
		Further Information					
	Annex F: Safety exposure levels						
	Annex G: Accreditation Certificate						
	1ex G: 1-10-28		age 2 of 61				
202	1-10-20	Fd	19520101				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

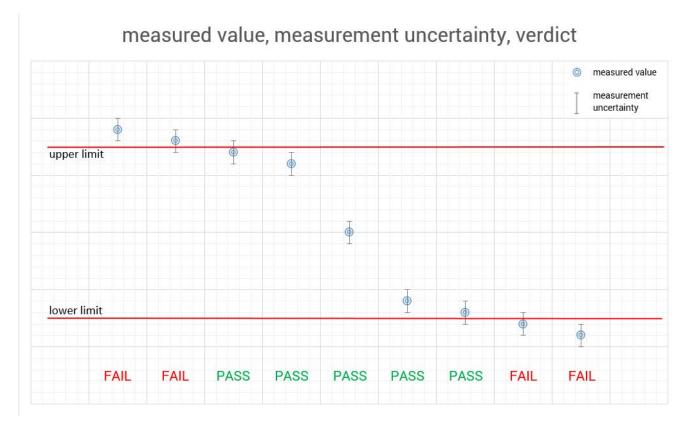
This test report replaces the test report 1-2471_21-01-02 dated on 2021-08-26.

2.2 Application details

Date of receipt of order:	2021-05-26
Date of receipt of test item:	2021-08-04
Start of test:	2021-08-04
End of test:	2021-08-26
Person(s) present during the test:	

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices
ANSI C63.4	2014-06	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz



4 **Test Environment**

Temperature:	+ 22 °C during room temperature tests + 50 °C during high temperature test
	- 20 °C during low temperature test
Relative humidity content: Air pressure:	38 % not relevant for this kind of testing

5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

6 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Frequency and Timing	± 1 x 10 ⁻⁷					
Antenna Gain	± 3 dB					
	> 10 MHz	± 0.28 dB				
Conducted Level Measurement	> 3.6 GHz	± 0.39 dB				
	> 7.0 GHz	± 1.00 dB				
	> 13.6 GHz	± 1.32 dB				
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz ± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	Spurious emissions conducted below 30 MHz (AC conducted) ± 2.6 dB					

Summary of Measurement Results 7

No deviations from the technical specifications were ascer				
	There were deviations from the technical specifications ascertained			

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	6.3	Complies
	15.207(a)	RSS_GEN 7.2.2	
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		-
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		-
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time			
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5);	4.3.4	Complies
-	(7)		-
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	N/A ¹
Dual access criteria	15.323(c)(10)	4.3.4	N/A ¹
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
· · · · · ·	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions	N/A	6.8	Complies

¹Only applicable for EUT that can initiate a communication link ²The client declares that the tested equipment does not implement this provision ³The tested equipment has integrated antennas only ⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

8 Test Set-up

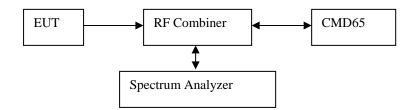
8.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

8.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

8.3 Conducted Emission Test

Test Set-up 3:

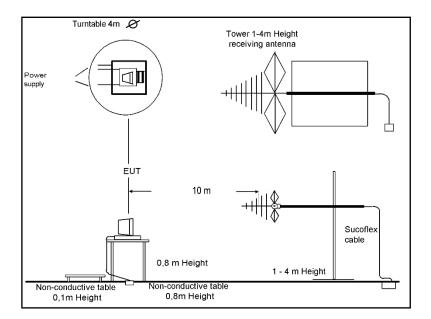
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

8.4 Radiated Emission Test

30 MHz – 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

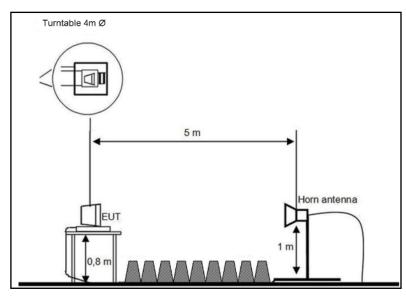
- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

1GHz – 10 GHz:

Test Set-up 5:

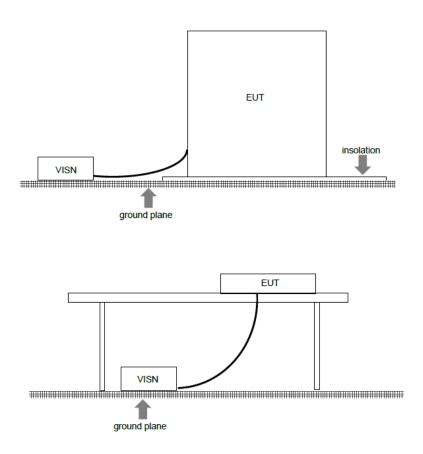

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4) < 18 GHz = 3 m
 - 18-26 GHz = 1,5 m
 - 26-40 GHz = 0,75 m
- The EUT was set into operation.

Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

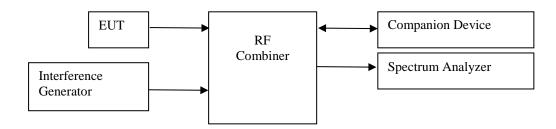
Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



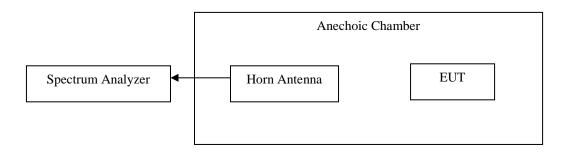
8.5 Power Line Conducted Emissions Test

Test Set-up 6:


According to EMC basic standard ANSI C 63.4

8.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

8.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

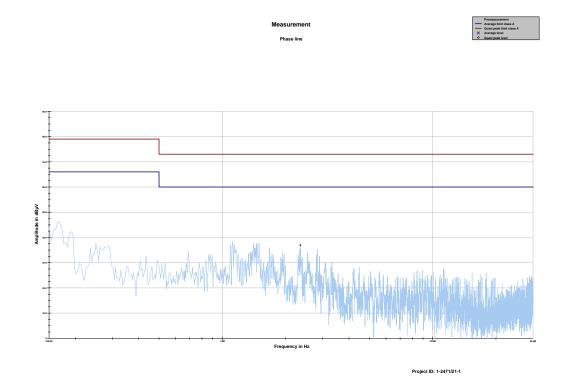
9 Detailed Test Results

9.1 Power Line Conducted Emissions

Measurement Procedure:

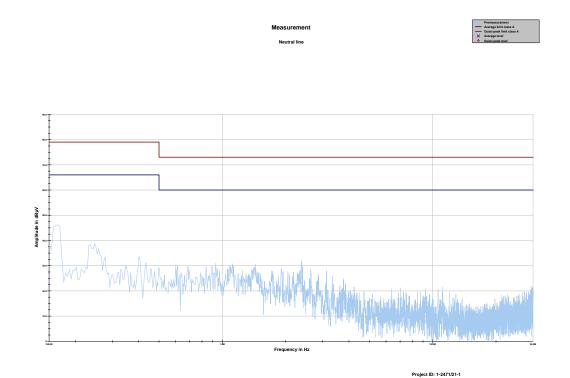
ANSI C63.4-2014 using 50µH/50 ohms LISN.

Test Result:


Measurement Data: See attached plots and tables

Pass

Requirement: FCC 15.207 (a)


Phase Line

Phase line tbl						
Frequency	Quas i peak leve l	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBμV
Project ID - 1-2471/21-1						
EUT - Gigaset A694A						
Operating mode - powered						

Neutral Line

Neutral line tbl						
Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
Project ID - 1- 2471/21-1						
EUT - Gigaset A694A						
Operating mode - powered						

9.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

9.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

	Test report no.: 1-2471/21-01-02-A	СТ	CI advanced member of RWTŨV group
9.4 Antenna Require	ments		
Does the EUT have detacha	ble antenna(s)?	Yes	🖾 No

If detachable, is the antenna connector(s) non-standard?

🗌 No

Yes

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

9.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

9.6 Automatic Discontinuation of Transmission

Does the EUT transmit contro	⊠Yes	🗌 No	
Type of EUT:	Initiating device	🛛 Respond	ing device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	А	Pass
2	EUT switched Off	N/A	N/A
3	Hook-On by companion device	В	Pass
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	В	Pass
6	Companion device switched Off	В	Pass

A – Connection breakdown, Cease of all transmissions

B – Connection breakdown, EUT transmits control and signaling information

C – Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

9.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

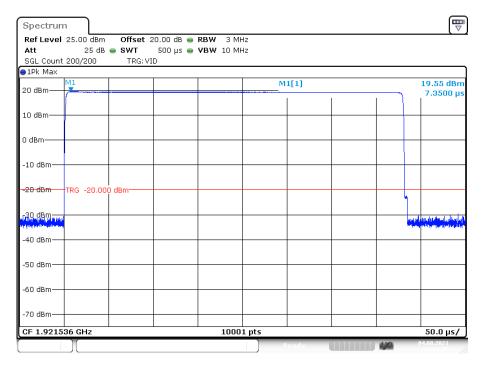
Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Radiated Output Power (dBm)	Maximum Antenna Gain (dBi)
4	1921.536 19.6		20.9	1.5
2	1924.992	19.6	20.1	0.7
0	1928.448	19.4	20.0	0.6

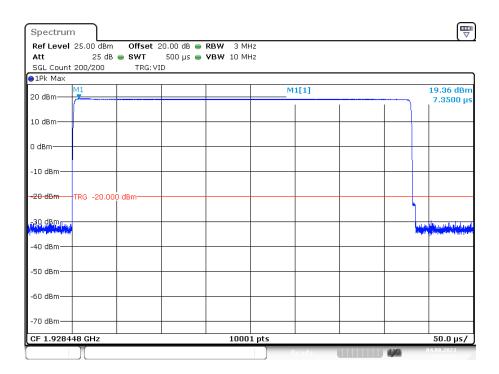
For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

Limit:

Conducted: 100 µW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):21.5 dBm (140 mW)RSS-213, Issue 2:20.5 dBm (113 mW)The antenna gain is below 3 dBi.


Requirements: FCC 15.319(c)(e). RSS-213, Issue 2

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.


The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Conducted Peak Output Power

Lower Channel

Upper Channel

Spectrun	1 I								
Ref Level	25.00 dBm		20.00 dB 👄	RBW 3 MH	Ηz				
Att		● SWT		VBW 10 MH	Ηz				
SGL Count	200/200	TRG: V	ID						
-	M1				м	1[1]		1	9.61 dBm
20 dBm	×								6.5000 µs
10 dBm									
o 15									
0 dBm——									
-10 dBm									
-10 0011									
-20 dBm	TRG -20.00	 0 dBm							
							L		
-30 dBm							 	1.001.4	all table on the ballout
adjournal land									
-40 dBm—									
-50 dBm									
60 ID									
-60 dBm									
-70 dBm									
CF 1.9249	92 GHz			1000	1 pts	_	 		50.0 µs/
	JL					Ready	4,761	04	.08.2021

Middle Channel

Radiated Peak Output Power

20 dBm		 	M1[1]			20.92 dBr
			1	т т		6.448 J
.0 dBm						
dBm-						
CU dBm—	i -9.000 dBm					
20 dBm						
					1	
30 dBm					and total	and a state of the second
heldbook the state					debtog	dilamaabhaga
40 dBm						
50 dBm		 				
50 dBm				+ +		

Lower Channel

TRG: VID	dB 👄 SWT 5	00 µs 👄 VBW :					
1AP View		1	1	M1[1]			19.99 dBn
20 dBm				1	ТІ		6.448 µ
10 dBm				_			
D dBm							
-10 dBm TRG -9.0	100 dBm						
-20 dBm							
30jdBm							danal Kapel Base
40 dBm						<mark>yildır.</mark>	and a papel a la sa
-50 dBm							
60 dBm							
70 dBm							
CF 1.928448 GHz			691 pts				50.0 µs/

Upper Channel

Spectrum 🔆					
Ref Level 25.00 dBm Att 20 dB TRG: VID		dB — RBW 3 Мн µs — VBW 10 Мн			、
●1AP View					
20 dBm			M1[1]	I Î	20.09 dBm 6.448 µs
10 dBm					
0 dBm					
-10 dBm TRG -9.000) dBm				
-20 dBm					η
-30 dBm					aller for the second of the second
-40 dBm					
-50 dBm					
-60 dBm					
CF 1.924992 GHz		691	pts		50.0 µs/
			Measuring		06.08.2021

Middle Channel

9.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

Channel No.	Frequency (MHz)	26 dB Bandwidth B (kHz)		
4	1921.536	1958		
0	1928.448	1818		

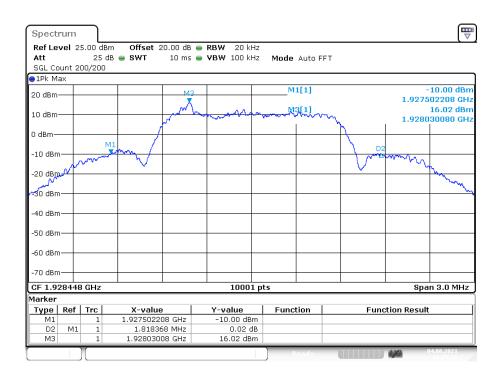
Channel No.	Frequency (MHz)	99% Bandwidth B (kHz)	
2	1924.992	1271	

Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

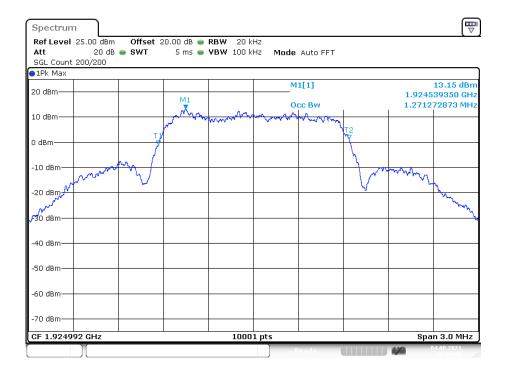
Requirement: FCC 15.323(a)

The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

Requirement: RSS-213 Issue 2, clause 6.4


The 99% Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).


Spectrun	ı)					Ē
Ref Level Att SGL Count	25	dB 👄 SWT 🛛 10 ms	8 e RBW 20 kHz 5 e VBW 100 kHz	Mode Auto Fl	FT	
●1Pk Max						
20 dBm		M	3	M1[1]		-9.93 dBm 1.920570752 GHa
10 dBm		moon	how man	mar M362	m	16.07 dBn 1.921116032 GH
0 dBm						
-10 dBm	Sum					D2
-20 dBp						- M
20 abu						mon
-30 dBm—						
-40 dBm—						
-50 dBm						
-60 dBm						
-70 dBm						
CF 1.9215	36 GHz		10001 pt	ts	1	Span 3.0 MHz
1arker			•			•
Type Re	f Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	1.920570752 GHz	-9.93 dBm			
D2 M M3	1 1	1.958144 MHz 1.921116032 GHz	0.00 dB 16.07 dBm			
	7	1.121110002 0/12	25101 4511	7		0.4.09.2021

Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

99% Bandwidth B, Middle Channel

9.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.116032	-7.69
0	1928.030080	-7.61

Averaged over 100 sweeps.

Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Spectrun	n							
Ref Level	10.00 dBm	Offset 2	0.00 dB 👄	RBW 3 kH	z			`
Att		e swt	2 ms 👄	VBW 10 kH	z			
SGL Count		TRG: VI	D					
<mark>⊜</mark> 1Sa AvgLo	og							
					м	1[1]		-7.69 dBm 245.400 μs
0 dBm			M1					
-10 dBm—								
-20 dBm—		_/						
-30 dBm		/			$ \rightarrow $			
-40 dBm	TRG -40.000) dBm			```	\		
-50 dBm	/							
-60 dBm								
-70 dBm								
-80 dBm								
)						 	
CF 1.9211	16032 GHz			1000	1 pts			200.0 µs/
					F R	eady	4,70	04.08.2021

Averaged, 100 Sweeps

Pulse power [dBm]	-7.69
Pulse power [mW]	0.17

Power Spectral Density

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

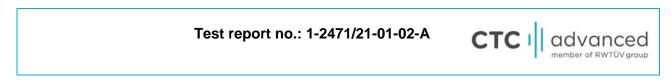
Spectrun	n							
Ref Level			20.00 dB 👄	RBW 3 kH	Z			
Att		- 0///		VBW 10 kH	z			
SGL Count		TRG: VI	D					
⊖1Sa AvgLo	og							
					м	1[1]		-7.61 dBm 242.400 μs
0 dBm			M1					+
-10 dBm—								
-20 dBm—								
-30 dBm		/						_
-40 dBm	-TRG -40.000) dBm						
-50 dBm						\backslash		
-60 dBm—								
-70 dBm—								+
-80 dBm								
CF 1.9280				1000	1 pts		 <u> </u>	200.0 µs/
	Π					(eady	4,40	04.08.2021

Averaged, 100 Sweeps

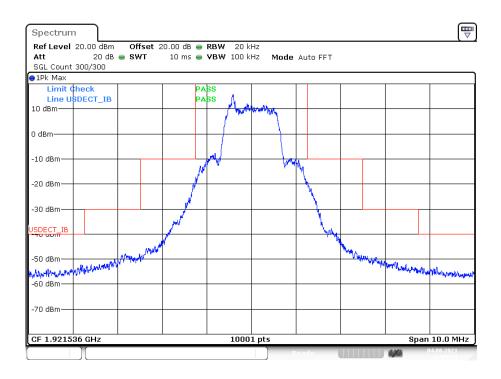
Pulse power [dBm]	-7.61
Pulse power [mW]	0.17

9.10 In-Band Unwanted Emissions, Conducted

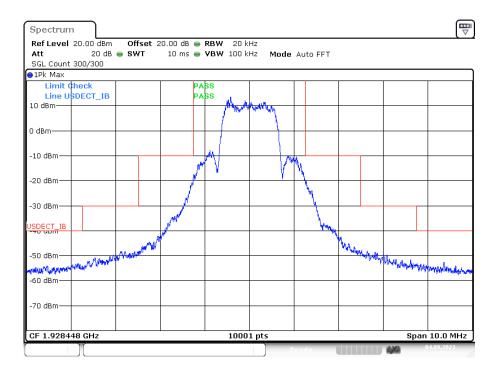
Measurement Procedure:


ANSI C63.17, clause 6.1.6.1.

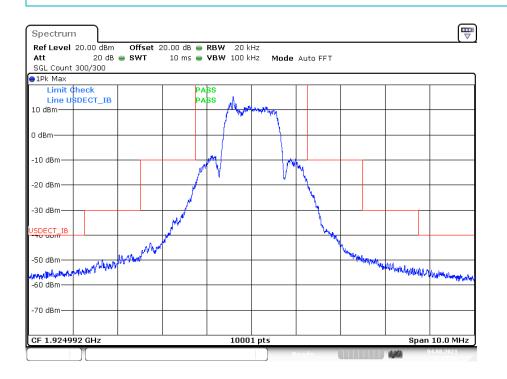
Test Results: Pass


Measurement Data: See plots.

Requirement: FCC 15.323(d)


B < f2 ≤2B:	less than or equal to 30 dB below max. permitted peak power level
2B < f2 ≤3B:	less than or equal to 50 dB below max. permitted peak power level
3B < f2 ≤UPCS Band Edge:	less than or equal to 60 dB below max. permitted peak power level

In-Band Unwanted Emissions, Conducted



Lower Channel

Upper Channel

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

9.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

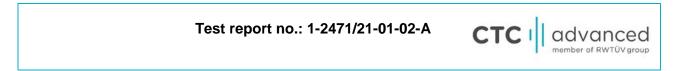
ANSI C63.17, clause 6.1.6.2.

Test Results: Pass

Measurement Data: See plots.

Requirement: FCC 15.323(d)

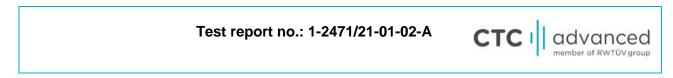
f ≤ 1.25 MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
$f \ge 2.5 \text{ MHz}$ outside UPCS band:	≤ -39.5 dBm



Out-of-Band Unwanted Emissions, Conducted

Upper and Lower Channel:

Spectrum								
Ref Level 20.00 dBm Att 20 dB (SGL Count 20/20	Offset 2 SWT	0.00 dB 👄 2 s 👄	RBW 20 k VBW 100 k		Auto Swee	0		
●1Pk Max								
Limit Check Line USDECT_OBE		PA PA		М	1[1]			55.34 dBm i0.880 MHz
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-50 dBm								
h.,				41 1	1	lan ni s	and to be a	ndistanal status
60.dBthandblack.tool Util				and the second se			المربق المرب المربق المربق	parameters and a second
-70 dBm								
Start 100.0 kHz			1000	l nts			Sto	p 1.9 GHz
			1000		v bea	111111		6.08.2021


Spectrum				
	20.00 dB 👄 RBW 20 k			
Att 20 dB SWT SGL Count 200/200	150 ms 👄 VBW 100 k	Hz Mode Auto Swee	p	
●1Pk Max				
Limit Check	PASS	M1[1]		-42.93 dBn
Line USDECT_OBE	PASS		1.9	1997500 GH
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
ISDECT ORE				
JSDECT_OBÉ				
-50 dBm				
والمربعية الأفري ومعالية العراق المربع فتعالم ومعارفهم والطراري والأرفاع المربع	and the second state of th	an ta Jada shikiti ana anti a car mawakasha	A LAND ALL THE FILL AND A LAND AND A REAL PROPERTY A REAL PROPERTY AND	المتعادلان والمتعدد
	a halipita biya a kasay na ansay kasila kabada k			the still provide the st
-70 dBm				
-/0 dbm				
Start 1.9 GHz	1000	1 pts	91	op 1.92 GHz
	1000	1 pt3	31	06.08.2021

Out-of-Band Unwanted Emissions, Conducted

	.00 dB 👄 RBW 20 k .50 ms 👄 VBW 100 k				
SGL Count 200/200	.30 IIIS 🖶 ¥6W 100 K	Hz Mode Auto S	oweeb		
1Pk Max					
Limit Check	PASS	M1[1]			46.69 dB
Line USDECT_OBE	PASS		I	1.930	00700 GF
10 dBm					[
					Í
D dBm					
					Í
SDECT_OBE					
					Í
20 dBm					
					Í
30 dBm					
					Í
40 dBm					
50 dBm					
	ومراجع الأجرب والخرج وأرتق وحافظ القاريق	And a shipping to all the same investigations	والجرير والجرأبان ألاار والالوان	والمراجع والمراجع	lands and station
and the second se	and the second sec		the second s	Contract of the second second	
70 dBm					
					Í

Spectrum				
Ref Level 20.00 dBm Offset	20.00 dB 👄 RBW 20 k	:Hz		
	10 s 👄 VBW 100 k	Hz Mode Auto Swee	ιp	
SGL Count 20/20				
●1Pk Max				
Limit Check	PASS	M1[1]		51.52 dBn
Line USDECT_OBE	PASS		5.3	51050 GH
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-50 dBm			M1	
an and training an antiput of the		محجم وحالي حصافا للطاف وحوارف ومردانا	الدريبة بأم أحياك بالغاد التسادقيني ورور استخل	CONTRACTOR AND
والمحافظة المتحالية والمتلا المراجع ومحمول والمحافظ والمحافظ المحافظ والمحافظ		and a second	Contraction of the second s	and protect the second
-ou asm				
-70 dBm				
Start 1.95 GHz	1000	1 pts	Sto	p 6.0 GHz
		Ready	440	06.08.2021

Out-of-Band Unwanted Emissions, Conducted

Ref Level 20.00 dBm Offset Att 20 dB • SWT SGL Count 10/10	20.00 dB 👄 RBW 20 20 s 👄 VBW 100		əp	
●1Pk Max				
Limit Check	PASS	M1[1]		-48.95 dB
Line USDECT_OBE	PASS		1 1	6.21770 GF
10 dBm				
0 dBm				
5 uBill				
-10 dBm				
10 dbm				
-20 dBm				
-30 dBm				
JSDECT_OBE				
M1				
-50 dBm			مناسبين المراجع المراجع المراجع المراجع	An I Make a second of the
and a state of the	the surface bottom and the state of the spatial	and the second	Section of the Association of the Association	
-60 dBm				
-70 dBm				

The BS spurious out-of-band transmission level is below the indicated limit.

9.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.990166	1.86	-2.26	1.918	±10

Deviation ppm = $((Max.Diff. - Mean.Diff.) / Mean Carrier Freq.) x 10^6$ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
6.5 V DC	1924.992	Ref.	Ref.	
6.0 V DC	1924.992	n.a	n.a	±10
9.0 V DC	1924.992	n.a	n.a	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.992	Ref.	Ref.	
T = -20°C	1924.986	-6.0	3.1	±10
T = +50°C	1924.992	-1.0	0.5	

Deviation ppm = ((Mean – Measured frequency) / Mean) $\times 10^{6}$

9.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(ppm)	Stability (ppm)
1924.992	100.0000020117	0.029	0.088

Limit:

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

9.14 Frame Period and Jitter

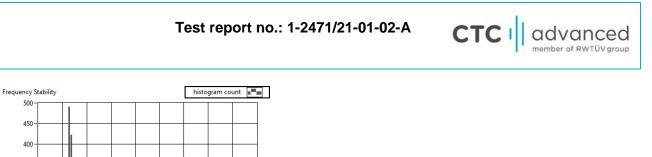
Measurement Procedure:

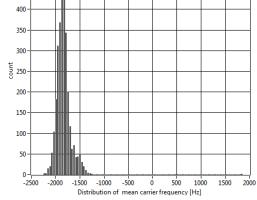
ANSI C63.17, clause 6.2.3.

Test Results: Pass

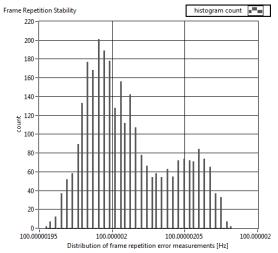
Measurement Data:

The Frame Repetition Stability is measured with the CMD65

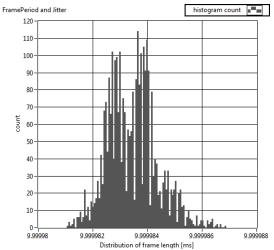

Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(µs)	Jitter (μs)
1924.992	10.000	-0.013	0.003


Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter $3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) \times 10^6$

Limit:


Frame Period	20 or 10 ms
Max Jitter	25 µs
3 times St.Dev. of Jitter	12.5 µs

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.



Histogram of Carrier Frequency Stability

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

9.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated value:

Lower Threshold	-79.2 dBm
	10.2 0011

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}, f_2 T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f ₁	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f ₂	Pass
e) f_1 T _L , f_2 at T _L + 7 dB	Transmission always on f_1	Pass

Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on f_1	EUT transmits on f ₂	N/A
d) Shall not transmit on f ₂	EUT transmits on f_1	N/A

Comment: This test is only applicable for EUTs that can be an initiating device.

9.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

9.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

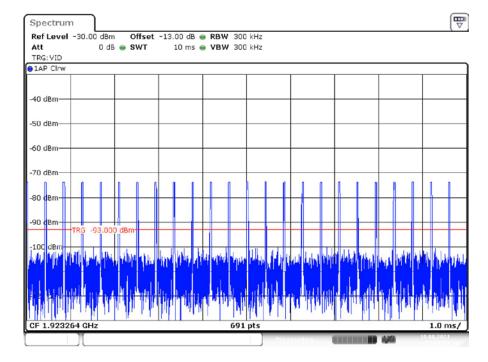
Test Results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

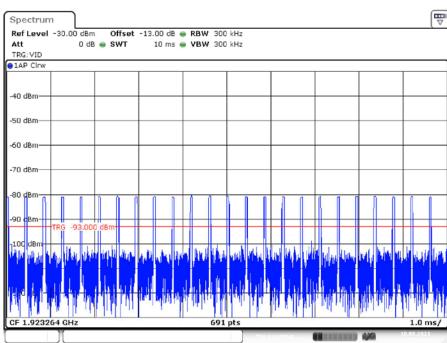
Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 µs pulses. Additionally a CW signal was applied on f_2 with a level of TL.

The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/B)	Transmission on f ₂	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass


Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.

Limits: FCC 15.323(c)(1), (5) and (7)


The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

35 µs Pulses

50 µs Pulses

9.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	EUT transmits on the Interference free time slot	Pass
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	Transmission stops every 4.5 s	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	EUT changes to Interference free time slot, and stays there	Pass

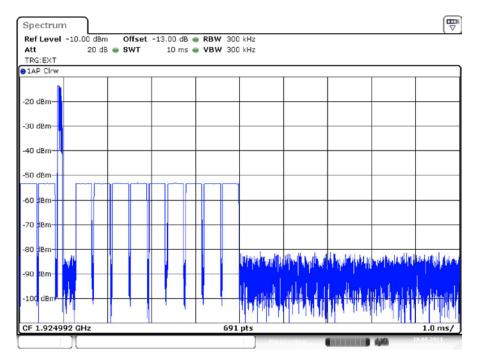
If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

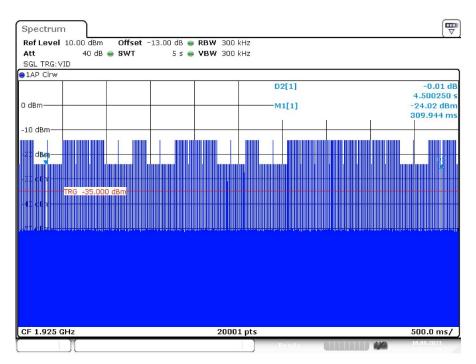
Comment: The tested EUT does not support the Random Waiting Interval option.

Limits:

FCC 15.323(c)(4):

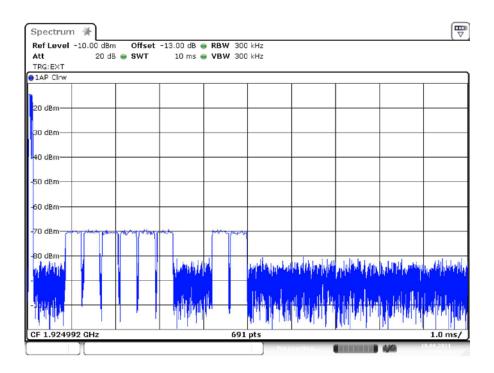

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

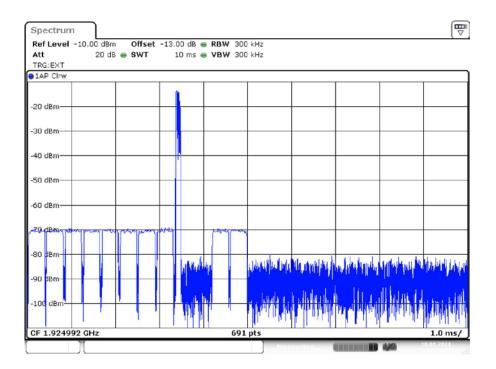

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

Access Criteria Check

8.1.1b) EUT Transmits on Unblocked Slot



8.1.1b) EUT Terminates Repetitive Transmission


Capture of transmission of base EUT control and signaling transmissions. The base EUT pauses in its transmission of the control and signaling channel to repeat the access criteria every 4.5 s seconds, meeting the requirement that it do so at least as often as every 30 seconds.

Access Criteria Check

8.1.2) EUT Changes to an Interference Free Timeslot, Before

8.1.2) EUT Changes to an Interference Free Timeslot, After

9.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	Only for initiating device	N/A
c) Transmission time after loss of acknowledgments	5 s	Pass

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	Only for initiating device that controls which time slot is used	N/A

Comment: /

Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which the time access criteria must be repeated.

9.20 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
 c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked 	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

EUTs that implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
 b) EUT is restricted to a single carrier f₁ for TDMA systems. The test is pass if the EUT can set up a communication link. 	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	N/A	N/A
e) f) Transmission on interference-free transmit time/spectrum window.	N/A	N/A

Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

9.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

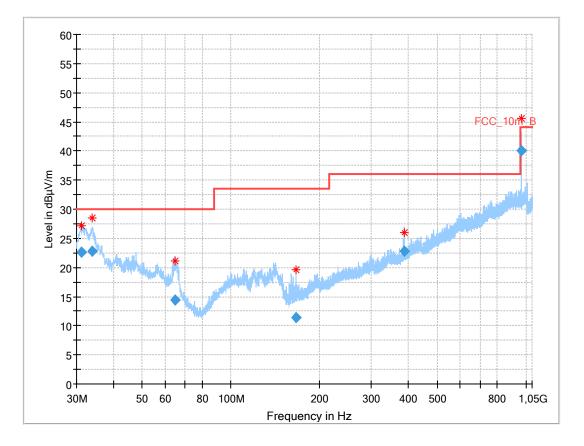
9.22 Spurious Emissions (Radiated)

Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result: Pass

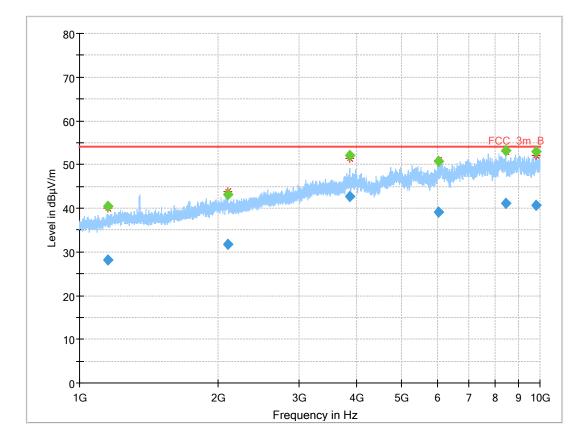
Measurement Data: See plots


Requirement: FCC 15.109(b)

30 –	88 MHz:	90 μV/m
88 –	216 MHz:	150 µV/m
216 –	960 MHz:	210 µV/m
960 -	1000 MHz:	300 µV/m

Common Information

EUT:	Dect
Serial number:	TAS A694A
Test description:	FCC part 15 class B @ 10 m
Operating condition:	active
Operator name:	MED
Comment:	


Final_Result

Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
31.083	22.68	30.0	7.3	1000	120.0	186.0	V	180	13
33.955	22.74	30.0	7.3	1000	120.0	109.0	V	10	13
64.508	14.37	30.0	15.6	1000	120.0	216.0	V	58	12
165.857	11.46	33.5	22.0	1000	120.0	225.0	V	275	11
387.078	22.87	36.0	13.1	1000	120.0	109.0	V	173	17
964.231	39.98	44.0	4.0	1000	120.0	295.0	Н	30	25

Common Information

EUT:	Dect
Serial number:	S30852-H2836-R341
Test description:	FCC part 15 B class B
Operating condition:	Handset placed on base station, handset charging
Operator name:	SCR/MED
Comment:	115V/60Hz

Final Result

							-			
Frequency	Average	MaxPeak	Limit	Margi	Meas.	Bandwidt	Pol	Azi	Corr.	Com
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m	n	Time	h		mu	(dB/m)	ment
		,	·)	(dB)	(ms)	(kHz)		th		
				. ,				(de		
								g)		
4440.000		40.47			4000	4000.0				
1149.329		40.47			1000	1000.0	Н	19	-5	
1149.329	28.22		54.0	25.8	1000	1000.0	Н	19	-5	
2097.028		43.19			1000	1000.0	V	12	-2	
2097.028	31.71		54.0	22.3	1000	1000.0	V	12	-2	
3856.980		51.97			1000	1000.0	Н	4	3	
3856.980	42.75		54.0	11.3	1000	1000.0	Н	4	3	
6030.727		50.75			1000	1000.0	V	19	6	
6030.727	39.20		54.0	14.8	1000	1000.0	V	19	6	
8425.739		53.21			1000	1000.0	V	26	9	
8425.739	41.14		54.0	12.9	1000	1000.0	V	26	9	
9814.810		53.01			1000	1000.0	Н	35	11	
9814.810	40.56		54.0	13.4	1000	1000.0	Н	35	11	

The radiated spurious emission of the unintentional radiator is below the indicated limit.

9.23 Receiver Spurious Emissions

Measurement Procedure:

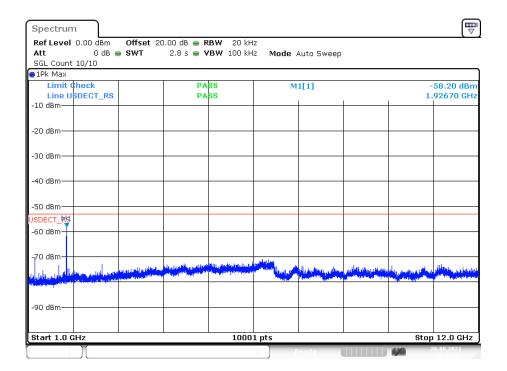
Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB
30 - 1000	all	-75.6	-57	18.6
> 1000	all	-58.2	-53	5.2

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.


When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.

When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

RefLevel 0. Att	DOdBm OdB 👄		_						
ALL SGL Count 25		SWI	250 ms 👄 V	BW IOU KH	z Mode /	Auto Sweep			
1Pk Max	/20								
Limit Che	ck		PA	88	М	1[1]		-	75.61 dBm
Line USD	ECT_RS		PA	SS					150.0 kHz
-10 dBm									
20 dBm —									
-30 dBm									
-40 dBm									
-50 dBm									
SDECT_RS									
-60 dBm									
-70 dBm									
OldBm topolog		a training an	-	-tert-reduces	pal-plant-latter	ماديسا ورشالي البرائد	ويتوقعه كالسبابة	A plat databa	and the public design of the second
and a house and possible state	Notes of Statistics	and an an a fairly discont	and the left of the particular states of the particular states of the states of the states of the states of the	narias lanatariyangan	Million of the last	ويهمينها والمتعاط	a da an	ine for the second second second	distant of the second second
90 dBm									
				1000	Inte				p 1.0 GHz

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

RefLevel 0.00 dBm Offset 20 Att 0 dB = SWT	1.00 dB 👄 RBW 20 kH 2 s 👄 VBW 100 kH		1	
SGL Count 10/10			, ,	
1Pk Max				
Limit Check	PASS	M1[1]		-70.28 dBm
Line USDECT_RS	PASS		16	.787120 GHz
-20 dBm				
30 dBm				
40 dBm				
SDECT_RS				
60 dBm				
70 dBm		M1		
المتلك ومرجعته فالتقديل والتوسية كمتر ومرد والاحاد والمراجع والمتلا	A A A A A A A A A A A A A A A A A A A		والمراقبة أورب وأقطاعك إيدا أدبعني	and smaller is the liquin.
BO dBm	APPENDIX NUMBER OF STREET, STR	Carden Carden Carden Carden		
90 dBm				
			1 1	

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

10 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Equipment	Manufacturer	Туре	Serial No.		Kind of Calib.	Last Calib.	Next Calib.
	Conducted							
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950	k	12/2020	12/2021
L-2	Signal Generator	R&S	SMBV100A	257858	300004529	vlkl!	12/2020	12/2023
L-3	Signaling Unit	R&S	CMD 65	825486	300003611	vlkl!	03/2021	03/2023
L-4	Power Meter	R&S	NRP	100212	300003780	vlkl!	12/2020	12/2022
L-5	Power Sensor	R&S	NRP-Z22	100031	400000188	vlkl!	12/2019	12/2021

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.		Last Calib.	Next Calib.
	Power Line Conducted Emission							
G-1	EMI Receiver	R&S	ESCI 3	100083	3000003312	k	12/2020	12/2021
G-2	VISN	R&S	ESH 3-Z5	893045/004	300000584	vlkl!	12/2020	12/2022

No.	Equipment	Manufacturer	Туре	Serial	Inv. No.	Kind of	Last	Next
				No.		Calib.	Calib.	Calib.
	Radiated Emission							
F-1	EMI Receiver	R&S	ESR3	102587	300005771	k	12/2020	12/2021
F-2	Spectrum Analyzer	R&S	FSU26	200809	300003874	k	12/2020	12/2021
F-3	Trilog Antenna	Schwarzbeck	VULB9163	371	300003854	vlkl!	11/2020	11/2023
F-4	Horn antenna	Schwarzbeck	BBHA9120B	188	300003896	vlkl!	04/2020	04/2022

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkI! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

11 Observations

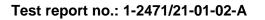
No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.


Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

Annex D: Document History

Version	Applied Changes	Date of Release
A	HVIN and PMN changed	2021-10-27

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Safety exposure levels

Prediction of MPE limit at a given distance:

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG / 4\pi R^2$

- where: S = Power density
 - P = Power input to the antenna
 - G = Antenna gain
 - R = Distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 -1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Prediction:

- P Max power input to the antenna:
- P Max power input to the antenna:
- R Distance:
- G Maximum antenna gain:
- G Maximum antenna gain:
- S MPE limit for uncontrolled exposure:

0.0364 mW/cm² 0.364 W/m²

19.61 dBm

91.4 mW

3.00 dBi

2.0 numeric

1 mW/cm²

20 cm

This prediction demonstrates the following:

The power density levels at a distance of 20 cm are below the maximum levels allowed by FCC regulations

Annex G: Accreditation Certificate

first page	last page
<image/> <image/> <section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header>	Deutsche Akkreditierungsstelle GmbH Missistelmart 10 10117 Berlin Office Frankfurt am Main Europa-Alles S2 60327 Frankfurt am Main Office Braunschweig Bundesalles 100 38118 Braunschweig Seiten of extracts of the accreditation entificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAMSS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attessed by DAMS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number DPL12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The conflicate together with its owner reflects the status of the time of the det of issue. The correct status of the scope of accreditation on the found in the statuses of accredited bodies of Denscher Abkrediterungsstelle timesi. https://www.asis.dov/notomet/accredited-bodies-dobies.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkAStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2623) and the Regulation (EC) No 755/2008 of the European Parliament and of the Gounol 69 July 2008 sering out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Office European Cooperation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements for cognize each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org LIAC: www.european-accreditation org LIAC: www.eula.com; LAF: www.iaf.nu

first page	last page
Every and the end of t	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main Bundesalles 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-01 Frankfurt am Main, 08.06.2020 The certificate together with its annex reflects the storus of the time of the date of issue. The current iteration of the scope of accreditation can be found in the database of accredited bodies of Descher Advectionruguszelie Gmost. https://www.dots.de/en/content/accredited-bodies-datas	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkKS. The accreditation awarg granted pursuant to the Act on the Accreditation Body (AkKStelleG) of 31.July 2009 [federal auto Gazette j - 2.253] and the Regulation (E) (No 755/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Diffical Journal of the European Inco.page and Cooperation (E). (No 755/2008 of the European Co-operation for Accreditation (E). (No 755/2008 of the Security Cooperation for Accreditation Accreditation and Accreditation and the scope and the

Note:

The current certificate including annex can be received on request.