Mic MLabs.

Company: Mikrotikls SIA (MikroTik)

Test of: RBwAPGR-5HacD2HnD-US

To: FCC CFR 47 Part 15 Subpart E 15.407

Report No.: MIKO81-U15 Rev B

Test of: Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US

To: FCC CFR 47 Part 15 Subpart E 15.407

Test Report Serial No.: MIKO81-U15 Rev B

This report supersedes: MIKO81-U15 Rev A

Applicant:	Mikrotikls SIA (MikroTik) Brivibas gatve 214i Riga, LV-1039 Latvia
Product Function:	802.11a/n/ac WLAN access point
Issue Date:	17th April 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	14
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	16
7.1. Radiated Emissions - 3m Chamber	
	18
7.2. Conducted	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	20
8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21
 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. Peak Transmit Power 	
 8. MEASUREMENT AND PRESENTATION OF TEST DATA 9. TEST RESULTS 9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 	20 21
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 31 36
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 31 36 41
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 31 36 41 51
 8. MEASUREMENT AND PRESENTATION OF TEST DATA. 9. TEST RESULTS. 9.1. Peak Transmit Power. 9.2. 26 dB & 99% Bandwidth 9.3. 6 dB & 99% Bandwidth 9.4. Power Spectral Density. 9.5. Radiated	20 21 31 36 41 51 54
 8. MEASUREMENT AND PRESENTATION OF TEST DATA. 9. TEST RESULTS. 9.1. Peak Transmit Power. 9.2. 26 dB & 99% Bandwidth 9.3. 6 dB & 99% Bandwidth 9.4. Power Spectral Density. 9.5. Radiated. 9.5.1. TX Spurious & Restricted Band Emissions 9.5.1.1. integral 	20 21 21 31 36 41 51 54 54
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 31 36 41 51 54 54 60
 8. MEASUREMENT AND PRESENTATION OF TEST DATA. 9. TEST RESULTS. 9.1. Peak Transmit Power. 9.2. 26 dB & 99% Bandwidth 9.3. 6 dB & 99% Bandwidth 9.4. Power Spectral Density. 9.5. Radiated. 9.5.1. TX Spurious & Restricted Band Emissions	20 21 21 31 36 41 51 54 54 60 60
 8. MEASUREMENT AND PRESENTATION OF TEST DATA. 9. TEST RESULTS. 9.1. Peak Transmit Power. 9.2. 26 dB & 99% Bandwidth 9.3. 6 dB & 99% Bandwidth 9.4. Power Spectral Density. 9.5. Radiated. 9.5.1. TX Spurious & Restricted Band Emissions . 9.5.1.1. integral 9.5.2. Restricted Edge & Band-Edge Emissions . 9.5.2.2. integral A. APPENDIX - GRAPHICAL IMAGES. 	20 21 21 21 31 36 41 51 54 54 60 60 73
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 21 31 36 41 51 54 54 60 60 73 74
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 31 36 41 51 54 54 60 60 60 73 74 92
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 31 36 41 51 54 54 60 60 60 73 74 92 12
 8. MEASUREMENT AND PRESENTATION OF TEST DATA. 9. TEST RESULTS. 9.1. Peak Transmit Power. 9.2. 26 dB & 99% Bandwidth 9.3. 6 dB & 99% Bandwidth 9.4. Power Spectral Density. 9.5. Radiated. 9.5.1. TX Spurious & Restricted Band Emissions 9.5.1.1. integral 9.5.2. Restricted Edge & Band-Edge Emissions 9.5.2.2. integral A. APPENDIX - GRAPHICAL IMAGES. A.1. 26 dB & 99% Bandwidth A.2. 6 dB & 99% Bandwidth A.3. Power Spectral Density A.4. Radiated. 	20 21 21 31 36 41 51 54 54 60 60 60 73 73 74 92 74 92 12
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 31 31 36 41 51 54 54 54 60 60 60 73 73 74 92 112 168 168
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 21 31 31 51 54 54 54 60 60 60 73 73 92 112 168 168 168
 8. MEASUREMENT AND PRESENTATION OF TEST DATA	20 21 31 36 41 51 54 54 54 54 60 60 73 74 92 112 168 168 168 168 174

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Accredited Laboratory

A2LA has accredited

MiCOM LABS Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of May 2018.

President and CEO

For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	САВ	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History				
Revision	Date	Comments		
Draft	4th March 2019	Draft report for client review.		
Rev A	10th April 2019	Initial release.		
Rev B	17th April 2019	Correction to 5.1 Technical details section.		

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer:	Mikrotikls SIA (MikroTik) Brivibas gatve 214i Riga, LV-1039 Latvia	Tested By:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Model:	RBwAPGR-5HacD2HnD-US	Telephone:	+1 925 462 0304
Type Of Equipment:	802.11a/n/ac WLAN access point	Fax:	+1 925 462 0306
S/N's:	AD130A0DB485/905/r2		
Test Date(s):	19 - 26 February 2019	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC CFR 47 Part 15 Subpart E 15.407

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
П	KDB 905462 D07 v02	22nd August 2016	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.
- 111	KDB 926956 D01 v02	22nd August 2016	U-NII Device Transition Plan
IV	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
V	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VI	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VII	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VIII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
IX	FCC 06-96	Jun 30 2006	Memorandum Opinion and Order
x	FCC 47 CFR Part 15.407	2016	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices
XI	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XII	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XIII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIV	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XVI	KDB 905462 D02 v02	April 8 2016	Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
XVII	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

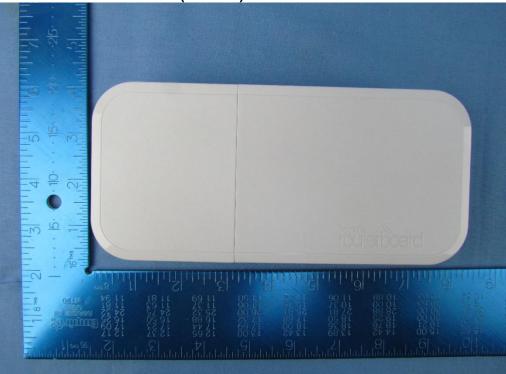
Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US
	to FCC CFR 47 Part 15 Subpart E 15.407.
Applicant:	Mikrotikls SIA (MikroTik)
	Brivibas gatve 214i
Manufacturar	Riga, LV-1039 Latvia
	Mikrotikls SIA (MikroTik)
Laboratory performing the tests:	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
· · · · · · · · · · · · · · · · · · ·	18th February 2019
	FCC CFR 47 Part 15 Subpart C 15.407
Dates of test (from - to):	19 - 26 February 2019
No of Units Tested:	2
Product Family Name:	RouterBOARD
Model(s):	RBwAPGR-5HacD2HnD-US
Location for use:	
	5150 - 5250 MHz; 5725 - 5850 MHz.
Type of Modulation:	OFDM
	802.11a; ac-80; HT-20; HT-40;
Declared Nominal Output Power	
	5725 - 5850 MHz: 24 dBm
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	
ITU Emission Designator:	
	802.11ac-80: 76M3D1D
	802.11n HT-20: 18M3D1D 802.11n HT-40: 37M7D1D
Equipment Dimensions:	7,3x3,4x1,2 inches (185 x 85 x 30 mm)
Weight:	
Hardware Rev:	
Software Rev:	


5.2. Scope Of Test Program

Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US

The scope of the test program was to test the Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US 802.11 configurations in the frequency ranges 5150 - 5250 MHz; 5725 - 5850 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart E 15.407

Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5150 - 5250 MHz; 5725 - 5850 MHz.

Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US

5.3. Equipment Model(s) and Serial Number(s)

Type (Supp		Equipment Description	Mfr	Model No.	Serial No.
EU	JT	Access Point	Mikrotikls SIA	RBwAPGR- 5HacD2HnD-US	AD130A0DB485/905/r2
Sup	port	Laptop	Dell		

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	integral	integral	Dipole	2.5	-	360	-	5150 - 5250
integral	integral	integral	Dipole	2.5	-	360	-	5250 - 5350
integral	integral	integral	Dipole	2.5	-	360	-	5470 - 5725
integral	integral	integral	Dipole	2.5	-	360	-	5725 - 5850
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization								

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened
Ethernet	3-10m	1	Yes
Ethernet (POE)	3-10m	1	Yes
DC Jack	< 3m	1	No

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz)			
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High	
		5150 - 5250 MHz			
а	6	5,180.00	5,200.00	5,240.00	
ac-80	29.3	5,210.00			
HT-20	6.5	5,180.00	5,200.00	5,240.00	
HT-40	13.5	5,190.00		5,230.00	
		5725 - 5850 MHz			
а	6	5,745.00	5,785.00	5,825.00	
ac-80	29.3	5,775.00		5,775.00	
HT-20	6.5	5,745.00	5,785.00	5,825.00	
HT-40	13.5	5,755.00		5,795.00	

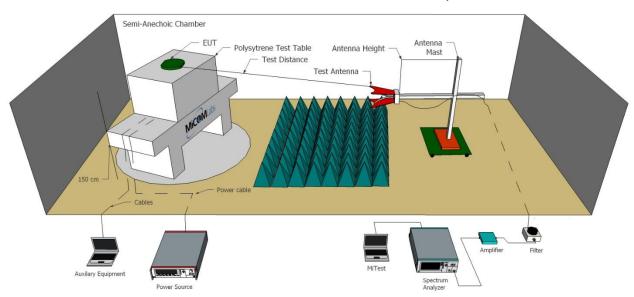
5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY


List of Measurements		
Test Header	Result	Data Link
Peak Transmit Power	Complies	View Data
26 dB & 99% Bandwidth	Complies	View Data
6 dB & 99% Bandwidth	Complies	View Data
Power Spectral Density	Complies	View Data
Radiated	Complies	-
TX Spurious & Restricted Band Emissions	Complies	-
integral	Complies	View Data
Restricted Edge & Band-Edge Emissions	Complies	-
integral	Complies	View Data

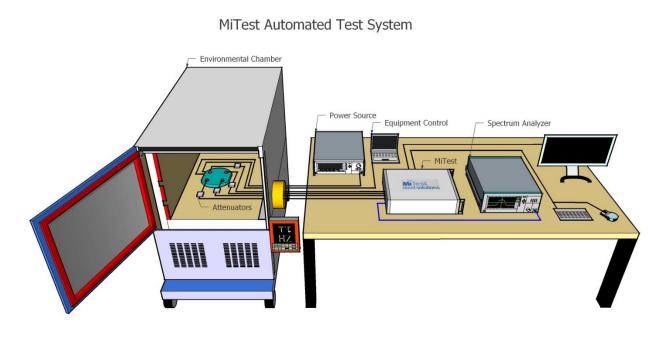
7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.Radiated emissions below 1GHz.Radiated Emissions above 1GHz.

Radiated Emissions Above 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Mar 2019
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2019
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	8 Oct 2019
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	8 Oct 2019
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2019
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	9 Oct 2019

378	Rohde & Schwarz 40 GHz Receiver with	Rhode &	ESIB40	100107/040	12 Oct 2019	
	Generator	Schwarz				
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	8 Oct 2019	
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	8 Oct 2019	
397	•	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2019	
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019	
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2019	
410		Dell	Inspiron 620	WS38	Not Required	
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required	
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required	
413		Sunol Science	TWR95-4	030801-3	Not Required	
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used	
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required	
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required	
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required	
462	Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019	
463	Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019	
464	Buiknead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019	
465	1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019	
480	Amp	SRC Haverhill	157-3050360	480	24 Aug 2019	
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019	
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019	
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019	
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used	

7.2. Conducted

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Mar 2019
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Mar 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Mar 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Mar 2019
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Mar 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used

408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Mar 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. <u>TEST RESULTS</u>

9.1. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power						
	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)					
Reference Document(s):	See Normative References					

Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All operational modes and frequency bands were measured independently and the resultant calculated. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported separately. A summation (Σ) of each antenna port output power is provided which includes any offset due to Duty Cycle Correction Factor (DCCF). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density. For fixed point-to-point exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are

used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	ver (dBm)	Calculated Total	Minimum 26 dB	Limit	Manain	EUT Power
Frequency		Por	rt(s)		Power	Bandwidth	Linin	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5180.0	17.60	16.71			20.19		30.00	-9.81	21.00
5200.0	18.63	17.85			21.27		30.00	-8.73	22.00
5240.0	18.34	18.37			21.37		30.00	-8.63	22.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			EUT Power
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5210.0	14.15	13.46			16.83		30.00	-13.17	17.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results								
Test	Measured Conducted Output Power (dBm)				Calculated Total	Minimum 26 dB	Limit	Manain	
Frequency		Por	rt(s)		Power	Bandwidth	Linin	Margin	EUT Power
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5180.0	17.72	16.87			20.33		30.00	-9.67	21.00
5200.0	18.59	17.89			21.26		30.00	-8.74	22.00
5240.0	18.25	18.34			21.31		30.00	-8.69	22.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm)				Calculated Total	Minimum	Linet	Manain	
Frequency		Por	rt(s)		Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5190.0	19.70	18.61			22.20		30.00	-7.80	20.00
5230.0	21.25	20.11			23.73		30.00	-6.27	22.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm)		Calculated Total	Minimum 26 dB	Limit	Margin	EUT Power		
					Power Σ Port(s)	Bandwidth			Setting
MHz	а	b	С	d	dBm	MHz	dBm	dB	
5745.0	18.64	18.48			21.57		30.00	-8.43	22.00
5785.0	18.39	18.52			21.47		30.00	-8.53	22.00
5825.0	18.20	18.44			21.33		30.00	-8.67	22.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Variant:	802.11ac-80	Duty Cycle (%):	90.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results									
Test	Measured Conducted Output Power (dBm)				Calculated	Minimum	l insit	N4		
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting	
5775.0	18.33	18.22			21.29		30.00	-8.71	22.00	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results										
Test	Test Measured Conducted Output Power (dBm)				Calculated Total			Manula			
Frequency		Por	rt(s)		Power	26 dB Bandwidth	Limit	Margin	EUT Power		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting		
5745.0	18.57	18.45			21.52		30.00	-8.48	22.00		
5785.0	18.35	18.44			21.41		30.00	-8.59	22.00		
5825.0	18.14	18.35			21.26		30.00	-8.74	22.00		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	: WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results									
Test	Test Tot				Calculated Total	Minimum 26 dB	Limit	Margin		
Frequency		Por	rt(s)		Power	Bandwidth		U	EUT Power Setting	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting	
5755.0	19.14	19.00			22.08		30.00	-7.92	20.00	
5795.0	18.70	18.84			21.78		30.00	-8.22	20.00	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

9.2. 26 dB & 99% Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth								
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	26 dB and 99 % Bandwidth Rel. Humidity (%):		32 - 45					
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References		•					

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results						r	
Test	Me	easured 26 dB	Bandwidth (M	Hz)				
Frequency		Po	rt(s)		26 dB Band	width (MHz)		
MHz	а	b	с	d	Highest	Lowest		
5180.0	<u>32.144</u>	<u>26.693</u>			32.144	26.693		
5200.0	<u>30.220</u>	<u>27.655</u>			30.220	27.655		
5240.0	<u>28.216</u>	<u>34.148</u>			34.148	28.216		
		•	•		•			
Test	М	easured 99% I	Bandwidth (MF	łz)	99% Bandwidth (MHz)			
Frequency		Po	rt(s)		99% Bandy	width (WHZ)		
MH7	а	b	c	b	Highest	Lowest		

			()				
MHz	а	b	c	d	Highest	Lowest	
5180.0	<u>17.315</u>	<u>16.593</u>			17.315	16.593	
5200.0	<u>16.994</u>	<u>16.673</u>			16.994	16.673	
5240.0	<u>16.754</u>	<u>16.994</u>			16.994	16.754	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

ment Results							
Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Bond			
	Рог	t(s)					
а	b	С	d	Highest	Lowest		
<u>127.936</u>	<u>92.665</u>			127.936	92.665		
				•			
M	easured 99% E	Bandwidth (MF	łz)				
	Рог	t(s)		99% bandy			
а	b	С	d	Highest	Lowest		
<u>76.313</u>	<u>76.313</u>			76.313	76.313		
	Me <u>a</u> <u>127.936</u> Ma a	Measured 26 dB Por a b 127.936 92.665 Measured 99% E Por a b	Measured 26 dB Bandwidth (M Port(s) a b c 127.936 92.665 92.665 Measured 99% Bandwidth (MH Port(s) a b c	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 127.936 92.665 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c d	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) a b c d Highest 127.936 92.665 127.936 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 127.936 92.665 127.936 92.665 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 127.936 92.665 127.936 92.665 92.665 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest

Traceability to Industry Recognized Test Methodologies

-		
	Work Instruction	WI-03 MEASURING RF SPECTRUM MASK
	Measurement Uncertainty	±2.81 dB

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results								
Test	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Bandwidth (MHz)			
Frequency		Po	rt(s)					
MHz	а	b	С	d	Highest	Lowest		
5180.0	<u>34.790</u>	<u>26.613</u>			34.790	26.613		
5200.0	<u>31.984</u>	<u>25.812</u>			31.984	25.812		
5240.0	<u>28.938</u>	<u>33.587</u>			33.587	28.938		
Test	М	easured 99% I	Bandwidth (MF	łz)	99% Bandwidth (MHz)			
Frequency		Ро	rt(s)		55% Bandy			

Port(s)					. ,		
а	b	c	d	Highest	Lowest		
<u>18.277</u>	<u>17.796</u>			18.277	17.796		
<u>18.036</u>	<u>17.796</u>			18.036	17.796		
<u>17.876</u>	<u>18.036</u>			18.036	17.876		
	<u>18.277</u> <u>18.036</u>	a b 18.277 17.796 18.036 17.796	a b c 18.277 17.796 18.036 17.796	a b c d 18.277 17.796	a b c d Highest 18.277 17.796 18.277 18.036 17.796 18.036	a b c d Highest Lowest 18.277 17.796 18.277 17.796 18.036 17.796 18.036 17.796	a b c d Highest Lowest 18.277 17.796 18.277 17.796 18.036 17.796 18.036 17.796

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results								
Test	Me	asured 26 dB	Bandwidth (M	Hz)	26 dB Bandwidth (MHz)			
Frequency		Рог	t(s)					
MHz	а	b	С	d	Highest	Lowest		
5190.0	<u>79.840</u>	<u>70.381</u>			79.840	70.381		
5230.0	<u>76.954</u>	<u>73.427</u>			76.954	73.427		
Test	Μ	easured 99% E	Bandwidth (MF	łz)	00% Bandwidth (MULT)			
Frequency		Рог	t(s)		99% Bandwidth (MHz)			
MHz	а	b	С	d	Highest	Lowest		
5190.0	<u>37.675</u>	<u>36.713</u>			37.675	36.713		
5230.0	<u>36.874</u>	<u>36.713</u>			36.874	36.713		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

9.3. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard: FCC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.407 (a) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to 100 kHz. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

5785.0

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results						
Test	M	easured 6 dB I	Bandwidth (Mł	łz)	6 dB Band	width (MHz)	
Frequency		Ροι	rt(s)		O UB Ballu		
MHz	а	b	с	d	Highest	Lowest	
5745.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	
5785.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	
5825.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	
			•	•			
Test	М	easured 99% E	Bandwidth (MF	łz)	00% Band		
Frequency		Рог	rt(s)		99% Bandy	width (MHz)	
MHz	а	b	С	d	Highest	Lowest	
5745.0	<u>16.593</u>	<u>16.513</u>			16.593	16.513	

5825.0	<u>16.513</u>	<u>16.673</u>			16.673	16.513		
Traceability to	o Industry Rec	ognized Test	Methodologies					
			Work Instru	uction: WI-03	MEASURING I	RF SPECTRUN	/ MASK	
		Mea	surement Uncer	rtainty: ±2.81	dB			

16.673

16.593

Note: click the links in the above matrix to view the graphical image (plot).

16.593

<u>16.673</u>

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	90.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

ment Results							
M	easured 6 dB I	Bandwidth (MF	łz)	6 dB Band			
	Por	t(s)					
а	b	С	d	Highest	Lowest		
<u>75.351</u>	<u>75.351</u>			75.351	75.351		
Μ	easured 99% E	Bandwidth (MF	łz)	00% Band	vidth (MUz)		
	Por	t(s)		99% Banu			
а	b	С	d	Highest	Lowest		
<u>75.671</u>	<u>75.992</u>			75.992	75.671		
	M a 75.351 M	Measured 6 dB I Por a b 75.351 75.351 Measured 99% E Por a b	Measured 6 dB Bandwidth (MH Port(s) a b c 75.351 75.351 75.351 Measured 99% Bandwidth (MH Port(s) a b c	Measured 6 dB Bandwidth (MHz)Port(s)abcd75.35175.351Measured 99% Bandwidth (MHz)Port(s)abcd	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) 6 dB Bandwidth a b c d Highest 75.351 75.351 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) 6 dB Bandwidth (MHz) a b c d Highest Lowest 75.351 75.351 75.351 75.351 75.351 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d Highest Lowest	Measured 6 dB Bandwidth (MHz) 6 dB Bandwidth (MHz) Port(s) 6 dB Bandwidth (MHz) a b c d Highest Lowest 75.351 75.351 75.351 75.351 75.351 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) Highest Lowest

Traceability to Industry Recognized Test Methodologies

Work Instruction	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty	±2.81 dB

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	ment Results						
Test	M	easured 6 dB l	Bandwidth (MH	łz)	C dB Band		
Frequency		Po	rt(s)			width (MHz)	
MHz	а	b	с	d	Highest	Lowest	
5745.0	<u>17.635</u>	<u>17.555</u>			17.635	17.555	
5785.0	<u>17.555</u>	<u>17.635</u>			17.635	17.555	
5825.0	<u>17.635</u>	<u>17.635</u>			17.635	17.635	
			•		•		
Test	М	easured 99% I	Bandwidth (MF	łz)	00% Bandy	vidth (MHz)	
Frequency		Po	rt(s)		99% Bandy		
MHz	а	b	с	d	Highest	Lowest	

		1.61	.(0)				
MHz	а	b	С	d	Highest	Lowest	
5745.0	<u>17.796</u>	<u>17.715</u>			17.796	17.715	
5785.0	<u>17.796</u>	<u>17.796</u>			17.796	17.796	
5825.0	<u>17.796</u>	<u>17.796</u>			17.796	17.796	
5825.0	<u>17.796</u>	<u>17.796</u>			17.796	17.796	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test	M	easured 6 dB B	andwidth (MH	łz)	C dD Daw d		
Frequency		Port	:(s)		6 dB Band	viath (IVIHZ)	
MHz	а	b	C	d	Highest	Lowest	
5755.0	<u>35.271</u>	<u>35.110</u>			35.271	35.110	
5795.0	<u>35.110</u>	<u>35.110</u>			35.110	35.110	
Test	М	easured 99% B	andwidth (MH	lz)	000% D 1	· /// //// \	
	М	easured 99% B Port	•	lz)	99% Bandy	vidth (MHz)	
Test Frequency MHz	M		•	lz) d	99% Bandv Highest	vidth (MHz) Lowest	
Frequency		Port	(s)	,		· · /	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

9.4. Power Spectral Density

Conducted Test Conditions for Power Spectral Density					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References				

Test Procedure for Power Spectral Density

The in-band power spectral density was measured using the test technique specified in KDB 789033. A 1 MHz measurement bandwidth was implemented for the analyzer sweep. Once the sweep is complete the analyzer trace data is downloaded and used for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE: It may be observed that spectrum in some plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density $[10*Log10 (10^{a'10} + 10^{b'10} + 10^{c'10} + 10^{d'10})]$ x = Duty Cycle

Limits Power Spectral Density

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any

corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Ν	Measured Power Spectral Density			Summation Peak Marker +		
Frequency	Port(s) (dBm/MHz)			DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5180.0	<u>4.137</u>	<u>3.286</u>			<u>5.772</u>	17.0	-11.2
5200.0	<u>3.741</u>	<u>3.464</u>			<u>6.362</u>	17.0	-10.6
5240.0	<u>3.488</u>	<u>3.830</u>			<u>6.134</u>	17.0	-10.9

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11ac-80	Duty Cycle (%):	99.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	ent Results						
Test Measured Power Spectral Density					Summation Peak Marker +		
Frequency	Port(s) (dBm/MHz)			DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5210.0	<u>-7.361</u>	<u>-8.223</u>			<u>-5.511</u>	17.0	-22.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density			Summation Peak Marker +			
Frequency	Port(s) (dBm/MHz)			DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5180.0	<u>3.409</u>	<u>2.611</u>			<u>5.763</u>	17.0	-11.2
5200.0	<u>3.107</u>	<u>3.290</u>			<u>5.843</u>	17.0	-11.2
5240.0	<u>2.355</u>	<u>2.930</u>			<u>5.393</u>	17.0	-11.6

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density				Summation	Limit	Margin
Test Frequency	Port(s) (dBm/MHz)			Peak Marker + DCCF (+0.46 dB)			
MHz	а	b	c	d	dBm/MHz	dBm/MHz	dB
5190.0	<u>2.430</u>	<u>0.861</u>			<u>4.742</u>	17.0	-12.3
5230.0	<u>1.192</u>	<u>0.269</u>			<u>3.453</u>	17.0	-13.6

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-03 MEASURING RF SPECTRUM MASK	Work Inst	ction: WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty: ±2.81 dB	Measurement Unce	ainty: ±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11a	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	incasureu i over opeenar bensity				Summation Peak Marker +		
Frequency	Port(s) (dBm/500 KHz)			DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/500 KHz	dBm/500 KHz	dB
5745.0	<u>1.344</u>	<u>0.302</u>			<u>3.501</u>	30.0	-26.5
5785.0	<u>0.761</u>	<u>1.129</u>			<u>3.316</u>	30.0	-26.7
5825.0	<u>0.834</u>	<u>0.419</u>			<u>3.267</u>	30.0	-26.7

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11ac-80	Duty Cycle (%):	90.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Measured Power Spectral Density				Summation Peak Marker +			
Frequency	Port(s) (dBm/500 KHz)			DCCF (+0.46 dB)	Limit	Margin	
MHz	a b c d			dBm/500 KHz	dBm/500 KHz	dB	
5775.0	<u>-7.975</u>	<u>-9.580</u>			<u>-3.997</u>	30.0	-34.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density Summation Peak Marker +					Margin	
Frequency	Port(s) (dBm/500 KHz)			DCCF (+0.04 dB)	Limit	wargin	
MHz	а	b	С	d	dBm/500 KHz	dBm/500 KHz	dB
5745.0	<u>-0.439</u>	<u>0.170</u>			<u>1.784</u>	30.0	-28.2
5785.0	<u>-0.722</u>	<u>0.783</u>			<u>2.760</u>	30.0	-27.3
5825.0	<u>0.531</u>	<u>0.431</u>			<u>2.746</u>	30.0	-27.3

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-40	Duty Cycle (%):	90.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Teat	N	leasured Power	Spectral Densit	Summation			
Test Frequency		Port(s) (dB	m/500 KHz)		Peak Marker + DCCF (+0.46 dB)	+0.46 Limit Margin)	
MHz	а	b	c	d	dBm/500 KHz	dBm/500 KHz	dB
5755.0	<u>-3.113</u>	<u>-3.077</u>			<u>-0.426</u>	30.0	-30.4
5795.0	<u>-4.353</u>	<u>-5.061</u>			<u>-2.418</u>	30.0	-32.4

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-03 MEASURING RF SPECTRUM M	ASK
Measurement Uncertainty: ±2.81 dB	

DCCF - Duty Cycle Correction Factor

9.5. Radiated

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions										
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	20.0 - 24.5							
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45							
Standard Section(s):	15.407 (b), 15.205, 15.209	Pressure (mBars):	999 - 1001							
Reference Document(s):	See Normative References									
Radiated emissions for restricted in both horizontal and vertical pol 360° with a spectrum analyzer in fundamental frequency. The high Measurements on any restricted employing peak and average det Test configuration and setup for U	arities. The emissions are record peak hold mode. Depending on the hest emissions relative to the limit band frequency or frequencies ab- ectors. All measurements were per Undesirable Measurement were per	d in the anechoic chamber at a 3-r led and maximized as a function o he frequency band spanned a notc are listed for each frequency span ove 1 GHz are based on the use o erformed using a resolution bandw er the Radiated Test Set-up specifi aragraph (b)(7) of this section, the	f azimuth by rotation through h filter was used to remove the ned. f measurement instrumentation vidth of 1 MHz. ied in this document.							
	ration shall be attenuated in accor	dance with the following limits: emissions outside of the 5.15-5.35	GHz band shall not exceed an							
(2) For transmitters operatir e.i.r.p. of −27 dBm/MHz.	ng in the 5.25-5.35 GHz band: All (emissions outside of the 5.15-5.35	GHz band shall not exceed an							
(3) For transmitters operatir an e.i.r.p. of −27 dBm/MHz.		emissions outside of the 5.47-5.7	25 GHz band shall not exceed							
MHz above or below the ba		l emissions within the frequency ra o. of –17 dBm/MHz; for frequencie f –27 dBm/MHz.								
		ninimum resolution bandwidth of 1 ssary, provided the measured ene								
		eneral field strength limits set forth ith the conducted limits set forth ir								
(7) The provisions of §15.20	05 apply to intentional radiators op	erating under this section.								
	nission limits, the nominal carrier fr ne design of the equipment permits	requency shall be adjusted as clos s.	e to the upper and lower							
Limits for Restricted Bands (15 Peak emission: 74 dBuV/m Average emission: 54 dBuV/m	5.205, 15.209)									
	by adding the Antenna Factor a are included in the reported data	and Cable Loss, and subtracting a.	Amplifier Gain from the							
where: FS = Field Strength R = Measured Spectrum analyz	er Input Amplitude									

AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor

NFL = Notch Filter Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dBµV/m);

 $E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m$ where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dBuV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

	Frequenc	cy Band	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5
2.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

9.5.1. TX Spurious & Restricted Band Emissions

9.5.1.1. integral

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5180.00	Data Rate:	6.00 MBit/s
Power Setting:	21	Tested By:	JMH

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3453.28	60.33	-2.10	-11.80	46.43	Peak (NRB)	Vertical	100	0			Pass
#2	5174.55	75.99	-2.62	-11.88	61.49	Fundamental	Horizontal	100	0			
#3	6906.64	65.99	-3.02	-8.05	54.92	Peak (NRB)	Horizontal	100	0			Pass
#4	10355.68	57.20	-3.83	-5.56	47.81	Peak (NRB)	Horizontal	100	0			Pass
#5	15539.17	63.96	-4.76	-2.12	57.08	Max Peak	Horizontal	121	0	68.2	-11.2	Pass
#6	15539.17	49.63	-4.76	-2.12	42.75	Max Avg	Horizontal	121	0	54.0	-11.3	Pass
Test No	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5200.00	Data Rate:	6.00 MBit/s
Power Setting:	23	Tested By:	JMH

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2956.61	61.22	-1.95	-11.59	47.68	Peak (NRB)	Vertical	100	360			Pass
#2	3466.67	59.08	-2.13	-11.99	44.96	Peak (NRB)	Vertical	100	360			Pass
#3	5204.32	84.14	-2.64	-11.96	69.54	Fundamental	Horizontal	100	0			
#4	6933.31	66.69	-3.00	-7.96	55.73	Peak (NRB)	Vertical	100	26			Pass
#5	10407.38	60.34	-3.90	-5.85	50.59	Peak (NRB)	Horizontal	100	26			Pass
#6	15606.46	68.79	-4.73	-1.71	62.35	Max Peak	Horizontal	122	36	68.2	-5.9	Pass
#7	15606.46	54.32	-4.73	-1.71	47.88	Max Avg	Horizontal	122	36	54.0	-6.1	Pass
Test No	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5240.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2688.15	60.51	-1.86	-11.90	46.75	Peak (NRB)	Vertical	100	360			Pass
#2	2956.78	60.13	-1.95	-11.59	46.59	Peak (NRB)	Vertical	100	0			Pass
#3	5234.31	86.87	-2.62	-12.32	71.93	Fundamental	Horizontal	100	0			
#4	6986.57	64.14	-3.06	-7.74	53.34	Peak (NRB)	Horizontal	100	264			Pass
#5	10479.21	63.71	-3.82	-6.25	53.64	Peak (NRB)	Horizontal	100	11			Pass
#6	15720.73	64.77	-4.82	-1.94	58.01	Max Peak	Horizontal	98	6	68.2	-10.2	Pass
#7	15720.73	50.95	-4.82	-1.94	44.19	Max Avg	Horizontal	98	6	54.0	-9.8	Pass
Test No	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5745.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

					1000	.00 - 18000.00 N	ЛНz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2956.81	57.09	-1.95	-11.59	43.55	Peak (NRB)	Horizontal	100	6			Pass
#2	3830.04	64.07	-2.20	-11.77	50.10	Max Peak	Horizontal	180	29	68.2	-18.1	Pass
#3	3830.04	59.39	-2.20	-11.77	45.42	Max Avg	Horizontal	180	29	54.0	-8.6	Pass
#4	5748.09	60.27	-2.76	-10.98	46.53	Fundamental	Horizontal	100	60			
#5	7659.98	59.97	-2.94	-7.18	49.85	Max Peak	Vertical	140	49	68.2	-18.4	Pass
#6	7659.98	52.08	-2.94	-7.18	41.96	Max Avg	Vertical	140	49	54.0	-12.0	Pass
Test Not	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5785.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3856.64	65.43	-2.21	-11.61	51.61	Max Peak	Vertical	196	14	68.2	-16.6	Pass
#2	3856.64	61.49	-2.21	-11.61	47.67	Max Avg	Vertical	196	14	54.0	-6.3	Pass
#3	5788.44	70.34	-2.75	-10.78	56.81	Fundamental	Horizontal	100	0			
#4	7713.35	66.39	-2.92	-7.24	56.23	Max Peak	Horizontal	182	332	68.2	-12.0	Pass
#5	7713.35	61.97	-2.92	-7.24	51.81	Max Avg	Horizontal	182	332	54.0	-2.2	Pass
Test Not	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5825.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3883.30	65.82	-2.24	-11.75	51.83	Max Peak	Vertical	197	1	68.2	-16.4	Pass
#2	3883.30	62.15	-2.24	-11.75	48.16	Max Avg	Vertical	197	1	54.0	-5.8	Pass
#3	5823.39	73.38	-2.80	-10.75	59.83	Fundamental	Horizontal	151	0			
#4	7766.61	57.58	-3.00	-7.17	47.41	Peak (NRB)	Horizontal	151	0			Pass
#5	11650.12	62.98	-4.21	-4.40	54.37	Max Peak	Horizontal	197	7	68.2	-13.9	Pass
#6	11650.12	49.04	-4.21	-4.40	40.43	Max Avg	Horizontal	197	7	54.0	-13.6	Pass
Test No	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber.						

9.5.2. Restricted Edge & Band-Edge Emissions

9.5.2.2. integral

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5150 - 5250 MHz

integral	integral	Band-Edge Freq	Limit 68.2dBµV/m	Limit 54.0dBµV/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	I ower octaing	
802.11a	5180.00	5150.00	67.01	52.43	21	
802.11ac-80	5210.00	5150.00	67.59	46.92	17	
802.11n HT-20	5180.00	5150.00	67.92	51.17	21	
802.11n HT-40	5190.00	5150.00	55.87	42.56	20	

5725 MHz Radiated Lower Band-Edge Emissions

inte	gral	Band-Edge Freq	dBul/m	dBul/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m		
802.11a	5745.00	5725.00	56.79	91.32	25	
802.11ac-80	5775.00	5725.00	66.22	77.30	23	
802.11n HT-20	5745.00	5725.00	56.75	89.14	25	
802.11n HT-40	5755.00	5725.00	62.01	89.83	22	

5850 MHz Radiated Higher Band-Edge Emissions

inte	gral	Band-Edge Freq	dBu\//m	dDu\//m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	r ower Setting	
802.11a	5825.00	5850.00	82.55	59.28	25	
802.11ac-80	5775.00	5850.00	74.71	64.26	23	
802.11n HT-20	5825.00	5850.00	80.71	59.29	25	
802.11n HT-40	5795.00	5850.00	73.29	65.75	23	

Click on the links to view the data.

Equipment Configuration for Lower Band-Edge Emissions

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5180.00	Data Rate:	6.00 MBit/s
Power Setting:	21	Tested By:	JMH

	4500.00 - 5250.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5147.80	35.41	-2.61	34.21	67.01	Max Peak	Horizontal	191	9	68.2	-1.2	Pass
#2	5150.00	20.83	-2.61	34.21	52.43	Max Avg	Horizontal	191	9	54.0	-1.6	Pass
#3	5150.00					Restricted- Band						
Test No	tes: EUT pow	ered by P	OE, conr	nected to	laptop outs	side chamber					•	

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	integral	Variant:	802.11ac-80
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5210.00	Data Rate:	29.30 MBit/s
Power Setting:	17	Tested By:	JMH

	4500.00 - 5250.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5142.48	15.35	-2.63	34.20	46.92	Max Avg	Horizontal	191	9	54.0	-7.1	Pass
#2	5146.99	35.99	-2.61	34.21	67.59	Max Peak	Horizontal	191	9	68.2	-0.6	Pass
#3	5150.00					Restricted- Band						
Test Not	tes: EUT pow	ered by P	OE, conn	ected to	laptop outs	side chamber. R	educed pow	er to mee	et band e	dge.		

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-20
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5180.00	Data Rate:	6.50 MBit/s
Power Setting:	21	Tested By:	JMH

	4500.00 - 5250.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5150.00	19.57	-2.61	34.21	51.17	Max Avg	Horizontal	191	9	54.0	-2.8	Pass
#2	5150.00	36.32	-2.61	34.21	67.92	Max Peak	Horizontal	191	9	68.2	-0.3	Pass
#3	5150.00					Restricted- Band						
Test No	Fest Notes: EUT powered by POE, connected to laptop outside chamber											

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-40
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5190.00	Data Rate:	13.50 MBit/s
Power Setting:	20	Tested By:	JMH

					4500).00 - 5250.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5119.94	24.32	-2.61	34.16	55.87	Max Peak	Horizontal	191	9	68.2	-12.4	Pass
#2	5150.00	10.96	-2.61	34.21	42.56	Max Avg	Horizontal	191	9	54.0	-11.4	Pass
#3	5150.00					Restricted- Band						
	est Notes: EUT powered by POE, connected to laptop outside chamber. Reduced power to meet band edge. Large increase in ignal with any larger PS											

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5745.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5634.56	24.85	-2.70	34.64	56.79	Max Avg	Horizontal	190	348	68.2	-11.4	Pass
#2	5722.47	59.35	-2.75	34.72	91.32	Max Avg	Horizontal	190	348	115.4	-24.0	Pass
#3	5725.00					Band-Edge						
Test No	Test Notes: EUT powered by POE, connected to laptop outside chamber.											

Antenna:	integral	Variant:	802.11ac-80
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5775.00	Data Rate:	29.30 MBit/s
Power Setting:	23	Tested By:	JMH

	5600.00 - 5825.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5641.50	34.30	-2.72	34.64	66.22	Max Avg	Horizontal	190	348	68.2	-2.0	Pass
#2	5669.94	45.43	-2.78	34.65	77.30	Max Avg	Horizontal	190	348	83.0	-5.7	Pass
#3	5725.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE, connected to laptop outside chamber.											

Antenna:	integral	Variant:	802.11n HT-20
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5745.00	Data Rate:	6.50 MBit/s
Power Setting:	25	Tested By:	JMH

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5640.33	24.82	-2.71	34.64	56.75	Max Avg	Horizontal	190	348	68.2	-11.5	Pass
#2	5722.84	57.17	-2.75	34.72	89.14	Max Avg	Horizontal	190	348	117.6	-28.5	Pass
#3	5725.00					Band-Edge						
Test No	Fest Notes: EUT powered by POE, connected to laptop outside chamber.											

Antenna:	integral	Variant:	802.11n HT-40
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5755.00	Data Rate:	13.50 MBit/s
Power Setting:	22	Tested By:	JMH

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5649.71	30.10	-2.72	34.63	62.01	Max Avg	Horizontal	190	348	68.2	-6.2	Pass
#2	5717.06	57.89	-2.77	34.71	89.83	Max Avg	Horizontal	190	348	110.0	-20.1	Pass
#3	5725.00					Band-Edge						
Test No	Test Notes: EUT powered by POE, connected to laptop outside chamber.											

Antenna:	integral	Variant:	802.11a
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5825.00	Data Rate:	6.00 MBit/s
Power Setting:	25	Tested By:	JMH

	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	5857.84	50.34	-2.77	34.98	82.55	Max Avg	Horizontal	189	348	68.2	-27.7	Pass
#3	5925.91	26.95	-2.78	35.11	59.28	Max Avg	Horizontal	189	348	68.2	-8.9	Pass
#1	5850.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE, connected to laptop outside chamber.											

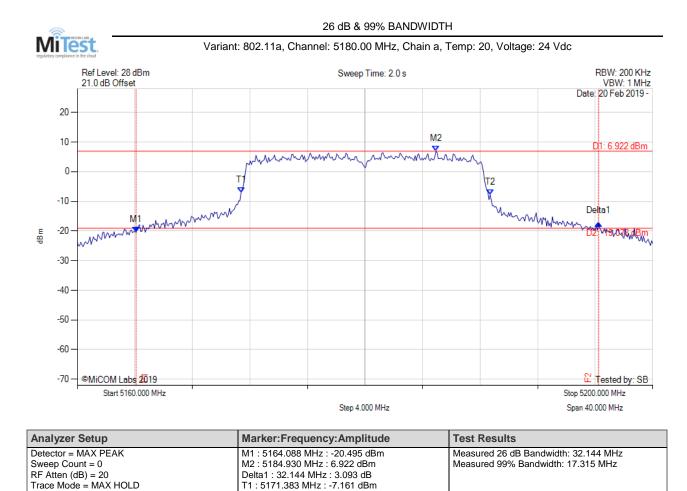
Antenna:	integral	Variant:	802.11ac-80
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5775.00	Data Rate:	29.30 MBit/s
Power Setting:	23	Tested By:	JMH

	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	5881.34	39.66	0.00	35.05	74.71	Max Avg	Horizontal	189	348	101.2	-26.5	Pass
#3	5925.91	31.93	-2.78	35.11	64.26	Max Avg	Horizontal	189	348	68.2	-4.0	Pass
#1	5850.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE, connected to laptop outside chamber											

Antenna:	integral	Variant:	802.11n HT-20
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5825.00	Data Rate:	6.50 MBit/s
Power Setting:	25	Tested By:	JMH

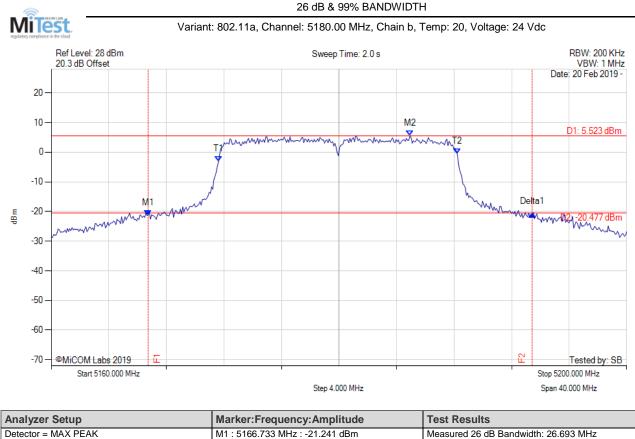
	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	5859.61	48.49	-2.77	34.99	80.71	Max Avg	Horizontal	189	348	110.5	-29.8	Pass
#3	5927.76	26.96	-2.78	35.11	59.29	Max Avg	Horizontal	189	348	68.2	-8.9	Pass
#1	5850.00					Band-Edge						
Test No	Test Notes: EUT powered by POE, connected to laptop outside chamber											

Antenna:	integral	Variant:	802.11n HT-40
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5795.00	Data Rate:	13.50 MBit/s
Power Setting:	23	Tested By:	JMH


	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	5896.86	40.99	-2.79	35.09	73.29	Max Avg	Horizontal	189	348	89.9	-16.6	Pass
#3	5924.53	33.43	-2.79	35.11	65.75	Max Avg	Horizontal	189	348	68.2	-2.5	Pass
#1	5850.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE, connected to laptop outside chamber											

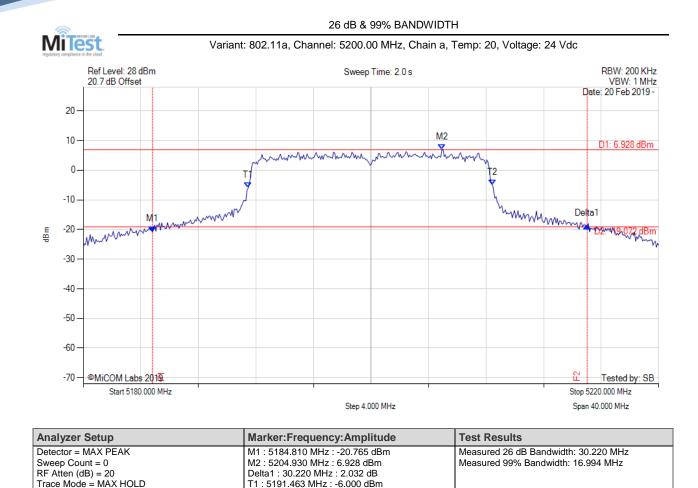
A. APPENDIX - GRAPHICAL IMAGES

A.1. 26 dB & 99% Bandwidth


T2:5188.697 MHz:-7.723 dBm

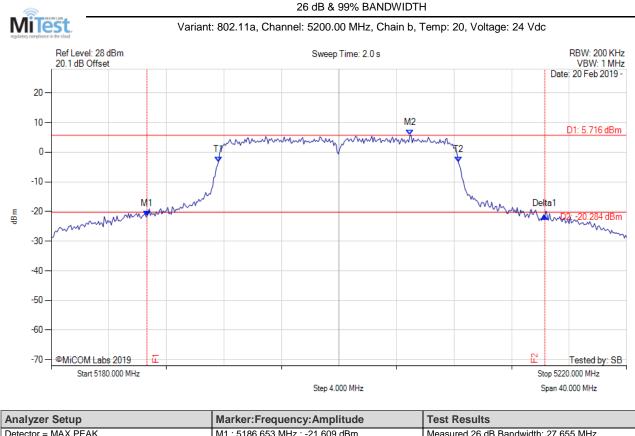
OBW : 17.315 MHz

haa		+0	-	ot	rive
bac	ĸ	IU.		au	ПΧ

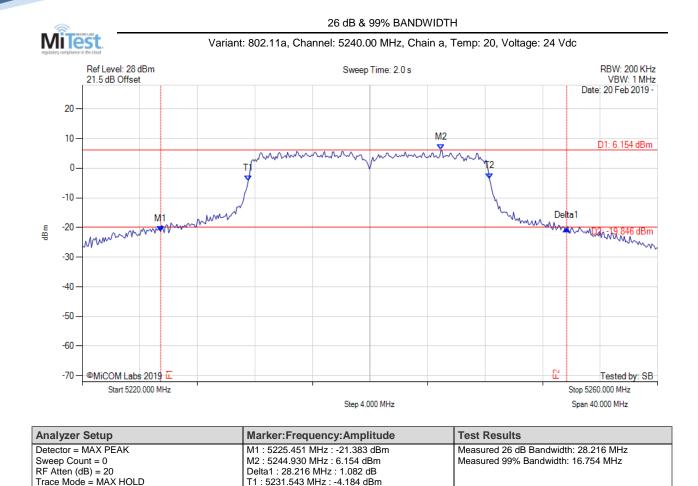


Title:MikroTik RBwAPGR-5HacD2HnD-USTo:FCC Part 15 Subpart E 15.407Serial #:MIKO81-U15 Rev B

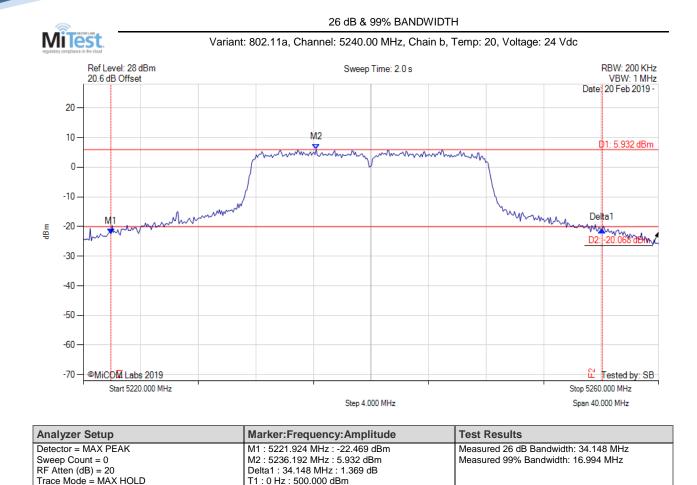
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5166.733 MHz : -21.241 dBm	Measured 26 dB Bandwidth: 26.693 MHz
Sweep Count = 0	M2 : 5184.930 MHz : 5.523 dBm	Measured 99% Bandwidth: 16.593 MHz
RF Atten (dB) = 20	Delta1 : 26.693 MHz : 0.309 dB	
Trace Mode = MAX HOLD	T1 : 5171.623 MHz : -3.155 dBm	
	T2 : 5188.216 MHz : -0.495 dBm	
	OBW : 16.593 MHz	



T2: 5208.457 MHz: -5.038 dBm

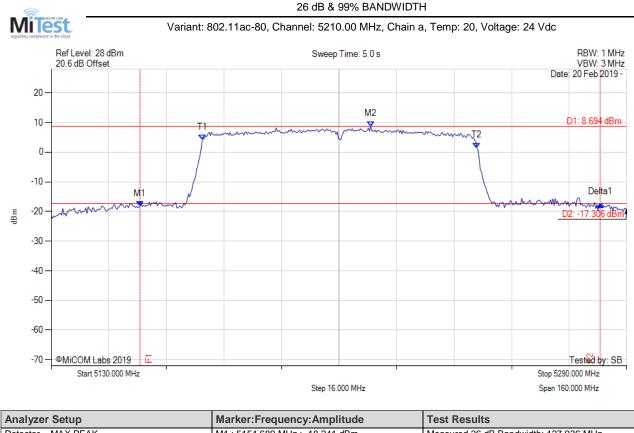

OBW : 16.994 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5186.653 MHz : -21.609 dBm M2 : 5204.930 MHz : 5.716 dBm Delta1 : 27.655 MHz : -0.024 dB T1 : 5191.623 MHz : -3.305 dBm T2 : 5208.297 MHz : -3.330 dBm OBW : 16.673 MHz	Measured 26 dB Bandwidth: 27.655 MHz Measured 99% Bandwidth: 16.673 MHz

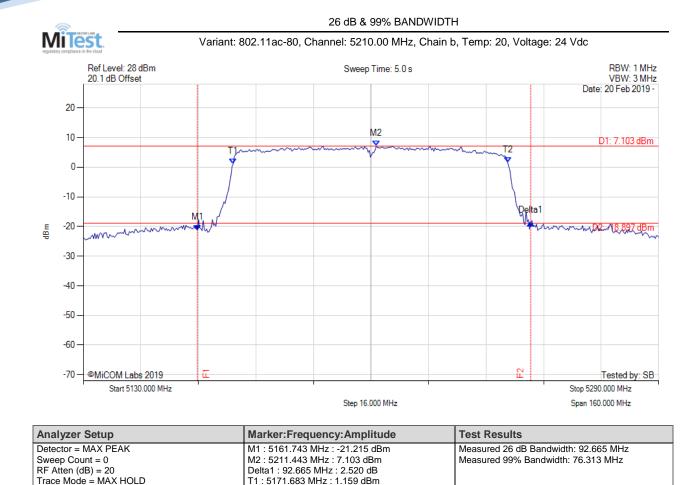


T2: 5248.297 MHz: -3.454 dBm

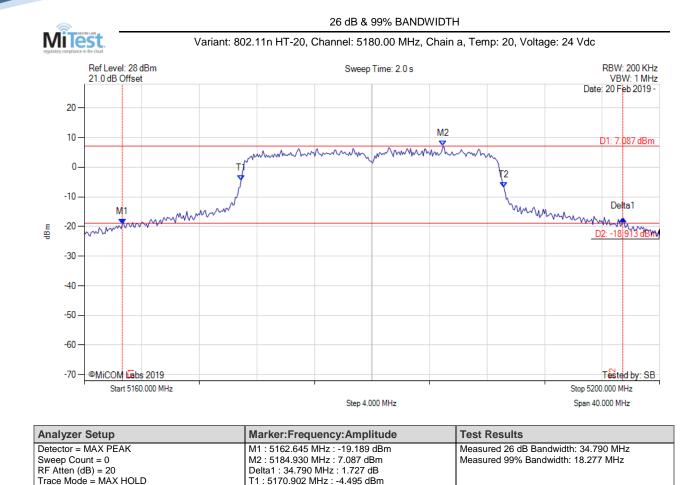
OBW : 16.754 MHz



Title:MikroTik RBwAPGR-5HacD2HnD-USTo:FCC Part 15 Subpart E 15.407Serial #:MIKO81-U15 Rev B

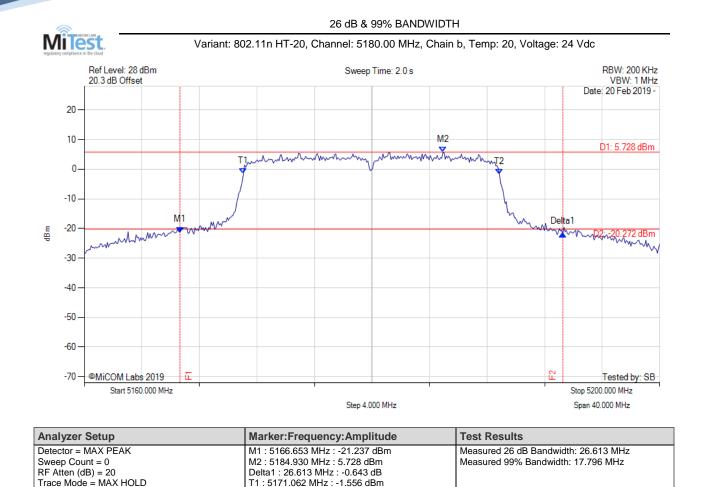

T2 : 0 Hz : 500.000 dBm OBW : 16.994 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5154.689 MHz : -18.241 dBm	Measured 26 dB Bandwidth: 127.936 MHz
Sweep Count = 0	M2 : 5218.818 MHz : 8.694 dBm	Measured 99% Bandwidth: 76.313 MHz
RF Atten (dB) = 20	Delta1 : 127.936 MHz : 0.691 dB	
Trace Mode = MAX HOLD	T1 : 5172.004 MHz : 4.146 dBm	
	T2 : 5248.317 MHz : 1.447 dBm	
	OBW : 76.313 MHz	



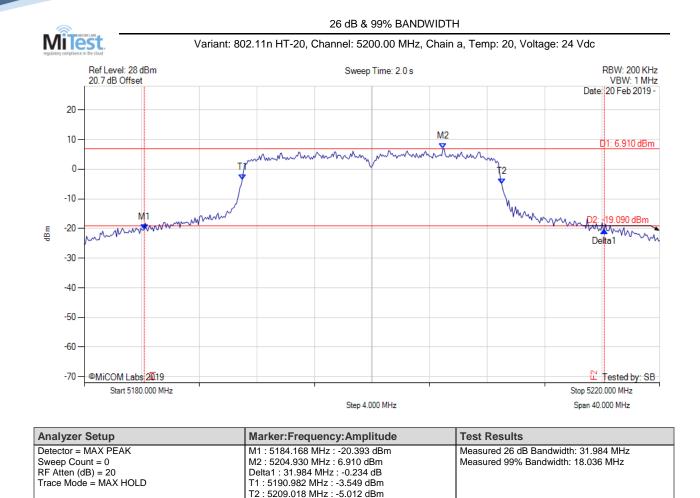
T2: 5247.996 MHz: 1.529 dBm

OBW : 76.313 MHz

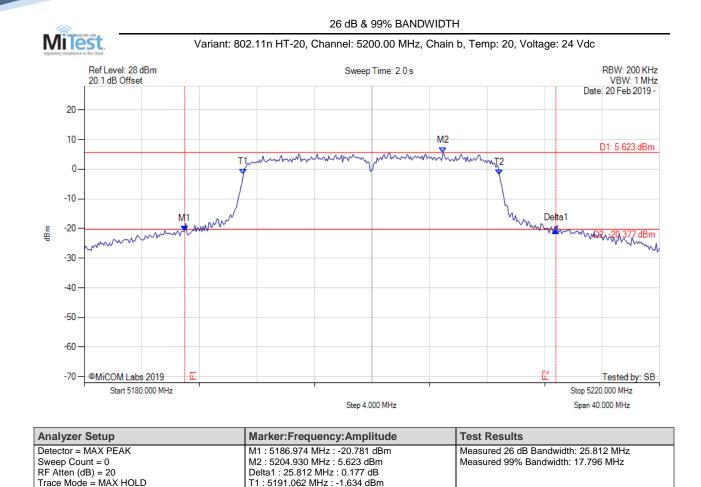


T2:5189.178 MHz:-6.909 dBm

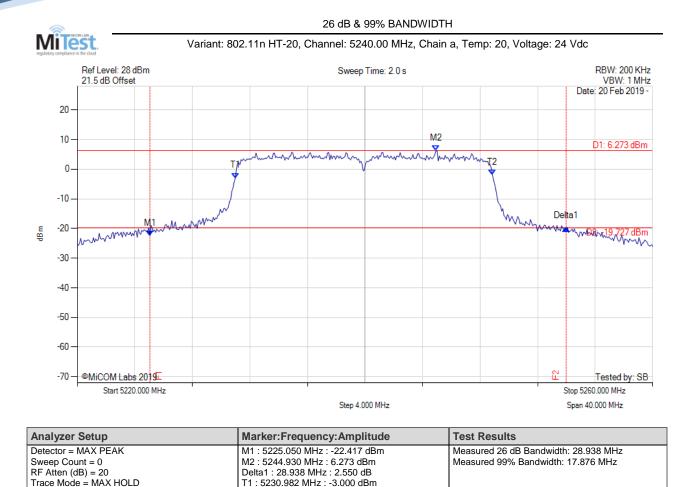
OBW : 18.277 MHz

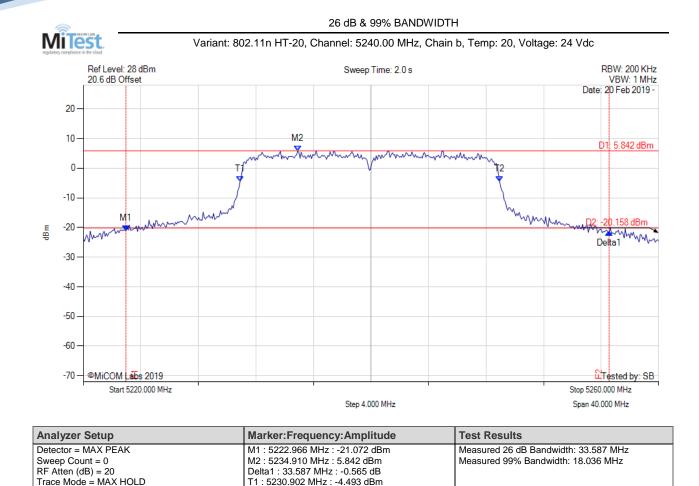


T2:5188.858 MHz:-1.760 dBm

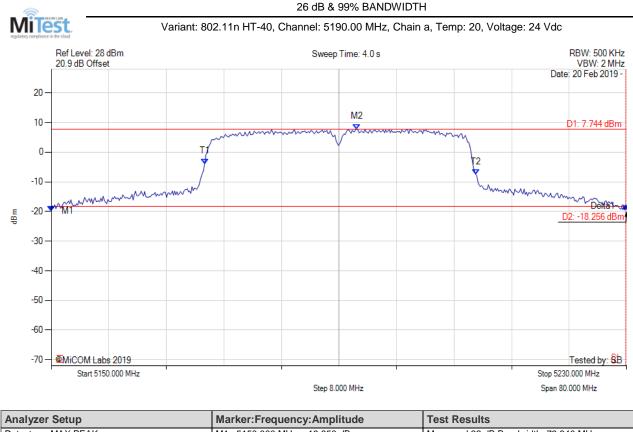

OBW : 17.796 MHz

OBW : 18.036 MHz

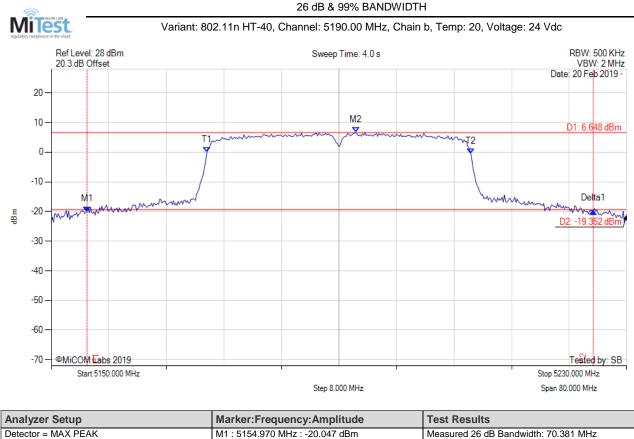


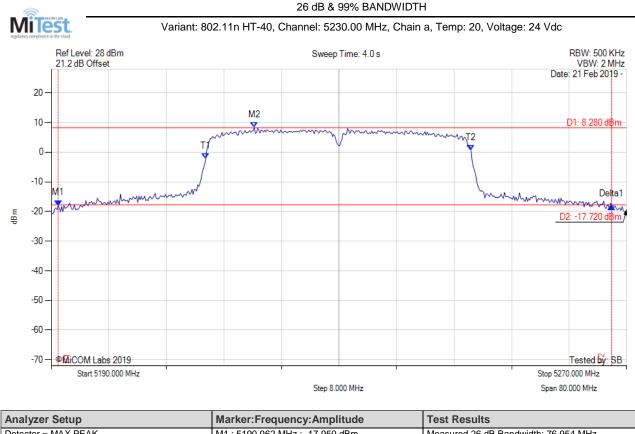

T2: 5208.858 MHz: -1.886 dBm

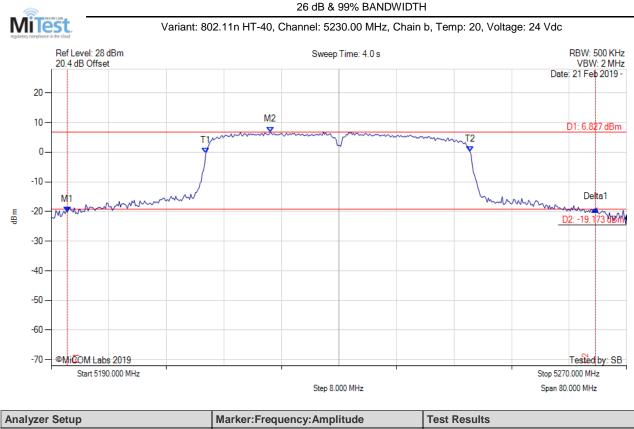
OBW : 17.796 MHz



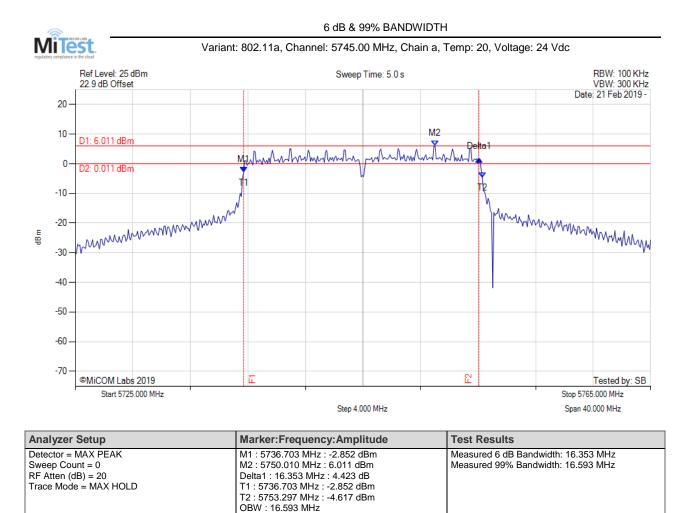
T2: 5248.938 MHz: -4.457 dBm

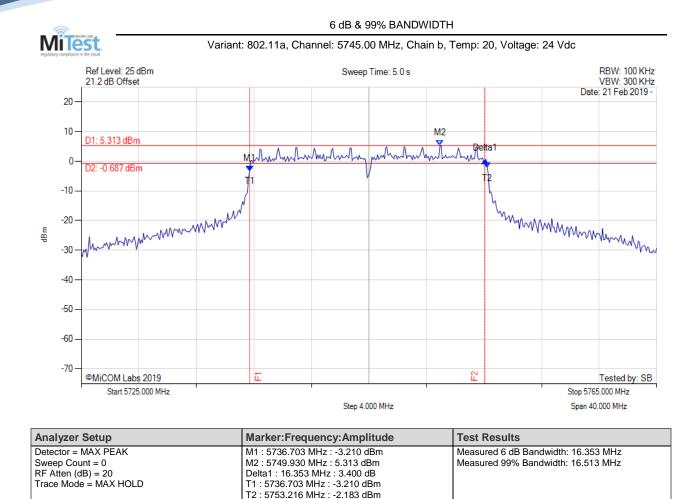

OBW : 18.036 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5150.000 MHz : -19.850 dBm M2 : 5192.485 MHz : 7.744 dBm Delta1 : 79.840 MHz : 1.749 dB T1 : 5171.323 MHz : -3.930 dBm T2 : 5208.998 MHz : -7.458 dBm OBW : 37.675 MHz	Measured 26 dB Bandwidth: 79.840 MHz Measured 99% Bandwidth: 37.675 MHz

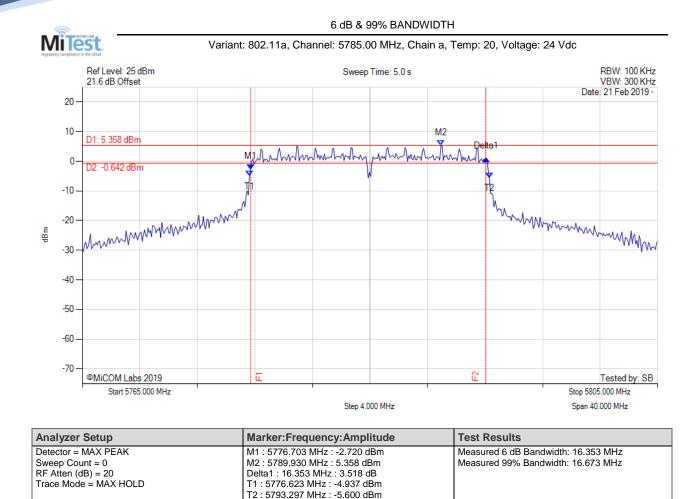

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5154.970 MHz : -20.047 dBm	Measured 26 dB Bandwidth: 70.381 MHz
Sweep Count = 0	M2 : 5192.325 MHz : 6.648 dBm	Measured 99% Bandwidth: 36.713 MHz
RF Atten (dB) = 20	Delta1 : 70.381 MHz : 0.238 dB	
Trace Mode = MAX HOLD	T1 : 5171.643 MHz : 0.003 dBm	
	T2 : 5208.357 MHz : -0.592 dBm	
	OBW : 36.713 MHz	

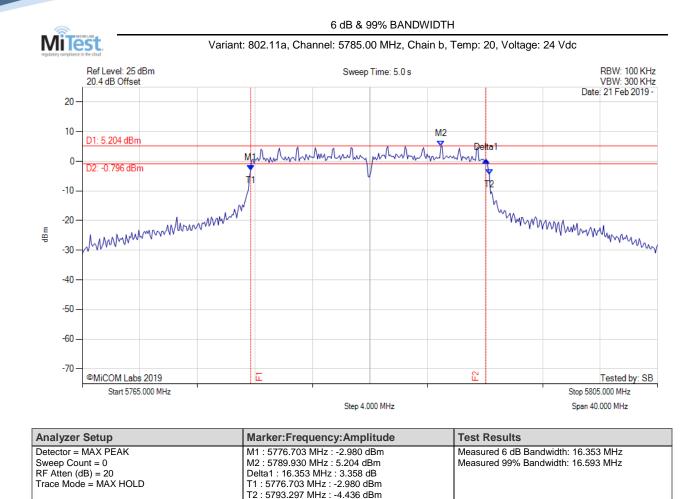
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 5190.962 MHz : -17.950 dBm M2 : 5218.216 MHz : 8.285 dBm Delta1 : 76.954 MHz : -0.360 dB T1 : 5211.483 MHz : -2.089 dBm T2 : 5248.357 MHz : 0.538 dBm OBW : 36.874 MHz	Measured 26 dB Bandwidth: 76.954 MHz Measured 99% Bandwidth: 36.874 MHz

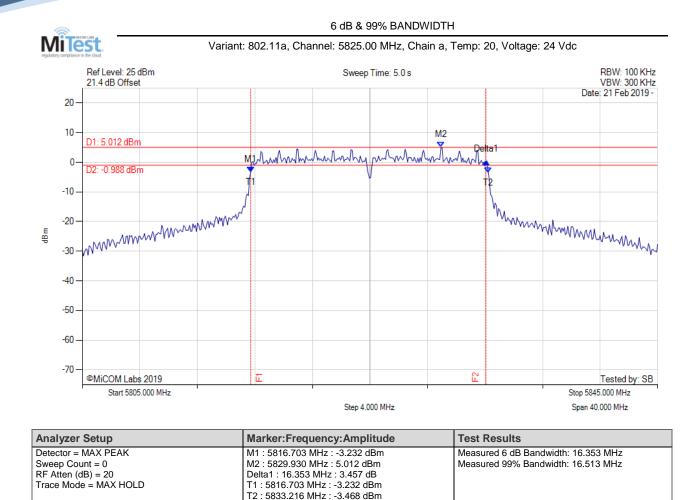


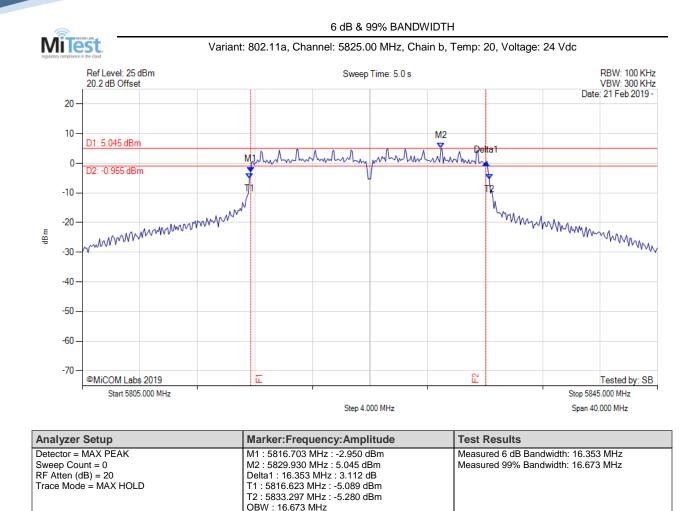

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 5192.244 MHz : -20.167 dBm M2 : 5220.461 MHz : 6.827 dBm Delta1 : 73.427 MHz : 0.978 dB T1 : 5211.483 MHz : -0.340 dBm T2 : 5248.196 MHz : 0.262 dBm OBW : 36.713 MHz	Measured 26 dB Bandwidth: 73.427 MHz Measured 99% Bandwidth: 36.713 MHz

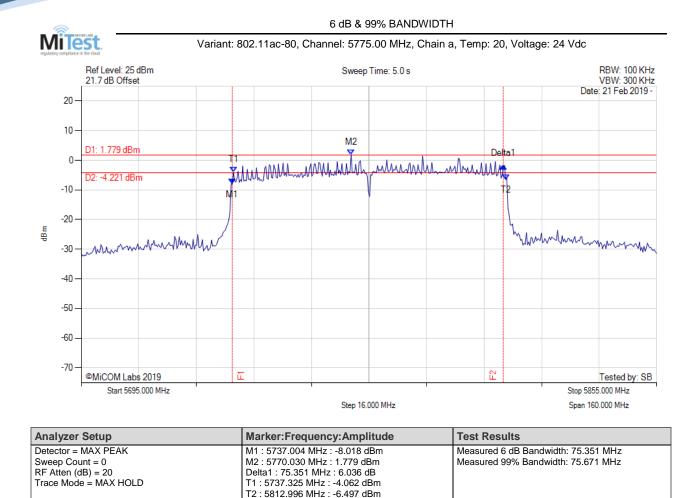
A.2. 6 dB & 99% Bandwidth



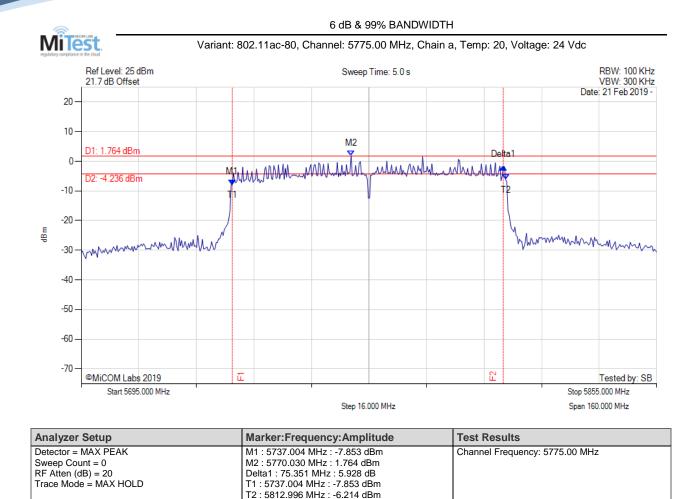

OBW : 16.513 MHz

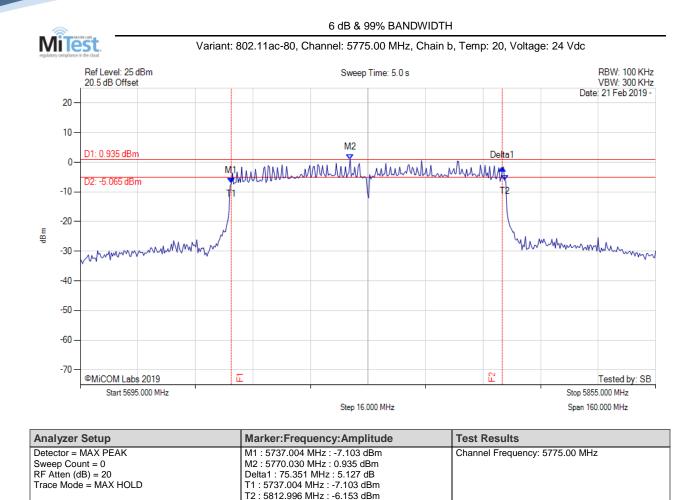

OBW : 16.673 MHz

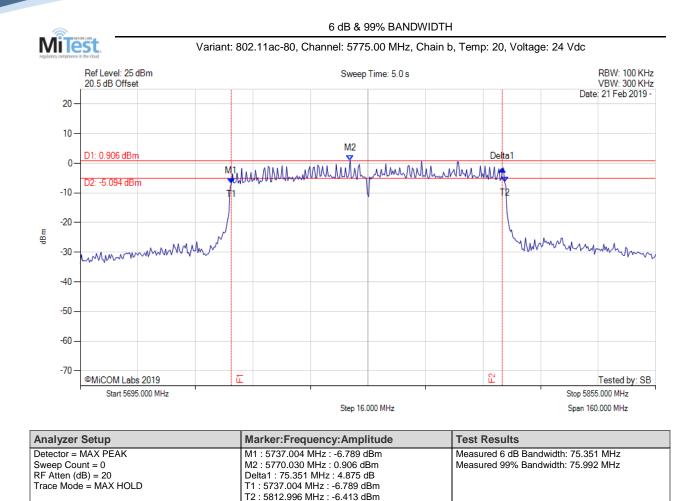

OBW : 16.593 MHz

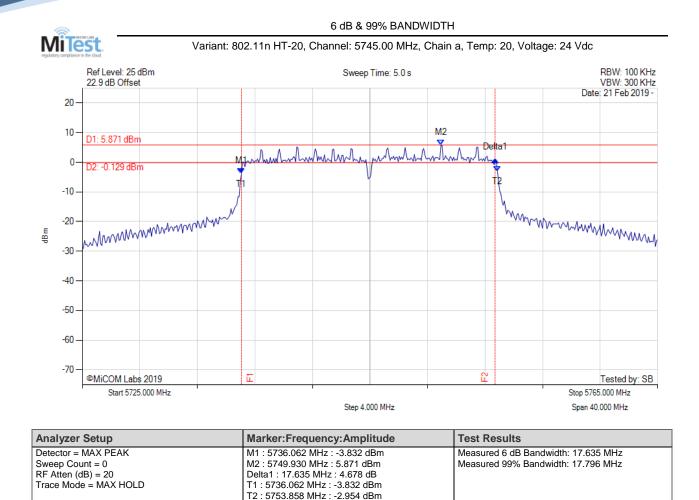


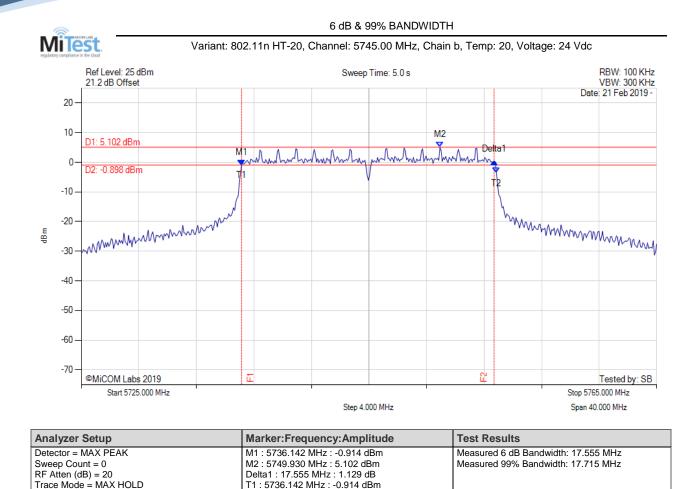
OBW : 16.513 MHz



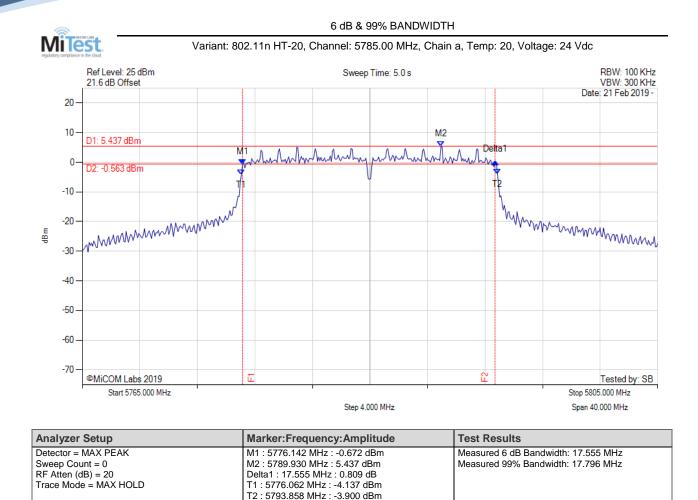

OBW : 75.671 MHz

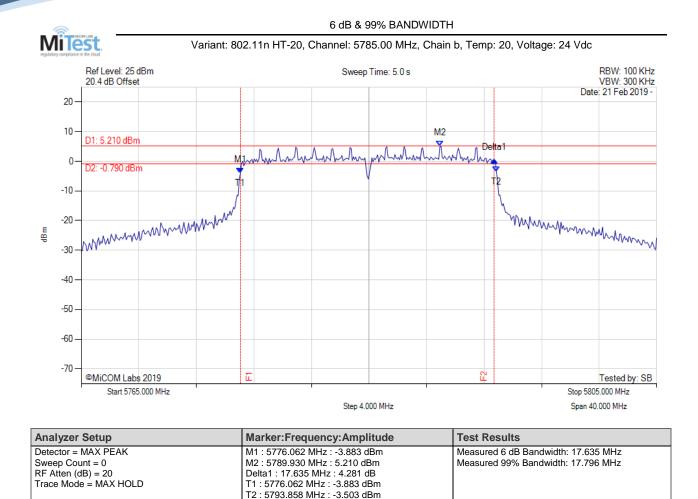

OBW : 75.992 MHz


OBW : 75.992 MHz

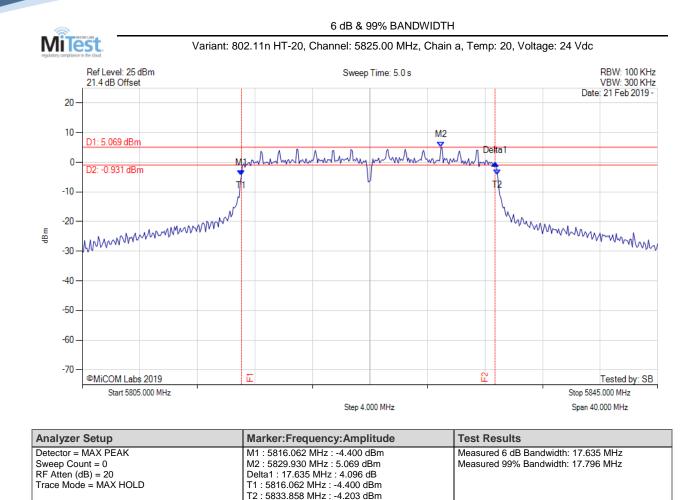


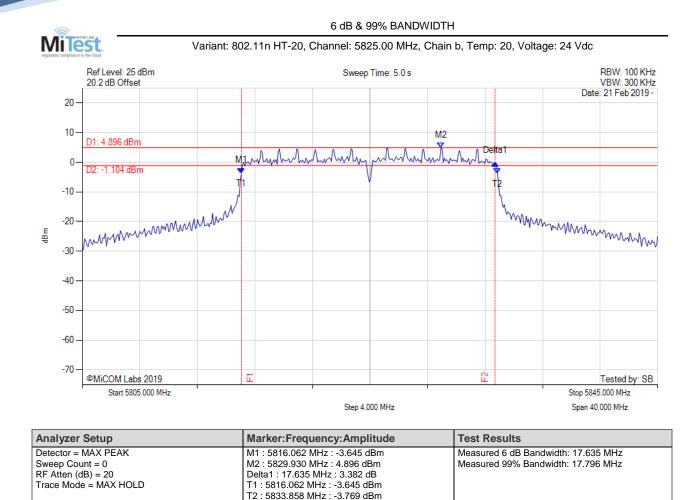
OBW : 75.992 MHz

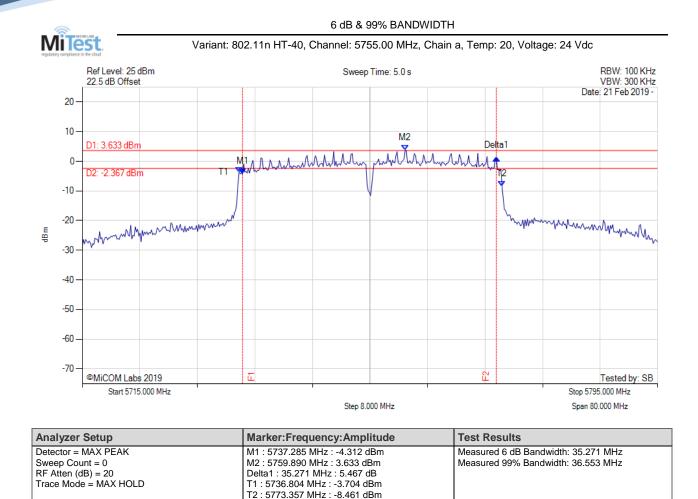


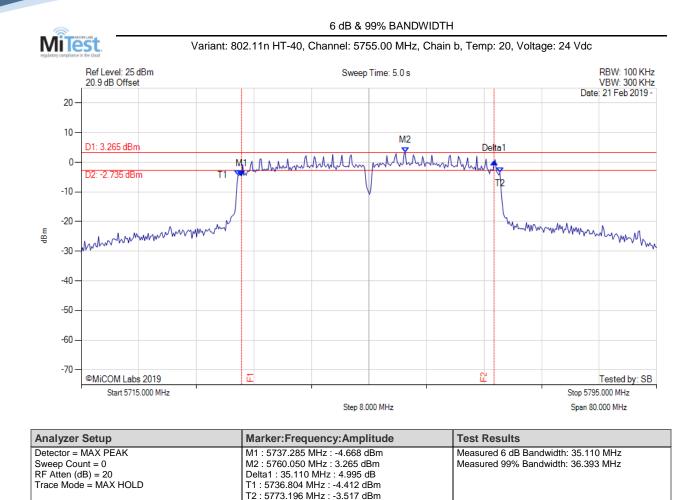

T2: 5753.858 MHz: -3.576 dBm

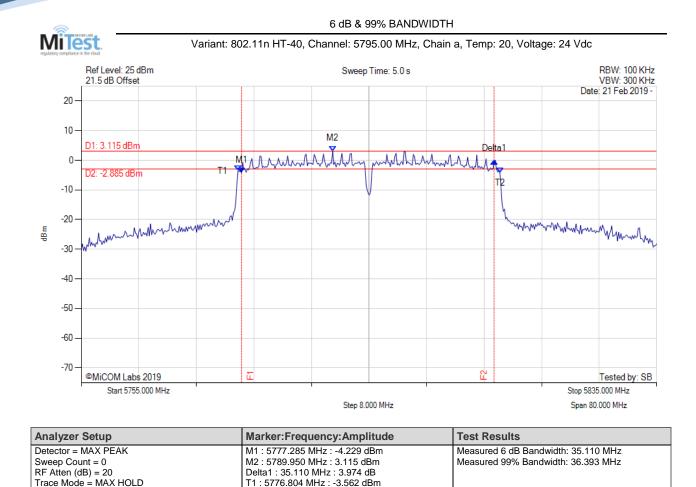
OBW : 17.715 MHz



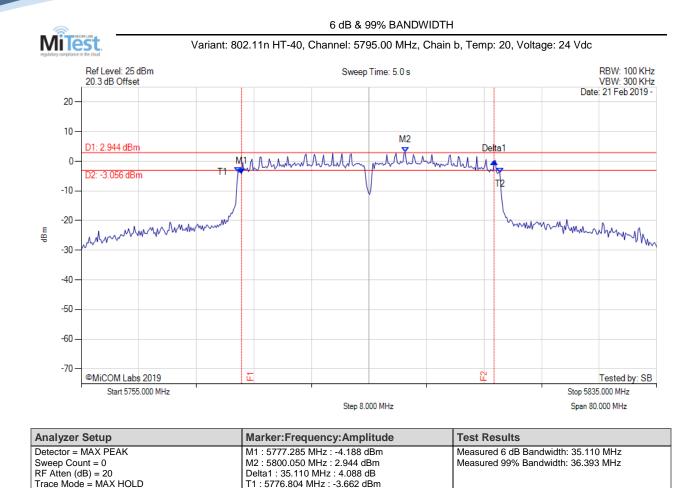






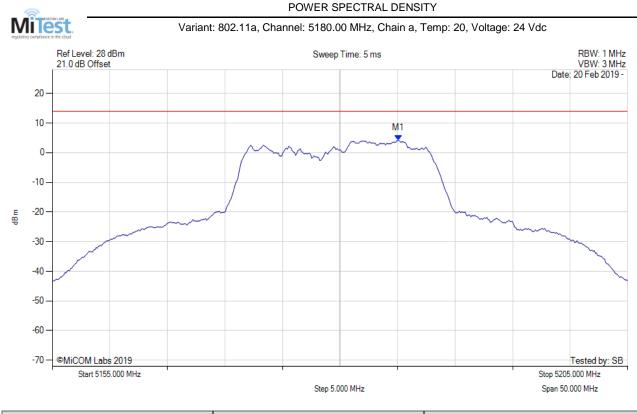

OBW : 36.553 MHz

OBW : 36.393 MHz



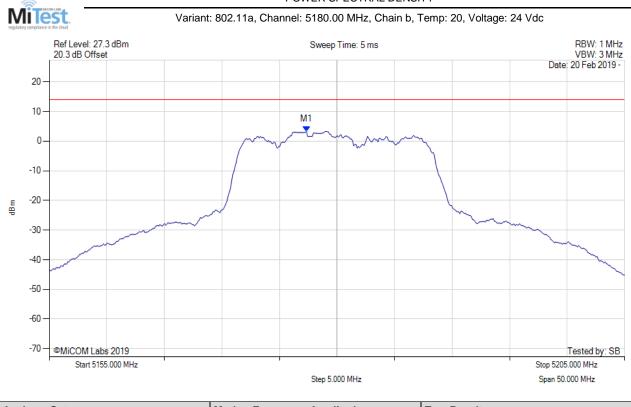
T2:5813.196 MHz:-4.123 dBm

OBW : 36.393 MHz



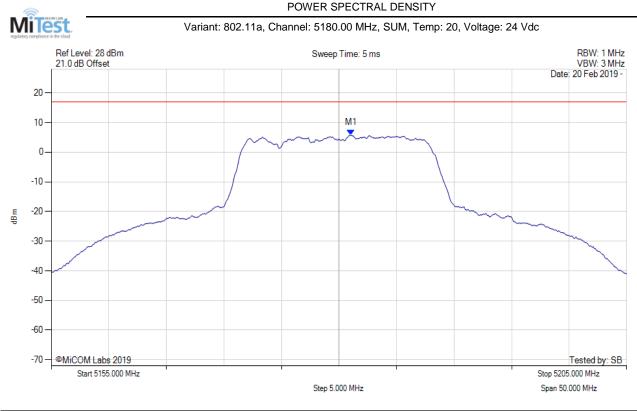
T2:5813.196 MHz:-4.022 dBm

OBW : 36.393 MHz

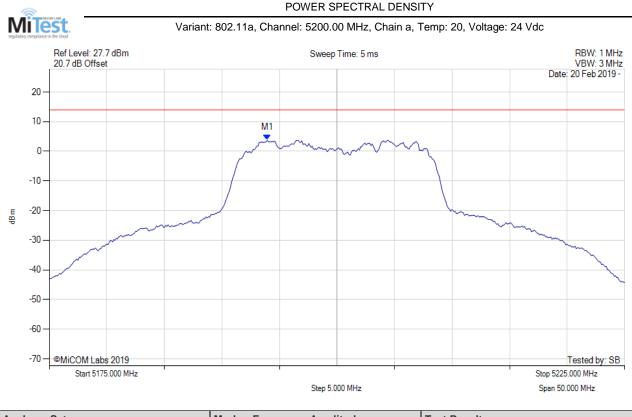


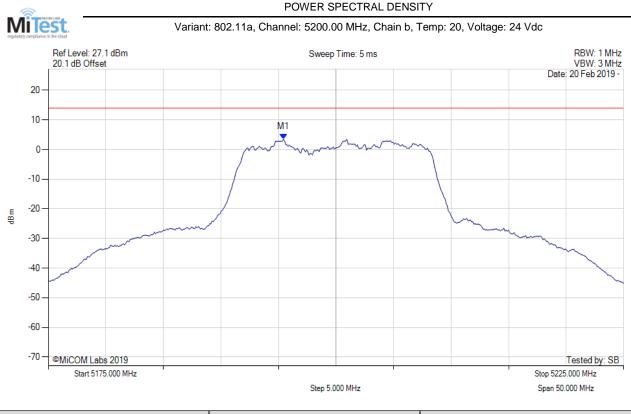
A.3. Power Spectral Density

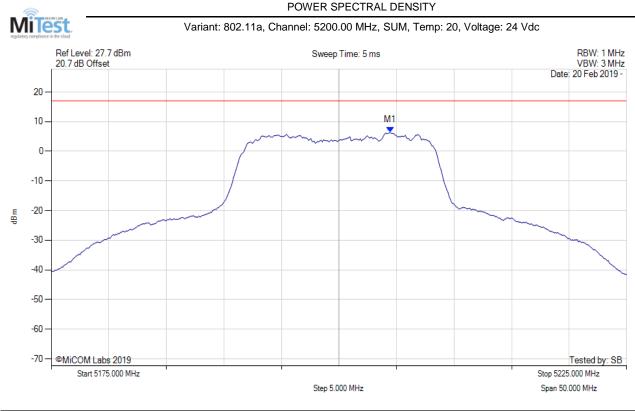
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5185.060 MHz : 4.137 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

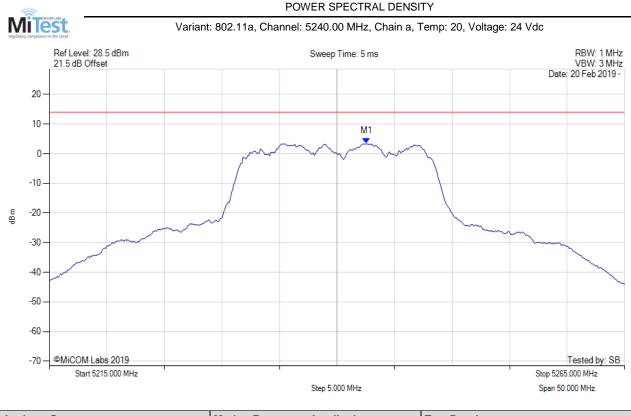


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5177.345 MHz : 3.286 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

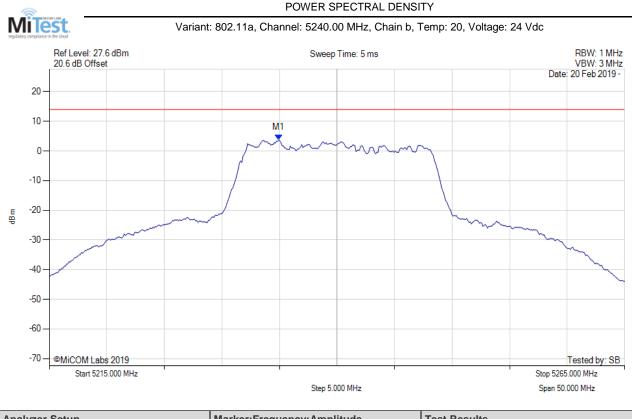

POWER SPECTRAL DENSITY


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 100 RF Atten (dB) = 20		Limit: ≤ 17.0 dBm Margin: -11.2 dB
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100	M1 : 5193.938 MHz : 3.741 dBm	Limit: ≤ 13.990 dBm
RF Atten (dB) = 20		
Trace Mode = VIEW		

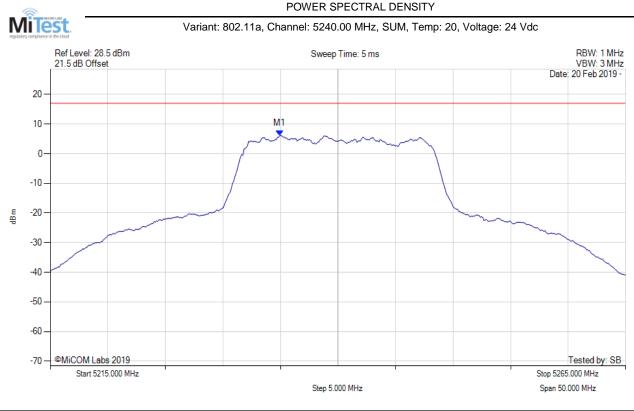

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5195.441 MHz : 3.464 dBm	Channel Frequency: 5200.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

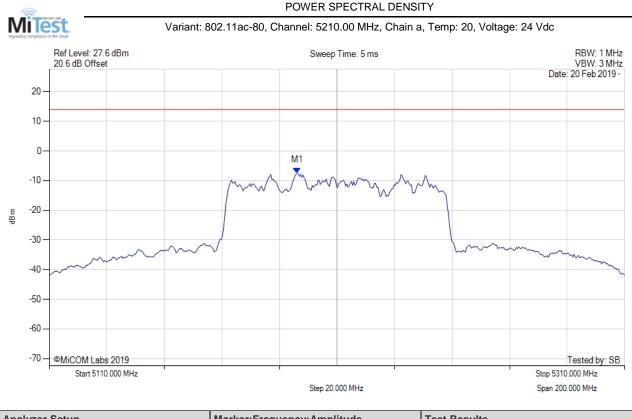
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5204.500 MHz : 6.318 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5204.500 MHz : 6.362 dBm	Margin: -10.6 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

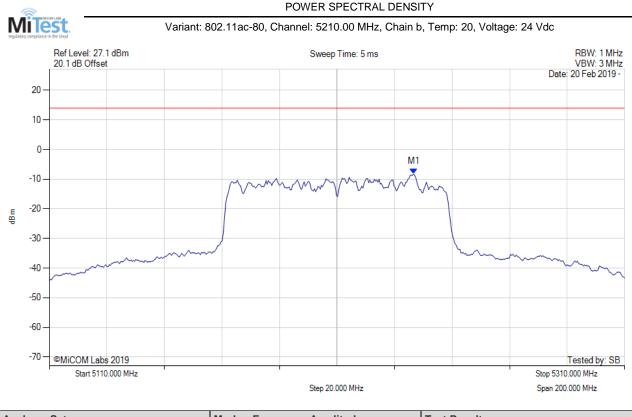


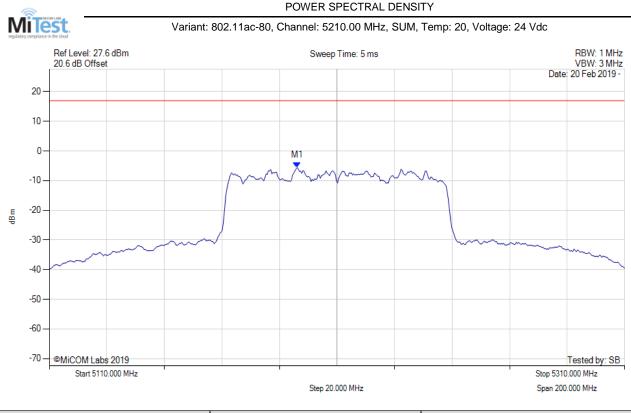
 Analyzer Setup
 Marker:Frequency:Amplitude
 Test Results

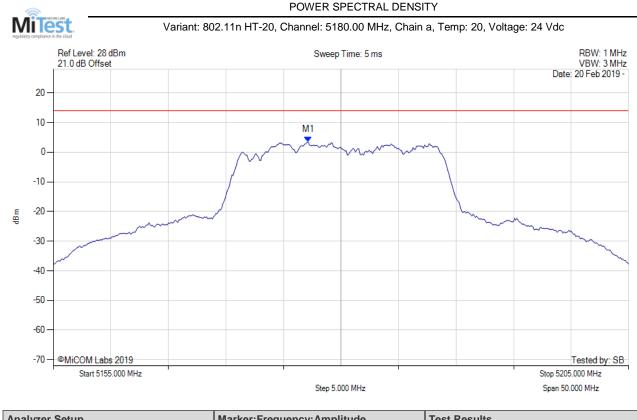
 Detector = RMS
 M1 : 5242.555 MHz : 3.488 dBm
 Limit: ≤ 13.990 dBm

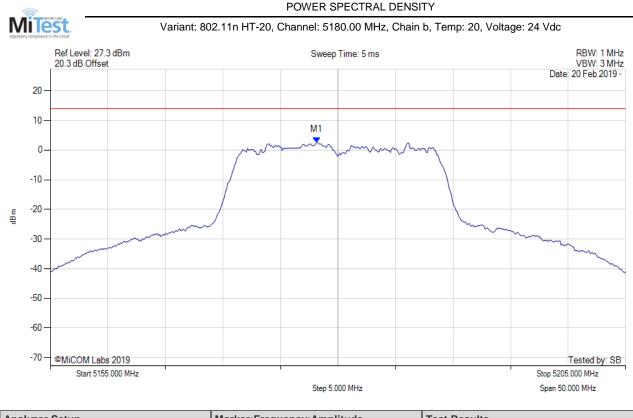

 Sweep Count = 100
 RF Atten (dB) = 20
 Trace Mode = VIEW

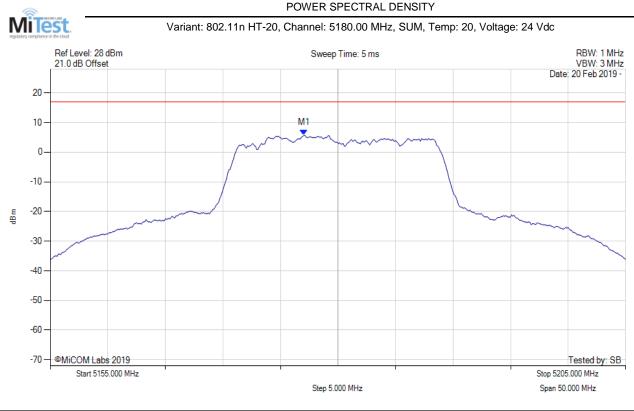

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5234.940 MHz : 3.830 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

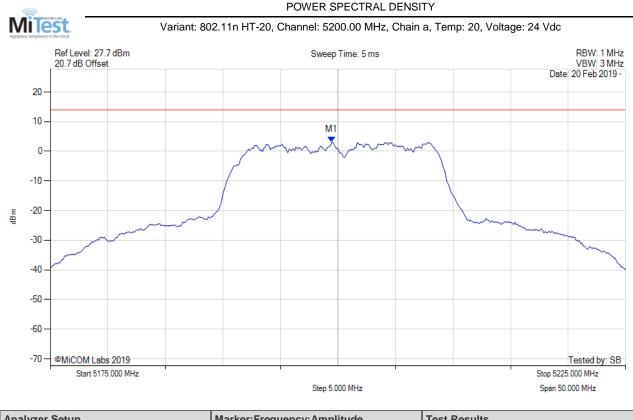

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5234.900 MHz : 6.090 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5234.900 MHz : 6.134 dBm	Margin: -10.9 dB
RF Atten $(dB) = 20$	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

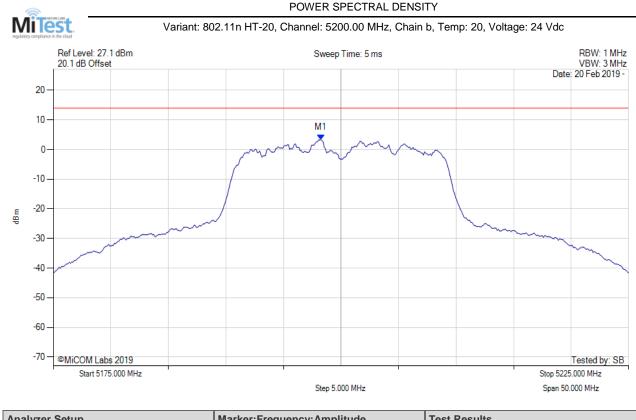

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5196.172 MHz : -7.361 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

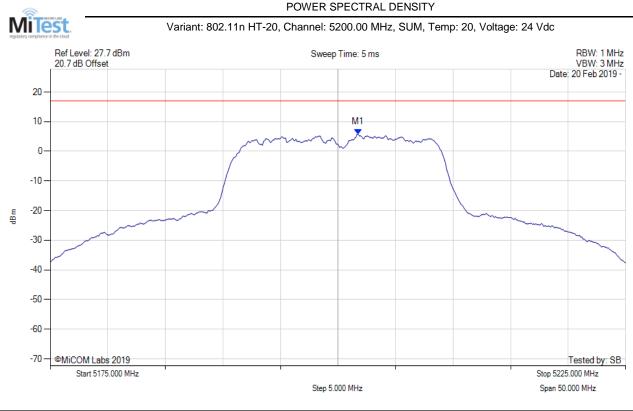

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5236.653 MHz : -8.223 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

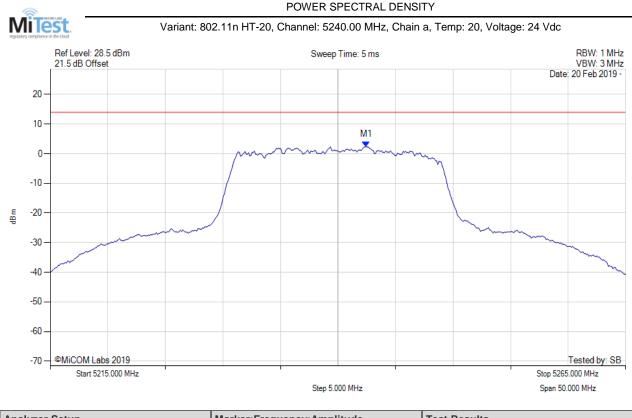

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5196.200 MHz : -5.555 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5196.200 MHz : -5.511 dBm	Margin: -22.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

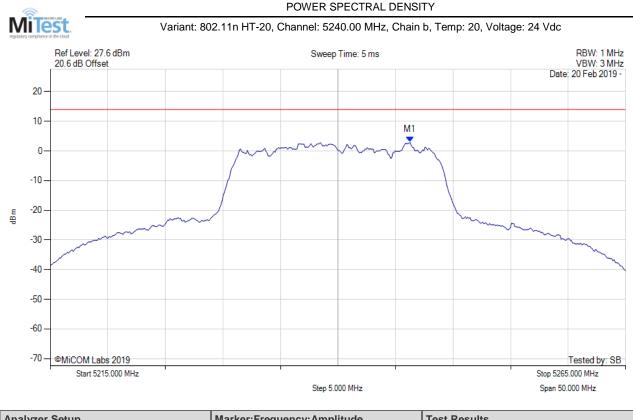

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5177.144 MHz : 3.409 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

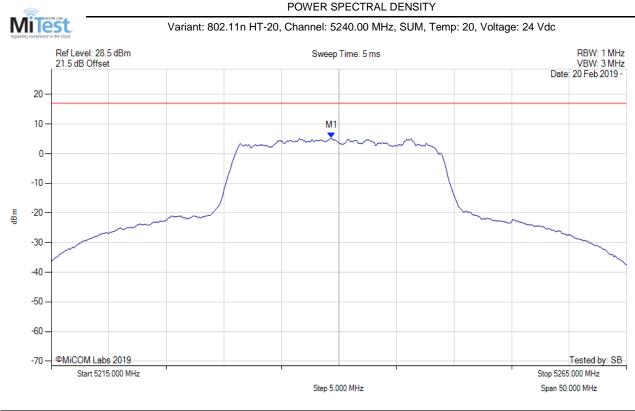

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5178.146 MHz : 2.611 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

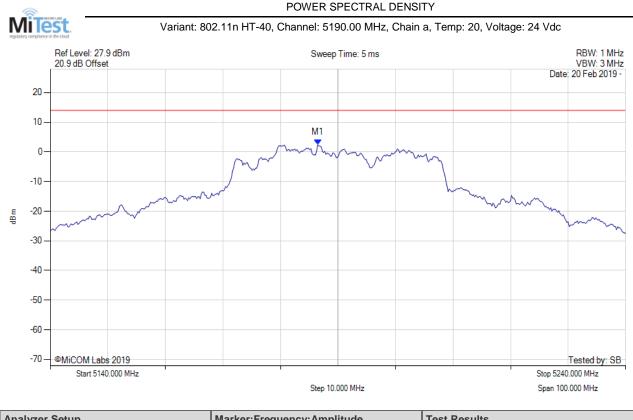

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5177.000 MHz : 5.719 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5177.000 MHz : 5.763 dBm	Margin: -11.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

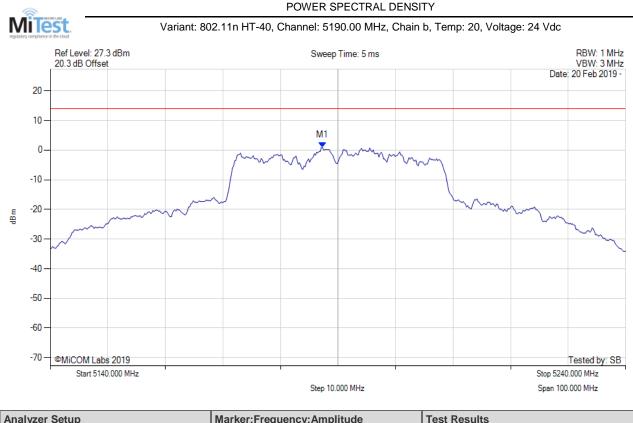

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5199.449 MHz : 3.107 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5198.246 MHz : 3.290 dBm	Channel Frequency: 5200.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

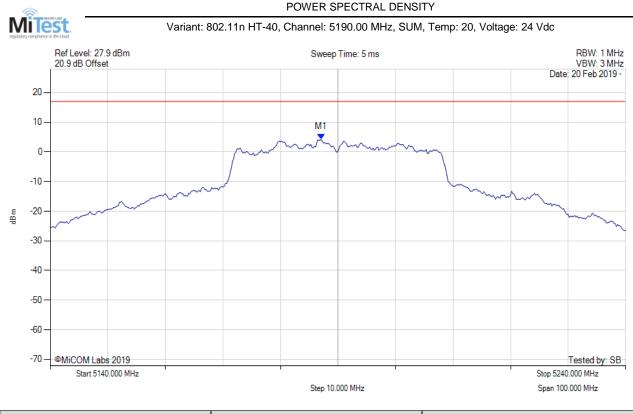

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5201.800 MHz : 5.799 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5201.800 MHz : 5.843 dBm	Margin: -11.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5242.455 MHz : 2.355 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

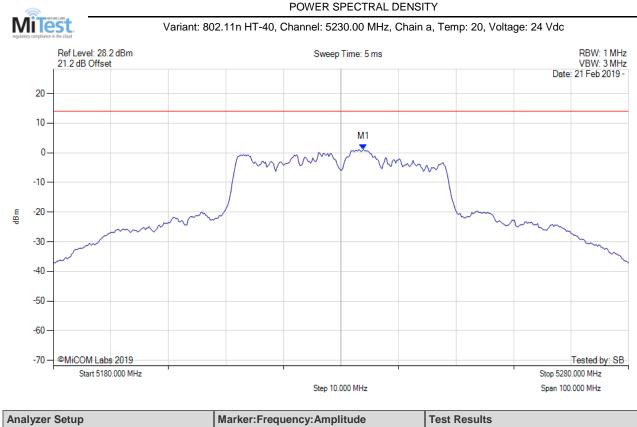

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20	M1 : 5246.263 MHz : 2.930 dBm	Limit: ≤ 13.990 dBm
Trace Mode = VIEW		

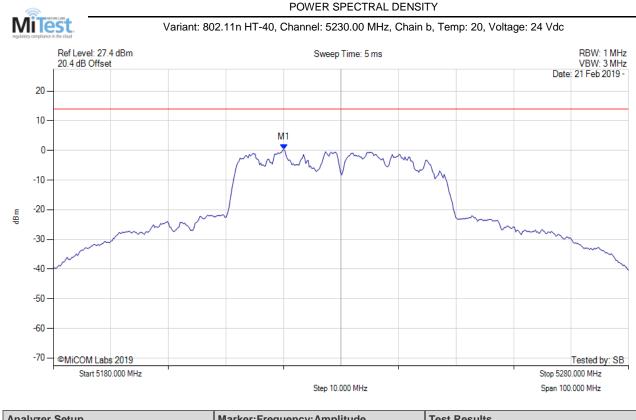

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5239.300 MHz : 5.349 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5239.300 MHz : 5.393 dBm	Margin: -11.6 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

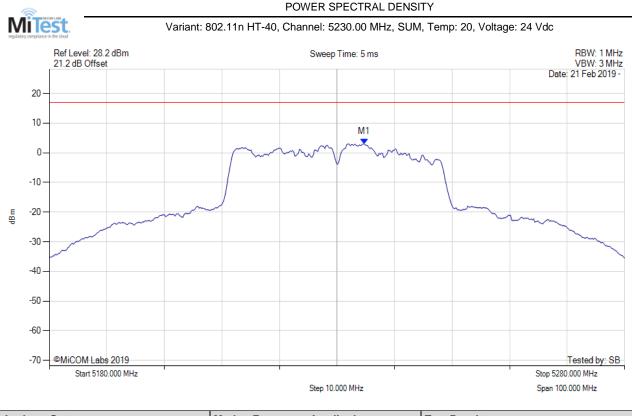
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5186.493 MHz : 2.430 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

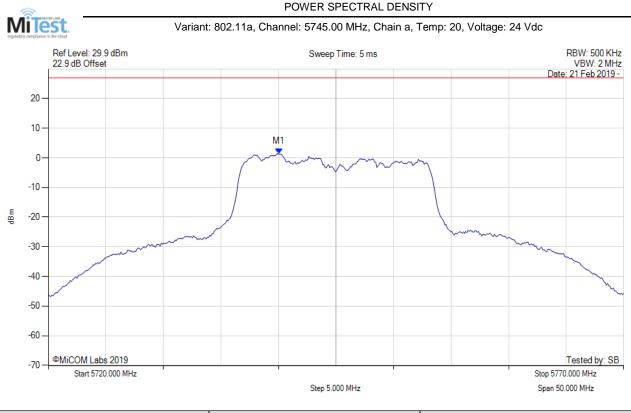


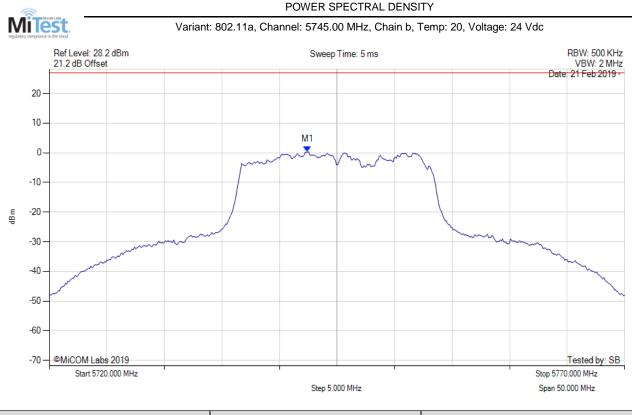
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100	M1 : 5187.295 MHz : 0.861 dBm	Limit: ≤ 13.990 dBm
RF Atten (dB) = 20		
Trace Mode = VIEW		

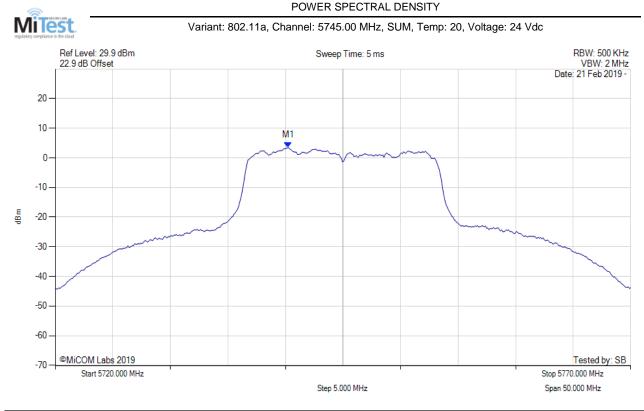

Page: 134 of 186

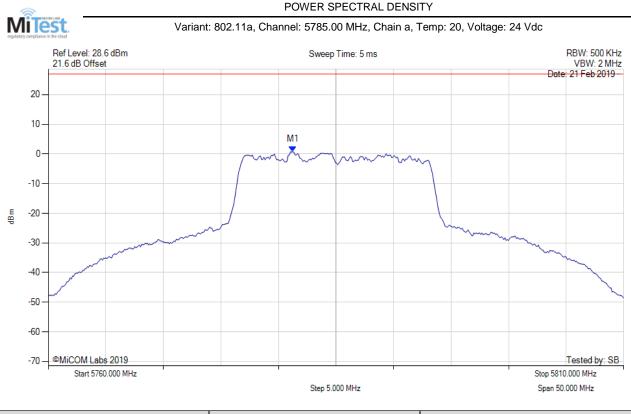

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5187.100 MHz : 4.284 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5187.100 MHz : 4.742 dBm	Margin: -12.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	-
Trace Mode = VIEW		

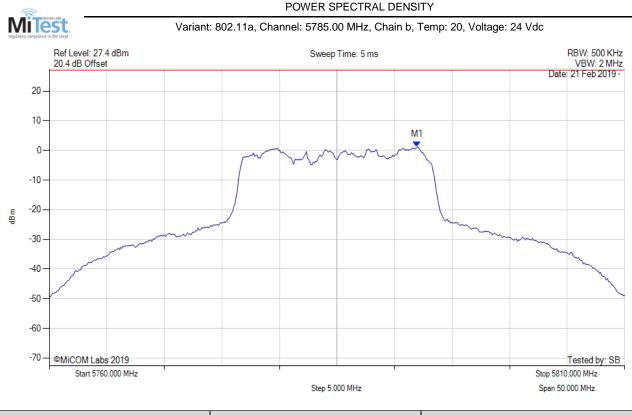

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5233.908 MHz : 1.192 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

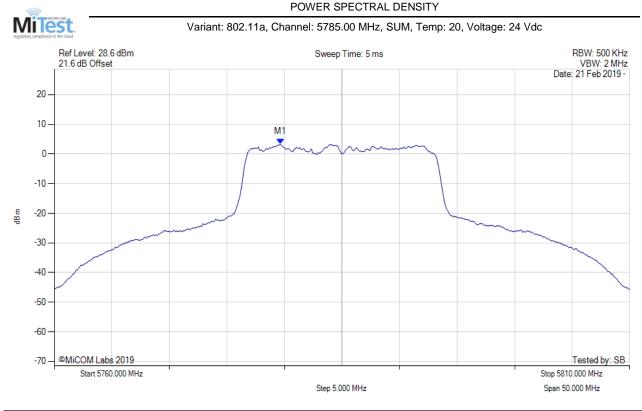

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5220.080 MHz : 0.269 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

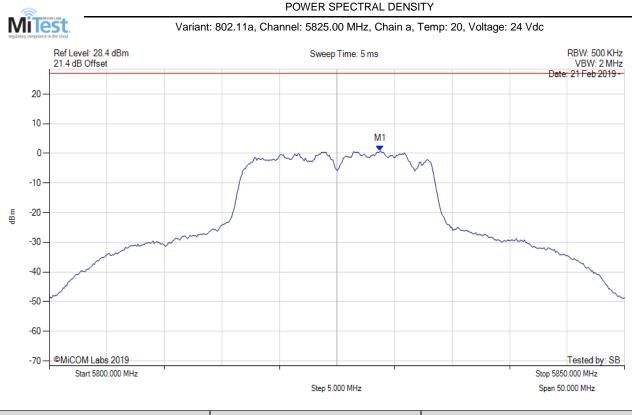

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5234.700 MHz : 2.995 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5234.700 MHz : 3.453 dBm	Margin: -13.6 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	
Trace Mode = VIEW		

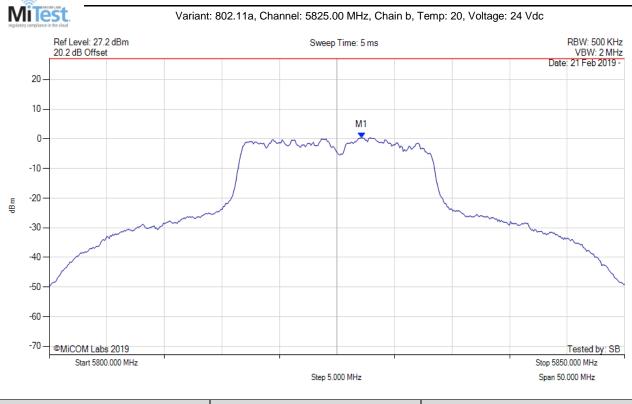

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5740.040 MHz : 1.344 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5742.445 MHz : 0.302 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

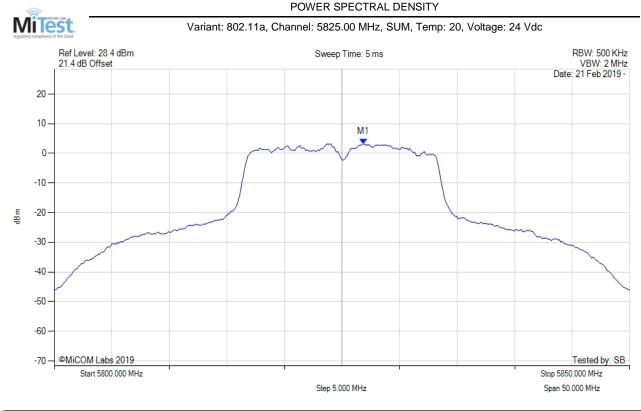

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 5740.200 MHz : 3.457 dBm M1 + DCCF : 5740.200 MHz : 3.501 dBm	Limit: ≤ 30.0 dBm Margin: -26.5 dB
RF Atten (dB) = 20 Trace Mode = VIEW	Duty Cycle Correction Factor : +0.04 dB	0


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5781.242 MHz : 0.761 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

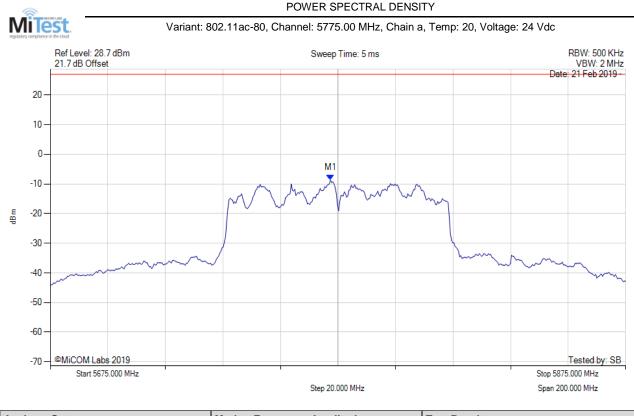

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5791.964 MHz : 1.129 dBm	Channel Frequency: 5785.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

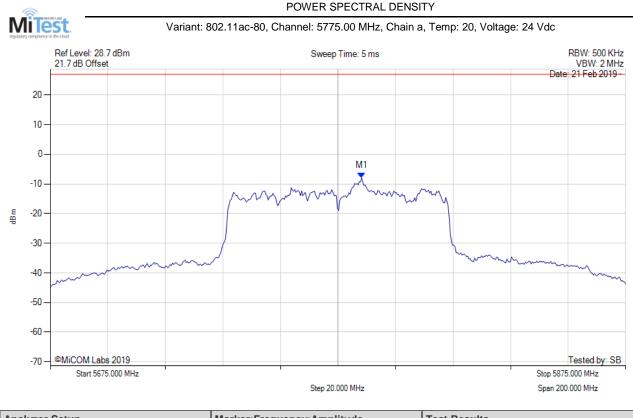

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5779.600 MHz : 3.272 dBm	Limit: ≤ 30.0 dBm
		Margin: -26.7 dB
	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

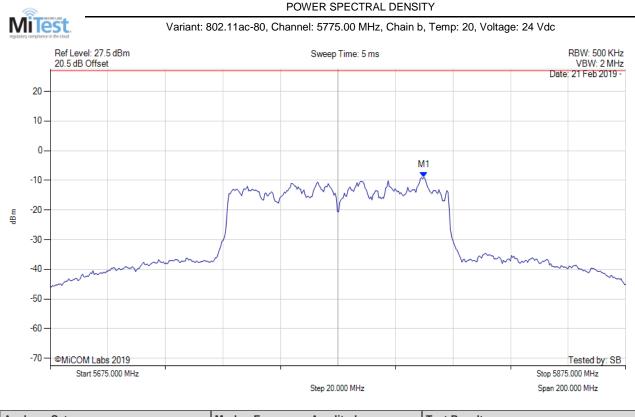
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5828.758 MHz : 0.834 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

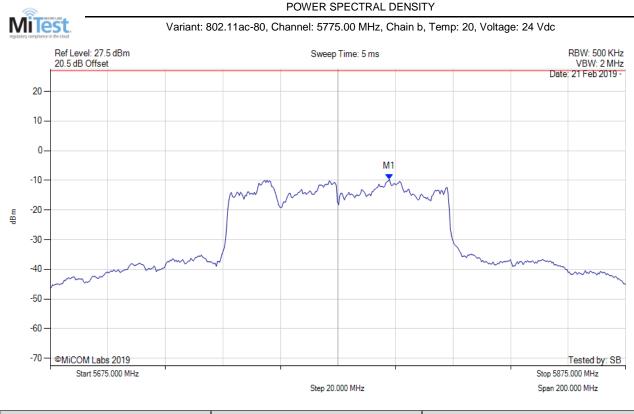


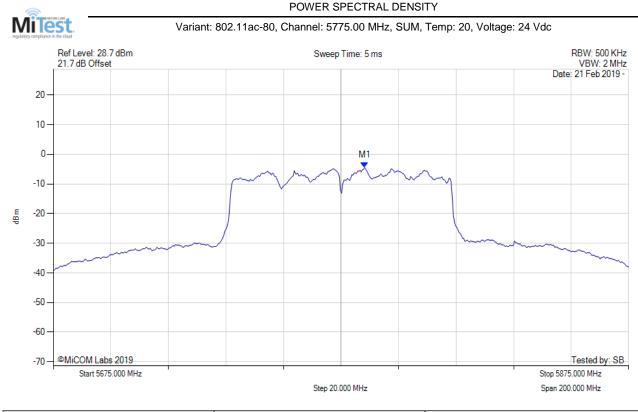
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5827.154 MHz : 0.419 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

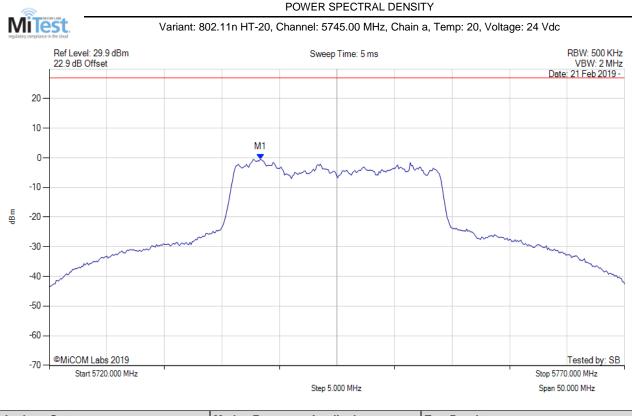

POWER SPECTRAL DENSITY

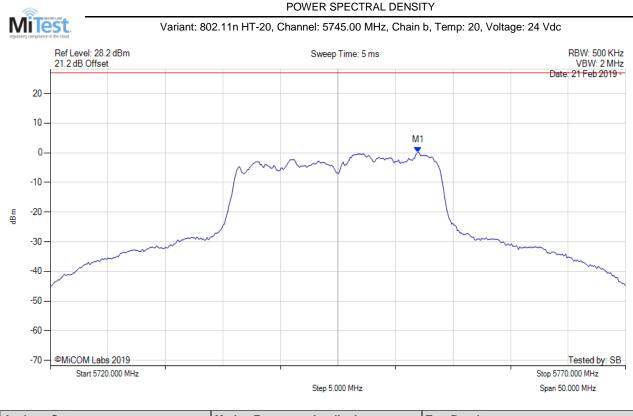

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5826.900 MHz : 3.223 dBm	Limit: ≤ 30.0 dBm
Sweep Count = 100	M1 + DCCF : 5826.900 MHz : 3.267 dBm	Margin: -26.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 5772.395 MHz : -8.643 dBm	Channel Frequency: 5775.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

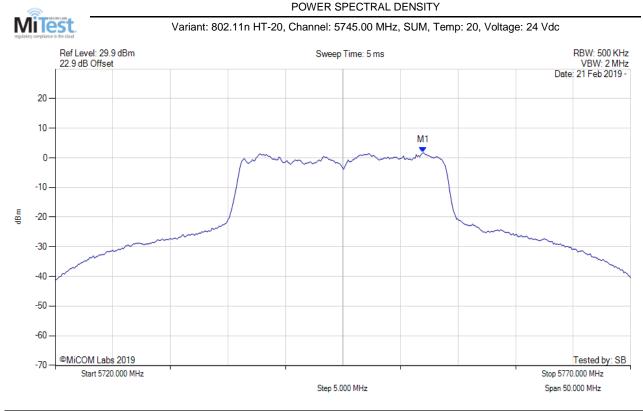

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20	M1 : 5783.216 MHz : -7.975 dBm	Limit: ≤ 26.990 dBm
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5804.860 MHz : -8.898 dBm	Channel Frequency: 5775.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

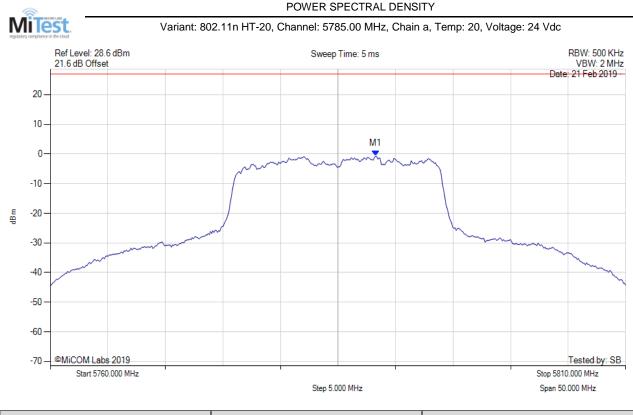

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5792.836 MHz : -9.580 dBm	Limit: ≤ 26.990 dBm

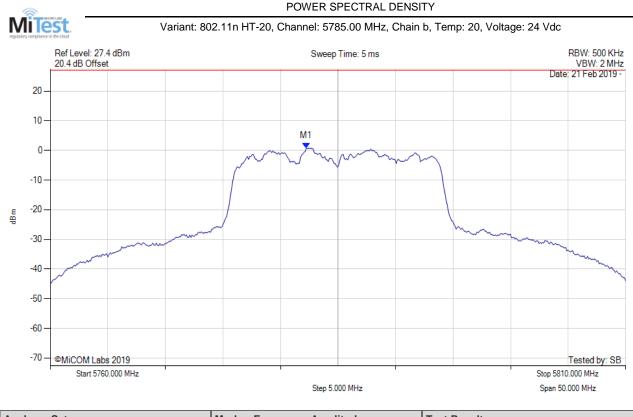

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5783.200 MHz : -4.455 dBm	Limit: ≤ 30.0 dBm
Sweep Count = 100	M1 + DCCF : 5783.200 MHz : -3.997 dBm	Margin: -34.0 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	-
Trace Mode = VIEW		

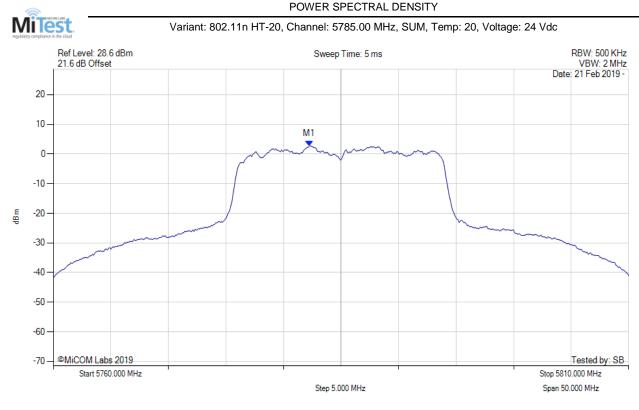
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5738.337 MHz : -0.439 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

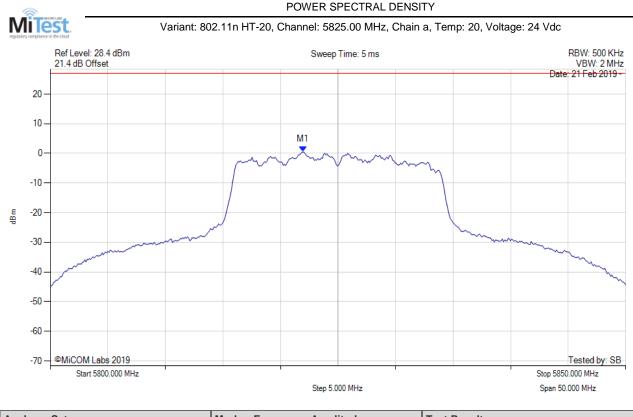


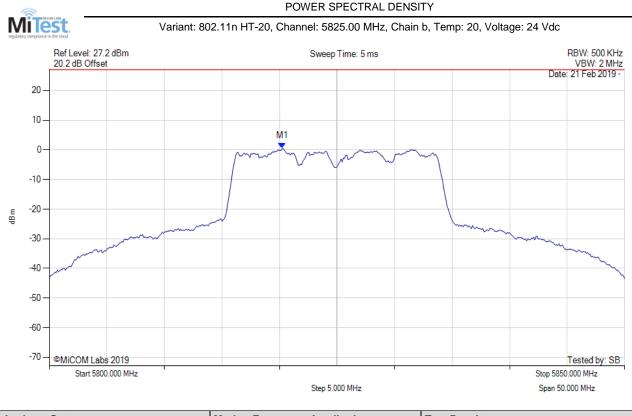
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5751.964 MHz : 0.170 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Page: 154 of 186

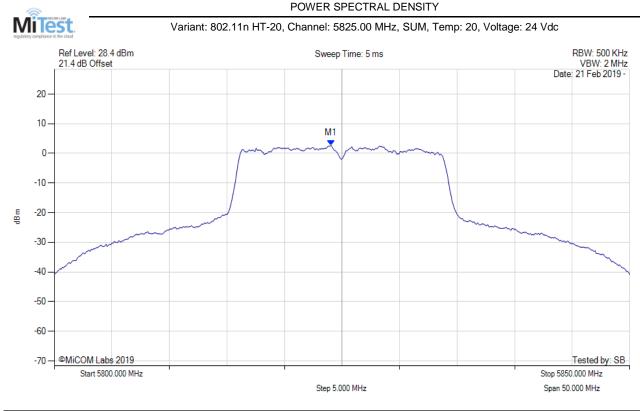

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5752.000 MHz : 1.740 dBm	Limit: ≤ 30.0 dBm
Sweep Count = 100	M1 + DCCF : 5752.000 MHz : 1.784 dBm	Margin: -28.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5788.257 MHz : -0.722 dBm	Limit: ≤ 26.990 dBm

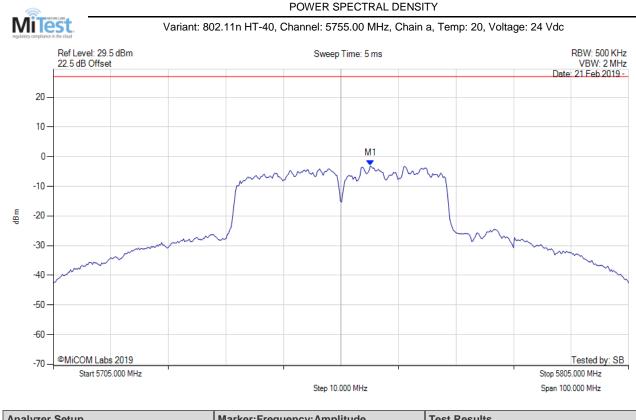

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5782.244 MHz : 0.783 dBm	Channel Frequency: 5785.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

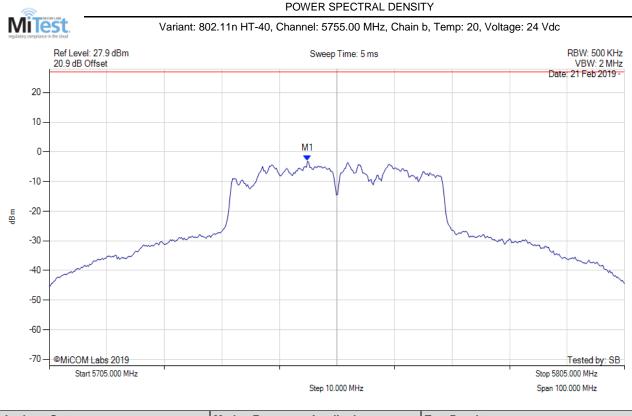

Analyzer Setup	Marker:Frequency:Amplitude	Test Results			
Detector = RMS		Limit: ≤ 30.0 dBm			
Sweep Count = 100		Margin: -27.3 dB			
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB				
Trace Mode = VIEW					

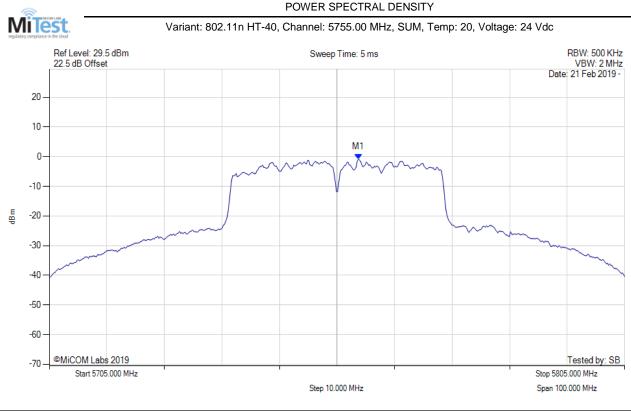
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5821.944 MHz : 0.531 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

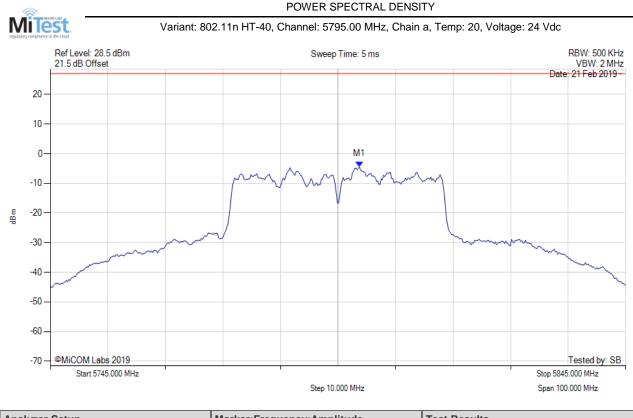


Analyzer Setup	Marker:Frequency:Amplitude	Test Results				
Detector = RMS	M1 : 5820.240 MHz : 0.431 dBm	Limit: ≤ 26.990 dBm				
Sweep Count = 100						
RF Atten (dB) = 20						
Trace Mode = VIEW						

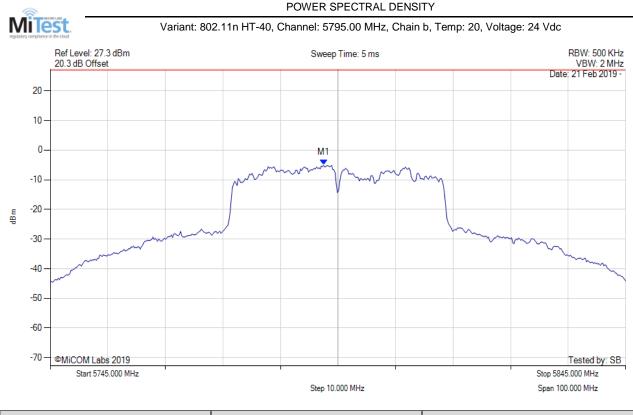

Page: 160 of 186


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5824.000 MHz : 2.702 dBm	Limit: ≤ 30.0 dBm
Sweep Count = 100	M1 + DCCF : 5824.000 MHz : 2.746 dBm	Margin: -27.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

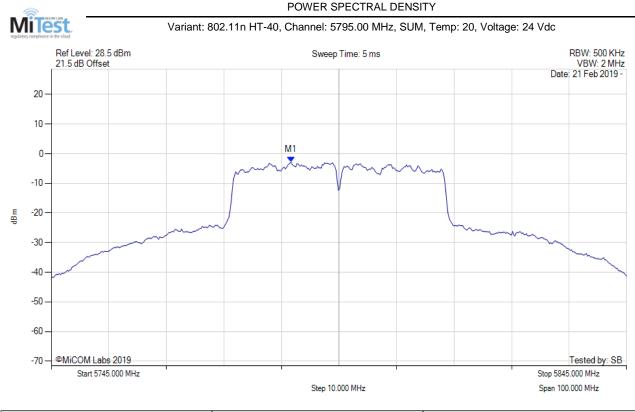

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5760.110 MHz : -3.113 dBm	Limit: ≤ 26.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5749.890 MHz : -3.077 dBm	Limit: ≤ 26.990 dBm

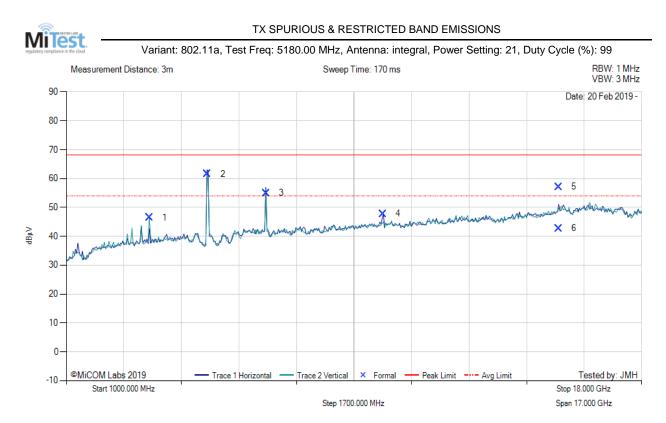
Analyzer Setup	Marker:Frequency:Amplitude	Test Results			
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20		Limit: ≤ 30.0 dBm Margin: -30.4 dB			
Trace Mode = VIEW					



Analyzer Setup	Marker:Frequency:Amplitude	Test Results				
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5798.707 MHz : -4.353 dBm	Limit: ≤ 26.990 dBm				


Page: 165 of 186

Analyzer SetupMarker:Frequency:AmplitudeTest ResultsDetector = RMS
Sweep Count = 100
RF Atten (dB) = 20
Trace Mode = VIEWM1 : 5792.495 MHz : -5.061 dBm
Limit: ≤ 26.990 dBmLimit: ≤ 26.990 dBm


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5786.700 MHz : -2.876 dBm	Limit: ≤ 30.0 dBm
Sweep Count = 100	M1 + DCCF : 5786.700 MHz : -2.418 dBm	Margin: -32.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.46 dB	-
Trace Mode = VIEW		

A.4. Radiated

A.4.1. TX Spurious & Restricted Band Emissions

A.4.1.1. integral

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	3453.28	60.33	-2.10	-11.80	46.43	Peak (NRB)	Vertical	100	0			Pass
2	5174.55	75.99	-2.62	-11.88	61.49	Fundamental	Horizontal	100	0			
3	6906.64	65.99	-3.02	-8.05	54.92	Peak (NRB)	Horizontal	100	0			Pass
4	10355.68	57.20	-3.83	-5.56	47.81	Peak (NRB)	Horizontal	100	0			Pass
5	15539.17	63.96	-4.76	-2.12	57.08	Max Peak	Horizontal	121	0	68.2	-11.2	Pass
6	15539.17	49.63	-4.76	-2.12	42.75	Max Avg	Horizontal	121	0	54.0	-11.3	Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber.

TX SPURIOUS & RESTRICTED BAND EMISSIONS Mites Variant: 802.11a, Test Freq: 5200.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 -Date: 20 Feb 2019 -80 70 <mark>×</mark> 6 60 4 50 **X** 5 2 JBµV 40 30 20 10 0-©MiCOM Labs 2019 Tested by: JMH Trace 2 Vertical × Formal Peak Limit Avg Limit Trace 1 Horizontal -10-Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2956.61	61.22	-1.95	-11.59	47.68	Peak (NRB)	Vertical	100	360			Pass
2	3466.67	59.08	-2.13	-11.99	44.96	Peak (NRB)	Vertical	100	360			Pass
3	5204.32	84.14	-2.64	-11.96	69.54	Fundamental	Horizontal	100	0			
4	6933.31	66.69	-3.00	-7.96	55.73	Peak (NRB)	Vertical	100	26			Pass
5	10407.38	60.34	-3.90	-5.85	50.59	Peak (NRB)	Horizontal	100	26			Pass
6	15606.46	68.79	-4.73	-1.71	62.35	Max Peak	Horizontal	122	36	68.2	-5.9	Pass
7	15606.46	54.32	-4.73	-1.71	47.88	Max Avg	Horizontal	122	36	54.0	-6.1	Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber.

TX SPURIOUS & RESTRICTED BAND EMISSIONS Mites Variant: 802.11a, Test Freq: 5240.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 -Date: 20 Feb 2019 -80 3 70 60 X 6 50 2 × 7 dBµV 40 30 20 10 0-©MiCOM Labs 2019 Tested by: JMH Trace 2 Vertical × Formal Peak Limit Avg Limit Trace 1 Horizontal -10 Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

					1000	.00 - 18000.00 N	/IHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2688.15	60.51	-1.86	-11.90	46.75	Peak (NRB)	Vertical	100	360			Pass
2	2956.78	60.13	-1.95	-11.59	46.59	Peak (NRB)	Vertical	100	0			Pass
3	5234.31	86.87	-2.62	-12.32	71.93	Fundamental	Horizontal	100	0			
4	6986.57	64.14	-3.06	-7.74	53.34	Peak (NRB)	Horizontal	100	264			Pass
5	10479.21	63.71	-3.82	-6.25	53.64	Peak (NRB)	Horizontal	100	11			Pass
6	15720.73	64.77	-4.82	-1.94	58.01	Max Peak	Horizontal	98	6	68.2	-10.2	Pass
7	15720.73	50.95	-4.82	-1.94	44.19	Max Avg	Horizontal	98	6	54.0	-9.8	Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber.

TX SPURIOUS & RESTRICTED BAND EMISSIONS Mites Variant: 802.11a, Test Freq: 5745.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 -Date: 20 Feb 2019 -80 70 60 50 2 5 × mon 3 dBµV 40 30 20 10 0-©MiCOM Labs 2019 Tested by: JMH Trace 2 Vertical × Formal Peak Limit Avg Limit Trace 1 Horizontal -10 Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

1000.00 - 18000.00 MHz														
Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
2956.81	57.09	-1.95	-11.59	43.55	Peak (NRB)	Horizontal	100	6			Pass			
3830.04	64.07	-2.20	-11.77	50.10	Max Peak	Horizontal	180	29	68.2	-18.1	Pass			
3830.04	59.39	-2.20	-11.77	45.42	Max Avg	Horizontal	180	29	54.0	-8.6	Pass			
5748.09	60.27	-2.76	-10.98	46.53	Fundamental	Horizontal	100	60						
7659.98	59.97	-2.94	-7.18	49.85	Max Peak	Vertical	140	49	68.2	-18.4	Pass			
7659.98	52.08	-2.94	-7.18	41.96	Max Avg	Vertical	140	49	54.0	-12.0	Pass			
	MHz 2956.81 3830.04 3830.04 5748.09 7659.98	MHz dBμV 2956.81 57.09 3830.04 64.07 3830.04 59.39 5748.09 60.27 7659.98 59.97	Raw MHz Raw dBµV Loss dB 2956.81 57.09 -1.95 3830.04 64.07 -2.20 3830.04 59.39 -2.20 5748.09 60.27 -2.76 7659.98 59.97 -2.94	Raw MHz Raw dBµV Loss dB AF dB/m 2956.81 57.09 -1.95 -11.59 3830.04 64.07 -2.20 -11.77 3830.04 59.39 -2.20 -11.77 5748.09 60.27 -2.76 -10.98 7659.98 59.97 -2.94 -7.18	Raw MHz Loss dBμV AF dB/m Level dBμV/m 2956.81 57.09 -1.95 -11.59 43.55 3830.04 64.07 -2.20 -11.77 50.10 3830.04 59.39 -2.20 -11.77 45.42 5748.09 60.27 -2.76 -10.98 46.53 7659.98 59.97 -2.94 -7.18 49.85	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) 3830.04 64.07 -2.20 -11.77 50.10 Max Peak 3830.04 59.39 -2.20 -11.77 45.42 Max Avg 5748.09 60.27 -2.76 -10.98 46.53 Fundamental 7659.98 59.97 -2.94 -7.18 49.85 Max Peak	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type Pol 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) Horizontal 3830.04 64.07 -2.20 -11.77 50.10 Max Peak Horizontal 3830.04 59.39 -2.20 -11.77 45.42 Max Avg Horizontal 5748.09 60.27 -2.76 -10.98 46.53 Fundamental Horizontal 7659.98 59.97 -2.94 -7.18 49.85 Max Peak Vertical	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type Pol Hgt cm 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) Horizontal 100 3830.04 64.07 -2.20 -11.77 50.10 Max Peak Horizontal 180 3830.04 59.39 -2.20 -11.77 45.42 Max Avg Horizontal 180 5748.09 60.27 -2.76 -10.98 46.53 Fundamental Horizontal 100 7659.98 59.97 -2.94 -7.18 49.85 Max Peak Vertical 140	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type Pol Hgt cm Azt Deg 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) Horizontal 100 6 3830.04 64.07 -2.20 -11.77 50.10 Max Peak Horizontal 180 29 3830.04 59.39 -2.20 -11.77 45.42 Max Avg Horizontal 180 29 5748.09 60.27 -2.76 -10.98 46.53 Fundamental Horizontal 100 60 7659.98 59.97 -2.94 -7.18 49.85 Max Peak Vertical 140 49	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type Pol Hgt cm Azt bg Limit dBμV/m 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) Horizontal 100 6 3830.04 64.07 -2.20 -11.77 50.10 Max Peak Horizontal 180 29 68.2 3830.04 59.39 -2.20 -11.77 45.42 Max Avg Horizontal 180 29 54.0 5748.09 60.27 -2.76 -10.98 46.53 Fundamental Horizontal 100 60 7659.98 59.97 -2.94 -7.18 49.85 Max Peak Vertical 140 49 68.2	requency MHz Raw dBμV Loss dB AF dB/m Level dBμV/m Measurement Type Pol Hgt cm Azt Deg Limit dBμV/m Margin dB 2956.81 57.09 -1.95 -11.59 43.55 Peak (NRB) Horizontal 100 6 3830.04 64.07 -2.20 -11.77 50.10 Max Peak Horizontal 180 29 68.2 -18.1 3830.04 59.39 -2.20 -11.77 45.42 Max Avg Horizontal 180 29 54.0 -8.6 5748.09 60.27 -2.76 -10.98 46.53 Fundamental Horizontal 100 60 7659.98 59.97 -2.94 -7.18 49.85 Max Peak Vertical 140 49 68.2 -18.4			

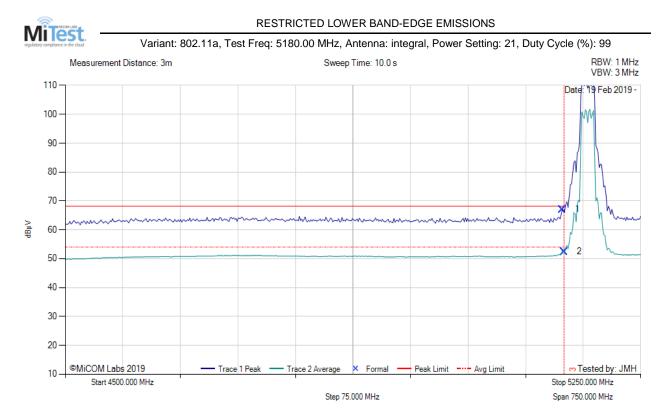
Test Notes: EUT powered by POE, connected to laptop outside chamber.

TX SPURIOUS & RESTRICTED BAND EMISSIONS Mites Variant: 802.11a, Test Freq: 5785.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 -Date: 20 Feb 2019 -80 70 60 3 4 × 5 ×× 50 2 JBµV 40 30 20 10 0-©MiCOM Labs 2019 Tested by: JMH Trace 2 Vertical × Formal Peak Limit Avg Limit Trace 1 Horizontal -10 Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz

					1000	.00 - 18000.00 N	1Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	3856.64	65.43	-2.21	-11.61	51.61	Max Peak	Vertical	196	14	68.2	-16.6	Pass
2	3856.64	61.49	-2.21	-11.61	47.67	Max Avg	Vertical	196	14	54.0	-6.3	Pass
3	5788.44	70.34	-2.75	-10.78	56.81	Fundamental	Horizontal	100	0			
4	7713.35	66.39	-2.92	-7.24	56.23	Max Peak	Horizontal	182	332	68.2	-12.0	Pass
5	7713.35	61.97	-2.92	-7.24	51.81	Max Avg	Horizontal	182	332	54.0	-2.2	Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber.

TX SPURIOUS & RESTRICTED BAND EMISSIONS Mites Variant: 802.11a, Test Freq: 5825.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 170 ms RBW: 1 MHz VBW: 3 MHz 90 Date: 20 Feb 2019 -80 70 60 3 × 5 ×× 50 2 4 manalin dBµV <mark>X</mark> 6 40 30 20 10 0-©MiCOM Labs 2019 Tested by: JMH Trace 2 Vertical × Formal Peak Limit Avg Limit Trace 1 Horizontal -10 Start 1000.000 MHz Stop 18.000 GHz Step 1700.000 MHz Span 17.000 GHz


1000.00 - 18000.00 MHz Num Frequency Raw Cable AF Level Measurement Pol Hgt Azt Limit Margin Pass														
requency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
3883.30	65.82	-2.24	-11.75	51.83	Max Peak	Vertical	197	1	68.2	-16.4	Pass			
3883.30	62.15	-2.24	-11.75	48.16	Max Avg	Vertical	197	1	54.0	-5.8	Pass			
5823.39	73.38	-2.80	-10.75	59.83	Fundamental	Horizontal	151	0						
7766.61	57.58	-3.00	-7.17	47.41	Peak (NRB)	Horizontal	151	0			Pass			
1650.12	62.98	-4.21	-4.40	54.37	Max Peak	Horizontal	197	7	68.2	-13.9	Pass			
1650.12	49.04	-4.21	-4.40	40.43	Max Avg	Horizontal	197	7	54.0	-13.6	Pass			
3 5 7	883.30 883.30 8823.39 766.61 1650.12	8883.30 65.82 8883.30 62.15 883.39 73.38 766.61 57.58 1650.12 62.98	MHz dBµV dB 883.30 65.82 -2.24 883.30 62.15 -2.24 883.39 73.38 -2.80 766.61 57.58 -3.00 1650.12 62.98 -4.21	MHz dBµV dB dB/M 883.30 65.82 -2.24 -11.75 883.30 62.15 -2.24 -11.75 883.30 62.15 -2.24 -11.75 883.30 62.15 -2.24 -11.75 883.30 62.15 -2.24 -11.75 883.30 62.15 -2.20 -10.75 766.61 57.58 -3.00 -7.17 1650.12 62.98 -4.21 -4.40	MHz dBµV dB dB/m dBµV/m 883.30 65.82 -2.24 -11.75 51.83 883.30 62.15 -2.24 -11.75 48.16 8823.39 73.38 -2.80 -10.75 59.83 766.61 57.58 -3.00 -7.17 47.41 1650.12 62.98 -4.21 -4.40 54.37	MHz dBµV dB dB/m dBµV/m Type 883.30 65.82 -2.24 -11.75 51.83 Max Peak 883.30 62.15 -2.24 -11.75 48.16 Max Avg 8823.39 73.38 -2.80 -10.75 59.83 Fundamental 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) 1650.12 62.98 -4.21 -4.40 54.37 Max Peak	MHz dBµV dB/m dB/m dBµV/m Type 883.30 65.82 -2.24 -11.75 51.83 Max Peak Vertical 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 883.30 62.15 -2.24 -11.75 59.83 Fundamental Horizontal 882.39 73.38 -2.80 -10.75 59.83 Fundamental Horizontal 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) Horizontal 1650.12 62.98 -4.21 -4.40 54.37 Max Peak Horizontal	MHz dBµV dB/m dBµV/m Type cm 883.30 65.82 -2.24 -11.75 51.83 Max Peak Vertical 197 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 197 883.30 62.15 -2.24 -11.75 59.83 Fundamental Horizontal 197 8823.39 73.38 -2.80 -10.75 59.83 Fundamental Horizontal 151 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) Horizontal 151 1650.12 62.98 -4.21 -4.40 54.37 Max Peak Horizontal 197	MHz dBµV dB/ dB// dBµV/m Type cm Deg 883.30 65.82 -2.24 -11.75 51.83 Max Peak Vertical 197 1 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 197 1 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 197 1 883.30 62.15 -2.24 -11.75 59.83 Fundamental Horizontal 151 0 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) Horizontal 151 0 1650.12 62.98 -4.21 -4.40 54.37 Max Peak Horizontal 197 7	MHz dBµV dBµ dBµV/m dBµV/m Type cm Deg dBµV/m 883.30 65.82 -2.24 -11.75 51.83 Max Peak Vertical 197 1 68.2 883.30 62.15 -2.24 -11.75 51.83 Max Avg Vertical 197 1 54.0 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 197 1 54.0 8823.39 73.38 -2.80 -10.75 59.83 Fundamental Horizontal 151 0 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) Horizontal 151 0 1650.12 62.98 -4.21 -4.40 54.37 Max Peak Horizontal 197 7 68.2	MHz dBµV dBµ dBµV/m dBµV/m Type cm Deg dBµV/m dBµ 883.30 65.82 -2.24 -11.75 51.83 Max Peak Vertical 197 1 68.2 -16.4 883.30 62.15 -2.24 -11.75 48.16 Max Avg Vertical 197 1 54.0 -5.8 8823.39 73.38 -2.80 -10.75 59.83 Fundamental Horizontal 151 0 766.61 57.58 -3.00 -7.17 47.41 Peak (NRB) Horizontal 151 0 1650.12 62.98 -4.21 -4.40 54.37 Max Peak Horizontal 197 7 68.2 -13.9			

Test Notes: EUT powered by POE, connected to laptop outside chamber.

A.4.2. Restricted Edge & Band-Edge Emissions

A.4.2.2. integral

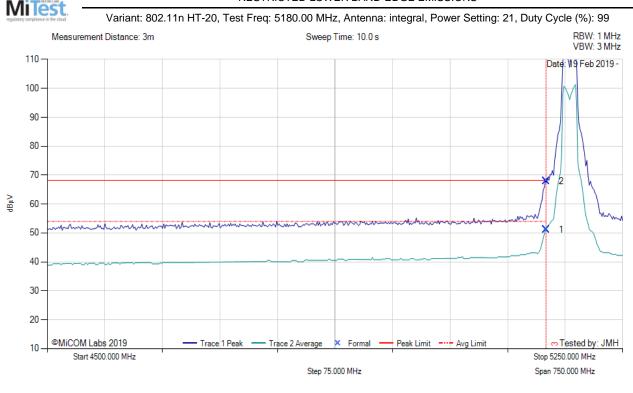
					4500).00 - 5250.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5147.80	35.41	-2.61	34.21	67.01	Max Peak	Horizontal	191	9	68.2	-1.2	Pass
2	5150.00	20.83	-2.61	34.21	52.43	Max Avg	Horizontal	191	9	54.0	-1.6	Pass
3	5150.00					Restricted- Band						

Test Notes: EUT powered by POE, connected to laptop outside chamber

Mite Variant: 802.11ac-80, Test Freq: 5210.00 MHz, Antenna: integral, Power Setting: 17, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 10.0 s RBW: 1 MHz VBW: 3 MHz 110-Date: 19 Feb 2019 -100 90 80 70 JBµV 60 50 40 30 20 ©MiCOM Labs 2019 m Tested by: JMH Trace 1 Peak Trace 2 Average Formal Peak Limit Avg Limit × 10 -Start 4500.000 MHz Stop 5250.000 MHz Step 75.000 MHz Span 750.000 MHz

RESTRICTED LOWER BAND-EDGE EMISSIONS

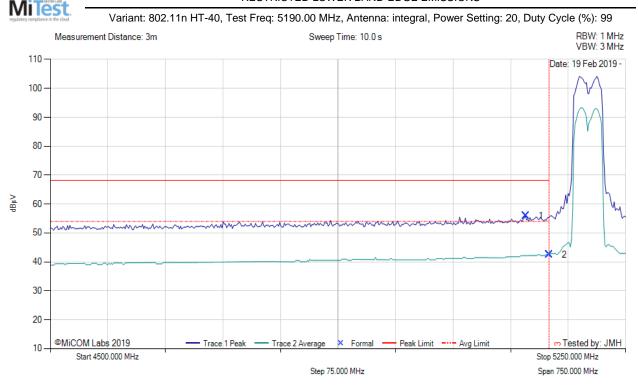
					4500	.00 - 5250.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5142.48	15.35	-2.63	34.20	46.92	Max Avg	Horizontal	191	9	54.0	-7.1	Pass
2	5146.99	35.99	-2.61	34.21	67.59	Max Peak	Horizontal	191	9	68.2	-0.6	Pass
3	5150.00					Restricted- Band						


Test Notes: EUT powered by POE, connected to laptop outside chamber. Reduced power to meet band edge.

back to matrix

Page: 175 of 186

RESTRICTED LOWER BAND-EDGE EMISSIONS



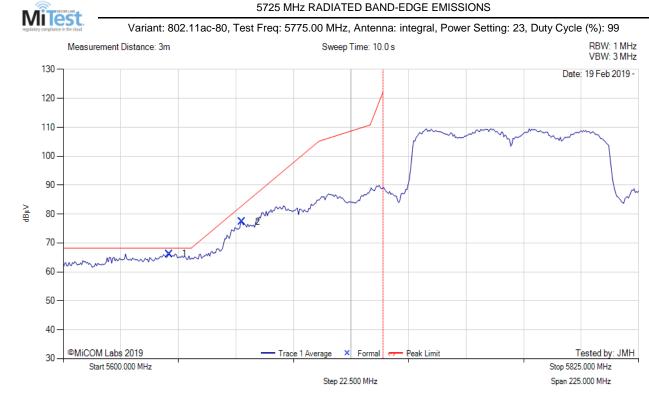
					4500	.00 - 5250.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5150.00	19.57	-2.61	34.21	51.17	Max Avg	Horizontal	191	9	54.0	-2.8	Pass
2	5150.00	36.32	-2.61	34.21	67.92	Max Peak	Horizontal	191	9	68.2	-0.3	Pass
3	5150.00					Restricted- Band						

Test Notes: EUT powered by POE, connected to laptop outside chamber

RESTRICTED LOWER BAND-EDGE EMISSIONS

					4500).00 - 5250.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5119.94	24.32	-2.61	34.16	55.87	Max Peak	Horizontal	191	9	68.2	-12.4	Pass
2	5150.00	10.96	-2.61	34.21	42.56	Max Avg	Horizontal	191	9	54.0	-11.4	Pass
3	5150.00					Restricted- Band						

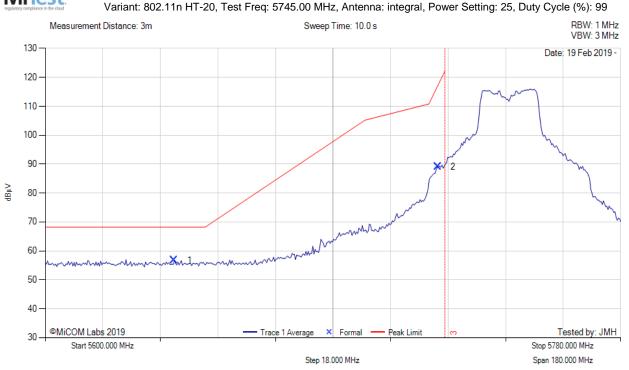
Test Notes: EUT powered by POE, connected to laptop outside chamber. Reduced power to meet band edge. Large increase in signal with any larger PS


Mite Variant: 802.11a, Test Freq: 5745.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s VBW: 3 MHz 130 -Date: 19 Feb 2019 -120 110 100 90 JBµV 80 70 60 50 40 ©MiCOM Labs 2019 Tested by: JMH Trace 1 Average × Formal Peak Limi 30 -Start 5600.000 MHz Stop 5780.000 MHz Step 18.000 MHz Span 180.000 MHz

5725 MHz RADIATED BAND-EDGE EMISSIONS

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5634.56	24.85	-2.70	34.64	56.79	Max Avg	Horizontal	190	348	68.2	-11.4	Pass
2	5722.47	59.35	-2.75	34.72	91.32	Max Avg	Horizontal	190	348	115.4	-24.0	Pass
3	5725.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber.


Num MHz dBμV Loss dB dB/m dBμV/m Type Pol cm Deg dBμV/m dB 1 5641.50 34.30 -2.72 34.64 66.22 Max Avg Horizontal 190 348 68.2 -2.0 2 5669.94 45.43 -2.78 34.65 77.30 Max Avg Horizontal 190 348 83.0 -5.7						5600).00 - 5825.00 M	Hz					
2 5669.94 45.43 -2.78 34.65 77.30 Max Avg Horizontal 190 348 83.0 -5.7	Num		-	Loss				Pol	-			0	Pass /Fail
	1	5641.50	34.30	-2.72	34.64	66.22	Max Avg	Horizontal	190	348	68.2	-2.0	Pass
	2	5669.94	45.43	-2.78	34.65	77.30	Max Avg	Horizontal	190	348	83.0	-5.7	Pass
3 5725.00 Band-Edge	3	5725.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber.

MiTest

5725 MHz RADIATED BAND-EDGE EMISSIONS

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5640.33	24.82	-2.71	34.64	56.75	Max Avg	Horizontal	190	348	68.2	-11.5	Pass
2	5722.84	57.17	-2.75	34.72	89.14	Max Avg	Horizontal	190	348	117.6	-28.5	Pass
3	5725.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber.

5725 MHz RADIATED BAND-EDGE EMISSIONS Mites Variant: 802.11n HT-40, Test Freq: 5755.00 MHz, Antenna: integral, Power Setting: 22, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s VBW: 3 MHz 130 -Date: 19 Feb 2019 -120 110 100 90 JBµV 80 mm 70 60 mm mm 50 40 ©MiCOM Labs 2019 Tested by: JMH Trace 1 Average × Formal Peak Limi 30 -Start 5600.000 MHz Stop 5780.000 MHz Step 18.000 MHz Span 180.000 MHz

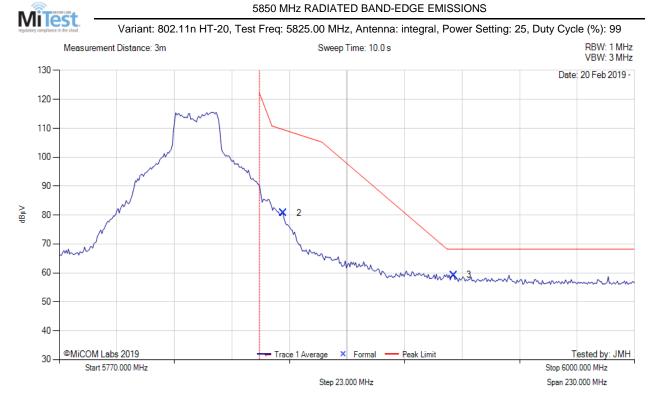
					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5649.71	30.10	-2.72	34.63	62.01	Max Avg	Horizontal	190	348	68.2	-6.2	Pass
2	5717.06	57.89	-2.77	34.71	89.83	Max Avg	Horizontal	190	348	110.0	-20.1	Pass
3	5725.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber.

5850 MHz RADIATED BAND-EDGE EMISSIONS Mites Variant: 802.11a, Test Freq: 5825.00 MHz, Antenna: integral, Power Setting: 25, Duty Cycle (%): 99 Measurement Distance: 3m Sweep Time: 10.0 s RBW: 1 MHz VBW: 3 MHz 130 -Date: 20 Feb 2019 -120 110 100 90 2 JBµV 80 70 -1.M 60 har Muy & Bar was a for an man man 50 40 ©MiCOM Labs 2019 Tested by: JMH Trace 1 Average × Formal Peak Limi 30 -Start 5770.000 MHz Stop 6000.000 MHz Step 23.000 MHz Span 230.000 MHz

5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	5857.84	50.34	-2.77	34.98	82.55	Max Avg	Horizontal	189	348	68.2	-27.7	Pass
3	5925.91	26.95	-2.78	35.11	59.28	Max Avg	Horizontal	189	348	68.2	-8.9	Pass
1	5850.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber.



5850 MHz RADIATED BAND-EDGE EMISSIONS Mites Variant: 802.11ac-80, Test Freq: 5775.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s VBW: 3 MHz 130 -Date: 20 Feb 2019 -120 110 100 90 JBµV 80 m. X 2 70 🗙 З 60 mm 50 40 ©MiCOM Labs 2019 Tested by: JMH Trace 1 Average × Formal Peak Limi 30 -Start 5770.000 MHz Stop 6000.000 MHz Step 23.000 MHz Span 230.000 MHz

5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	5881.34	39.66	0.00	35.05	74.71	Max Avg	Horizontal	189	348	101.2	-26.5	Pass
3	5925.91	31.93	-2.78	35.11	64.26	Max Avg	Horizontal	189	348	68.2	-4.0	Pass
1	5850.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber

5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	5859.61	48.49	-2.77	34.99	80.71	Max Avg	Horizontal	189	348	110.5	-29.8	Pass
3	5927.76	26.96	-2.78	35.11	59.29	Max Avg	Horizontal	189	348	68.2	-8.9	Pass
1	5850.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber

MiTes Variant: 802.11n HT-40, Test Freq: 5795.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99 RBW: 1 MHz Measurement Distance: 3m Sweep Time: 10.0 s VBW: 3 MHz 130 -Date: 20 Feb 2019 -120 110 100 90 JBµV 80 70 60 mm 50 40 ©MiCOM Labs 2019 Tested by: JMH Trace 1 Average × Formal Peak Limi 30 -Start 5770.000 MHz Stop 6000.000 MHz Step 23.000 MHz Span 230.000 MHz

5850 MHz RADIATED BAND-EDGE EMISSIONS

5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
2	5896.86	40.99	-2.79	35.09	73.29	Max Avg	Horizontal	189	348	89.9	-16.6	Pass
3	5924.53	33.43	-2.79	35.11	65.75	Max Avg	Horizontal	189	348	68.2	-2.5	Pass
1	5850.00					Band-Edge						

Test Notes: EUT powered by POE, connected to laptop outside chamber

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com