

Report No. : FR341401

FCC RADIO TEST REPORT

FCC ID : TVE-111T17

Equipment : Network Security Gateway

Brand Name : FORTINET

Model Name : FortiGate 90Gxxxxxxxxxxx, FG-90Gxxxxxxxxxxx,

FortiGate 91Gxxxxxxxxxx, FG-91Gxxxxxxxxxx,

FORTIGATE-91Gxxxxxxxxx

(where "x" can be "A-Z", or "0-9", or "-", or blank for

software changes or marketing purposes only)

Marketing Name : FortiGate 90G, FortiGate 91G

Applicant : Fortinet, Inc.

899 KIFER RD

SUNNYVALE CA 94086

UNITED STATES

Manufacturer : Fortinet, Inc.

899 KIFER RD

SUNNYVALE CA 94086

UNITED STATES

Standard : FCC Part 15 Subpart C §15.247

The product was received on May 10, 2023 and testing was performed from May 12, 2023 to Jun. 01, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

TEL: 886-3-327-0868

Louis Wu

Sporton International Inc. Wensan Laboratory

Page Number

: 1 of 23

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023 : 01

Table of Contents

Report No. : FR341401

Hist	tory o	of this test report	3
Sun	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	10
	2.5	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	12
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	14
	3.5	Radiated Band Edges and Spurious Emission Measurement	15
	3.6	AC Conducted Emission Measurement	19
	3.7	Antenna Requirements	21
4	List	of Measuring Equipment	22
5	Meas	surement Uncertainty	23
App	endi	x A. Conducted Test Results	
App	endi	x B. AC Conducted Emission Test Result	
App	endi	x C. Radiated Spurious Emission	
App	endi	x D. Radiated Spurious Emission Plots	
App	endi	x E. Duty Cycle Plots	
App	endi	x F. Setup Photographs	

TEL: 886-3-327-0868 Page Number : 2 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

History of this test report

Report No. : FR341401

Report No.	Version	Description	Issue Date
FR341401	01	Initial issue of report	Jun. 19, 2023

TEL: 886-3-327-0868 Page Number : 3 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

Summary of Test Result

Report No. : FR341401

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	1.08 dB under the limit at 7440.000 MHz
3.6	15.207	AC Conducted Emission	Pass	6.43 dB under the limit at 0.502 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Lea Yu

TEL: 886-3-327-0868 Page Number : 4 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

1 General Description

1.1 Product Feature of Equipment Under Test

Product Fe	ature					
General Specs	General Specs					
125 kbps (LE coded)						
500 kbps (LE coded)						
Bluetooth-LE(1M)						
Bluetooth-LE(2M)						
Antenna Type						
Bluetooth-LE: Monopole Antenna						

Report No. : FR341401

Antenna information					
2402 MHz ~ 2480 MHz	Peak Gain (dBi)	1.53			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

Specification of Accessory					
DC Dower Adenter	Brand Name	FSP			
DC Power Adapter	Model Name	FSP036-RHBN3			

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH22-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

TEL: 886-3-327-0868 Page Number : 5 of 23 FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

Report No. : FR341401

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-0868 Page Number : 6 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8 9 MHz 10	2418	29	2460
		2420	30	2462
2400-2483.5 MHz		2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

Report No. : FR341401

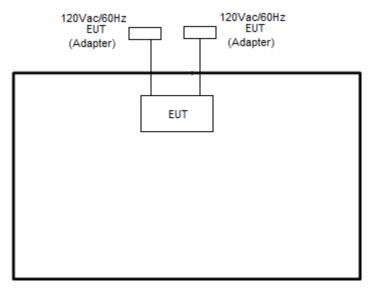
TEL: 886-3-327-0868 Page Number : 7 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

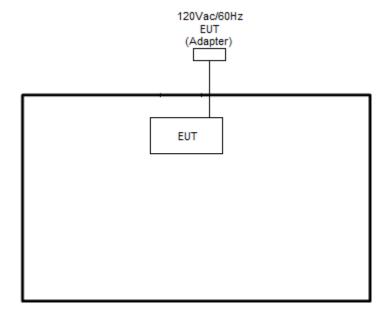
Report No. : FR341401

b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
Conducted	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
Test Cases	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
Test Cases	Mode 7: Bluetooth Tx CH00_2402 MHz_125kbps
	Mode 8: Bluetooth Tx CH19_2440 MHz_125kbps
	Mode 9: Bluetooth Tx CH39_2480 MHz_125kbps
	Mode 10: Bluetooth Tx CH00_2402 MHz_500kbps
	Mode 11: Bluetooth Tx CH19_2440 MHz_500kbps
	Mode 12: Bluetooth Tx CH39_2480 MHz_500kbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
AC Conducted Emission	Mode 1: Bluetooth-LE TX + adapter*2
	diation spurious emission, the modulation and the data rate picked for testing are inned by the Max. RF conducted power.

TEL: 886-3-327-0868 Page Number : 8 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No. : FR341401

<Bluetooth-LE Tx Mode>

TEL: 886-3-327-0868 Page Number : 9 of 23 FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023 : 01

2.4 EUT Operation Test Setup

The RF test items, utility "SmartRF Version 8.0.0.12 ALPHA" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

Report No. : FR341401

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 10 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3 Test Result

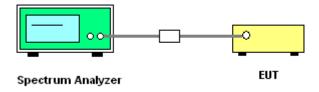
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No. : FR341401

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set
 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

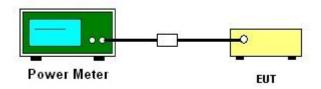
TEL: 886-3-327-0868 Page Number : 11 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Report No. : FR341401


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

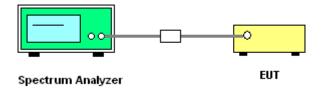
TEL: 886-3-327-0868 Page Number : 12 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

Report No. : FR341401


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

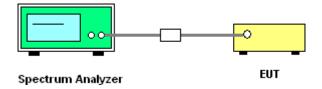
TEL: 886-3-327-0868 Page Number : 13 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

Report No. : FR341401


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 14 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No. : FR341401

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 15 of 23 FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

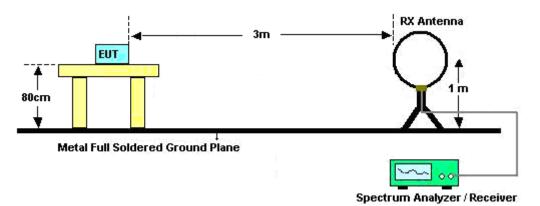
3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

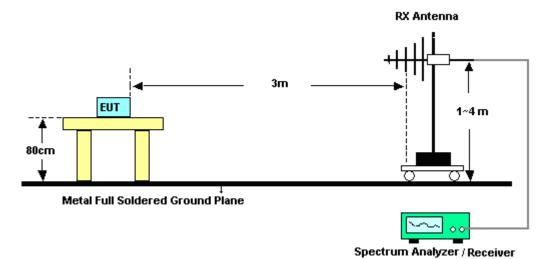
Report No. : FR341401

- The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f ≥ 1 GHz for peak measurement.

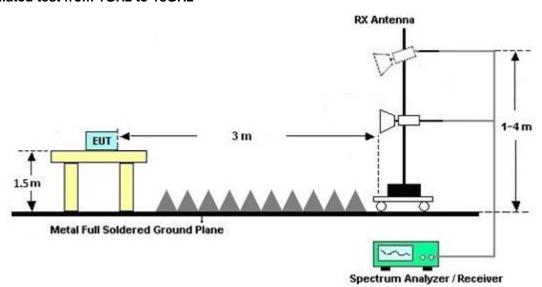
For average measurement:


- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

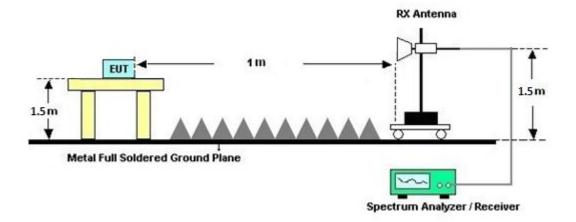
TEL: 886-3-327-0868 Page Number : 16 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023


CC RADIO TEST REPORT Report No. : FR341401

3.5.4 Test Setup


For radiated test below 30MHz

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 17 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

For radiated test above 18GHz

Report No. : FR341401

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 18 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

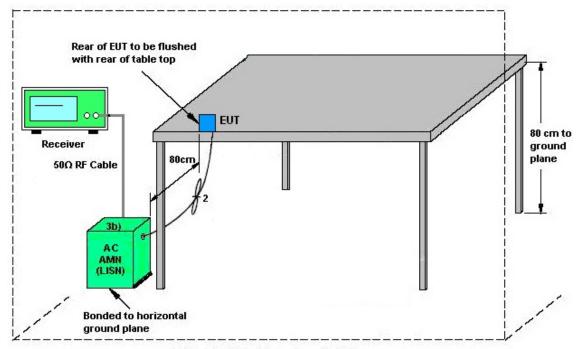
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No. : FR341401

Eroquency of emission (MHz)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 19 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.6.4 Test Setup

Report No. : FR341401

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 20 of 23 FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No. : FR341401

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

TEL: 886-3-327-0868 Page Number : 21 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	May 12, 2023~ May 27, 2023	Sep. 19, 2023	Radiation (03CH22-HY)
Bilog Antenna with 6dB pad	TESEQ & WOKEN	CBL 6111D & 00802N1D-06	63304 & 002	N/A	Oct. 04, 2022	May 12, 2023~ May 27, 2023	Oct. 03, 2023	Radiation (03CH22-HY)
Amplifier	SONOMA	310N	421581	N/A	Jul. 16, 2022	May 12, 2023~ May 27, 2023	Jul. 15, 2023	Radiation (03CH22-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C05A18E N	1GHz~18GHz	Jul. 06, 2022	May 12, 2023~ May 27, 2023	Jul. 05, 2023	Radiation (03CH22-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz-40GHz	Jul. 05, 2022	May 12, 2023~ May 27, 2023	Jul. 04, 2023	Radiation (03CH22-HY)
Amplifier	EMEC	EM01G18GA	060877	N/A	Sep. 29, 2022	May 12, 2023~ May 27, 2023	Sep. 28, 2023	Radiation (03CH22-HY)
Preamplifier	EMEC	EM18G40G	060872	18-40GHz	Sep. 28, 2022	May 12, 2023~ May 27, 2023	Sep. 27, 2023	Radiation (03CH22-HY)
Signal Analyzer	Keysight	N9010B	MY60241058	N/A	Jul. 07, 2022	May 12, 2023~ May 27, 2023	Jul. 06, 2023	Radiation (03CH22-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 07, 2022	May 12, 2023~ May 27, 2023	Nov. 06, 2023	Radiation (03CH22-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	May 12, 2023~ May 27, 2023	N/A	Radiation (03CH22-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	May 12, 2023~ May 27, 2023	N/A	Radiation (03CH22-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	May 12, 2023~ May 27, 2023	N/A	Radiation (03CH22-HY)
Software	Audix	E3 6.09824_2019 122	RK-002347	N/A	N/A	May 12, 2023~ May 27, 2023	N/A	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 07, 2023	May 12, 2023~ May 27, 2023	Mar. 06, 2024	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804390/2,804 611/2,804615/ 2	N/A	Oct. 25, 2022	May 12, 2023~ May 27, 2023	Oct. 24, 2023	Radiation (03CH22-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 12, 2022	May 12, 2023~ May 27, 2023	Sep. 11, 2023	Radiation (03CH22-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	May 17, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 17, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 01, 2022	May 17, 2023	Oct. 31, 2023	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	May 17, 2023	Mar. 14, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 05, 2023	May 17, 2023	Mar. 04, 2024	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 13, 2023	May 17, 2023	Mar. 12, 2024	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 06, 2022	May 17, 2023	Oct. 05, 2023	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	May 18, 2023~ Jun. 01, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	May 18, 2023~ Jun. 01, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	May 18, 2023~ Jun. 01, 2023	Aug. 02, 2023	Conducted (TH05-HY)

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : 22 of 23
FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.46 dB
of 95% (U = 2Uc(y))	3.40 UB

Report No. : FR341401

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 02 4B
of 95% (U = 2Uc(y))	5.92 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4 42 dB
of 95% (U = 2Uc(y))	4.42 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4 40 AB
of 95% (U = 2Uc(y))	4.40 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5,38 dB
of 95% (U = 2Uc(y))	3.36 UB

TEL: 886-3-327-0868 Page Number : 23 of 23 FAX: 886-3-327-0855 Issue Date : Jun. 19, 2023

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Mina Liu	Temperature:	21~25	°C
Test Date:	2023/5/18~2023/6/1	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.069	0.700	0.50	Pass
BLE	1Mbps	1	19	2440	1.067	0.704	0.50	Pass
BLE	1Mbps	1	39	2480	1.057	0.718	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	4.10	30.00	1.53	5.63	36.00	Pass
BLE	1Mbps	1	19	2440	4.10	30.00	1.53	5.63	36.00	Pass
BLE	1Mbps	1	39	2480	3.90	30.00	1.53	5.43	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	3.62	-8.93	1.53	8.00	Pass
BLE	1Mbps	1	19	2440	3.81	-8.03	1.53	8.00	Pass
BLE	1Mbps	1	39	2480	3.67	-8.23	1.53	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.070	1.352	0.50	Pass
BLE	2Mbps	1	19	2440	2.058	1.392	0.50	Pass
BLE	2Mbps	1	39	2480	2.066	1.432	0.50	Pass

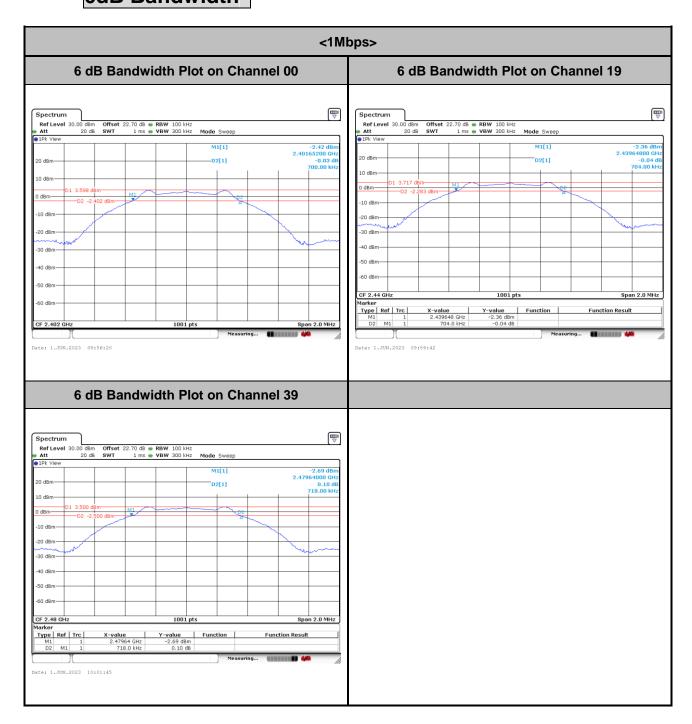
TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	4.10	30.00	1.53	5.63	36.00	Pass
BLE	2Mbps	1	19	2440	4.10	30.00	1.53	5.63	36.00	Pass
BLE	2Mbps	1	39	2480	3.90	30.00	1.53	5.43	36.00	Pass

TEST RESULTS DATA Peak Power Density

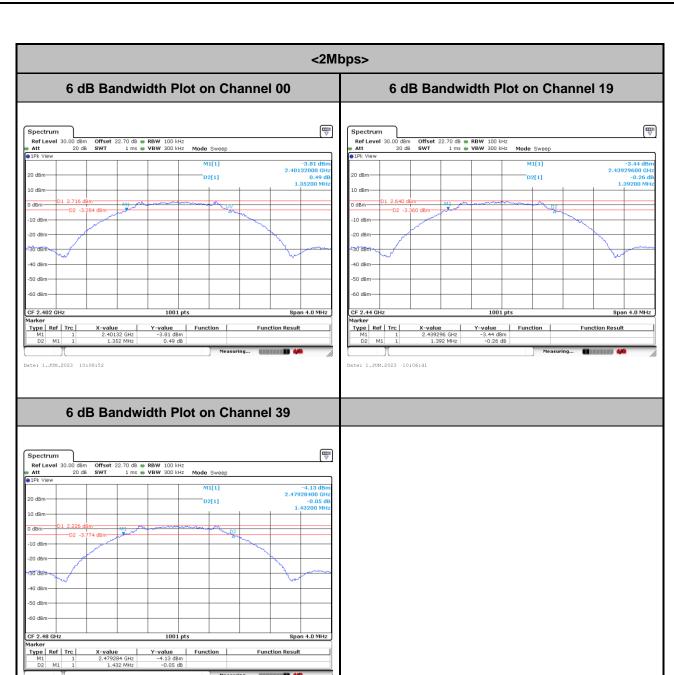
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.56	-11.50	1.53	8.00	Pass
BLE	2Mbps	1	19	2440	3.24	-10.92	1.53	8.00	Pass
BLE	2Mbps	1	39	2480	2.39	-11.31	1.53	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.


TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Conducted	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	125kbps	1	0	2402	3.90	30.00	1.53	5.43	36.00	Pass
BLE	125kbps	1	19	2440	3.90	30.00	1.53	5.43	36.00	Pass
BLE	125kbps	1	39	2480	3.90	30.00	1.53	5.43	36.00	Pass

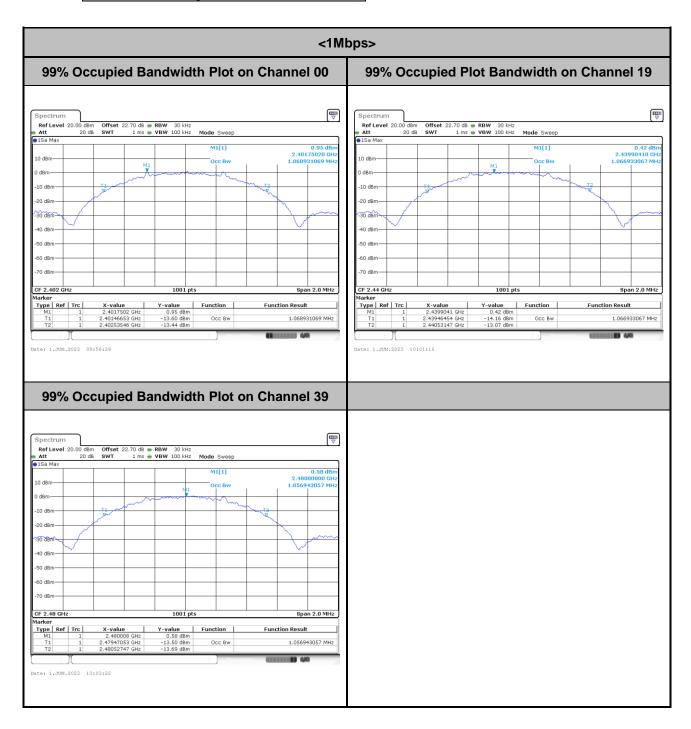
TEST RESULTS DATA Average Power Table


Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	500kbps	1	0	2402	3.90	30.00	1.53	5.43	36.00	Pass
BLE	500kbps	1	19	2440	3.90	30.00	1.53	5.43	36.00	Pass
BLE	500kbps	1	39	2480	3.90	30.00	1.53	5.43	36.00	Pass

6dB Bandwidth

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : A2-1 of 12


Report No. : FR341401

TEL: 886-3-327-0868 Page Number : A2-2 of 12

FAX: 886-3-327-0855

Date: 1.JUN.2023 10:04:39

99% Occupied Bandwidth

Report No. : FR341401

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : A2-3 of 12

<2Mbps> 99% Occupied Bandwidth Plot on Channel 00 99% Occupied Plot Bandwidth on Channel 19 Spectrum

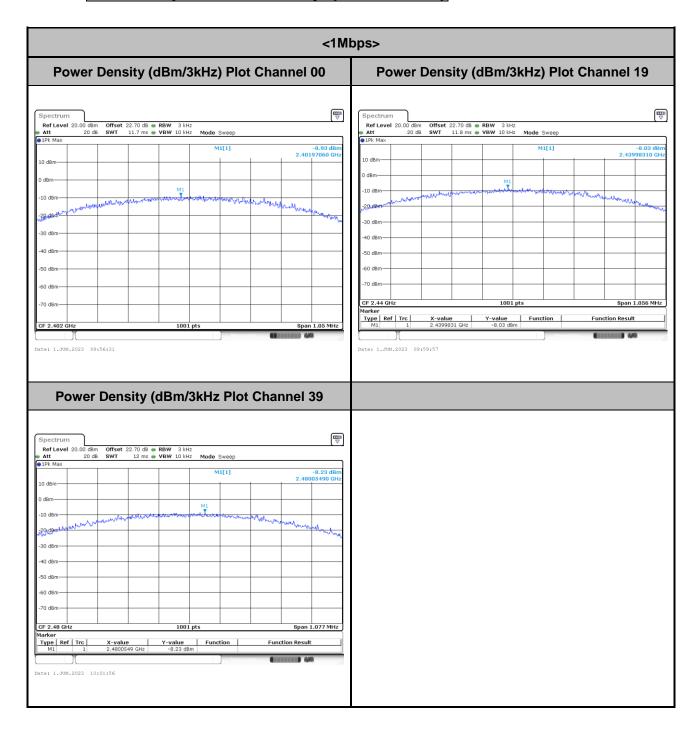
Ref Level 20.00 dBm

Att 20 dB Ref Level 20.0 Att 10 dBn 20 dBm 30 dBm 70 dBm CF 2.44 GH Type | Ref | Trc | Type | Ref | Trc | Y-value -1.40 dBm -15.93 dBm -16.46 dBm Function Function Result Function Function Result 2.06993007 MHz Occ Bw 2.057942058 MHz 99% Occupied Bandwidth Plot on Channel 39 -10 dBm -20 dBn -30 dBm-50 dBm
 X-value
 Y-value
 Function

 2.4802198 GHz
 -1.91 dBm
 -1.24 dBm

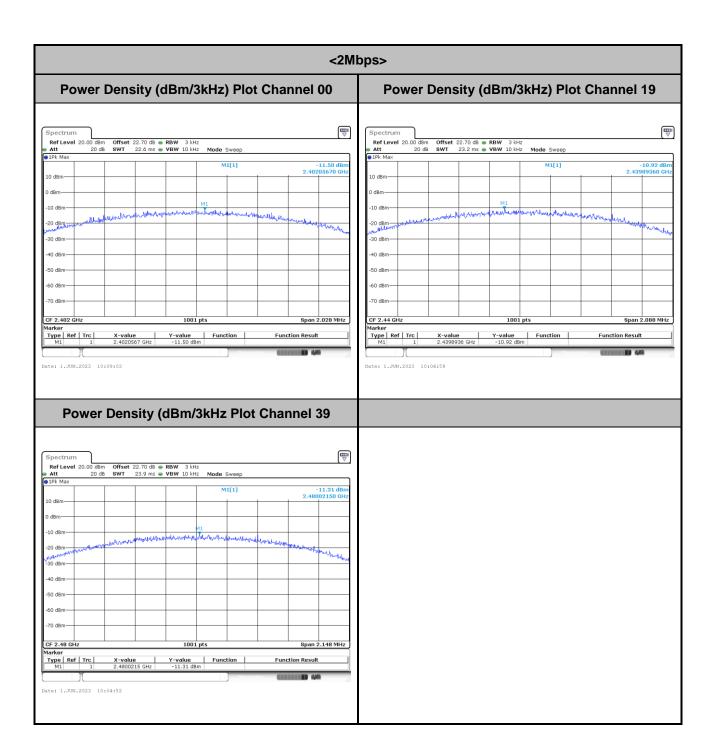
 2.47896503 GHz
 -16.07 dBm
 Occ Bw

 2.48103097 GHz
 -15.28 dBm
 Type | Ref | Trc | Function Result 2.065934066 MHz


Report No. : FR341401

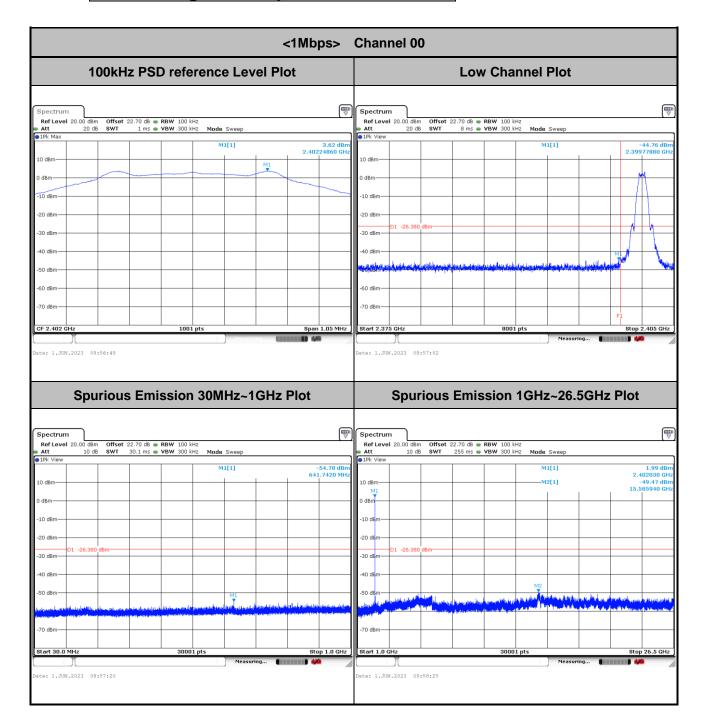
TEL: 886-3-327-0868 Page Number : A2-4 of 12

FAX: 886-3-327-0855

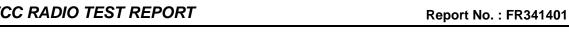

Date: 1.JUN.2023 10:06:14

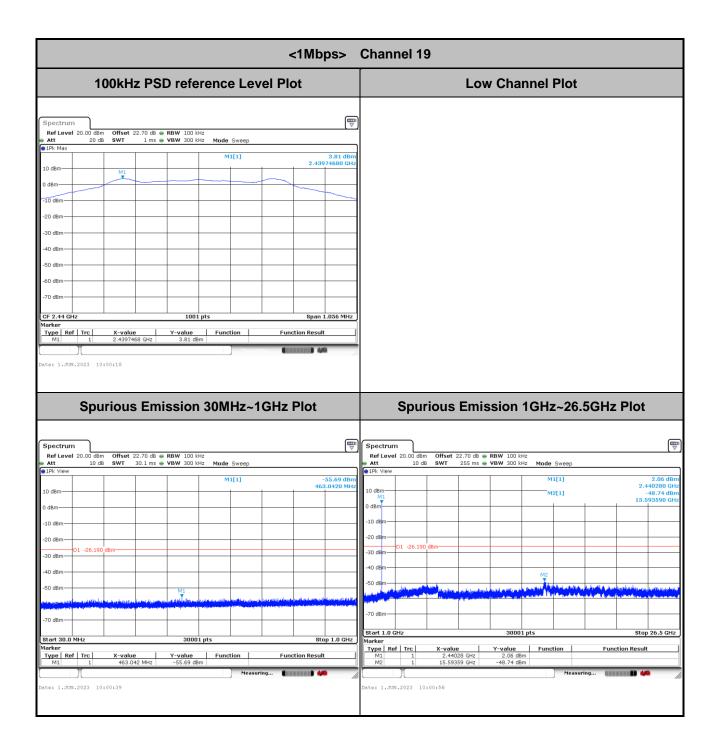
Power Spectral Density (dBm/3kHz)

Report No. : FR341401


TEL: 886-3-327-0868 Page Number : A2-5 of 12

Report No. : FR341401


TEL: 886-3-327-0868 Page Number : A2-6 of 12


Band Edge and Spurious Emission

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : A2-7 of 12

TEL: 886-3-327-0868 Page Number : A2-8 of 12

Y-value Function

<1Mbps> **Channel 39** 100kHz PSD reference Level Plot **Low Channel Plot**
 Ref Level
 20.00 dBm
 Offset
 22.70 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 8 ms
 VBW
 300 kHz

 Ref Level
 20.00 dBm
 Offset
 22.70 dB
 ■ RBW
 100 kHz

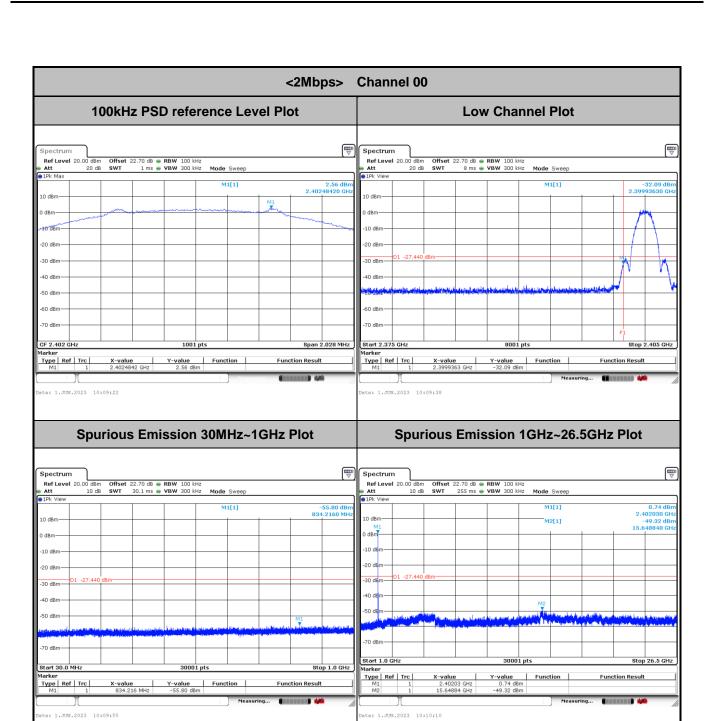
 Att
 20 dB
 SWT
 1 ms
 ● VBW
 300 kHz
 -10 dBm -30 dBm -40 dBm-40 dBm -70 dBm CF 2.48 GH Start 2.475 GHz Marker Type | Ref | Trc | Type | Ref | Trc | X-value ate: 1.JUN.2023 10:02:17 te: 1.JUN.2023 10:02:33 Spurious Emission 30MHz~1GHz Plot Spurious Emission 1GHz~26.5GHz Plot Spectrum Spectrum M1[1] 10 dBm dBm--10 dB -20 dB -20 dBm D1 -26.330 -30 d8m

Report No. : FR341401

Function Result

TEL: 886-3-327-0868 Page Number : A2-9 of 12

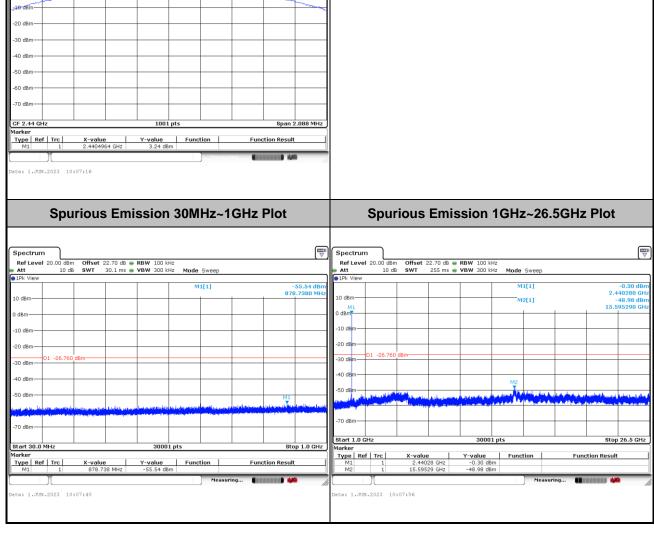
Function Result

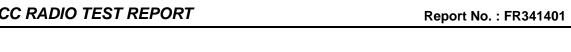

Type Ref Trc

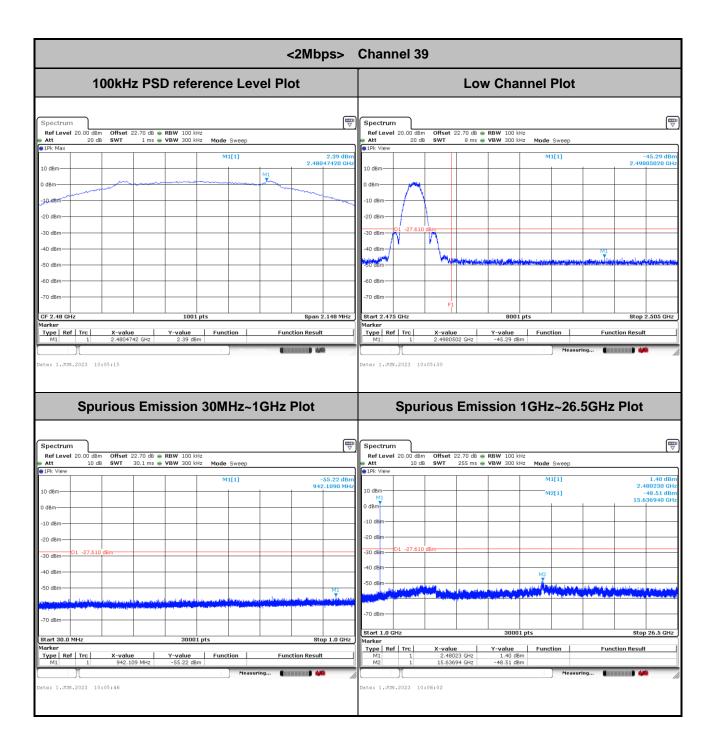
te: 1.JUN.2023 10:03:08

FAX: 886-3-327-0855

Type | Ref | Trc |


ate: 1.JUN.2023 10:02:52


TEL: 886-3-327-0868 Page Number : A2-10 of 12


<2Mbps> **Channel 19** 100kHz PSD reference Level Plot **Low Channel Plot** Ref Level 20.00 dBm Offset 22.70 dB ■ RBW 100 kHz Att 20 dB SWT 1 ms ■ VBW 300 kHz -30 dBm -40 dBm--70 dBm CF 2.44 GH Type | Ref | Trc | ate: 1.JUN.2023 10:07:16 Spurious Emission 30MHz~1GHz Plot Spurious Emission 1GHz~26.5GHz Plot Spectrum Spectrum M1[1]

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : A2-11 of 12

TEL: 886-3-327-0868 Page Number : A2-12 of 12

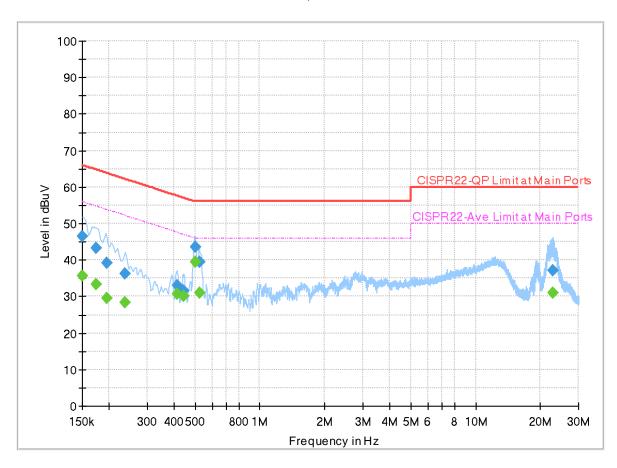
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Louis Chung	Temperature :	21.4~24°C
rest Engineer:	Louis Chung	Relative Humidity :	60~67.2%

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : B1 of B

EUT Information

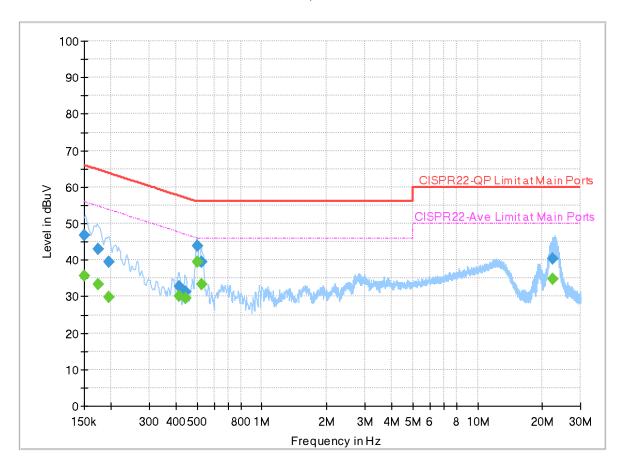

 Report NO :
 341401

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

Full Spectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150473	-	35.55	55.97	20.42	L1	OFF	19.9
0.150473	46.62		65.97	19.35	L1	OFF	19.9
0.174390		33.39	54.75	21.36	L1	OFF	19.9
0.174390	43.26		64.75	21.49	L1	OFF	19.9
0.195720		29.61	53.79	24.18	L1	OFF	19.9
0.195720	39.19	-	63.79	24.60	L1	OFF	19.9
0.235590		28.41	52.25	23.84	L1	OFF	20.0
0.235590	36.19		62.25	26.06	L1	OFF	20.0
0.413700		30.74	47.57	16.83	L1	OFF	20.0
0.413700	32.90		57.57	24.67	L1	OFF	20.0
0.442680		30.13	47.01	16.88	L1	OFF	20.0
0.442680	31.53		57.01	25.48	L1	OFF	20.0
0.501720		39.57	46.00	6.43	L1	OFF	20.0
0.501720	43.58	-	56.00	12.42	L1	OFF	20.0
0.523320		30.96	46.00	15.04	L1	OFF	20.0
0.523320	39.52	-	56.00	16.48	L1	OFF	20.0
22.722000		31.11	50.00	18.89	L1	OFF	20.2
22.722000	37.01	-	60.00	22.99	L1	OFF	20.2

EUT Information

Report NO: 341401
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		35.80	56.00	20.20	N	OFF	20.0
0.150000	46.74	-	66.00	19.26	N	OFF	20.0
0.174300		33.35	54.75	21.40	N	OFF	20.0
0.174300	42.85		64.75	21.90	N	OFF	20.0
0.194370		29.75	53.85	24.10	N	OFF	20.0
0.194370	39.46		63.85	24.39	N	OFF	20.0
0.412080	-	30.11	47.61	17.50	N	OFF	20.0
0.412080	32.74	-	57.61	24.87	N	OFF	20.0
0.443850	-	29.55	46.99	17.44	N	OFF	20.0
0.443850	31.43	-	56.99	25.56	N	OFF	20.0
0.500010		39.40	46.00	6.60	N	OFF	20.0
0.500010	43.82		56.00	12.18	N	OFF	20.0
0.525750		33.39	46.00	12.61	N	OFF	20.0
0.525750	39.36		56.00	16.64	N	OFF	20.0
22.275510		34.84	50.00	15.16	N	OFF	20.2
22.275510	40.41		60.00	19.59	N	OFF	20.2

Appendix C. Radiated Spurious Emission

Toot Engineer	Wen-Kai Lu, Michael Liu and Bank Lin	Temperature :	18.1~23.5°C
Test Engineer :	,	Relative Humidity :	55.8~70.3%

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : C1 of C16

<1Mbps>

2.4GHz 2400~2483.5MHz

Report No. : FR341401

BLE (Band Edge @ 3m)

(MHz) 2384.13 2374.995 2402 2402 2367.75 2390 2402 2402	(dBµV/m) 51.49 39.97 100.88 100.32 51.24 40.09 103.31 102.78	-22.76 -13.91	Line (dΒμV/m) 74 54 - - 74 54 -	(dBµV) 38.08 26.57 87.45 86.89 37.85 26.68	(dB/m) 26.9 26.9 26.9 26.9 26.9	(dB) 18.97 18.95 19 19 18.94 18.98	(dB) 32.46 32.45 32.47 32.47	(cm) 118 118 118 118 400	119 119 119 119 53	P A P A	H H H H H
2374.995 2402 2402 2367.75 2390 2402	39.97 100.88 100.32 51.24 40.09 103.31	-14.03 - - -22.76 -13.91	54 - - 74 54	26.57 87.45 86.89 37.85 26.68	26.9 26.9 26.9	18.95 19 19 18.94	32.45 32.47 32.47 32.45	118 118 118 400	119 119 119 53	A P A	H H H H
2402 2402 2367.75 2390 2402	100.88 100.32 51.24 40.09 103.31	- -22.76 -13.91	- - 74 54	87.45 86.89 37.85 26.68	26.9 26.9 26.9	19 19 18.94	32.47 32.47 32.45	118 118 400	119 119 53	P A P	H H H V
2402 2367.75 2390 2402	51.24 40.09 103.31	- -22.76 -13.91	- 74 54	37.85 26.68	26.9	19	32.47	118	119	A P	H H H
2367.75 2390 2402	51.24 40.09 103.31	-22.76 -13.91	74 54	37.85 26.68	26.9	18.94	32.45	400	53	Р	H H V
2390 2402	40.09 103.31	-13.91	54	26.68							H V
2390 2402	40.09 103.31	-13.91	54	26.68							V
2390 2402	40.09 103.31	-13.91	54	26.68							
2402	103.31	-			26.9	18 98	22.47			Δ	\ \ /
			-			10.00	32.47	400	53		V
2402	102.78	-		89.88	26.9	19	32.47	400	53	Р	V
			-	89.35	26.9	19	32.47	400	53	Α	V
											V
											V
2480	100.06	-	-	86.49	26.94	19.16	32.53	107	116	Р	Н
2480	99.5	-	-	85.93	26.94	19.16	32.53	107	116	Α	Н
2483.64	51.8	-22.2	74	38.24	26.93	19.16	32.53	107	116	Р	Н
2483.52	41.75	-12.25	54	28.19	26.93	19.16	32.53	107	116	Α	Н
											Н
											Н
2480	102.22	-	-	88.65	26.94	19.16	32.53	372	42	Р	V
2480	101.69	-	-	88.12	26.94	19.16	32.53	372	42	Α	V
2483.72	53.44	-20.56	74	39.88	26.93	19.16	32.53	372	42	Р	V
2483.52	42.77	-11.23	54	29.21	26.93	19.16	32.53	372	42	Α	V
											V
			_								V
	2480 2483.64 2483.52 2480 2480 2483.72 2483.52	2480 99.5 2483.64 51.8 2483.52 41.75 2480 102.22 2480 101.69 2483.72 53.44 2483.52 42.77 other spurious found.	2480 99.5 - 2483.64 51.8 -22.2 2483.52 41.75 -12.25 2480 102.22 - 2483.72 53.44 -20.56 2483.52 42.77 -11.23 other spurious found.	2480 99.5 - - 2483.64 51.8 -22.2 74 2483.52 41.75 -12.25 54 2480 102.22 - - 2483.72 53.44 -20.56 74 2483.52 42.77 -11.23 54 other spurious found.	2480 99.5 - - 85.93 2483.64 51.8 -22.2 74 38.24 2483.52 41.75 -12.25 54 28.19 2480 102.22 - - 88.65 2483.72 53.44 -20.56 74 39.88 2483.52 42.77 -11.23 54 29.21	2480 99.5 - - 85.93 26.94 2483.64 51.8 -22.2 74 38.24 26.93 2483.52 41.75 -12.25 54 28.19 26.93 2480 102.22 - - 88.65 26.94 2483.72 53.44 -20.56 74 39.88 26.93 2483.52 42.77 -11.23 54 29.21 26.93 other spurious found.	2480 99.5 - - 85.93 26.94 19.16 2483.64 51.8 -22.2 74 38.24 26.93 19.16 2483.52 41.75 -12.25 54 28.19 26.93 19.16 2480 102.22 - - 88.65 26.94 19.16 2483.72 53.44 -20.56 74 39.88 26.93 19.16 2483.52 42.77 -11.23 54 29.21 26.93 19.16 other spurious found.	2480 99.5 - - 85.93 26.94 19.16 32.53 2483.64 51.8 -22.2 74 38.24 26.93 19.16 32.53 2483.52 41.75 -12.25 54 28.19 26.93 19.16 32.53 2480 102.22 - - 88.65 26.94 19.16 32.53 2483.72 53.44 -20.56 74 39.88 26.93 19.16 32.53 2483.52 42.77 -11.23 54 29.21 26.93 19.16 32.53 other spurious found.	2480 99.5 - - 85.93 26.94 19.16 32.53 107 2483.64 51.8 -22.2 74 38.24 26.93 19.16 32.53 107 2483.52 41.75 -12.25 54 28.19 26.93 19.16 32.53 107 2480 102.22 - - 88.65 26.94 19.16 32.53 372 2483.72 53.44 -20.56 74 39.88 26.93 19.16 32.53 372 2483.52 42.77 -11.23 54 29.21 26.93 19.16 32.53 372 other spurious found.	2480 99.5 - - 85.93 26.94 19.16 32.53 107 116 2483.64 51.8 -22.2 74 38.24 26.93 19.16 32.53 107 116 2483.52 41.75 -12.25 54 28.19 26.93 19.16 32.53 107 116 2480 102.22 - - 88.65 26.94 19.16 32.53 372 42 2480 101.69 - - 88.12 26.94 19.16 32.53 372 42 2483.72 53.44 -20.56 74 39.88 26.93 19.16 32.53 372 42 2483.52 42.77 -11.23 54 29.21 26.93 19.16 32.53 372 42 other spurious found.	2480 99.5 - - 85.93 26.94 19.16 32.53 107 116 A 2483.64 51.8 -22.2 74 38.24 26.93 19.16 32.53 107 116 P 2483.52 41.75 -12.25 54 28.19 26.93 19.16 32.53 107 116 A 2480 102.22 - - 88.65 26.94 19.16 32.53 372 42 P 2480 101.69 - - 88.12 26.94 19.16 32.53 372 42 A 2483.72 53.44 -20.56 74 39.88 26.93 19.16 32.53 372 42 P 2483.52 42.77 -11.23 54 29.21 26.93 19.16 32.53 372 42 A other spurious found.

TEL: 886-3-327-0868 Page Number : C2 of C16

2.4GHz 2400~2483.5MHz

Report No. : FR341401

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
DLL	Note	rrequericy	Levei	Margin	Line	Level	Factor	Loss	Factor	Pos		Avg.	1 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		3000	47	-27	74	38.96	28.3	12.34	32.6	101	178	Р	Н
		3060	55.06	-18.94	74	47.32	28.2	12.21	32.67	121	201	Р	Н
		3255	46	-28	74	38.94	28	11.95	32.89	100	219	Р	Н
		3495	44.13	-29.87	74	36.32	28.88	12.08	33.15	100	244	Р	Н
		4804	46.08	-27.92	74	32.74	32.42	14.51	33.59	-	-	Р	Н
		7206	60.04	-13.96	74	41.96	37.54	16.41	35.87	107	104	Р	Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		3000	45.6	-28.4	74	37.56	28.3	12.34	32.6	108	188	Р	V
		3060	55.4	-18.6	74	47.66	28.2	12.21	32.67	119	201	Р	V
		3180	44.37	-29.63	74	37.12	28.1	11.95	32.8	105	267	Р	V
		3255	47.42	-26.58	74	40.36	28	11.95	32.89	101	163	Р	V
		3495	45.62	-28.38	74	37.81	28.88	12.08	33.15	111	171	Р	V
		4804	46.86	-27.14	74	33.52	32.42	14.51	33.59	-	-	Р	V
		7206	56.81	-17.19	74	38.73	37.54	16.41	35.87	251	74	Р	V
													V
													V
													V
													V
													V

TEL: 886-3-327-0868 Page Number : C3 of C16

BLE Table Peak Pol. Note Frequency Level Margin Limit Read Antenna Path Preamp Ant Line Level **Factor Factor** Pos Pos Loss Avg. (dBµV/m) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) (deg) Р 3000 46.63 -27.37 74 38.59 28.3 12.34 32.6 101 200 Н 3060 54.45 -19.55 74 46.71 28.2 12.21 32.67 122 228 Ρ Н 3195 42.63 -31.37 74 35.43 28.1 11.92 32.82 100 88 Ρ Н 3255 46.72 -27.28 74 39.66 28 11.95 32.89 107 178 Ρ Н Р 4880 45.78 -28.22 74 32.29 32.6 14.46 33.57 Н --7320 58.86 -15.14 74 40.29 37.94 16.58 35.95 101 107 Ρ Н 7320 52.68 -1.32 54 34.11 37.94 16.58 35.95 101 107 Α Η Н Η Н Н BLE Н **CH 19** 3000 45.15 -28.85 74 37.11 28.3 12.34 32.6 100 201 Ρ V 2440MHz 55.37 -18.63 47.63 28.2 32.67 121 235 ٧ 3060 74 12.21 Ρ ٧ 3180 44.7 -29.3 74 37.45 28.1 11.95 32.8 106 198 3255 48.29 -25.71 74 41.23 28 11.95 32.89 101 256 Ρ ٧ 4880 47.44 32.6 -Ρ ٧ -26.56 74 33.95 14.46 33.57 -7320 55.56 -18.44 74 36.99 37.94 16.58 35.95 400 168 Ρ ٧ 7320 47.56 -6.44 54 28.99 37.94 16.58 35.95 400 168 V ٧ ٧ ٧ ٧ ٧

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : C4 of C16

BLE	Note	Frequency (MHz)	Level	Margin (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Pos	Peak Avg. (P/A)	
		3000	46.45	-27.55	74	38.41	28.3	12.34	32.6	108	197	Р	Н
		3060	54.57	-19.43	74	46.83	28.2	12.21	32.67	119	248	Р	Н
		3255	45.17	-28.83	74	38.11	28	11.95	32.89	101	177	Р	Н
		4960	47.55	-26.45	74	34.01	32.7	14.4	33.56	-	-	Р	Н
		7440	58.9	-15.1	74	40.24	37.82	16.88	36.04	101	108	Р	Н
		7440	52.92	-1.08	54	34.26	37.82	16.88	36.04	101	108	Α	Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39													Н
2480MHz		3000	45.31	-28.69	74	37.27	28.3	12.34	32.6	105	207	Р	V
		3060	56.3	-17.7	74	48.56	28.2	12.21	32.67	122	201	Р	V
		3255	47.69	-26.31	74	40.63	28	11.95	32.89	106	264	Р	V
		4960	47.24	-26.76	74	33.7	32.7	14.4	33.56	-	-	Р	V
		7440	55.38	-18.62	74	36.72	37.82	16.88	36.04	245	71	Р	V
		7440	47.43	-6.57	54	28.77	37.82	16.88	36.04	245	71	Α	V
													V
													V
													V
													V
													V
													V

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 Page Number : C5 of C16

Emission above 18GHz

Report No. : FR341401

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		20002	53.93	-20.07	74	60.95	37.9	18.08	63	192	230	Р	Н
		20002	51.81	-2.19	54	58.83	37.9	18.08	63	192	230	Α	Н
		20625	44.66	-29.34	74	50.51	38.4	18.27	62.52	-	-	Р	Н
		21997	48.95	-25.05	74	52.68	38.7	18.77	61.2	-	-	Р	Н
		22060	45.78	-28.22	74	49.38	38.63	18.89	61.12	-	-	Р	Н
		22998	46.67	-27.33	74	47.56	39	20.81	60.7	-	-	Р	Н
		23061	48.34	-25.66	74	49.13	38.98	20.83	60.6	-	-	Р	Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
SHF		20002	51.25	-22.75	74	58.27	37.9	18.08	63	204	26	Р	V
OI II		20002	47.83	-6.17	54	54.85	37.9	18.08	63	204	26	Α	V
		20625	44.98	-29.02	74	50.83	38.4	18.27	62.52	-	-	Р	V
		21997	47.5	-26.5	74	51.23	38.7	18.77	61.2	-	-	Р	V
		22060	43.58	-30.42	74	47.18	38.63	18.89	61.12	-	-	Р	V
		22998	46.81	-27.19	74	47.7	39	20.81	60.7	-	-	Р	V
		23061	46.6	-27.4	74	47.39	38.98	20.83	60.6	-	-	Р	V
													V
													V
													V
													V
													V

Remark

2. All results are PASS against limit line.

 The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 Page Number: C6 of C16

Emission below 1GHz

Report No. : FR341401

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		31.94	22.07	-17.93	40	29.85	23.94	1.05	32.77	-	-	Р	Н
		199.75	20.18	-23.32	43.5	34.95	14.95	2.99	32.71	-	-	Р	Н
		369.5	25.58	-20.42	46	33.92	20.59	3.87	32.8	-	-	Р	Н
		574.17	28.61	-17.39	46	30.87	25.85	4.84	32.95	-	-	Р	Н
		777.87	31.98	-14.02	46	31.05	28.04	5.56	32.67	-	-	Р	Н
		950.53	35.62	-10.38	46	30.01	31.02	6.1	31.51	-	-	Р	Н
													Н
													Н
													Н
													Н
0.4011-													Н
2.4GHz BLE													Н
LF		30	25.21	-14.79	40	31.75	25.2	1.03	32.77	-	-	Р	V
<u>-</u> 1		73.65	22.76	-17.24	40	40.96	12.57	1.95	32.72	-	-	Р	V
		93.05	22.33	-21.17	43.5	37.58	15.3	2.15	32.7	-	-	Р	V
		559.62	28.96	-17.04	46	30.94	26.18	4.78	32.94	-	-	Р	V
		755.56	32.14	-13.86	46	31.29	28.1	5.47	32.72	-	-	Р	V
		957.32	36.21	-9.79	46	30.27	31.25	6.14	31.45	-	-	Р	V
													V
													V
													V
													V
													٧
													V
	l			1		1	1		1	1	1	1	1

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : C7 of C16

<2Mbps>

2.4GHz 2400~2483.5MHz

Report No. : FR341401

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		2363.445	50.8	-23.2	74	37.42	26.9	18.93	32.45	119	119	Р	Н
		2374.995	40.03	-13.97	54	26.63	26.9	18.95	32.45	119	119	Α	Н
	*	2402	101.4	-	1	87.97	26.9	19	32.47	119	119	Р	Н
	*	2402	99.98	-	1	86.55	26.9	19	32.47	119	119	Α	Н
51.5													Н
BLE													Н
CH 00		2320.395	50.97	-23.03	74	37.64	26.9	18.85	32.42	400	50	Р	V
2402MHz		2389.695	40.1	-13.9	54	26.68	26.9	18.98	32.46	400	50	Α	V
	*	2402	103.6	-	-	90.17	26.9	19	32.47	400	50	Р	V
	*	2402	102.21	-	-	88.78	26.9	19	32.47	400	50	Α	V
													V
													V
		2385.04	50.96	-23.04	74	37.55	26.9	18.97	32.46	105	111	Р	Н
		2390	39.65	-14.35	54	26.24	26.9	18.98	32.47	105	111	Α	Н
	*	2440	99.86	-	-	86.3	26.98	19.08	32.5	105	111	Р	Н
	*	2440	98.47	-	-	84.91	26.98	19.08	32.5	105	111	Α	Н
		2498	51.07	-22.93	74	37.52	26.9	19.19	32.54	105	111	Р	Н
BLE CH 40		2499.92	40.18	-13.82	54	26.63	26.9	19.19	32.54	105	111	Α	Н
CH 19 2440MHz		2384.72	50.67	-23.33	74	37.26	26.9	18.97	32.46	343	43	Р	V
2440WITI2		2374.96	39.82	-14.18	54	26.42	26.9	18.95	32.45	343	43	Α	V
	*	2440	102.57	-	-	89.01	26.98	19.08	32.5	343	43	Р	V
	*	2440	101.2	-	-	87.64	26.98	19.08	32.5	343	43	Α	V
		2486.16	52.01	-21.99	74	38.44	26.93	19.17	32.53	343	43	Р	V
		2499.92	41.19	-12.81	54	27.64	26.9	19.19	32.54	343	43	Α	V

TEL: 886-3-327-0868 Page Number : C8 of C16

BLE Note Limit Path Table Peak Pol. **Frequency** Level Margin Read Antenna Preamp Ant Avg. Line Level **Factor** Loss Factor Pos Pos (dBµV/m) $(dB\mu V/m)$ (dB/m) (MHz) (dB) (dBµV) (dB) (dB) (cm) (deg) (P/A) (H/V) * 2480 99.34 Ρ 85.77 26.94 19.16 32.53 107 121 Н 2480 97.96 84.39 26.94 19.16 32.53 107 121 Α Н 2483.52 53.39 -20.61 74 39.83 26.93 19.16 32.53 107 121 Ρ Н 107 2483.52 44.63 -9.37 54 31.07 26.93 19.16 32.53 121 Α Н Н BLE Н **CH 39** 2480 102.46 88.89 26.94 19.16 32.53 370 43 Ρ V 2480MHz ٧ 2480 101.12 -87.55 26.94 19.16 32.53 370 43 Α Ρ ٧ 2483.56 54.92 -19.08 74 41.36 26.93 19.16 32.53 370 43 2483.52 46.76 -7.24 54 33.2 26.93 19.16 32.53 370 43 Α ٧ ٧ ٧ 1. No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No. : FR341401

: C9 of C16

TEL: 886-3-327-0868 Page Number

2.4GHz 2400~2483.5MHz

Report No. : FR341401

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
	INOTE	requeries	LOVOI	lviai giii	Line	Level	Factor	Loss	Factor	Pos		Avg.	1 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)			(dB)	(dB)	(cm)	(deg)		(H/V)
		3000	47.69	-26.31	74	39.65	28.3	12.34	32.6	103	241	Р	Н
		3060	55.59	-18.41	74	47.85	28.2	12.21	32.67	119	201	Р	Н
		3255	45.48	-28.52	74	38.42	28	11.95	32.89	105	209	Р	Н
		4804	45.79	-28.21	74	32.45	32.42	14.51	33.59	-	-	Р	Н
		7206	59.26	-14.74	74	41.18	37.54	16.41	35.87	100	106	Р	Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		3000	45.62	-28.38	74	37.58	28.3	12.34	32.6	100	231	Р	V
		3060	55.86	-18.14	74	48.12	28.2	12.21	32.67	121	211	Р	V
		3255	47.29	-26.71	74	40.23	28	11.95	32.89	103	223	Р	V
		4804	45.63	-28.37	74	32.29	32.42	14.51	33.59	-	-	Р	V
		7206	55.7	-18.3	74	37.62	37.54	16.41	35.87	225	74	Р	V
													V
													V
													V
													V
													V
													V
													V

TEL: 886-3-327-0868 Page Number : C10 of C16

BLE Antenna Table Peak Pol. Note Frequency Level Margin Limit Read Path Preamp Ant Line Level **Factor** Loss **Factor** Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dB_µV) (dB/m) (dB) (dB) (cm) Р 3000 47.81 -26.19 74 39.77 28.3 12.34 32.6 100 211 Н 3060 55.56 -18.44 74 47.82 28.2 12.21 32.67 113 202 Н 3180 44.61 -29.39 74 37.36 28.1 11.95 32.8 103 110 Ρ Н 3255 -28 74 38.94 28 11.95 32.89 101 200 Ρ Н 46 Р 4880 47 -27 74 32.6 14.46 33.57 Н 33.51 --7320 58.95 -15.05 74 40.38 37.94 16.58 35.95 100 106 Ρ Н 7320 52.04 -1.96 54 33.47 37.94 16.58 35.95 100 106 Α Н Н Η Н Н **BLE** Н **CH 19** 3000 46.95 -27.05 74 38.91 28.3 12.34 32.6 101 233 Ρ V 2440MHz -17.7 74 28.2 32.67 121 233 ٧ 3060 56.3 48.56 12.21 Ρ ٧ 3255 47.29 -26.71 74 40.23 28 11.95 32.89 100 210 4880 46.79 -27.21 74 33.3 32.6 14.46 33.57 _ Ρ ٧ 7320 55.54 37.94 Ρ ٧ -18.46 74 36.97 16.58 35.95 400 169 7320 46.74 -7.26 54 28.17 37.94 16.58 35.95 400 169 Α ٧ ٧ ٧ ٧ ٧ ٧ ٧

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : C11 of C16

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	i	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		3000	48.3	-25.7	74	40.26	28.3	12.34	32.6	103	222	P	H
		3060	55.55	-18.45	74	47.81	28.2	12.21	32.67	100	202	Р	Н
		3255	45.73	-28.27	74	38.67	28	11.95	32.89	101	212	Р	Н
		4960	46.92	-27.08	74	33.38	32.7	14.4	33.56	-	-	Р	Н
		7440	59.27	-14.73	74	40.61	37.82	16.88	36.04	100	107	Р	Н
		7440	52.56	-1.44	54	33.9	37.82	16.88	36.04	100	107	Α	Н
								ļ					Н
		<u> </u>						ļ					Н
								 					Н
													Н
BLE													Н
CH 39													Н
2480MHz		3000	47.61	-26.39	74	39.57	28.3	12.34	32.6	113	109	Р	V
		3060	56.71	-17.29	74	48.97	28.2	12.21	32.67	132	77	Р	V
		3180	45.04	-28.96	74	37.79	28.1	11.95	32.8	100	232	Р	V
		3255	47.42	-26.58	74	40.36	28	11.95	32.89	127	111	Р	V
		4960	46.11	-27.89	74	32.57	32.7	14.4	33.56	-	-	Р	V
		7440	55.46	-18.54	74	36.8	37.82	16.88	36.04	235	69	Р	V
		7440	47.16	-6.84	54	28.5	37.82	16.88	36.04	235	69	Α	V
													V
		<u> </u>		-				<u> </u>					V
													V
				<u> </u>									V
		1											V

TEL: 886-3-327-0868 Page Number : C12 of C16

FAX: 886-3-327-0855

floor only.

Emission above 18GHz

Report No. : FR341401

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ >	 		Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		20002	53.46	-20.54	74	60.48	37.9	18.08	63	192	231	Р	Н
		20002	51.92	-2.08	54	58.94	37.9	18.08	63	192	231	Α	Н
		20625	44.38	-29.62	74	50.23	38.4	18.27	62.52	-	-	Р	Н
		21997	49.65	-24.35	74	53.38	38.7	18.77	61.2	-	-	Р	Н
		22060	43.79	-30.21	74	47.39	38.63	18.89	61.12	-	-	Р	Н
		22998	46.58	-27.42	74	47.47	39	20.81	60.7	-	-	Р	Н
		23061	47.97	-26.03	74	48.76	38.98	20.83	60.6	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE SHF		20002	51.43	-22.57	74	58.45	37.9	18.08	63	201	29	Р	V
эпг		20002	47.77	-6.23	54	54.79	37.9	18.08	63	201	29	Α	V
		20625	44.87	-29.13	74	50.72	38.4	18.27	62.52	-	-	Р	V
		21997	47.03	-26.97	74	50.76	38.7	18.77	61.2	-	-	Р	V
		22060	44.52	-29.48	74	48.12	38.63	18.89	61.12	-	-	Р	V
		22998	48.5	-25.5	74	49.39	39	20.81	60.7	-	-	Р	V
		23061	47.66	-26.34	74	48.45	38.98	20.83	60.6	-	-	Р	V
													V
													V
													V
													V
													V

Remark

The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 : C13 of C16 Page Number

Emission below 1GHz

Report No. : FR341401

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	23.27	-16.73	40	30.38	24.62	1.04	32.77	-	-	Р	Н
		199.75	20.37	-23.13	43.5	35.14	14.95	2.99	32.71	-	-	Р	Н
		555.74	28.74	-17.26	46	30.96	25.94	4.77	32.93	-	-	Р	Н
		703.18	30.29	-15.71	46	31.41	26.5	5.22	32.84	-	-	Р	Н
		878.75	34.49	-11.51	46	31.77	28.95	5.91	32.14	-	-	Р	Н
		952.47	35.32	-10.68	46	29.61	31.1	6.11	31.5	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		30	25.76	-14.24	40	32.3	25.2	1.03	32.77	-	-	Р	٧
LF		92.08	22.03	-21.47	43.5	37.58	15.02	2.13	32.7	-	-	Р	٧
		385.99	23.01	-22.99	46	30.71	21.16	3.95	32.81	-	-	Р	٧
		568.35	28.92	-17.08	46	30.92	26.13	4.81	32.94	-	-	Р	٧
		815.7	32.12	-13.88	46	31.11	27.8	5.73	32.52	-	-	Р	V
		959.26	35.99	-10.01	46	29.98	31.29	6.15	31.43	-	-	Р	V
													V
													٧
													٧
													V
													V
													V
									1			1	

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : C14 of C16

Note symbol

Report No. : FR341401

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : C15 of C16

A calculation example for radiated spurious emission is shown as below:

Report No.: FR341401

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Margin(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-0868 Page Number : C16 of C16

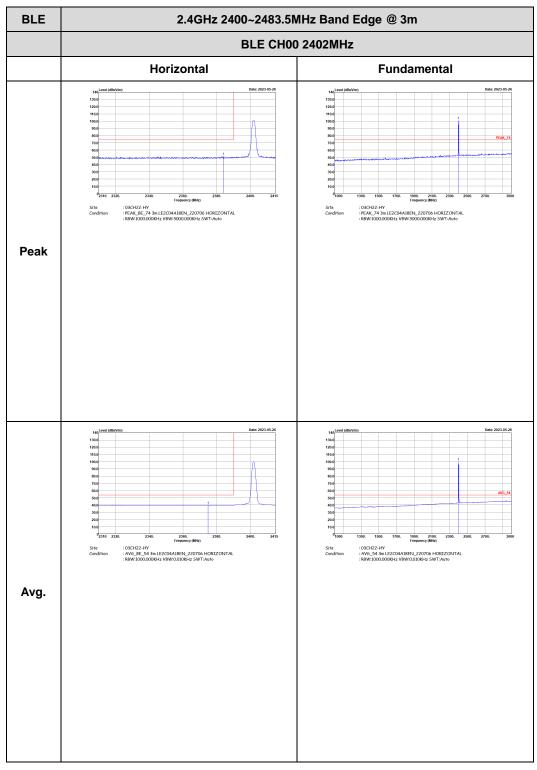
Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Wen-Kai Lu. Michael Liu and Bank Lin	Temperature :	18.1~23.5°C
rest Engineer .		Relative Humidity :	55.8~70.3%

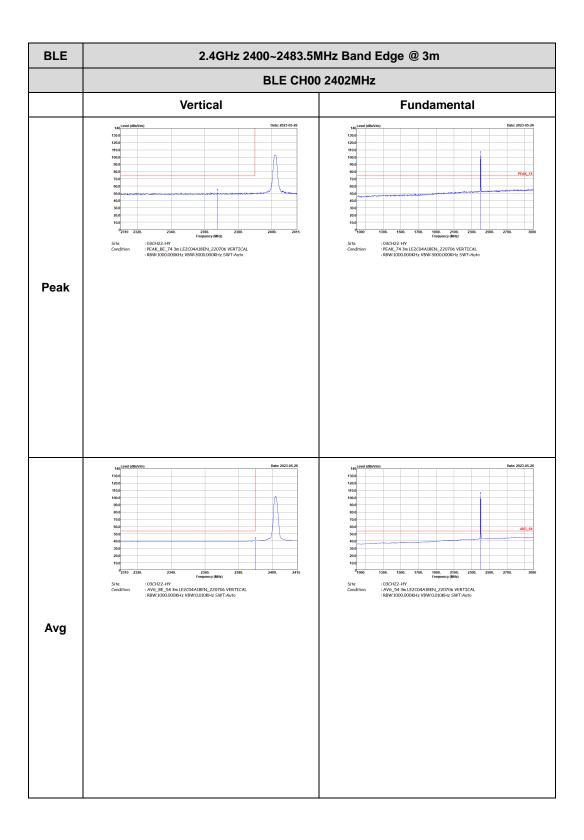
Report No. : FR341401

Note symbol

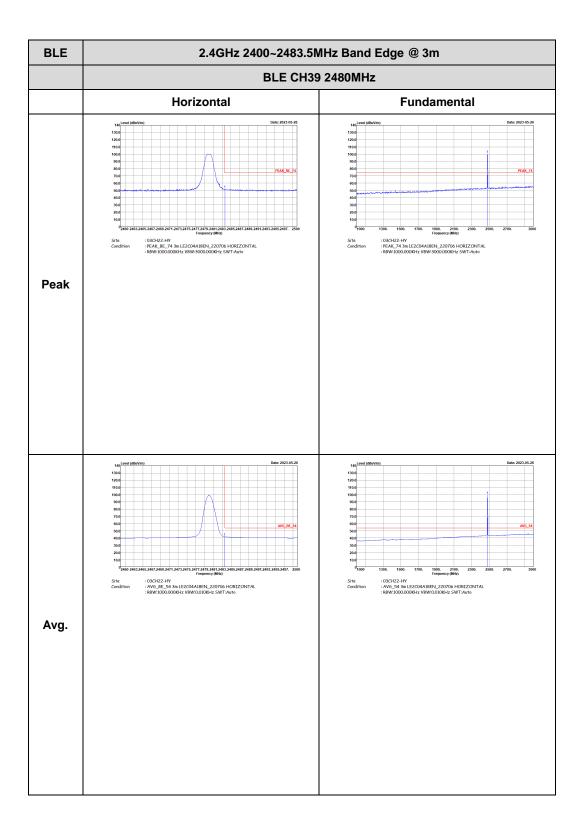
-L	Low channel location
-R	High channel location

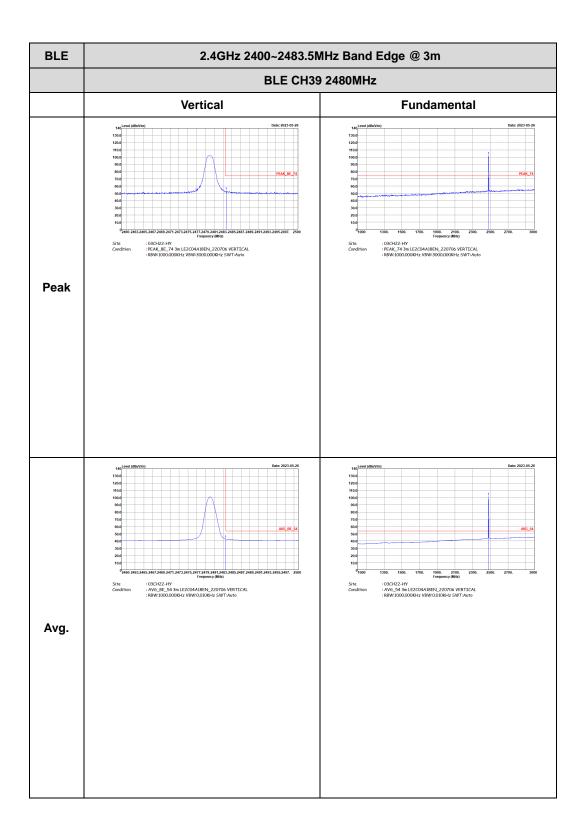

TEL: 886-3-327-0868 Page Number : D1 of D29

<1Mbps>

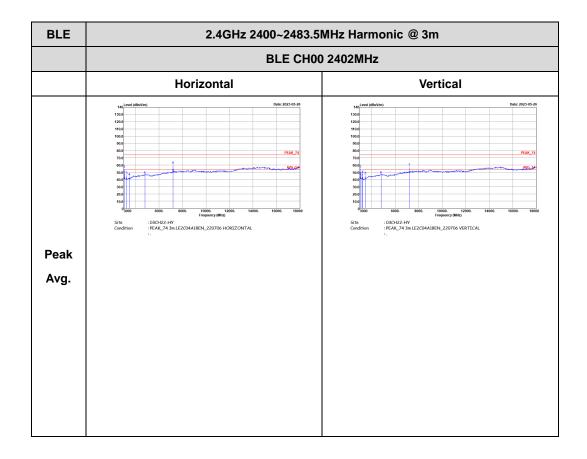

2.4GHz 2400~2483.5MHz

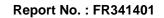
Report No. : FR341401

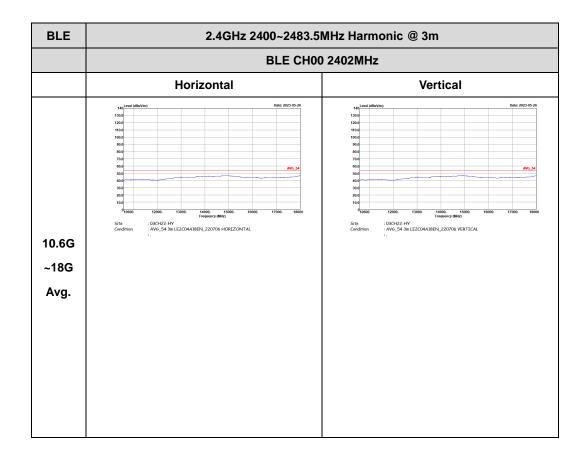

BLE (Band Edge @ 3m)


TEL: 886-3-327-0868 Page Number : D2 of D29

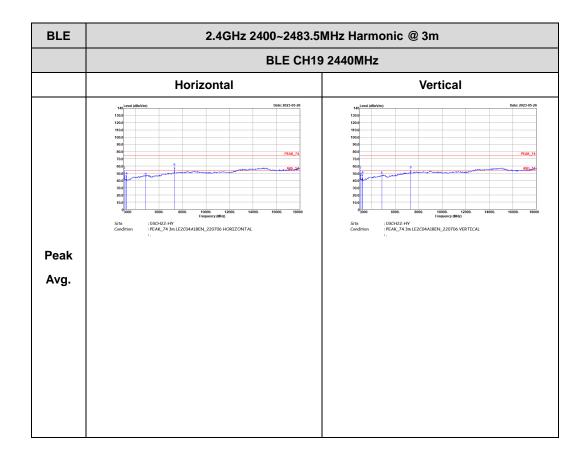
TEL: 886-3-327-0868 Page Number : D3 of D29


TEL: 886-3-327-0868 Page Number : D4 of D29

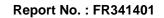

TEL: 886-3-327-0868 Page Number : D5 of D29

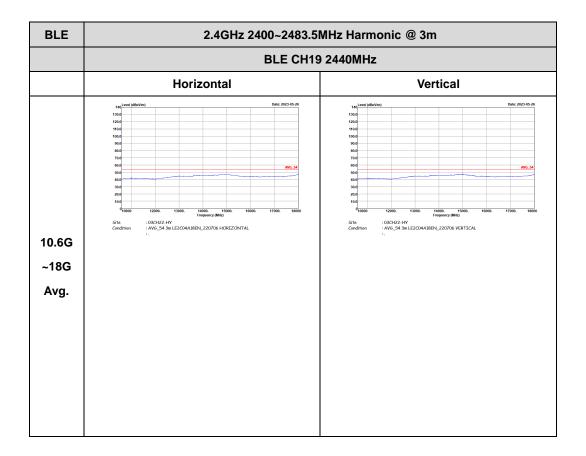

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

Report No. : FR341401

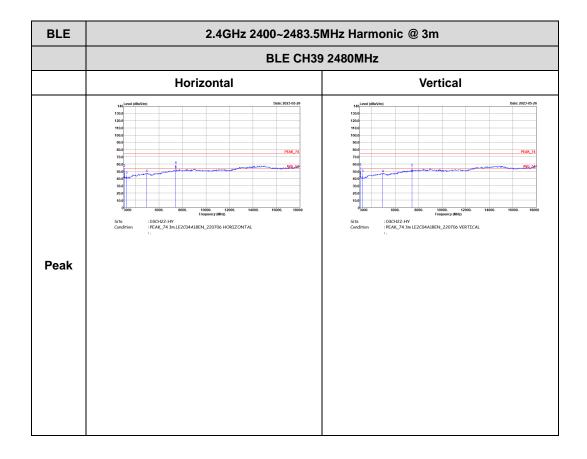


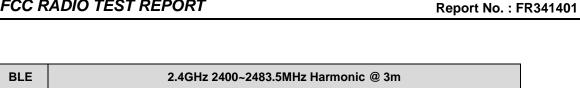
TEL: 886-3-327-0868 Page Number : D6 of D29

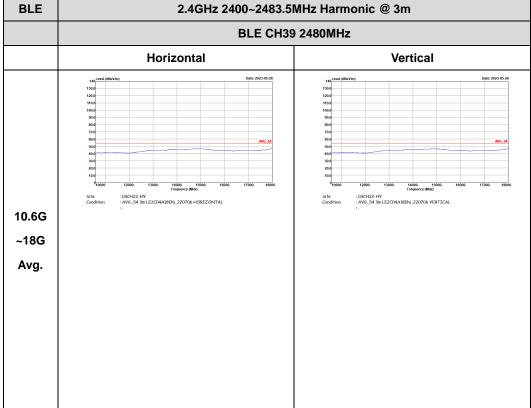




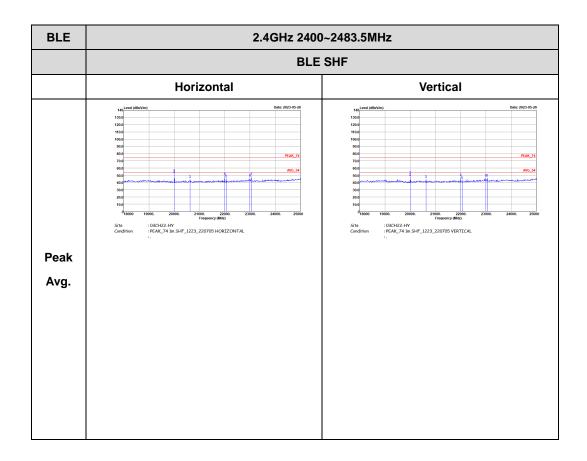
TEL: 886-3-327-0868 Page Number : D7 of D29


TEL: 886-3-327-0868 Page Number : D8 of D29



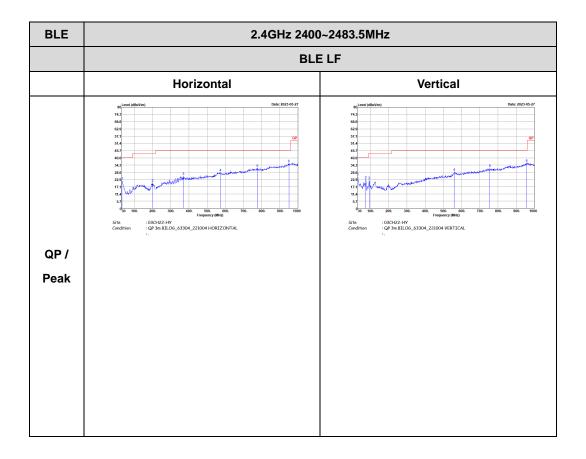

TEL: 886-3-327-0868 Page Number : D9 of D29

TEL: 886-3-327-0868 Page Number : D10 of D29



TEL: 886-3-327-0868 Page Number : D11 of D29

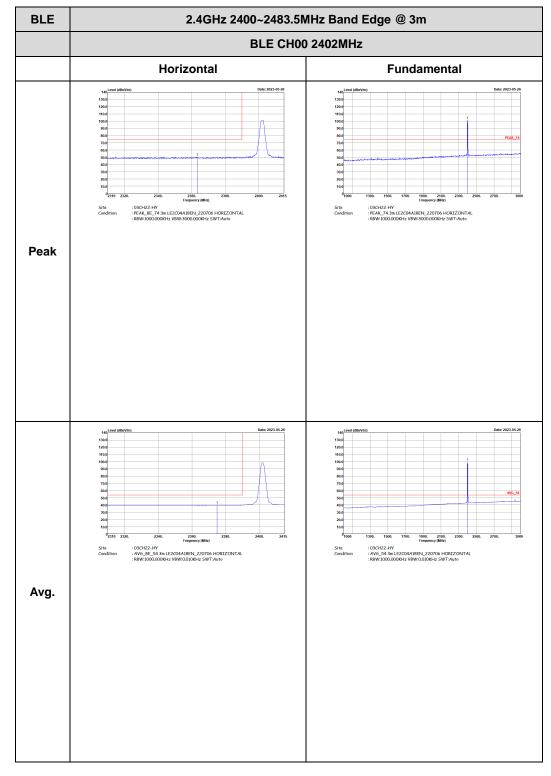
Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No. : FR341401

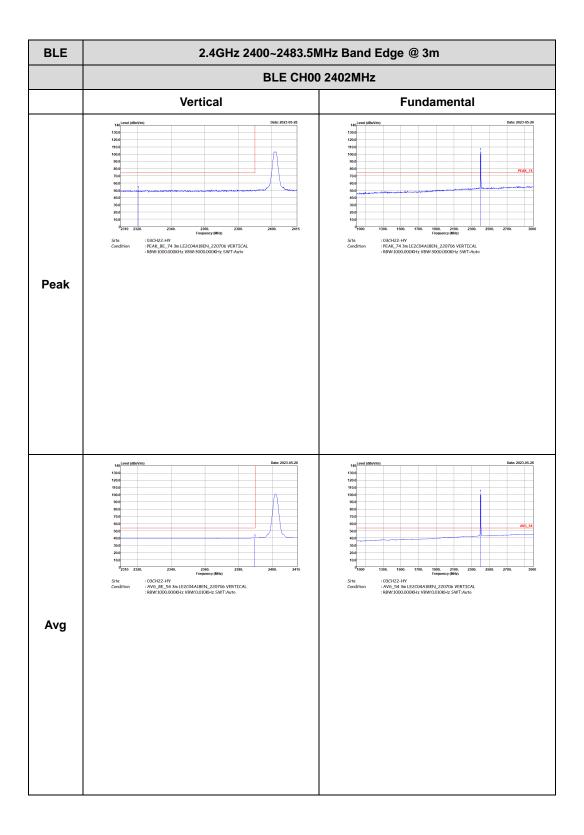
TEL: 886-3-327-0868 Page Number : D12 of D29

Emission below 1GHz 2.4GHz BLE (LF)

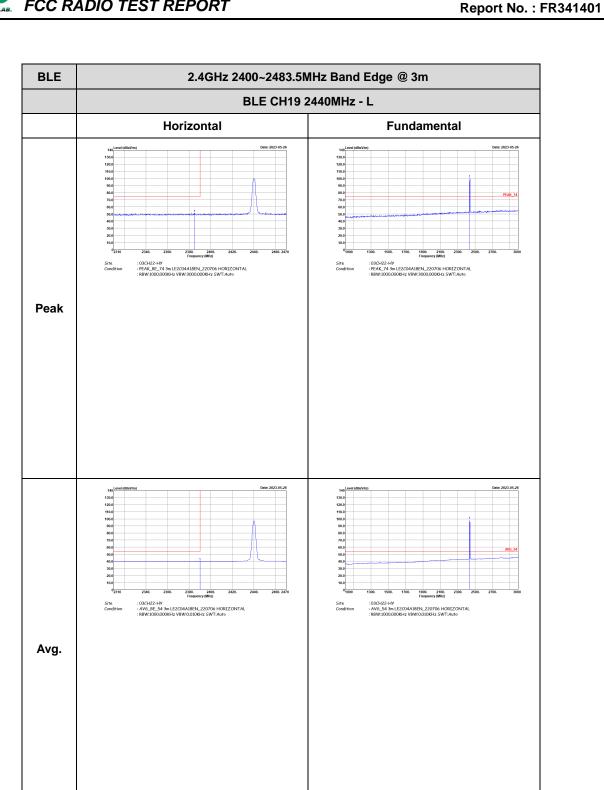
Report No. : FR341401


TEL: 886-3-327-0868 Page Number : D13 of D29

<2Mbps>

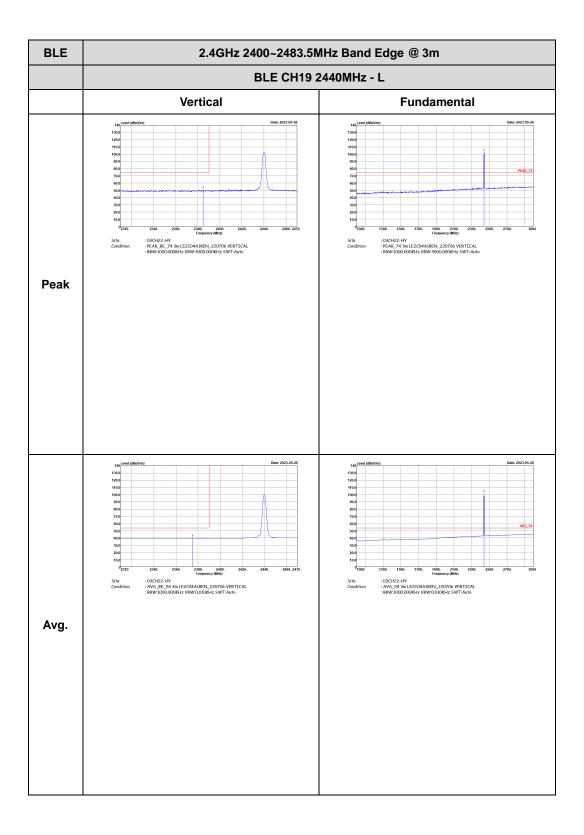

2.4GHz 2400~2483.5MHz

Report No. : FR341401


BLE (Band Edge @ 3m)

TEL: 886-3-327-0868 Page Number : D14 of D29

TEL: 886-3-327-0868 Page Number : D15 of D29

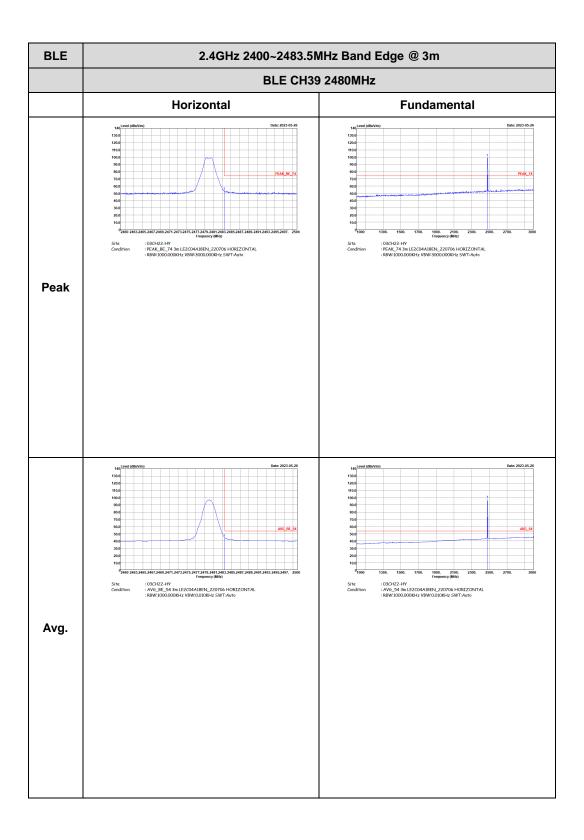

TEL: 886-3-327-0868 Page Number : D16 of D29

FAX: 886-3-327-0855

BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - R Horizontal **Fundamental** : 03CH22-HY : PEAK_BE_74 3m LE2C04A18EN_220706 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Left blank : 03CH22-HY : AVG_BE_54 3m LE2C04A18EN_220706 HORIZONTAL : RBW:1000.000KHz VBW:0.010KHz SWT:Auto Left blank Avg.

Report No. : FR341401

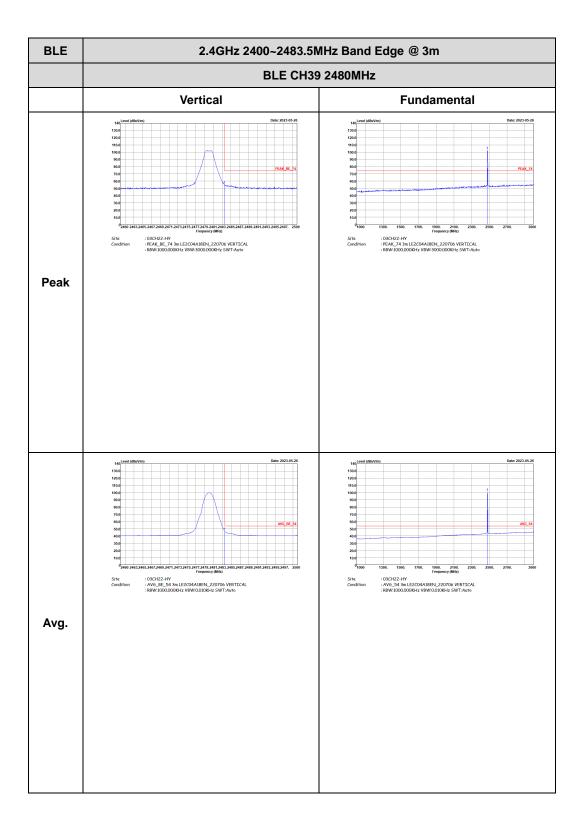
TEL: 886-3-327-0868 Page Number : D17 of D29



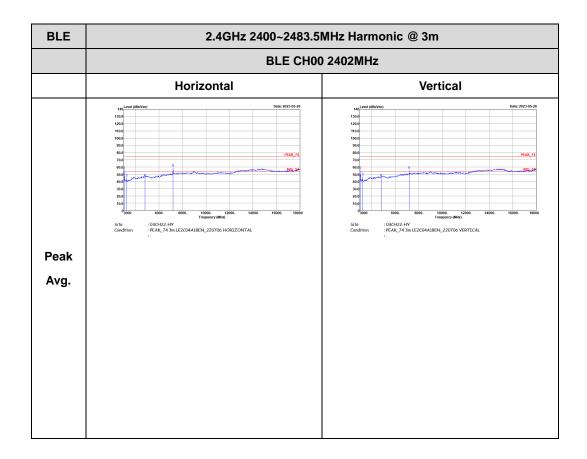
TEL: 886-3-327-0868 Page Number : D18 of D29

BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - R Vertical **Fundamental** : 03CH22-HY : PEAK_BE_74 3m LE2C04A18EN_220706 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Left blank : 03CH22-HY : AVG_BE_54 3m LE2C04A18EN_220706 VERTICAL : RBW:1000.000KHz VBW:0.010KHz SWT:Auto Left blank Avg.

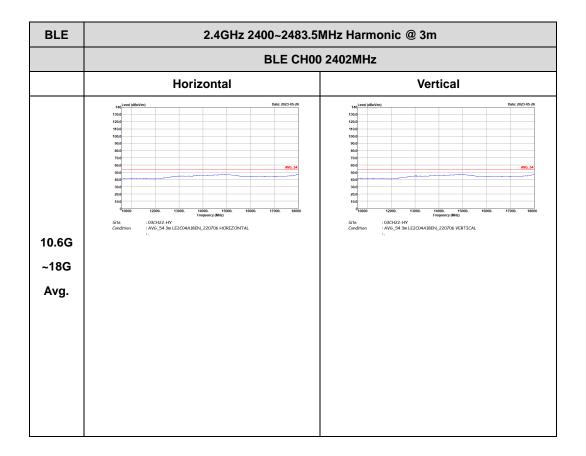
Report No. : FR341401


TEL: 886-3-327-0868 Page Number : D19 of D29

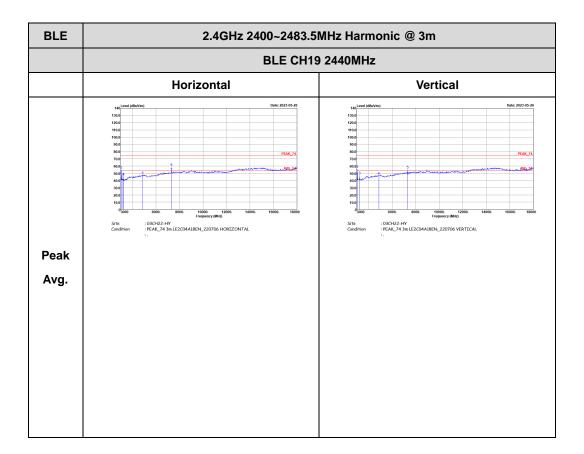
TEL: 886-3-327-0868 Page Number : D20 of D29

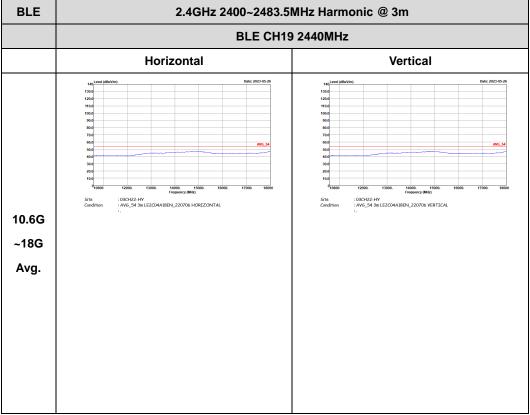

C RADIO TEST REPORT Report No. : FR341401

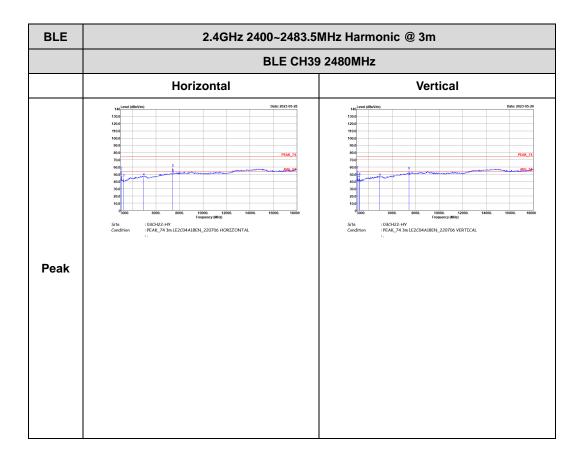
TEL: 886-3-327-0868 Page Number : D21 of D29

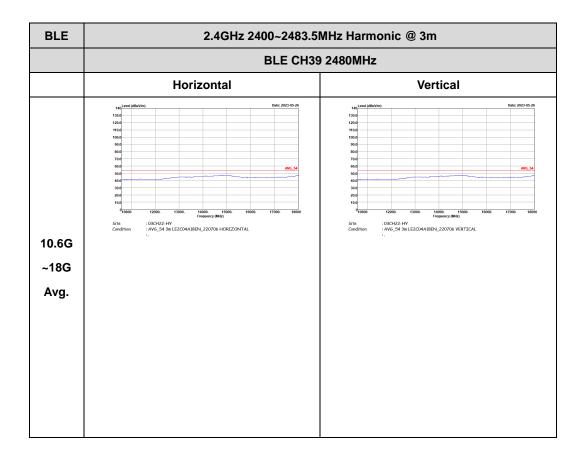

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

Report No. : FR341401

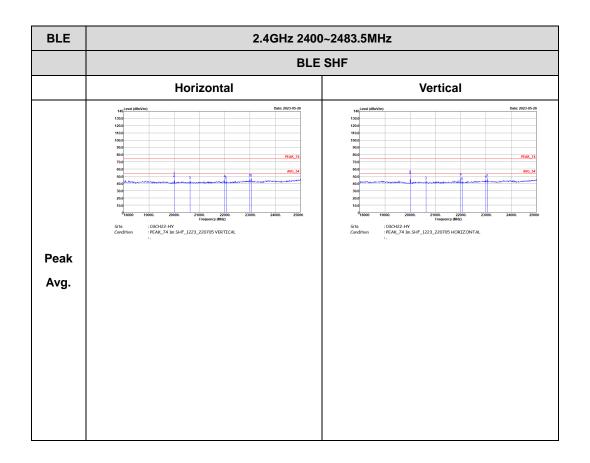

TEL: 886-3-327-0868 Page Number : D22 of D29


TEL: 886-3-327-0868 Page Number : D23 of D29


TEL: 886-3-327-0868 Page Number : D24 of D29

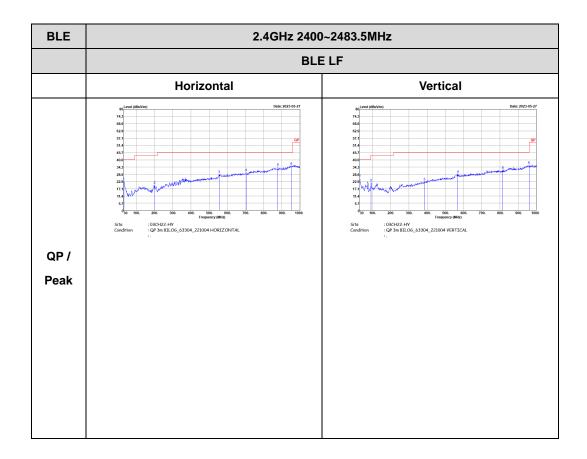


TEL: 886-3-327-0868 Page Number : D25 of D29


TEL: 886-3-327-0868 Page Number : D26 of D29

TEL: 886-3-327-0868 Page Number : D27 of D29

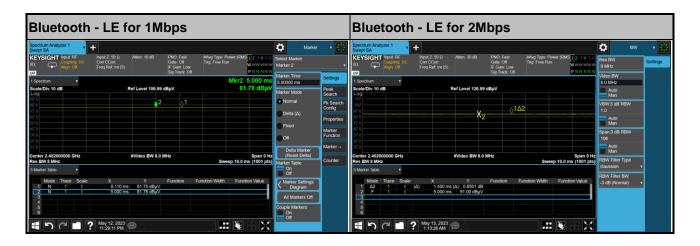
Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No. : FR341401

TEL: 886-3-327-0868 Page Number : D28 of D29

Emission below 1GHz 2.4GHz BLE (LF)

Report No. : FR341401



TEL: 886-3-327-0868 Page Number : D29 of D29

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	100.00	-	-	10Hz
Bluetooth - LE for 2Mbps	100.00	-	-	10Hz

Report No. : FR341401

TEL: 886-3-327-0868 Page Number : E1 of E1