

FCC Test Report

Report No.: RFBERD-WTW-P22090179-1

FCC ID: TVE-391CBE0291

Test Model: FAP-U231G

Variant Model: FortiAP U231Gxxxxxx, FAP-U231Gxxxxxx, FORTIAP-U231Gxxxxxx

(Where "x" can be used as "A-Z", or "0-9", or "-", or blank for software

changes or marketing purposes only)

Received Date: 2022/9/6

Test Date: 2022/10/7 ~ 2022/11/29

Issued Date: 2023/3/21

Applicant: Fortinet, Inc.

Address: 899 Kifer Rd. Sunnyvale CA. 94086 United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location (1): No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

Test Location (2): B2F., No. 215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan

FCC Registration /

Designation Number(1): 788550 / TW0003

FCC Registration /

Designation Number(2): 427177 / TW0011

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBERD-WTW-P22090179-1 Page No. 1 / 40 Report Format Version: 6.1.2

Table of Contents

R	Release Control Record				
1	(Certificate of Conformity	5		
2	;	Summary of Test Results	6		
	2.1	Measurement Uncertainty	6		
	2.2	Modification Record	6		
3	(General Information	7		
	3.1	General Description of EUT	7		
	3.2	Description of Test Modes	8		
	3.2.1				
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1 3.5	Configuration of System under Test			
_		·			
4		Test Types and Results			
	4.1	Radiated Emission and Bandedge Measurement			
		Limits of Radiated Emission and Bandedge Measurement			
		Test Instruments			
		Test Procedures Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results			
	4.2	Conducted Emission Measurement	25		
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup EUT Operating Conditions			
		Test Results			
	4.3	6dB Bandwidth Measurement			
	4.3.1	Limits of 6dB Bandwidth Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		EUT Operating Conditions			
		Test Result			
	4.4	Conducted Output Power Measurement			
	4.4.1	Limits of Conducted Output Power Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test StandardEUT Operating Conditions			
		Test Results			
	4.5	Power Spectral Density Measurement			
		Limits of Power Spectral Density Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
	4.5.0	EUT Operating Condition	54		

4.5.7 Test Results	35		
4.6 Conducted Out of Band Emission Measurement	36		
4.6.1 Limits of Conducted Out of Band Emission Measurement	36		
4.6.2 Test Setup	36		
4.6.3 Test Instruments	36		
4.6.4 Test Procedure			
4.6.5 Deviation from Test Standard	36		
4.6.6 EUT Operating Condition	36		
4.6.7 Test Results	36		
5 Pictures of Test Arrangements	38		
Annex A - Band Edge Measurement	39		
Appendix – Information of the Testing Laboratories	40		
Typonaix information of the footing Euporatories information information and the footing Euporatories information in the footing Euporatories information in the footing Euporatories in the Euporator			

Release Control Record

Issue No.	Description	Date Issued
RFBERD-WTW-P22090179-1	Original release	2023/3/21

1 Certificate of Conformity

Product: Secured Wireless Access Point

Brand: FORTINET

Test Model: FAP-U231G

Variant Model: FortiAP U231Gxxxxxxx, FAP-U231Gxxxxxxx, FORTIAP-U231Gxxxxxxx (Where "x" can

be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes

only)

Sample Status: Engineering sample

Applicant: Fortinet, Inc.

Test Date: 2022/10/7 ~ 2022/11/29

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	rethe	Chen	, Date:	2023/3/21	
	Pettie Chen / Seni	or Specialist			

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -10.63dB at 0.35000MHz.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -1.1dB at 2483.50MHz.			
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.			
15.247(b)	Conducted power	Pass	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.			
15.203	Antenna Requirement	Pass	Antenna connector is IPEX not a standard connector.			

Note

- 1. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.79 dB
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.99 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	2.44 dB
wanted Emissions below 1 GHZ	30 MHz ~ 1 GHz	2.02 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	1.01 dB
Onwanted Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.15 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Secured Wireless Access Point			
Brand	FORTINET			
Test Model	FAP-U231G			
	FortiAP U231Gxxxxxx, FAP-U231Gxxxxxx, FORTIAP-U231Gxxxxxx (Where			
Variant Model	"x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or			
	marketing purposes only)			
Model Difference	Refer to note			
Sample Status	Engineering sample			
Dawer Cumply nating	12Vdc from adapter			
Power Supply rating	56Vdc from POE			
Modulation Type	O-QPSK			
Modulation Technology	DSSS			
Transfer Rate	250 kbps			
Operating Frequency	2405 ~ 2480MHz			
Number of Channel	16			
Output Power	62.951mW			
Antenna Type	Refer to note			
Antenna Connector	Refer to note			
Accessory Device	NA			
Cable Supplied	NA			

Note:

1. The following models are provided to this EUT. The model FAP-U231G was chosen for final test.

The following medele are provided to the Eg it the medel is a "e2010 that chiesen for that took						
Brand	Model	Description				
	FAP-U231G FortiAP U231Gxxxxxx, FAP-U231Gxxxxxx, FORTIAP-U231Gxxxxxx (Where "x" can be used as "A-Z", or "0-9", or "-", or blank for software changes or marketing purposes only)	Series model for marketing purpose				

2. The EUT consumes power from the following POE and adapter. (Support unit only)

POE (Support unit only)					
Brand Engenius					
Model	PNA90BGS-54				
Input Power	100-240V ~1.5A, 50-60Hz				
Output Power	56V, 1.7A				

AC Adapter 1 (Support unit only)				
Brand	Asian Power Devices Inc.			
Model	WA-30J12R			
Input Power	100-240Vac ~50-60Hz, 0.9A Max			
Output Power	12Vdc, 2.5A			
DC Output Cable	1.48m non-shielded cable without core			

AC Adapter 2 (Support unit only)				
Brand	Asian Power Devices Inc.			
Model	WA-48A12R			
Input Power	100-240Vac ~50-60Hz, 1.5A Max			
Output Power	12Vdc, 4.0A			
DC Output Cable	1.46m non-shielded cable without core			

3. The following antennas were provided to the EUT.

Antenna Type		PIFA	PIFA			
Connector Type		IPEX				
Antenna NO.	RF Chain NO.	Brand	Model	Antenna Net Gain (dBi)	Frequency range	
ANT9	Radio 4 (BLE/Zigbee)	INPAQ	46-500534-01	3.96	2.4~2.4835GHz	

^{*} Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

4. The simultaneous operation mode was determined by client.

No	Mode
1	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 2.4GHz radio (Radio 3) + BLE
2	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 2.4GHz radio (Radio 3) + Zigbee
3	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 5GHz radio (Radio 3) + BLE
4	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 5GHz radio (Radio 3) + Zigbee
5	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 6GHz radio (Radio 3) + BLE
6	2.4GHz radio (Radio 1) + 5GHz radio (Radio 2) + 6GHz radio (Radio 3) + Zigbee
7	5GHz radio (Radio 1) + 5GHz radio (Radio 2) + 2.4GHz radio (Radio 3) + BLE
8	5GHz radio (Radio 1) + 5GHz radio (Radio 2) + 2.4GHz radio (Radio 3) + Zigbee

^{* 5}GHz radio (Radio 2) and 5GHz radio (Radio 3) cannot transmit in the same band at same time.

3.2 Description of Test Modes

16 channels are provided to this EUT:

Channel	Freq. (MHz)						
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455	25	2475
14	2420	18	2440	22	2460	26	2480

^{*} Zigbee and BT technologies cannot transmit at same time.

^{*} The emission of the simultaneous operation has been evaluated and no non-compliance was found.

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able to		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Power
А	\checkmark	V	V	√	Power from adapter 1
В	-	V	V	-	Power from PoE

Where RE≥1G: Radiated Emission above 1GHz & Bandedge

RE<1G: Radiated Emission below 1GHz

Measurement

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Note:

- 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-axis.
- 2. Radiated emission test (below 1GHz) and power line conducted emission test items chosen the worst maximum power.
- 3. "-": Means no effect.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode Available Channel		Tested Channel	Modulation Type	
А	11 to 26	11, 18, 26	O-QPSK	

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode Available Channel		Tested Channel	Modulation Type	
A, B	11 to 26	11	O-QPSK	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

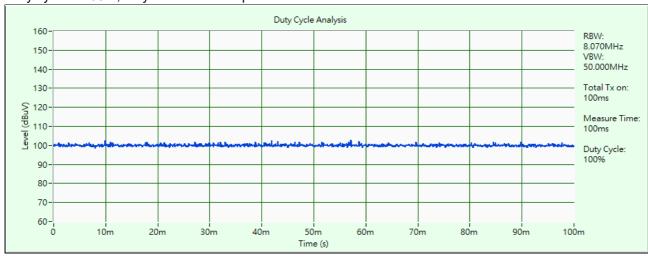
EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	
A, B	11 to 26	11	O-QPSK	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode Available Channel		Tested Channel	Modulation Type	
А	11 to 26	11, 18, 26	O-QPSK	



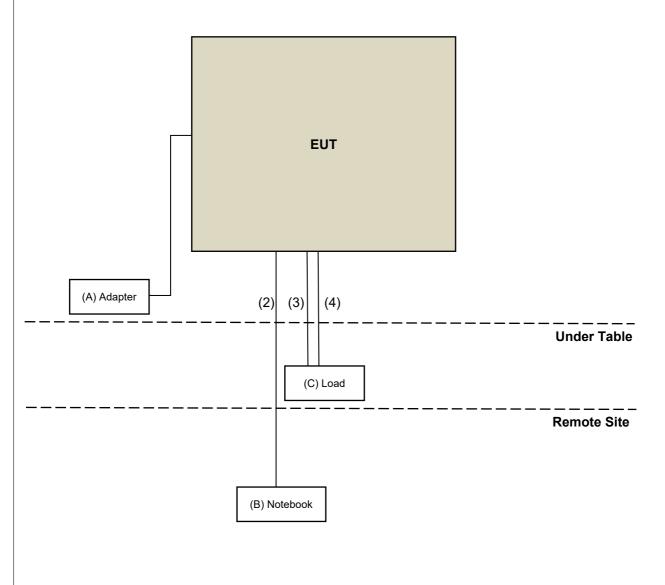
Test Condition:

Applicable to	Environmental Conditions	Input Power (System)	Tested by
RE≥1G	RE≥1G 25 deg. C, 59% RH		Charles Hsiao
RE<1G	RE<1G 25 deg. C, 59% RH		Karl Lee
PLC	23 deg. C, 66% RH	120Vac, 60Hz, 56Vdc	Titan Hsu
APCM	25 deg. C, 60% RH	120Vac, 60Hz	Wayne Lin

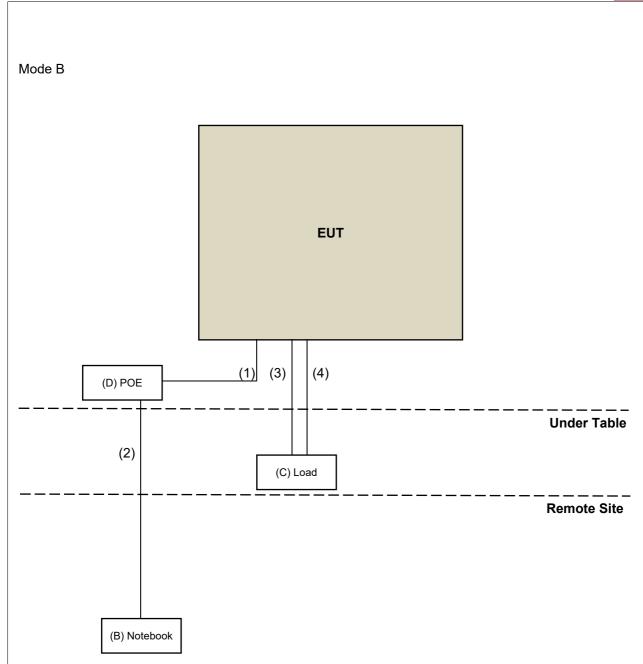
3.3 Duty Cycle of Test Signal

Duty cycle = 100%, duty factor is not required.

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	Asian Power Devices Inc.	WA-30J12R	NA	NA	Provided by client
B.	Notebook	Dell	E5430	BPJVKV1	FCC DoC Approved	-
C.	Load	NA	NA	NA	NA	-
D.	PoE	Engenius	PNA90BGS-54	NA	NA	Provided by client


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN cable	1	1.5	N	0	RJ45, Cat5e
2.	LAN cable	1	10	N	0	RJ45, Cat5e
3.	LAN cable	1	1.5	N	0	RJ45, Cat5e
4.	LAN cable	1	1.5	N	0	RJ45, Cat5e

3.4.1 Configuration of System under Test

Mode A

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	UNAT_5+	PAD-CH6-01	N/A	N/A
Antenna Tower Controller Max-Full	MF-7802	N/A	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	8	N/A	N/A
Horn Antenna	3117	00143293	2021/11/14	2022/11/13
ETS-Lindgren			2022/11/13	2023/11/12
Horn Antenna	BBHA 9170	BBHA9170241	2021/10/26	2022/10/25
Schwarzbeck	551,7,011,0	55111101110211	2022/10/20	2023/10/19
Pre-Ammlifier EMCI	EMC 184045	980116	2022/10/01	2023/09/30
Preamplifier Agilent	83017A	MY39501373	2022/06/14	2023/06/13
RF Coaxial Cable	EMC104-SM-SM-10000	Cable-CH1-01(RFC-SMS- 100-SMS-120+RFC-SMS- 100-SMS-4		2023/06/13
ETS-Lindgren	RFC-SMS-100-SMS-24-IN	Cable-CH1-02(RFC-SMS- 100-SMS-24)	2022/06/14	2023/06/13
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	2022/01/15	2023/01/14
RF Coaxial Cable HUBER+SUHNER&EMCI	SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2022/01/15	2023/01/14
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Test Receiver Agilent	N9038A	MY52260177	2022/09/19	2023/09/18
Turn Table Max-Full	TT-1510	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802	N/A	N/A	N/A
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	2022/1/17	2023/1/16
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	2022/1/18	2023/1/17
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100979	2022/3/25	2023/3/24

Notes:

1. The test was performed in XD - 966 chamber 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

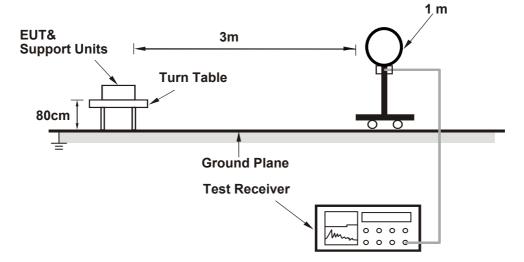
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

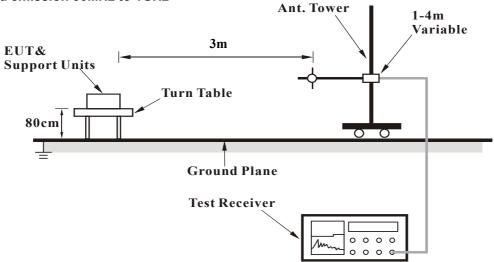
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (RBW = 1MHz, VBW = 1kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.

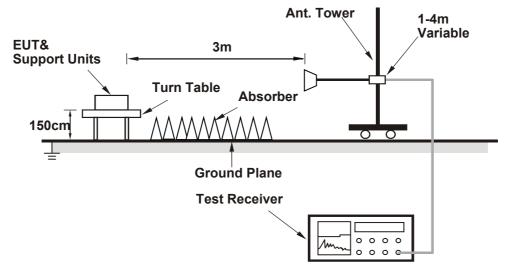

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

RF Mode	TX Zigbee	Channel	CH 11: 2405 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
		Ante	enna Polarity	<u>/</u> & Test Dist		ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2366.46	61.6 PK	74.0	-12.4	1.91 H	358	55.5	6.1
2	2366.46	52.7 AV	54.0	-1.3	1.91 H	358	46.6	6.1
3	2390.00	60.3 PK	74.0	-13.7	1.90 H	0	53.7	6.6
4	2390.00	49.2 AV	54.0	-4.8	1.90 H	0	42.6	6.6
5	*2405.00	113.5 PK			1.90 H	0	75.4	38.1
6	*2405.00	111.7 AV			1.90 H	0	73.6	38.1
7	4810.00	51.4 PK	74.0	-22.6	2.00 H	358	39.8	11.6
8	4810.00	45.6 AV	54.0	-8.4	2.00 H	358	34.0	11.6
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2366.46	58.4 PK	74.0	-15.6	1.98 V	360	52.3	6.1
2	2366.46	47.8 AV	54.0	-6.2	1.98 V	360	41.7	6.1
3	2390.00	59.6 PK	74.0	-14.4	1.98 V	360	53.0	6.6
4	2390.00	49.3 AV	54.0	-4.7	1.98 V	360	42.7	6.6
5	*2405.00	107.6 PK			1.98 V	360	69.5	38.1
6	*2405.00	105.8 AV			1.98 V	360	67.7	38.1
7	4810.00	55.4 PK	74.0	-18.6	1.22 V	352	43.8	11.6
8	4810.00	50.8 AV	54.0	-3.2	1.22 V	352	39.2	11.6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

RF Mode	TX Zigbee	Channel	CH 18: 2440 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	IGHZ ~ 25GHZ		Average (AV)

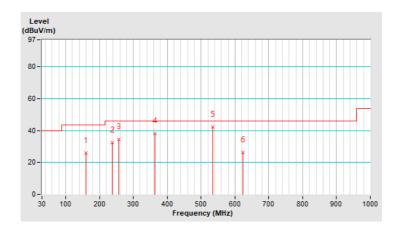
	Antenna Polarity & Test Distance : Horizontal at 3 m								
	Fraguenav	Emission Limit	Morgin	Antenna	Table	Raw	Correction		
No	Frequency	Level		Margin	Height	Angle	Value	Factor	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2440.00	107.3 PK			1.90 H	0	69.4	37.9	
2	*2440.00	105.4 AV			1.90 H	0	67.5	37.9	
3	4880.00	56.2 PK	74.0	-17.8	2.00 H	358	44.6	11.6	
4	4880.00	48.3 AV	54.0	-5.7	2.00 H	358	36.7	11.6	
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m			
	Fraguenay	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No	Frequency	Level			Height	Angle	Value	Factor	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2440.00	101.1 PK			1.98 V	0	63.2	37.9	
2	*2440.00	99.8 AV			1.98 V	0	61.9	37.9	
3	4880.00	59.2 PK	74.0	-14.8	1.22 V	352	47.6	11.6	
4	4880.00	52.6 AV	54.0	-1.4	1.22 V	352	41.0	11.6	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

RF Mode	TX Zigbee	Channel	CH 26: 2480 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	103.3 PK			1.90 H	0	65.3	38.0
2	*2480.00	101.4 AV			1.90 H	0	63.4	38.0
3	2483.50	62.0 PK	74.0	-12.0	1.90 H	0	55.4	6.6
4	2483.50	52.9 AV	54.0	-1.1	1.90 H	0	46.3	6.6
5	4960.00	50.6 PK	74.0	-23.4	1.19 H	324	38.7	11.9
6	4960.00	43.6 AV	54.0	-10.4	1.19 H	324	31.7	11.9
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	97.7 PK			1.98 V	0	59.7	38.0
2	*2480.00	95.8 AV			1.98 V	0	57.8	38.0
3	2483.50	60.3 PK	74.0	-13.7	1.98 V	0	53.7	6.6
4	2483.50	50.5 AV	54.0	-3.5	1.98 V	0	43.9	6.6
5	4960.00	51.1 PK	74.0	-22.9	1.13 V	355	39.2	11.9
6	4960.00	43.7 AV	54.0	-10.3	1.13 V	355	31.8	11.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

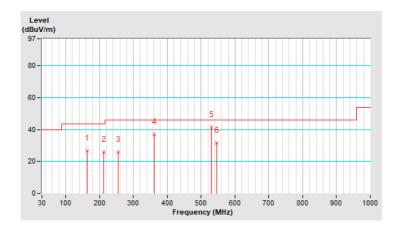


Below 1GHz worst-case data:

RF Mode	TX Zigbee	Channel	CH 11: 2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Test Mode	А		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	160.50	25.9 QP	43.5	-17.6	1.87 H	23	38.4	-12.5	
2	236.80	32.4 QP	46.0	-13.6	1.54 H	101	46.8	-14.4	
3	256.80	34.7 QP	46.0	-11.3	1.50 H	274	48.4	-13.7	
4	364.30	38.4 QP	46.0	-7.6	1.06 H	181	49.0	-10.6	
5	533.60	42.5 QP	46.0	-3.5	2.64 H	153	49.4	-6.9	
6	624.50	26.4 QP	46.0	-19.6	1.26 H	97	31.4	-5.0	

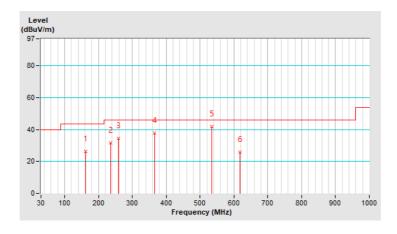
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX Zigbee	Channel	CH 11: 2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Test Mode	А		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	164.80	26.8 QP	43.5	-16.7	1.06 V	247	39.5	-12.7		
2	211.40	25.8 QP	43.5	-17.7	1.25 V	146	41.7	-15.9		
3	254.30	25.8 QP	46.0	-20.2	2.12 V	196	39.7	-13.9		
4	362.40	36.8 QP	46.0	-9.2	1.42 V	7	47.5	-10.7		
5	530.40	41.4 QP	46.0	-4.6	1.57 V	191	48.4	-7.0		
6	546.30	31.5 QP	46.0	-14.5	1.14 V	76	38.2	-6.7		

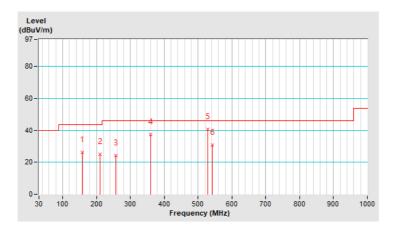
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX Zigbee	Channel	CH 11: 2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Test Mode	В		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	161.70	26.4 QP	43.5	-17.1	1.53 H	134	39.0	-12.6		
2	234.92	31.8 QP	46.0	-14.2	1.39 H	274	46.4	-14.6		
3	258.11	34.6 QP	46.0	-11.4	1.58 H	272	48.3	-13.7		
4	365.84	37.8 QP	46.0	-8.2	1.09 H	131	48.3	-10.5		
5	534.86	41.9 QP	46.0	-4.1	1.72 H	168	48.8	-6.9		
6	618.38	25.9 QP	46.0	-20.1	1.04 H	19	30.9	-5.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz \sim 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX Zigbee	Channel	CH 11: 2405 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Test Mode	В		

		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	157.39	26.3 QP	43.5	-17.2	2.61 V	141	38.8	-12.5
2	209.83	25.2 QP	43.5	-18.3	1.23 V	274	41.0	-15.8
3	256.96	24.3 QP	46.0	-21.7	1.89 V	227	38.0	-13.7
4	359.04	37.4 QP	46.0	-8.6	1.21 V	76	48.2	-10.8
5	528.75	40.6 QP	46.0	-5.4	2.29 V	180	47.7	-7.1
6	542.30	30.8 QP	46.0	-15.2	1.65 V	175	37.6	-6.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range $30 MHz \sim 1000 MHz$.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (IVII IZ)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

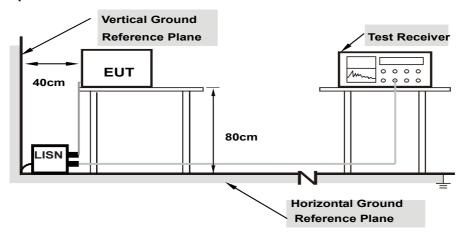
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
LISN R&S	ESH3-Z5	100311	2022/9/12	2023/9/11
LISN ROHDE & SCHWARZ	ENV216	101826	2022/3/14	2023/3/13
RF Coaxial Cable WOKEN	5D-FB	Cable-cond1-01	2022/1/15	2023/1/14
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
Test Receiver Rohde&Schwarz	ESCI	100613	2021/12/3	2022/12/2
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2022/8/31	2023/8/30

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).
- 3. The VCCI Site Registration No. is C-12040.

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

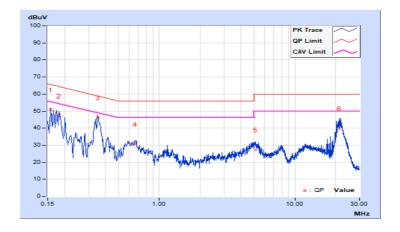
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

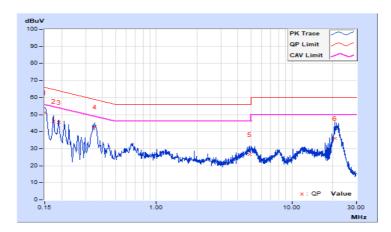

4.2.7 Test Results

Worst-case data:

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

	Freq. Corr		Corr. Reading Value		Emissic	Emission Level		Limit		Margin	
No	rieq.	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15800	10.19	40.66	26.73	50.85	36.92	65.57	55.57	-14.72	-18.65	
2	0.18200	10.21	36.82	24.36	47.03	34.57	64.39	54.39	-17.36	-19.82	
3	0.35000	10.24	36.04	28.09	46.28	38.33	58.96	48.96	-12.68	-10.63	
4	0.66600	10.26	20.30	14.47	30.56	24.73	56.00	46.00	-25.44	-21.27	
5	5.10600	10.43	16.84	7.49	27.27	17.92	60.00	50.00	-32.73	-32.08	
6	21.18600	10.61	29.11	19.70	39.72	30.31	60.00	50.00	-20.28	-19.69	

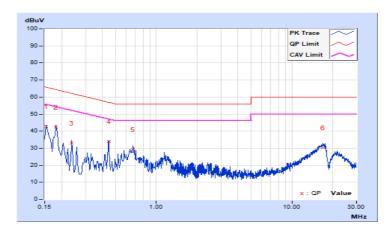
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

- Frank		Corr.	Corr. Reading Value		Emissio	Emission Level		Limit		Margin	
No	Freq. Factor		[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.18	40.93	25.18	51.11	35.36	66.00	56.00	-14.89	-20.64	
2	0.17400	10.19	35.80	22.86	45.99	33.05	64.77	54.77	-18.78	-21.72	
3	0.19000	10.20	35.21	20.86	45.41	31.06	64.04	54.04	-18.63	-22.98	
4	0.35000	10.24	32.41	23.76	42.65	34.00	58.96	48.96	-16.31	-14.96	
5	4.89400	10.45	16.05	7.31	26.50	17.76	56.00	46.00	-29.50	-28.24	
6	20.63400	10.77	25.26	15.72	36.03	26.49	60.00	50.00	-23.97	-23.51	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Line (L)	LI JETECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	No Freq. Corr. Factor		Reading Value		Emissio	Emission Level		Limit		Margin	
No			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15400	10.12	32.56	26.37	42.68	36.49	65.78	55.78	-23.10	-19.29	
2	0.18200	10.13	32.20	22.40	42.33	32.53	64.39	54.39	-22.06	-21.86	
3	0.23800	10.14	22.96	11.03	33.10	21.17	62.17	52.17	-29.07	-31.00	
4	0.44529	10.16	23.96	22.41	34.12	32.57	56.96	46.96	-22.84	-14.39	
5	0.66987	10.17	19.07	10.83	29.24	21.00	56.00	46.00	-26.76	-25.00	
6	16.95800	10.38	20.09	15.89	30.47	26.27	60.00	50.00	-29.53	-23.73	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	LI Jefector Flinction	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	No Freq. Corr. Factor		Reading Value		Emissio	Emission Level		Limit		Margin	
No			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15800	10.13	35.12	27.87	45.25	38.00	65.57	55.57	-20.32	-17.57	
2	0.18600	10.14	30.06	21.41	40.20	31.55	64.21	54.21	-24.01	-22.66	
3	0.20600	10.15	25.42	16.14	35.57	26.29	63.37	53.37	-27.80	-27.08	
4	0.44200	10.17	21.89	19.91	32.06	30.08	57.02	47.02	-24.96	-16.94	
5	0.65800	10.18	17.48	10.84	27.66	21.02	56.00	46.00	-28.34	-24.98	
6	18.11000	10.52	20.84	16.63	31.36	27.15	60.00	50.00	-28.64	-22.85	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

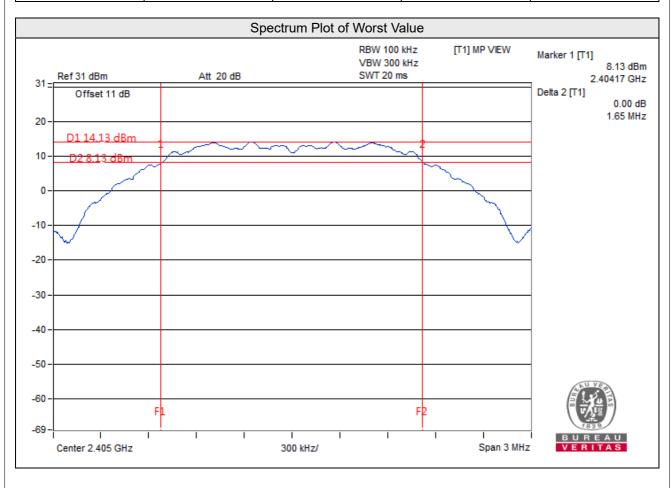
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz.
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.5 Deviation fromTest Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
11	2405	1.65	0.5	Pass
18	2440	1.65	0.5	Pass
26	2480	1.65	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

For Peak Power

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

For Average Power

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as item 4.3.6.

4.4.7 Test Results

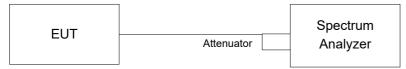
For Peak Power

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
11	2405	62.951	17.99	30.00	Pass
18	2440	19.231	12.84	30.00	Pass
26	2480	8.395	9.24	30.00	Pass

For Average Power

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
11	2405	61.376	17.88
18	2440	18.323	12.63
26	2480	7.980	9.02

Report No.: RFBERD-WTW-P22090179-1 Page No. 33 / 40 Report Format Version: 6.1.2



4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm per 3kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

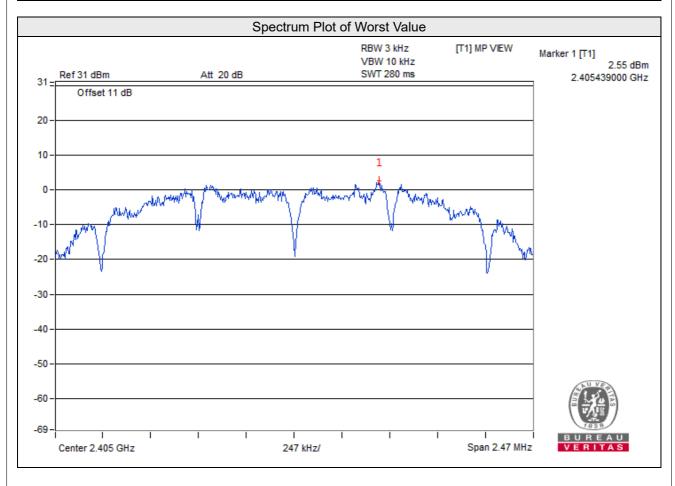
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

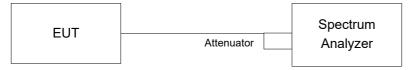
No deviation.


4.5.6 EUT Operating Condition

Same as item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
11	2405	2.55	8.00	Pass
18	2440	-2.57	8.00	Pass
26	2480	-6.19	8.00	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

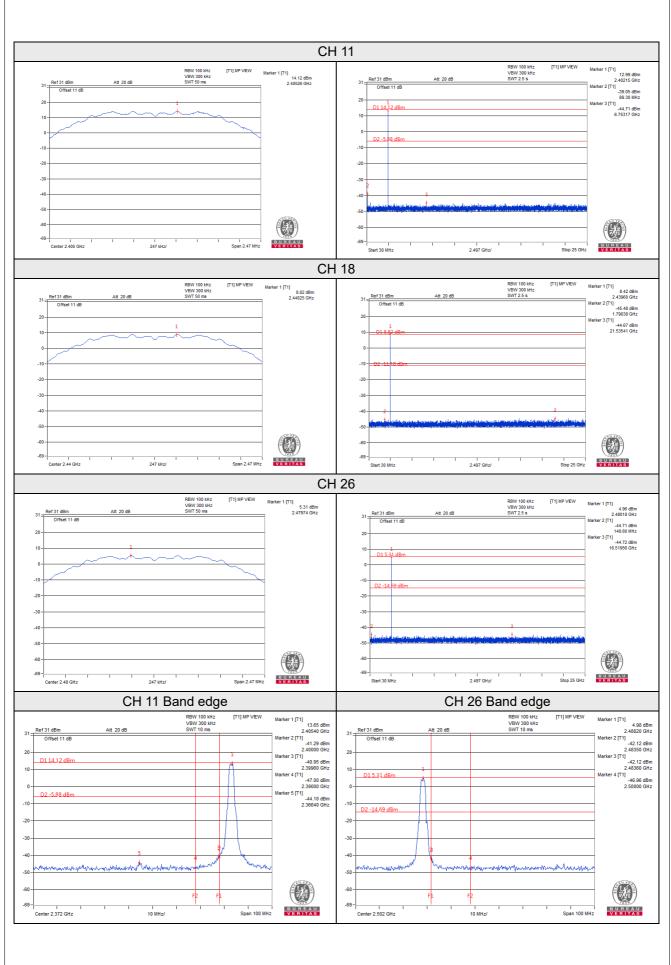
MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.

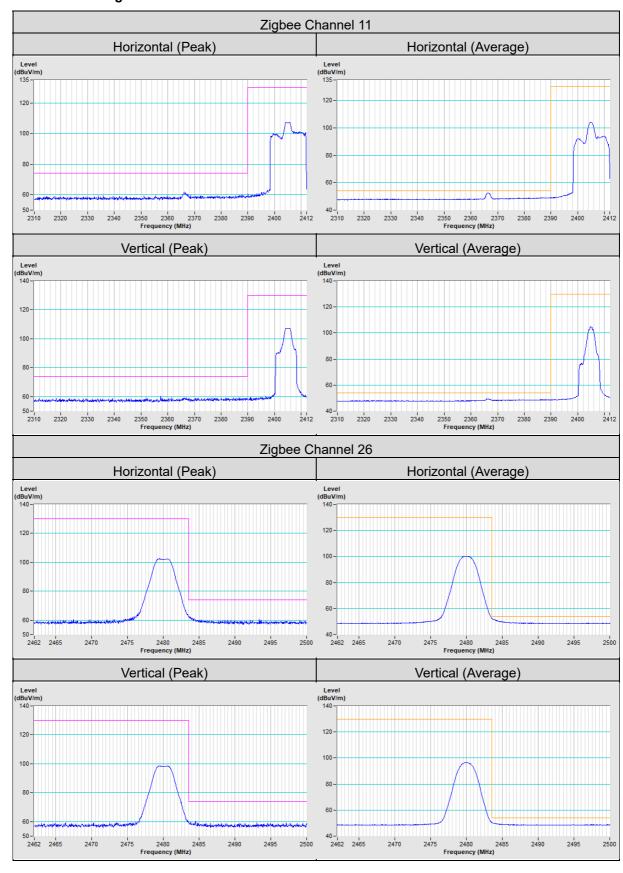
4.6.6 EUT Operating Condition


Same as item 4.3.6

4.6.7 Test Results

The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RFBERD-WTW-P22090179-1 Page No. 38 / 40 Report Format Version: 6.1.2

Annex A - Band Edge Measurement

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---