

FCC PART 15.407 ISED RSS-247, ISSUE 2 DYNAMIC FREQUENCY SELECTION TEST REPORT

For

Fortinet, Inc.

899 Kifer Road

Sunnyvale, CA 94086, USA

FCC ID: TVE-141703 IC: 7280B-141703

Report Type: Original Report		Product Type: Access Point
Prepared By:	Vincent Licata Test Engineer	Vioto
Report Number:	<u>R1709208-DFS</u>	
Report Date:	2017-10-25	
Reviewed By:	Xiao Lin RF Lead Bay Area Complian 1274 Anvilwood A Sunnyvale, CA 940 Tel: 1 (408) 732-91 Fax: 1 (408) 732-9	089, USA 62

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GENERAL DESCRIPTION	4
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
	1.2 MECHANICAL DESCRIPTION OF EUT	
	1.3 OBJECTIVE	
	1.4 RELATED SUBMITTAL(S)/GRANT(S)	
	1.5 TEST METHODOLOGY	
	1.6 TEST FACILITY REGISTRATIONS	
	1.7 TEST FACILITY ACCREDITATIONS	5
2	EUT TEST CONFIGURATION	8
	2.1 JUSTIFICATION	8
	2.2 EUT Exercise Software	
	2.3 LOCAL SUPPORT EQUIPMENT	
	2.4 INTERFACE PORTS AND CABLING	8
	2.5 POWER SUPPLY AND LINE FILTERS	8
3	SUMMARY OF TEST RESULTS	9
4	APPLICABLE STANDARDS	
	4.1 DFS REQUIREMENT	
	4.2 DFS MEASUREMENT SYSTEM	
	4.3 SYSTEM BLOCK DIAGRAM	
	4.4 CONDUCTED METHOD	
	4.5 RADIATED METHOD	
	4.6 TEST PROCEDURE	
5	TEST RESULTS	16
	5.1 DESCRIPTION OF EUT	16
	5.2 ANTENNA DESCRIPTION	
	5.3 TEST EQUIPMENT LIST AND DETAILS	16
	5.4 RADAR WAVEFORM CALIBRATION	
	5.5 TEST ENVIRONMENTAL CONDITIONS	17
6	CHANNEL AVAILABILITY CHECK TIME (CAC)	42
	6.1 TEST PROCEDURE	
7	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	47
	7.1 TEST PROCEDURE	
	7.2 TEST RESULTS	
8	NON-OCCUPANCY PERIOD	
	8.1 TEST PROCEDURE	50
	8.2 TEST RESULTS	
9	RADAR DETECTION BANDWIDTH & RADAR DETECTION PERFORMANCE CHECK	52
-	9.1 DETECTION BANDWIDTH	
	9.1 DETECTION BANDWIDTH 9.2 RADAR DETECTION PERFORMANCE CHECK	
10		
11		
12	ANNEX C (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1709208-DFS	Original Report	-

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report has been compiled on behalf of *Fortinet, Inc.* and their product Model: FAP-222E, FCC ID: TVE-141703, IC: 7280B-141703, which will henceforth be referred to as the EUT (Equipment under Test). The EUT is a Wireless Access Point.

1.2 Mechanical Description of EUT

The EUT measures approximately 250 mm (L) x 210 mm (W) x 60 mm (H) and weighs approximately 1.6 Kg.

The data gathered are from production sample provided by the manufacturer, serial number: R1709208-01 assigned by BACL.

1.3 Objective

This report is prepared on behalf of *Fortinet, Inc.* in accordance with FCC CFR47 §15.407 (h), RSS-247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

The objective is to determine compliance with FCC rules for DFS Detection Threshold, Channel Availability Check Time, Uniform Spreading U-NII Detection Bandwidth, Channel Closing Transmission Time, and Channel Move time in Master Mode.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

FCC CFR 47 Part2, Part15.407 (h), RSS-247 Issue 2

KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

1.6 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Annex B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.7 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report.

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
 - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:

1

- MIC Telecommunication Business Law (Terminal Equipment):
- All Scope A1 Terminal Equipment for the Purpose of Calls;
- All Scope A2 Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
 - 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

D. A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Industry Canada IC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II; Chinese Tainei (Beruhlia of Chine – Tainen)
- Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - EMC Directive 2014/30/EC US-EU EMC & Telecom MRA CAB
 - Radio & Teleterminal Equipment (R&TTE) Directive 1995/5/EC US -EU EMC & Telecom MRA CAB
 - Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Development Authority IDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter USA:
 - ENERGY STAR Recognized Test Laboratory US EPA
 - Telecommunications Certification Body (TCB) US FCC;

Vietnam: APEC Tel MRA -Phase I;

2 EUT Test Configuration

2.1 Justification

The EUT was configured for testing according to FCC CFR47 §15.407 (h), RSS-247 Issue 2and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

2.2 EUT Exercise Software

The test utility used was Putty.exe

2.3 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Dell Inc.	Laptop	E6410	N/A
Fortinet	Controller-1	FortiWiFi 60D	FWF60D4Q16023633

2.4 Interface Ports and Cabling

Cable Description	Length (M)	From	То
RJ 45 (CAT 5)	< 3	Controller-1	POE
RJ 45 (CAT 5)	< 3	Controller-2	Controller-1
RJ 45 (CAT 5)	< 3	Laptop	Controller-1
RJ 45 (CAT 5)	< 3	POE	EUT
Serial Cable	< 3	EUT	Laptop

2.5 **Power Supply and Line Filters**

Manufacturer	Description	Model	Part Number
Microsemi	POE injector	9001GR	C15166582000009569

3 Summary of Test Results

The following result table represents the list of measurements required under the FCC CFR47 §15.407 (h), RSS-247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

Items	Description of Test	Results
Detection Bandwidth	UNII Detection Bandwidth	Compliant
Derformenes	Initial Channel Availability Check Time (CAC)	Compliant
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Compliant
	Radar Burst at the End of the CAC	Compliant
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Compliant

4 Applicable Standards

4.1 DFS Requirement

FCC CFR47 §15.407 (h), RSS-247 Issue 2 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02.

	Operational Mode			
Requirement	Master	Client (Without radar detection)	Client (With radar detection)	
Non-Occupancy Period	Yes	Not Required	Yes	
DFS Detection Threshold	Yes	Not Required	Yes	
Channel Availability Check Time	Yes	Not Required	Not Required	
U-NII Detection Bandwidth	Yes	Not Required	Yes	

 Table 1: Applicability of DFS requirements prior to use of a channel

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode		
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not Required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not Required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Maximum Transmit Power	Value (See Notes 1, 2 and 3)	
EIRP≥ 200 milliwatt	-64 dBm	
EIRP< 200 milliwatt and power spectral density < 10dBm/MHz	-62 dBm	
EIRP< 200 milliwatt that do not meet the power spectral density requirement	-64 dBm	
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.		

Table 3: Interference Threshold for Master and Client with Radar Detection

Table 4: DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. <i>See Notes 1 and 2</i> .	
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. <i>See Note 3</i> .	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

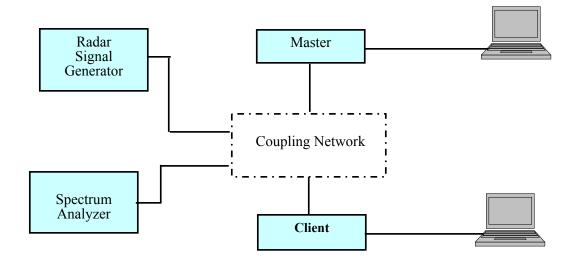
Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu sec}}\right) \end{cases}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Ra	idar Types 1-4)		80%	120
Note 1:		pe 0 should be used fo time, and channel close		indwidth test, chan	nel move

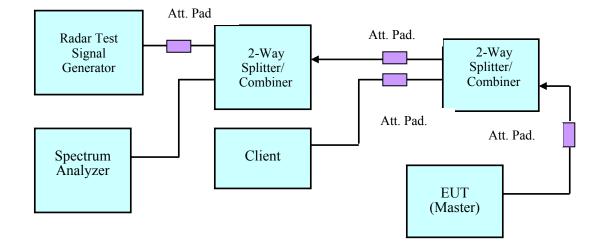
Table 5: Short Pulse Radar Test Waveforms

Table 6: Long Pulse Radar Test Signal

 dar 7pe	Bursts	Chirp Width (MHz)	PRI (usec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
 5	50-100	5-20	1000-2000	1-3	8-20	80%	30

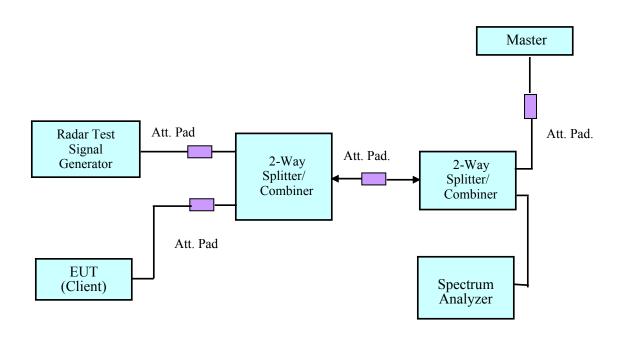

 Table 7: Frequency Hopping Radar Test Signal

Radar Type	Pulse Width (usec)	PRI (usec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

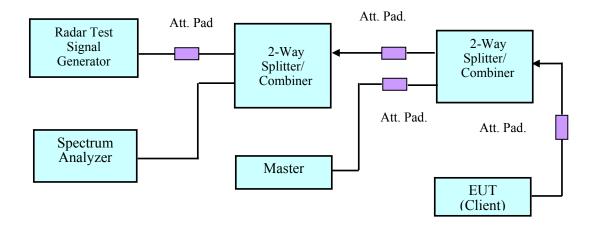

4.2 DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

4.3 System Block Diagram

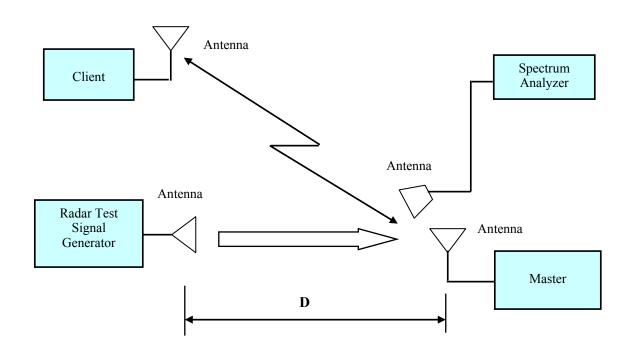


4.4 Conducted Method



Setup for Master with injection at the Master

Setup for Client with injection at the Master



Setup for Client with injection at the Client

FCC ID: TVE-141703, IC: 7280B-141703

Fortinet, Inc.

4.5 Radiated Method

4.6 Test Procedure

A spectrum analyzer is used as a monitor that verifies the EUT's status, which includes the Channel Closing Transmission Time and the Channel Move Time. The Spectrum analyzer is used to monitor the equipment under test (EUT) does not transmit on the same channel during the Non-Occupied Period after the radar detection. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

5 Test Results

5.1 Description of EUT

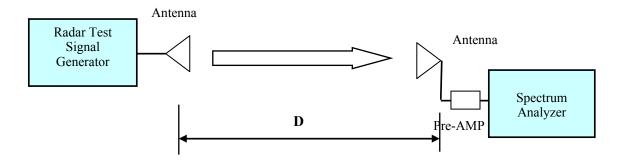
The EUT operates in 5230-5350 MHz and 5470-5725 MHz range in Master Mode.

The rated output power of EUT is > 23 dBm (EIRP), Therefore the required interference threshold level is -64 dBm, the required radiated threshold at antenna port is -64 dBm.

The calibrated radiated DFS detection threshold level is set to -64 dBm.

WLAN traffic is generated by streaming the video file TestFile.mpg, this file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. The file is streamed from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.

5.2 Antenna Description


Antenna Type	Frequency (MHz)	Antenna Gain (dBi)
Dipole	5150	6.8
Dipole	5250	7.0
Dipole	5350	6.2
Dipole	5500	5.9
Dipole	5600	6.1
Dipole	5725	6.3

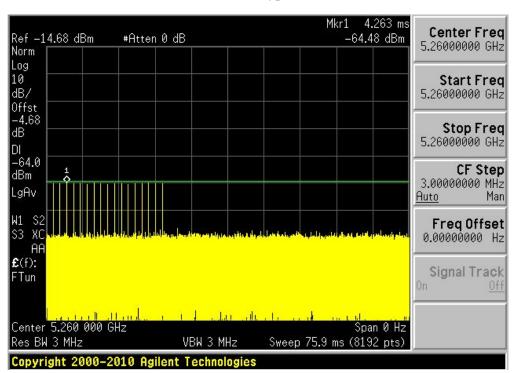
5.3 Test Equipment List and Details

Manufacturer	Equipment Description	Model	S/N	Calibration Date	Calibration Interval
National Instruments	NI PXI-1042 8-Slot chassis	PXI-1042	V08X01EE1	N/A	N/A
National Instruments	Arbitrary Waveform Generator	PXI-5421	N/A	N/A	N/A
National Instruments	RF Upconverter	PXI-5610	N/A	N/A	N/A
ASCOR	Upconverter	AS-7206	N/A	N/A	N/A
Agilent	Analyzer, Spectrum	E4440A	US45303156	2017-01-19	1 year
A.R.A.	Antenna Horn	DRG-118/A	1132	2016-01-29	2 years
EMCO	Antenna Horn	3115	9511-4627	2015-10-17	2 years
Mini-Circuits	Splitter/Combiner	2FSC-2-10G	0349	N/A	N/A
Narda	Splitter/Combiner	4326B-2	03514	N/A	N/A
Midwest	Attenuator	290-30	N/A	N/A	N/A
Mini-Circuits	Attenuator	BW-S30W2	N/A	N/A	N/A

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

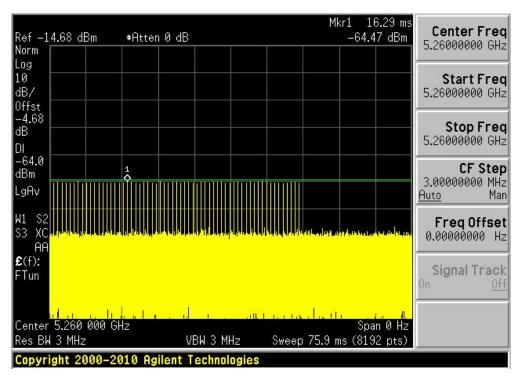
5.4 Radar Waveform Calibration

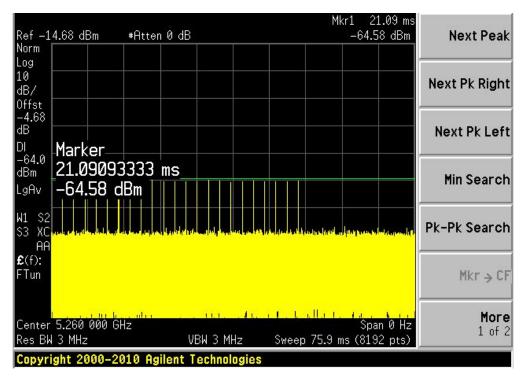
Radiated Calibration Setup Block Diagram

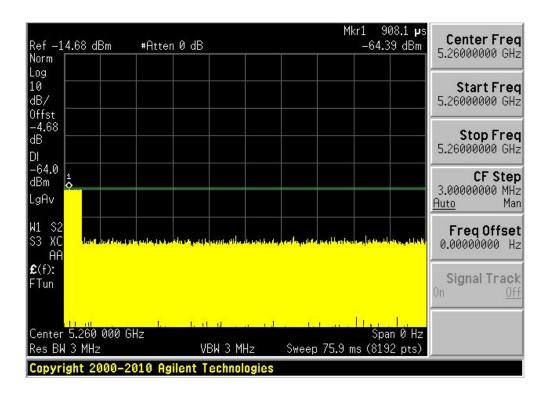

5.5 Test Environmental Conditions

Temperature:	22-25° C
Relative Humidity:	45-48 %
ATM Pressure:	102.1 kPa

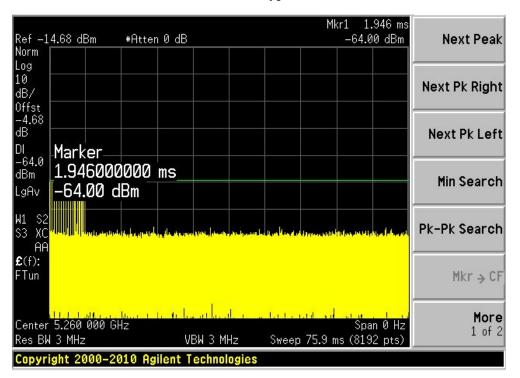
Testing was performed by Vincent Licata and Jose Martinez from 2017-09-20 to 2017-09-21 at the DFS site.

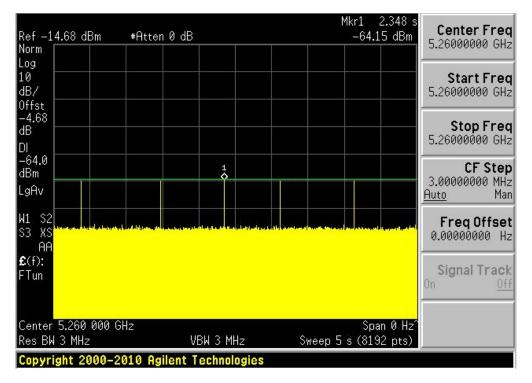

Plots of Radar Waveforms

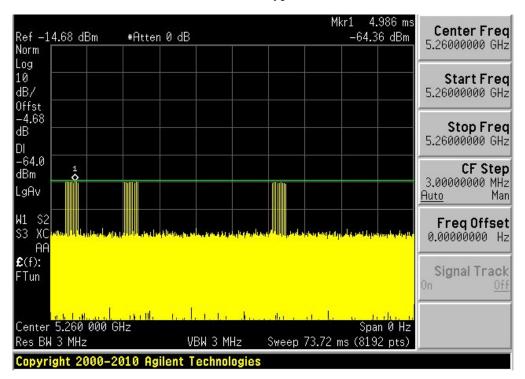

5260 MHz


Radar Type 0

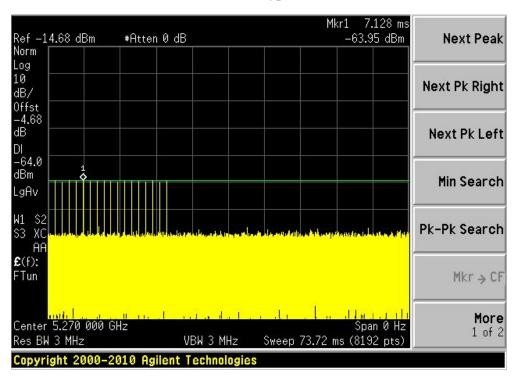
Radar Type 1A



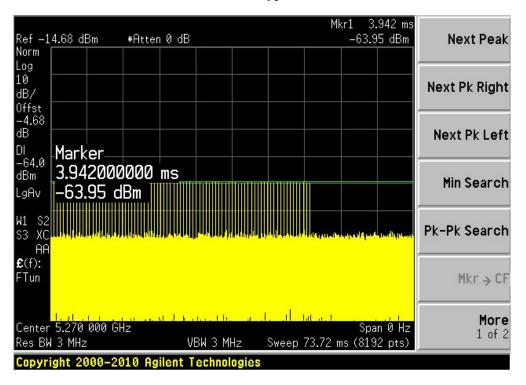

Radar Type 1B


Norm Log Next Pk Right 10 dB/ Next Pk Right 0ffst -4.68 Next Pk Left 0ffst -64.0 Next Pk Left 796.9333333 µs Next Pk Left
Offst -4.68 dB DI -64.0 race e2222222
-64.0 TOR CO-2020202
LgAv -64.35 dBm Philippine Search
AA £(f):
FTun $Mkr \rightarrow Cl$
Center 5.260 000 GHz Sector of the sector of

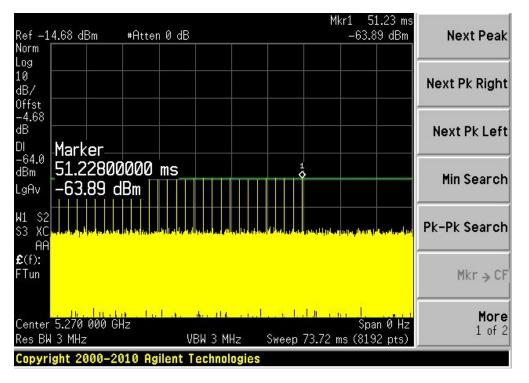
Radar Type 3



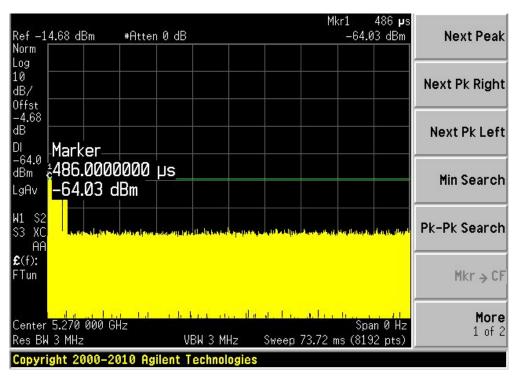
Radar Type 5



5270 MHz

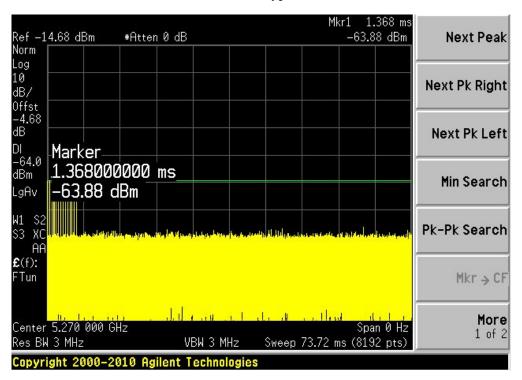

Radar Type 0

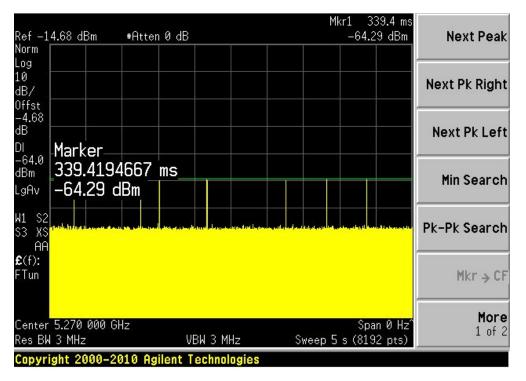
Radar Type 1A

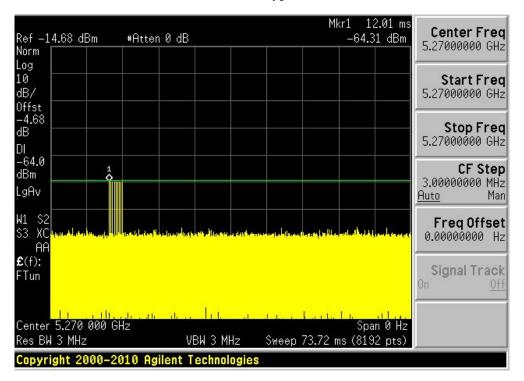


Report Number: R1709208-DFS

Page 22 of 261 FCC Part 15.407/ISED RSS-247 DFS Test Report

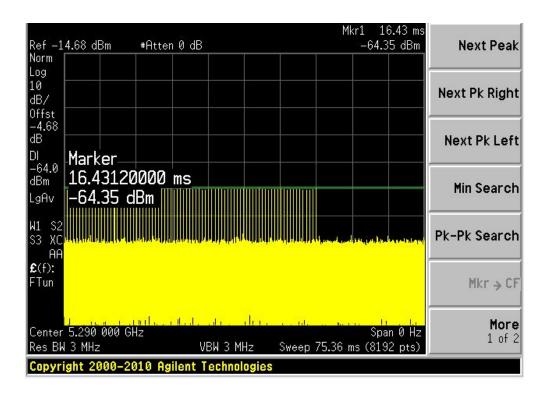


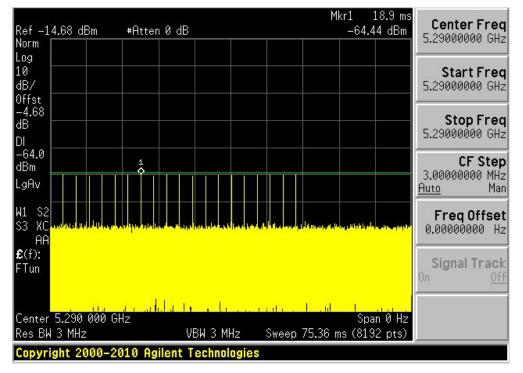

Radar Type 1B


Ref -1 Norm	4.68 dBm	#Atten	0 dB				М		5.31 ms 3 dBm	Next Peak
Log 10 dB/										Next Pk Right
Offst -4.68 dB DI	Marker						1			Next Pk Left
-64.0 dBm LgAv	5.31000		ms							Min Search
W1 S2 S3 XC	A MARINA MANAGANA ANA ANA ANA ANA ANA ANA ANA ANA		aireilian	udut shilou	u i duli ya shatil i	a, dan bashk	ukka Malikina	. Ann be ann ann		Pk-Pk Search
AA £ (f): FTun										Mkr → CF
	5.270 000 G	Hz		. at 1 .		a la a			n 0 Hz	More 1 of 2
	13 MHz ight 2000-2	010 Agi		W 3 M Chnol		Sweep	73 . 72 r	ns (819	2 pts)	

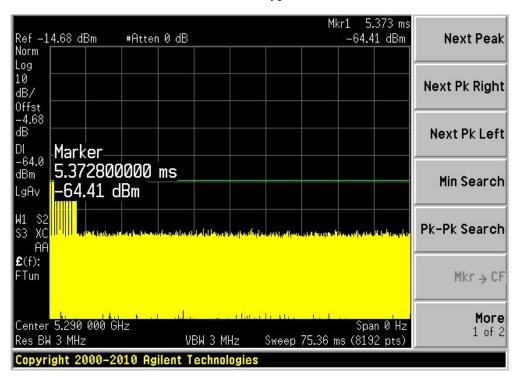
Radar Type 3

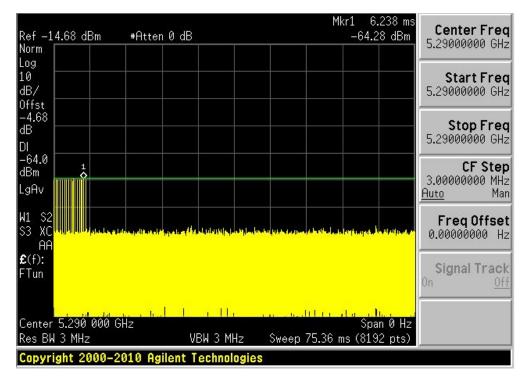
Radar Type 5

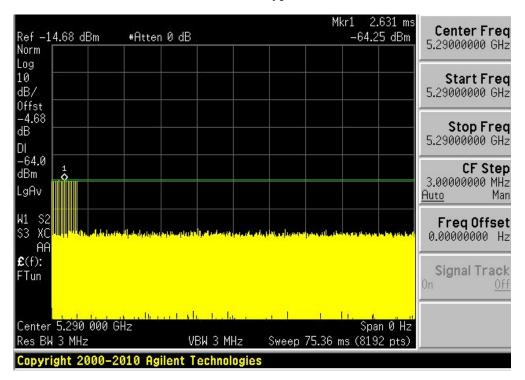


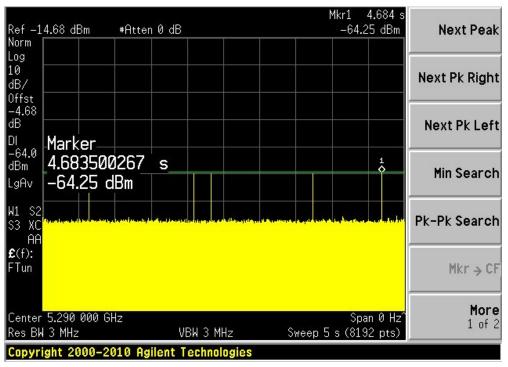

5290 MHz

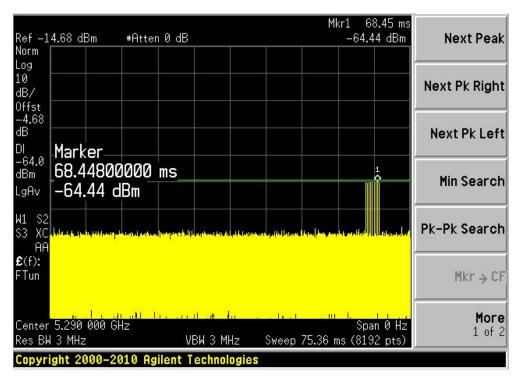
Ref -14.68 dBm	#Atten 0 dB		2.852 ms 51 dBm NextPeak
Norm Log			
10 dB/			Next Pk Right
Offst -4.68			1
dB Di Marker			Next Pk Left
-64.0 2 0 C 2 0 C	7000 mc		
dBm 2.85200 LgAv -64.51 c			Min Search
W1 S2			·
S3 XC Mahahahahahahahah	li dath ing ta dan api na citil, ing ta ing hitratican.	a set the second a second because a	ahna Laan Pk-Pk Search
AA £(f):			
FTun			Mkr → CF
Center 5.290 000 G	<mark>dramath, r.a. ata El</mark> Hz	<mark>le i l'h rin rin.</mark> Spi	an 0 Hz 1 of 2
Res BW 3 MHz	VBW 3 MHz	Sweep 75.36 ms (819	
Copyright 2000-2	010 Agilent Technologi	es	


Radar Type 0


Radar Type 1A

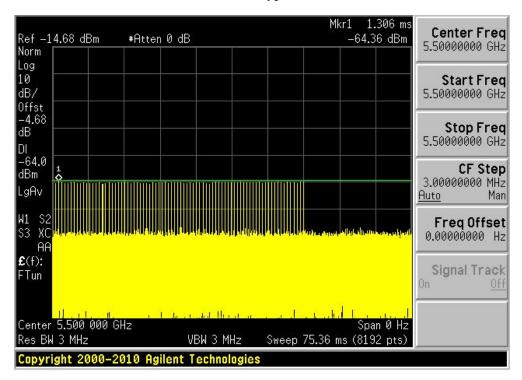


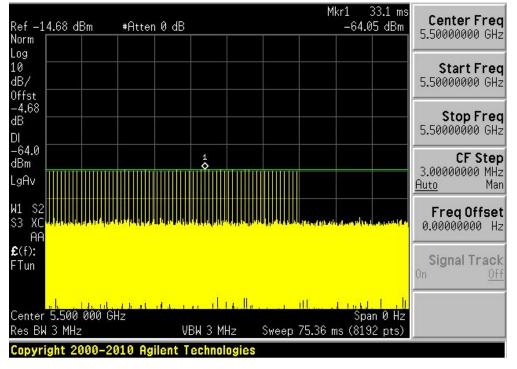

Radar Type 1B



Radar Type 3

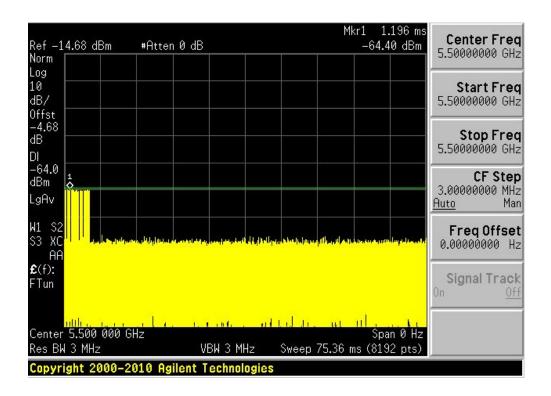
Radar Type 5

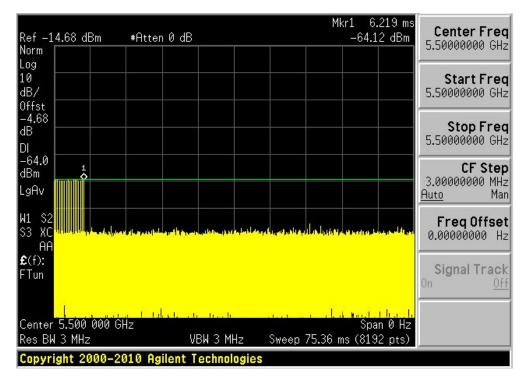


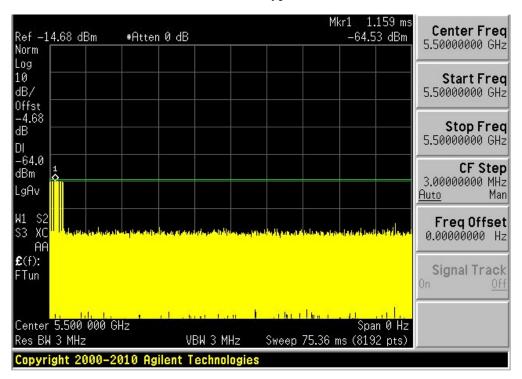

5500 MHz

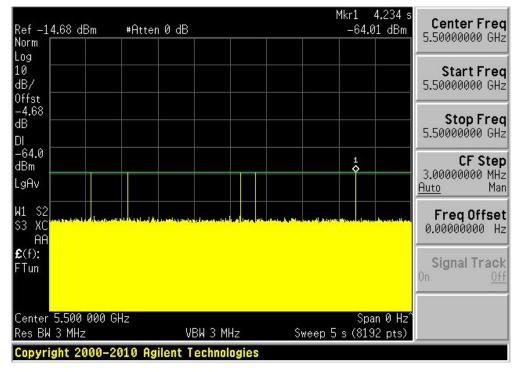
Ref —14.68 dBm #Atter	0 dB	Mk	r1 2.852 ms -64.51 dBm	Next Peak
Norm Log				
10 dB/				Next Pk Right
Offst -4.68				
dB ^{III} DI				Next Pk Left
-64.0 dBm 2.852000000	ms			
LgAv -64.51 dBm				Min Search
W1 S2 S3 XC websterford states whe	a direct stratig and provide a strategy of an a large of	s, stala julio, se se se del stala (de da chiase	na Haralina en ha seco d <mark>e</mark> r	Pk-Pk Search
AA €(f):				
FTun				Mkr → CF
de la composition de	Labore I.J. D.	an leas	on a th	More
Center 5.500 000 GHz			Span 0 Hz	1 of 2
Res BW 3 MHz	VBW 3 MHz	Sweep 75.36 m	s (8192 pts)	
Copyright 2000-2010 Ag	ilent Technologie:	S		

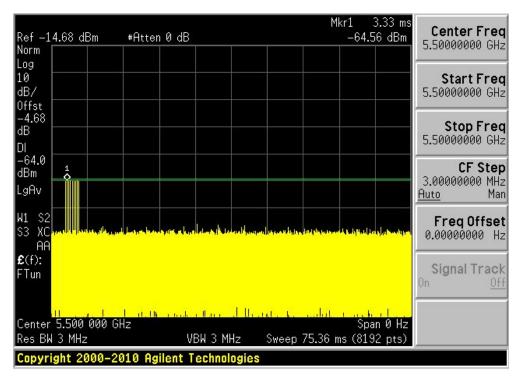
Radar Type 0


Radar Type 1A

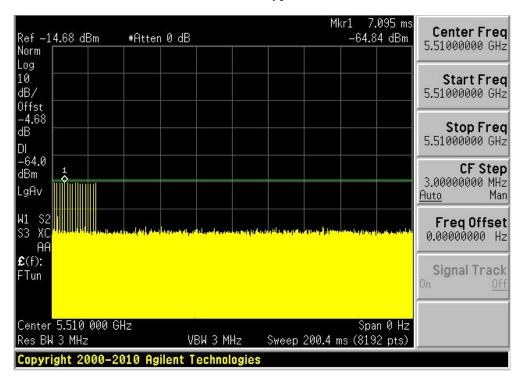



Radar Type 1B

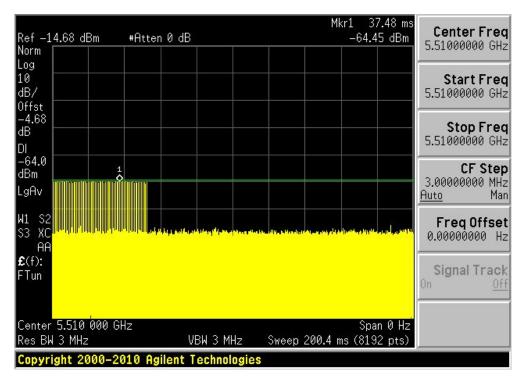

Radar	Туре	2
-------	------	---

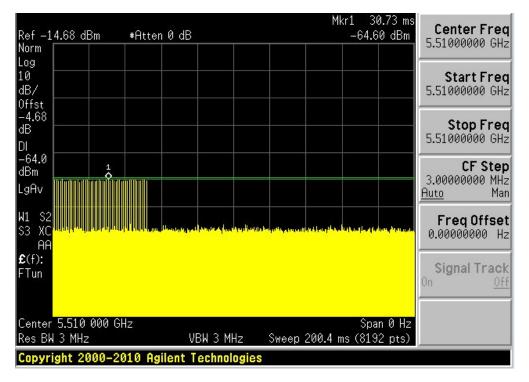


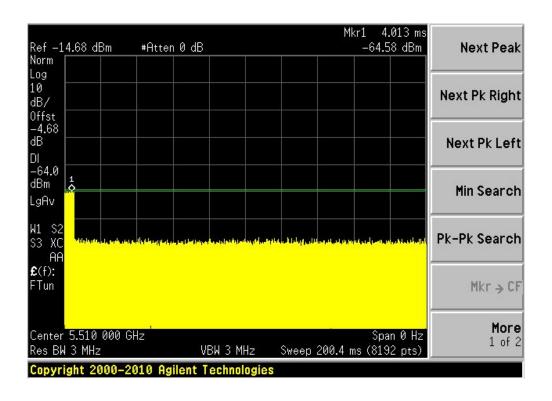
Radar Type 3



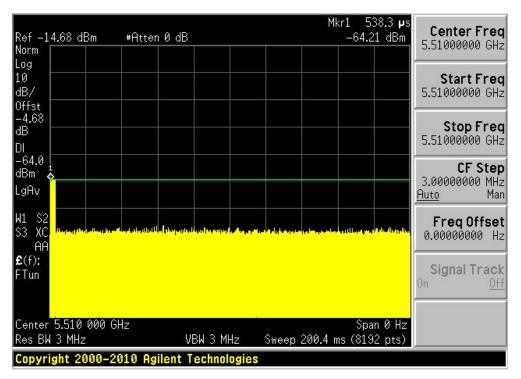
Radar Type 5

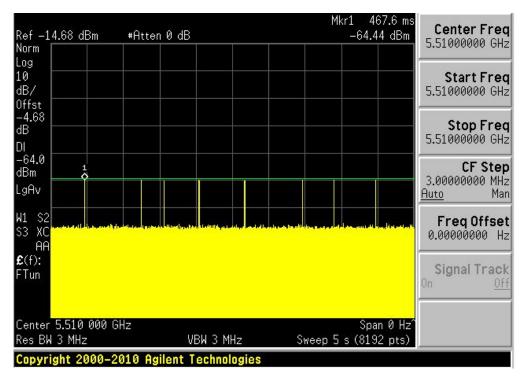


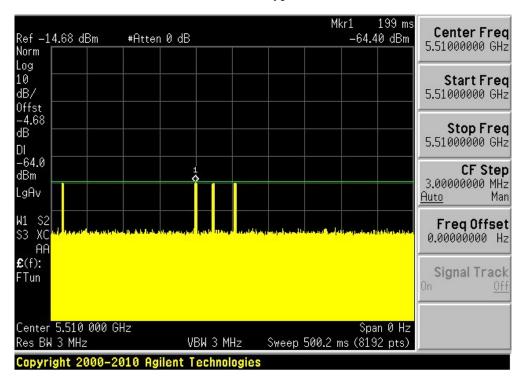

5510 MHz


Radar Type 0

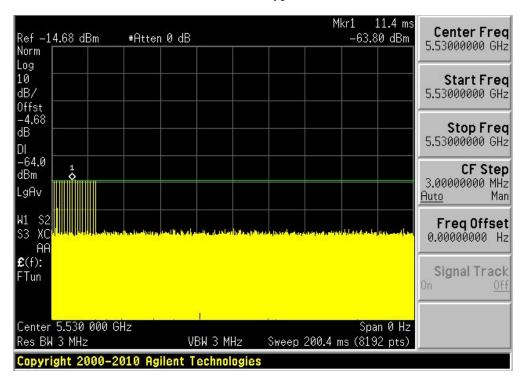
Radar Type 1A



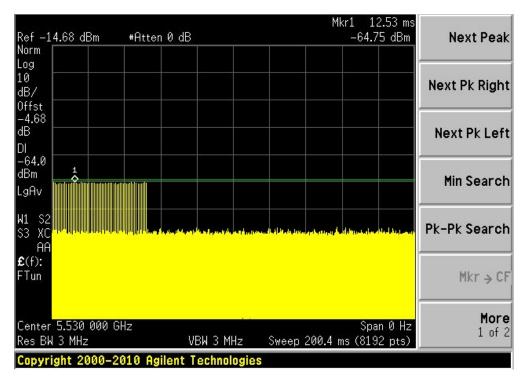

Radar Type 1B

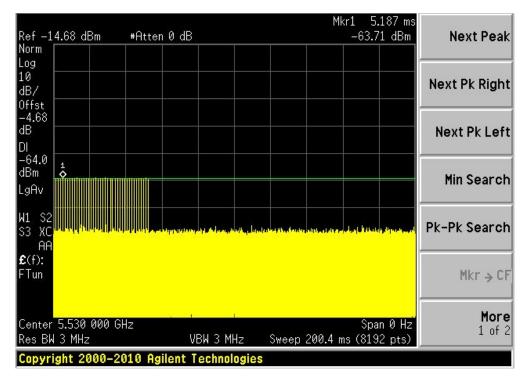

Ref —14.68 dBm	#Atten 0 dE	3		Mkr1 1.37 ms -64.49 dBm	Next Peak
Norm Log 10					
dB/ Offst					Next Pk Right
-4.68 dB DI Marker					Next Pk Left
dBm 21.370133					Min Search
W1 S2					Pk-Pk Search
S3 XC stocketteret AA £(f):	an da social fan fan bliander t	a babina yang a tang ang ang ang ang ang ang ang ang ang	son de Mutaliek alle sou de de		
FTun					Mkr → CF
Center 5.510 000 G				Span 0 Hz	More 1 of 2
Res BW 3 MHz Copyright 2000-20		VBW 3 MHz Technologies		ms (8192 pts)	

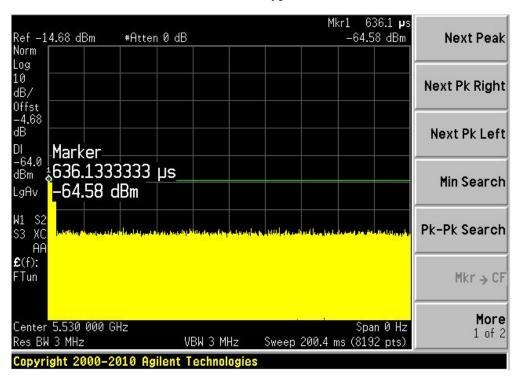
Radar Type 3

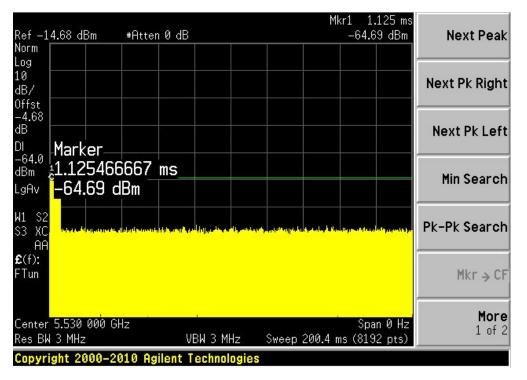


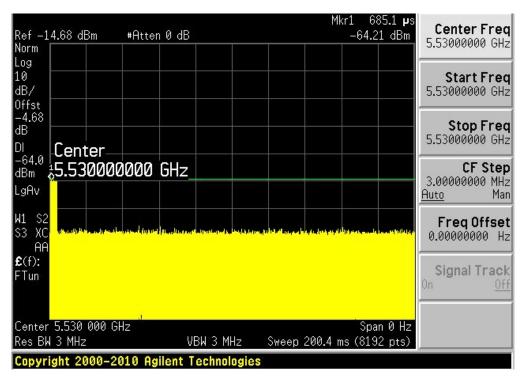
Radar Type 5

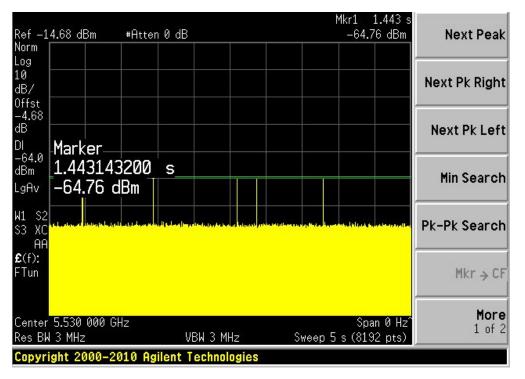


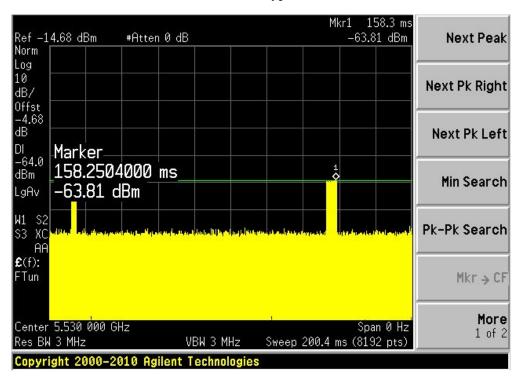

5530 MHz


Radar Type 0


Radar Type 1A




Radar Type 1B



Radar Type 3

Radar Type 5

