RF Exposure Report

Report No.: MFBDYS-WTW-P21091059
FCC ID: TVE-4617T06785
Test Model: FAP-433F
Series Model: FortiAP 433Fxxxxxx, FAP-433Fxxxxxx, FORTIAP-433Fxxxxxx (where "x" can be used as "A-Z", or " $0-9$ ", or "-", or blank for software changes or marketing purposes only)
Received Date: Dec. 16, 2021
Test Date: Jul. 02, 2022
Issued Date: Sep. 13, 2022

Applicant: Fortinet, Inc.
Address: 899 Kifer Road Sunnyvale, CA 94086 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
FCC Registration /
Designation Number: 788550 / TW0003

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits for Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
3 Calculation Result of Maximum Conducted Power 6

Release Control Record

Issue No.	Description	Date Issued
MFBDYS-WTW-P21091059	Original Release	Sep. 13, 2022

1 Certificate of Conformity

Product: Secured Wireless Access Point
Brand: Fortinet
Test Model: FAP-433F
Series Model: FortiAP 433Fxxxxxx, FAP-433Fxxxxxx, FORTIAP-433Fxxxxxx (where "x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes only)

Sample Status: Engineering Sample
Applicant: Fortinet, Inc.
Test Date: Jul. 02, 2022
FCC Rule Part: FCC Part 2 (Section 2.1091)
Standards: KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

, Date:
Sep. 13, 2022
Pettie Chen / Senior Specialist

Approved by :
Jeremy. Lin
\qquad , Date:

Sep. 13, 2022
Jeremy Lin / Project Engineer

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (A/m)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time $($ minutes $)$
Limits For General Population / Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{f}=$ Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

$\mathrm{Pd}=\left(\right.$ Pout $\left.{ }^{*} G\right) /\left(4^{*}{ }^{\text {pi*}}{ }^{*}{ }^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{pi}=3.1416$
$r=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 26 cm away from the body of the user. So, this device is classified as Mobile Device.

3 Calculation Result of Maximum Conducted Power

Frequency Band (MHz)	Max Average Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$

WLAN

traffic radio: CDD Mode						
$2412-2462$	29.04	6	26	0.376	1	
$5180-5240$	27.27	6	26	0.250	1	
$5260-5320$	22.55	6	26	0.084	1	
$5500-5720$	23.80	6	26	0.112	1	
$5745-5825$	29.35	6	26	0.403	1	

traffic radio: Beamforming Mode						
$2412-2462$	23.90	12.02	26	0.460	1	
$5180-5240$	23.91	12.02	26	0.461	1	
$5260-5320$	17.63	12.02	26	0.109	1	
$5500-5720$	17.92	12.02	26	0.116	1	
$5745-5825$	23.92	12.02	26	0.462	1	

Scanning radio: CDD Mode

$2412-2462$	12.21	4	26	0.005	1
$5180-5240$	12.23	6.01	26	0.008	1
$5260-5320$	12.12	6.01	26	0.008	1
$5500-5720$	12.14	6.18	26	0.008	1
$5745-5825$	12.08	6.20	26	0.008	1

BT LE

$2402-2480$	3.89	4.71	26	0.001	1

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
3. Directional gain:

2G traffic radio
2.4GHz Band: Directional Gain $=6 \mathrm{dBi}+10 \log (4)=12.02 \mathrm{dBi}$

5G traffic radio
$5180-5240 \mathrm{MHz}$: Directional Gain $=6 \mathrm{dBi}+10 \log (4)=12.02 \mathrm{dBi}$
$5260-5320 \mathrm{MHz}$: Directional Gain $=6 \mathrm{dBi}+10 \log (4)=12.02 \mathrm{dBi}$
$5500-5720 \mathrm{MHz}$: Directional Gain $=6 \mathrm{dBi}+10 \log (4)=12.02 \mathrm{dBi}$
$5745-5825 \mathrm{MHz}$: Directional Gain $=6 \mathrm{dBi}+10 \log (4)=12.02 \mathrm{dBi}$

Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + ..etc. < 1
CPD = Calculation power density
LPD = Limit of power density

2G traffic radio +5 GHz traffic radio + Scanning radio (5G) + BT
$=0.460 / 1+0.462 / 1+0.008 / 1+0.001 / 1=0.931<1$

Therefore the maximum calculations of above situations are less than the " 1 " limit.
--- END ---

