

RF Exposure Report				
Report No.:	SABDYS-WTW-P20110432A			
FCC ID:	TVE-4617T111266			
Test Model:	FAP-432F			
Series Model:	FortiAP 432Fxxxxxx, FAP-432Fxxxxxx, FORTIAP-432Fxxxxxx (Where "x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes only)			
Received Date:	Nov. 13, 2020			
Test Date:	Dec. 31, 2020 ~ Mar. 24, 2021			
Issued Date:	Apr. 08, 2021			
Applicant:	Fortinet, Inc.			
	899 Kifer Road Sunnyvale, CA 94086 USA			
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch			
	Lin Kou Laboratories			
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan			
Test Location:	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN			
FCC Registration / Designation Number:	788550 / TW0003			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth ourfindings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Re	elea	se Control Record	3
1		Certificate of Conformity	4
2		RF Exposure	5
	2.2	Limits for Maximum Permissible Exposure (MPE) MPE Calculation Formula Classification	5
3		Calculation Result of Maximum Conducted Power	6

Release Control Record

Issue No.	Description	Date Issued
SABDYS-WTW-P20110432A	Original Release	Apr. 08, 2021

Certificate of Conformity 1

Product: Secured Wireless Access Point

Brand: Fortinet

Test Model: FAP-432F

Series Model: FortiAP 432Fxxxxxx, FAP-432Fxxxxxx, FORTIAP-432Fxxxxxx (Where "x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes only)

Sample Status: Engineering Sample

Applicant: Fortinet, Inc.

Test Date: Dec. 31, 2020 ~ Mar. 24, 2021

Standards: FCC Part 2 (Section 2.1091)

IEEE C95.3 -2002

References Test KDB 447498 D01 General RF Exposure Guidance v06 Guidance:

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

, **Date:** Apr. 08, 2021

Approved by :

Date: Apr. 08, 2021

Bruce Chen / Senior Project Engineer

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)			Average Time (minutes)		
Limits For General Population / Uncontrolled Exposure						
300-1500			F/1500	30		
1500-100,000			1.0	30		

F = Frequency in MHz

2.2 MPE Calculation Formula

 $\begin{array}{l} \mathsf{Pd} = (\mathsf{Pout}^*\mathsf{G}) \: / \: (4^*\mathsf{pi}^*\mathsf{r}^2) \\ \mathsf{where} \\ \mathsf{Pd} = \mathsf{power} \: \mathsf{density} \: \mathsf{in} \: \mathsf{mW}/\mathsf{cm}^2 \\ \mathsf{Pout} = \mathsf{output} \: \mathsf{power} \: \mathsf{to} \: \mathsf{antenna} \: \mathsf{in} \: \mathsf{mW} \\ \mathsf{G} = \mathsf{gain} \: \mathsf{of} \: \mathsf{antenna} \: \mathsf{in} \: \mathsf{linear} \: \mathsf{scale} \\ \mathsf{pi} = 3.1416 \\ \mathsf{r} \: \mathsf{e} \: \mathsf{distance} \: \mathsf{between} \: \mathsf{observation} \: \mathsf{point} \: \mathsf{and} \: \mathsf{center} \: \mathsf{of} \: \mathsf{the} \: \mathsf{radiator} \: \mathsf{in} \: \mathsf{cm} \end{array}$

2.3 Classification

The antenna of this product, under normal use condition, is at least 48cm away from the body of the user. So, this device is classified as **Mobile Device**.

Radio	Frequency Band (MHz)	Max AV Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
	CDD Mode					
2G traffic radio	2412-2462	29.12	11.52	48	0.400	1
(Radio 1)	Beamforming Mode					
	2412-2462	24.41	11.52	48	0.135	1
			CDD	Mode		
	5180-5240	26.74	13.22	48	0.342	1
	5260-5320	20.68	13.22	48	0.085	1
	5500-5720	22.54	13.22	48	0.130	1
5GHz traffic	5745-5825	28.78	13.22	48	0.547	1
radio (Radio 2)	Beamforming Mode					
	5180-5240	22.71	13.22	48	0.135	1
	5260-5320	17.38	13.22	48	0.040	1
	5500-5720	16.76	13.22	48	0.034	1
	5745-5825	22.72	13.22	48	0.136	1
	2412-2462	18.74	5.5	48	0.009	1
2G+5G	5180-5240	16.26	7.2	48	0.008	1
Scanning radio	5260-5320	15.74	7.2	48	0.007	1
(Radio 3)	5500-5720	15.79	7.2	48	0.007	1
	5745-5825	18.39	7.2	48	0.013	1
BT LE	2402-2480	9.39	4.5	48	0.001	1
Zigbee	2405-2480	9.31	4.5	48	0.001	1

3 Calculation Result of Maximum Conducted Power

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Radio 1:

2.4GHz: Directional gain = 5.5 dBi + 10log(4) = 11.52 Radio 2: 5GHz: Directional gain = 7.2 dBi + 10log(4) = 13.22 dBi

Conclusion:

Both of the WLAN 2.4G & WLAN 5G can transmit simultaneously, the formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

- 1. 2G traffic radio (Radio 1) + 5GHz traffic radio (Radio 2) + 5G Scanning radio (Radio 3) + BLE = 0.400 / 1 + 0.547 / 1 + 0.013 / 1 + 0.001 / 1 = 0.961
- 2. 2G traffic radio (Radio 1) + 5GHz traffic radio (Radio 2) + 5G Scanning radio (Radio 3) + Zigbee = 0.400 / 1 + 0.547 / 1 + 0.013 / 1 + 0.001 / 1 = 0.970
- 3. 5GHz traffic radio (Radio 2) + 2G Scanning radio (Radio 3) + BLE = 0.547 / 1 + 0.009 / 1 + 0.001 / 1 = 0.557
- 4. 5GHz traffic radio (Radio 2) + 2G Scanning radio (Radio 3) + Zigbee = 0.547 / 1 + 0.009 / 1 + 0.001 / 1 = 0.557

Therefore the maximum calculations of above situations are less than the "1" limit.

---END----