

Submittal Application Report

FOR Grant of Certification

Model: RBSXT5HacD2n-US 2412-2462 MHz

Broadband Digital Transmission System FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

FOR

Mikrotikls SIA

Pernavas 46 Str. Riga LV-1009 Latvia

Test Report Number: 160823 FCC Site Registration: 90910

IC Test Site Registration: 3041A-1

Authorized Signatory: Scot D. Rogers

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 1 of 44

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report for Grant of Certification Application

Broadband Digital Transmission System CFR 47, PART 15C - Paragraph 15.247 Industry Canada RSS-247 Issue1

License Exempt Intentional Radiator
For

Mikrotikls SIA

Pernavas 46 Str. Riga LV-1009 Latvia

Broadband Digital Transmission System

Model: RBSXT5HacD2n-US Frequency Range 2412-2462 MHz FCC: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Test Date: August 23, 2016

Certifying Engineer:

Scot D Rogers

Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 2 of 44

Table Of Contents

TABLE OF CONTENTS	3
REVISIONS	5
FORWARD	6
OPINION / INTERPRETATION OF RESULTS	6
EQUIPMENT TESTED	6
EQUIPMENT FUNCTION AND CONFIGURATION	7
Equipment Configuration	8
APPLICANT COMPANY INFORMATION	9
Equipment information	9
Product Details	10
Accessories	11
Table for Filed Antennas	11
Antenna and Bandwidth	11
IEEE 11a/n Spec	12
Table for Carrier Frequencies	12
Table for Test Modes	12
Test Result of Occupied Bandwidth	15
APPLICATION FOR CERTIFICATION	16
APPLICABLE STANDARDS & TEST PROCEDURES	17
EQUIPMENT TESTING PROCEDURES	17
AC Line Conducted Emission Test Procedure	17
Radiated Emission Test Procedure	17
Diagram 1 Test arrangement for Conducted emissions	18

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR 15.247, RSS-247

File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 10, 2016

Page 3 of 44

Diagram 2 Test arrangement for radiated emissions of tabletop equipment	19
Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)	20
TEST SITE LOCATIONS	20
LIST OF TEST EQUIPMENT	21
UNITS OF MEASUREMENTS	22
ENVIRONMENTAL CONDITIONS	22
INTENTIONAL RADIATORS	22
Antenna Requirements	22
Restricted Bands of Operation	22
Table 1 General Radiated Emissions in Restricted Bands Data (worst-case, all modes)	23
Summary of Results for Radiated Emissions in Restricted Bands	23
AC Line Conducted Emissions Procedure	24
Figure 1 AC Line Conducted Emissions Line 1	25
Figure 2 AC Line Conducted Emissions Line 2	25
Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)	26
Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2)	
Summary of Results for AC Line Conducted Emissions	26
General Radiated Emissions Procedure	27
Table 4 General Radiated Emissions from EUT Data (Highest Emissions)	
Summary of Results for General Radiated Emissions	
Operation in the 2400-2483.5 MHz Frequency Band	
Figure 3 Plot of Transmitter Emissions (Across Operational Band 802.11b)	
Figure 5 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40))	
· · · · · · · · · · · · · · · · · · ·	

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 4 of 44

Figure 6 Plot of Transmitter Low Band Edge (802.11b)	31
Figure 7 Plot of Transmitter Low Band Edge (802.11g)	32
Figure 8 Plot of Transmitter Low Band Edge (802.11n (40))	32
Figure 9 Plot of Transmitter High Band Edge (802.11b)	33
Figure 10 Plot of Transmitter High Band Edge (802.11g)	33
Figure 11 Plot of Transmitter High Band Edge (802.11n (40))	34
Figure 12 Plot of Transmitter 6-dB Occupied Band Width (802.11b)	34
Figure 13 Plot of Transmitter 6-dB Occupied Band Width (802.11g)	35
Figure 14 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40))	35
Transmitter Emissions Data	36
Table 5 Transmitter Power and Emissions	36
Table 6 Transmitter Radiated Emissions (Worst-case all modes)	37
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	38
STATEMENT OF MODIFICATIONS AND DEVIATIONS	38
ANNEX	39
Annex A Measurement Uncertainty Calculations	40
Annex B Rogers Labs Test Equipment List	41
Annex C Rogers Qualifications	42
Annex D FCC Site Registration Letter	43
Annex E Industry Canada Site Registration Letter	44

Revisions

Revision 1 Issued October 10, 2016

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 5 of 44

Forward

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under 47CFR Paragraph 15.247 and RSS-247 Issue 1 Digital Modulation transmitter operation in the 2412-2462 MHz band.

Name of Applicant: Mikrotikls SIA FRN: 0014 43 1100

Pernavas 46 Str.

Riga LV-1009 Latvia

Model: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Frequency Range: 2412-2462 MHz (802.11b/g/n mode operation), 2422-2452 MHz (802.11n

40 MHz channel operation)

Total Operating Power: average power 0.042 watts, OBW 16,400 or 36,150 kHz

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Frequency Bands 15.205, RSS-GEN 8.10	-0.7	Complies
AC Line Conducted 15.207, RSS-GEN 7.2.4	-9.5	Complies
Radiated Emissions 15.209, RSS-GEN 7.2.5	-6.6	Complies
Harmonic Emissions per 15.247, RSS-247	-0.7	Complies
Peak Power Spectral Density per 15.247, RSS-247	-14.9	Complies

Equipment Tested

Equipment Model FCC I.D.

EUT RBSXT5HacD2n-US TV7SXT5HACD2N

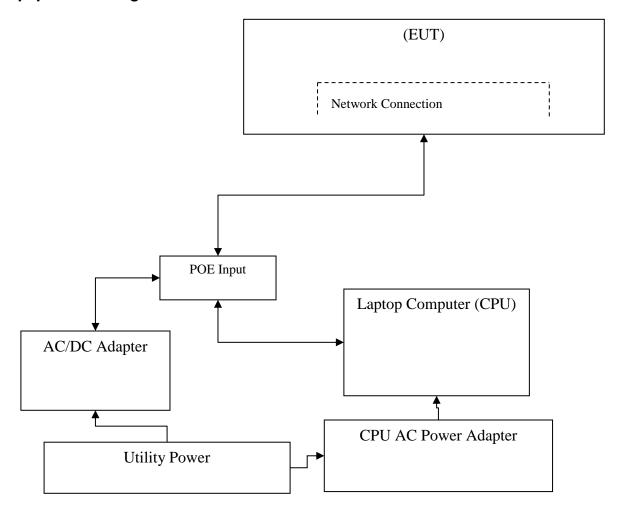
AC Adapter FLD301-240120-U N/A
Power Adapter POE N/A
Dell Studio XPS 921LBN1 N/A

Test results in this report relate only to the items tested.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 6 of 44

Equipment Function and Configuration


The EUT is a 2412-2462 MHz Digital Transmission System used to transmit data in applications offering broadband wireless connectivity. The design utilizes internal fixed metal stamped PIFA antenna system and offers no provision for antenna replacement or modification. The system provides single transmitter chain. Two samples were provided for testing, one representative of production sample, and the other modified to provide antenna port connection for the transmitter chain. For testing purposes, the EUT transceiver was connected to the manufacturer supplied POE and AC/DC supply and communicating to the laptop computer through Ethernet network interface. This configuration provided operational control of the EUT and communications over the network interface between the EUT and supporting computer system. The design provides single network connection point for network interface and Power-Over-Ethernet (POE). The design provides no other interfacing options. For testing purposes, the RBSXT5HacD2n-US was configured to transmit in available data modes receiving power from the manufacturer provided AC/DC power adapter and POE. The antenna system complies with requirements for unique antenna connection port. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 7 of 44

Equipment Configuration

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 8 of 44

Applicant Company information

Applicants Company	MikroTik ("Mikrotīkls, SIA")
Applicants Address	Pernavas 46 Str., Riga LV-1009 Latvia
FCC Identifier	TV7SXT5HACD2N
Industry Canada Identifier	7442A-SXT5HACD2N
Manufacturer Company	MikroTik ("Mikrotīkls, SIA")
Manufacturer Address	Pernavas 46 Str., Riga LV-1009 Latvia

Equipment information

Ечиричени иногиваноп	
Product Marketing Name (PMN): The PMN is the name or model number under which the product will be marketed/offered for sale in Canada. If the product has PMN, it must be provided.	SXT Lite5 ac
Unique Product Number (UPN): The applicant, made up of a maximum of 11 alphanumeric characters (A-Z, 0-9), assigns the UPN.	SXT5HACD2N
Hardware Version Identification Number (HVIN): The HVIN identifies hardware specifications of a product version. The HVIN replaces the ISED Model Number in the legacy E- filing System. An HVIN is required for all products for certification applications.	RBSXT5HacD2n-US
Host Marketing Name (HMN) (if applicable): The HMN is the name or model number of a final product, which contains a certified radio module.	
Brand Name	
Model Number	RBSXT5HacD2n-US
Test Rule Part(s)	47CFR Parts 15C & 15E, 15.247, 15.407, RSS-247
Test Frequency Range	2.4-2.4835, 5.15-5.25 and 5.725-5.85 GHz
Project Number	160823
Submission Type	Certification

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 9 of 44

Product Details

Items	Description			
Product Type	WLAN 2.4 GHz and U-NII-1 and U-NII-3			
	WLAN [2x2MIMO, (2TX, 2RX)] 5 GHz			
Radio Type	Transceiver			
Power Type	POE adapter with External Power Supply			
Modulation	IEEE 802.11a: OFDM			
Modulation IEEE 802.11a. Or DW IEE 802.11a/n: see the below table				
Data Modulation	IEEE 802.11 a/n: OFDM (BPSK/QPSK/16QAM/64QAM)			
Data Wodulation	IEEE 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)			
	IEEE 802.11 g/n: OFDM (BPSK/QPSK/16QAM/64QAM)			
	IEEE 802.11 b: DSSS			
Data Rate (Mbps)	IEEE 802.11a/g: OFDM (6/9/12/18/24/36/48/54)			
Data Rate (Mops)	IEEE 802.11n/ac: see the below table			
	IEEE 802.11b: (1/21/2s/51/5s/111/11s)			
Frequency Range	2400-2483.5 MHz / 5150-5250 MHz / 5725-5850 MHz			
Channel Number	802.11b: 11 for 20MHz bandwidth			
Chamier Palmoer	802.11g/n: 11 for 20MHz bandwidth; 5 for 40MHz bandwidth			
	802.11a/n: 9 for 20MHz bandwidth; 4 for 40MHz bandwidth			
	802.11 a/c: 2 for 80 MHz bandwidth			
Channel Band Width	802.11 b: 13290 kHz			
(99%)	802.11 g: 16400 kHz			
(5570)	802.11 n (HT-40): 36150 kHz			
	U-NII-1:			
	IEEE 802.11a: 17400 kHz			
	IEEE 802.11a/n MCS0/Nss1 (VHT20): 17400 kHz			
	IEEE 802.11a/n MCS0/Nss1 (VHT40): 37275 kHz			
	IEEE 802.11a/c (VHT80): 77850 kHz			
	U-NII-4:			
	IEEE 802.11a: 22320 kHz			
	IEEE 802.11a/n MCS0/Nss1 (VHT20): 17400 kHz			
	IEEE 802.11 a/n MCS0/Nss1 (VHT40): 37200 kHz			
	IEEE 802.11 a/c MCS0/Nss1 (VHT80): 77850 kHz			
Maximum Conducted	Band 1:			
Output Power	IEEE 802.11a: 14.9 dBm			
	IEEE 802.11a/n MCS0/Nss1 (VHT20): 14.9 dBm			
	IEEE 802.11a/n MCS0/Nss1 (VHT40): 14.5 dBm			
	IEEE 802.11ac MCS0/Nss1 (VHT80): 14.4 dBm			
	Band 3: IEEE 802.11a: 13.8 dBm			
	IEEE 802.11a: 13.8 dBm IEEE 802.11a/n MCS0/Nss1 (VHT20): 13.8 dBm			
	IEEE 802.11a/n MCS0/Nss1 (VHT20): 13.8 dBm			
	IEEE 802.11a/II MCS0/Nss1 (VHT40): 14.0 dBIII IEEE 802.11ac MCS0/Nss1 (VHT80): 14.1 dBm			
G 1 F :	`			
Carrier Frequencies	Please refer to Table for Carrier Frequencies			

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 10 of 44

Antenna	Internal antennas include metal stamped Inverted F for 2.4 GHz with 2.7 dBi Gain and 5 GHz dual polarity panel patch antenna providing 16 dBi gain
Communication Mode	Device is operating in a 1x1 2.4 GHz Digital Transmission System and 2x2 5 GHz Spatial Multiplexing MIMO configuration. The design utilizes Multiple-Input-Multiple-Output (MIMO) operational capability. The design may be configured to transmit on both chains or chosen single chain (without automatic switching between chains). The unit may receive on single or all chains and may transmit on single or all chains. 5 GHz transmitter configuration could be (1tx, 1rx); (1tx, 2rx); (2tx, 1rx); (2tx, 2rx) Design provides operational capability to transmit in both frequency bands as well as both chains at same time.
Beamforming Function	Without beamforming
Operating Mode	2.4 GHz, 5150-5250 MHz (U-NII-1 band) and 5725-5825 MHz (U-NII-3) and frequency band of 5725-5850 MHz for use in Canada

Accessories

AC Power Adapter	FLD301-240120-U
Power Over Ethernet (POE) adapter	POE

Table for Filed Antennas

Ant.	Brand	Model Name	P/N	Antenna Type	Connector	Gain (dBi)
						2.4GHZ	5GHZ
1	Mikrotikls	Stamped inverted F	N/A	Inverted F	N/A	2.7	
2	Mikrotikls	SXT panel	N/A	Dual Polarity	N/A		16
				Patch Panel			

Antenna and Bandwidth

Antenna	TX chains		
Bandwidth Mode	20 MHz	40 MHz	80 MHz
IEEE 802.11b	1 from above list		
IEEE 802.11g	1 from above list		
IEEE 802.11n (HT20)	1 from above list		
IEEE 802.11n (HT40)		1 from above list	
IEEE 802.11a	2 from above list		
IEEE 802.11n		2 from above list	
IEEE 802.11ac			2 from above list

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 11 of 44

IEEE 11a/n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate/MCS
802.11a (HT20)	1, 2, or none	MCS 0-23
802.11n (HT40)	1, 2, or none	MCS 0-23
802.11a/n (VHT20)	1, 2, or none	MCS 0-9/Nss1-3
802.11a/n (VHT40)	1, 2, or none	MCS 0-9/Nss1-3
802.11a/n (VHT80)		

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). The EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80, and VHT160 (VHT:

Very High Throughput). The EUT does not support 802.11ac.

Note 3: Modulation modes consist of below configuration:

IEEE 802.11a/n: HT20/HT40; IEEE 802.11a/n: VHT20/VHT40, IEEE 802.11a/c: VHT80

Table for Carrier Frequencies

For 20MHz bandwidth systems, use Channel 1,6,11, 36, 40, 44, 48, 149, 153, 157, 161, 165. For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
2400-2483.5MHz	1	2412	2	2422
2400-2463.3WIIIZ	6	2437	7	2447
	11	2462	10	2452
5150-5250MHz	36	5180MHz	44	5220MHz
	38	5190MHz	46	5230MHz
U-NII-1	40	5200MHz	48	5240MHz
	42	5210MHz	-	-
5725-5850MHz	149	5745MHz	157	5785MHz
	151	5755MHz	159	5795MHz
U-NII-3	153	5765MHZ	161	5805MHz
	155	5775MHZ	165	5825MHz

Table for Test Modes

Preliminary tests were performed in different data rates to define the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all possible configurations while searching the worst cases. The following table is a list of the test modes investigated for this report.

Test Items	Mode		Data Rate	Channel	Chain
Mary Candwated	802.11b		11	1,6,11	1
Max. Conducted Output Power	802.11g		54	1,6,11	1
	802.11n HT20		65	1,6,11	1
	802.11n HT40		135	2,7,10	1

Rogers Labs, Inc.

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 12 of 44

		1	1	T	1
	11 a BPSK	Band 1&3	6Mbps	36/40/48/149/157/165	2, 3
	11a/n VHT20	Band 1&3	MCS0/Nss1	36/40/48/149/157/165	2, 3
	11a/n VHT40	Band 1&3	MCS0/Nss1	38/46/151/159	2, 3
	11a/n VHT80	Band 1&3	MCS0/Nss1	42,155	2, 3
Power Spectral	802.11b			1,6,11	1
Density	802.11g			1,6,11	1
	802.11n HT20			1,6,11	1
	802.11n HT40			2,7,10	1
	11a BPSK	Band 1&3	6Mbps	36//40/48/149/157/165	2, 3
	11a/n VHT20	Band 1&3	MCS0/Nss1	36/40/48/149/157/165	2, 3
	11a/n VHT40	Band 1&3	MCS0/Nss1	38/46/151/159	2, 3
	11a/n VHT80	Band 1&3	MCS0/Nss1	42,155	2, 3
26dB, 99%	802.11b			1,6,11	1
Occupied Bandwidth	802.11g			1,6,11	1
Measurement	802.11n HT20			1,6,11	1
	802.11n HT40			2,7,10	1
	11a BPSK	Band 1&3	6Mbps	36/40/48/149/157/165	2, 3
	11a/n VHT20	Band 1&3	MCS0/Nss1	36/40/48/149/157/165	2, 3
	11a/n VHT40	Band 1&3	MCS0/Nss1	38/46/151/159	2, 3
	11a/n VHT80	Band 1&3	MCS0/Nss1	42,155	2, 3
6dB Spectrum	802.11b			1,6,11	1
Bandwidth Measurement	802.11g			1,6,11	1
	802.11n HT20			1,6,11	1
	802.11n HT40			2,7,10	1
	802.11a BPSK	Band 3	6Mbps	149/157/165	2, 3
	802.11a/n VHT20	Band 3	MCS0/Nss1	149/157/165	2, 3
	802.11a/n VHT40	Band 3	MCS0/Nss1	151/159	2, 3
	802.11a/n VHT80	Band 3	MCS0/Nss1	42,155	2, 3
Radiated Emission Below 1GHz		1	-	-	
	802.11b			1,6,11	1

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 10, 2016

837-3214 Test to: 47CFR 15.247, RSS-247 Date: October File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 13 of 44

Radiated	802.11g			1,6,11	1
Emission Above 1GHz	802.11n HT20			1,6,11	1
	802.11n HT40			2,7,10	1
	11a BPSK	Band 1&3	6Mbps	36/40/48/149/157/165	2, 3
	802.11a/n VHT20	Band 1&3	MCS0/Nss1	36/40/48/149/157/165	2, 3
	802.11a/n VHT40	Band 1&3	MCS0/Nss1	38/46/151/159	2, 3
	802.11a/n VHT80	Band 1&3	MCS0/Nss1	42,155	2, 3
Dand Edge	802.11b			1,6,11	1
Band Edge Emission	802.11g			1,6,11	1
	802.11n HT20			1,6,11	1
	802.11n HT40			2,7,10	1
	11a BPSK	Band 1&3	6Mbps	36/40/48/149/157/165	2, 3
	802.11a/n VHT20	Band 1&3	MCS0/Nss1	36/40/48/149/157/165	2, 3
	802.11a/n VHT40	Band 1&3	MCS0/Nss1	38/46/151/159	2, 3
	802.11a/n VHT80	Band 1&3	MCS0/Nss1	42,155	2, 3
Eraguanav	20MHz	Band 1&3	-	40/157	2, 3
Frequency Stability	40MHz	Band 1&3	-	38/151	2, 3
	80MHz	Band 1&3	-		2, 3

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 14 of 44

Test Result of Occupied Bandwidth

Mode	Frequency	26dB Bandwidth	6dB Bandwidth	99% Occupied Bandwidth (kHz)
802.11b	2412 MII-	(kHz)	(kHz)	,
002.110	2412 MHz	N/A	10220 kHz	13230 kHz
	2437 MHz	N/A	10100 kHz	13260 kHz
000 11	2462 MHz	N/A	10120 kHz	13290 kHz
802.11g	2412 MHz	N/A	15150 kHz	16400 kHz
	2437 MHz	N/A	15150 kHz	16360 kHz
	2462 MHz	N/A	15150 kHz	16360 kHz
802.11n (HT20)	2412 MHz	N/A	15150 kHz	16400 kHz
	2437 MHz	N/A	15150 kHz	16360 kHz
	2462 MHz	N/A	15150 kHz	16360 kHz
802.11n (HT40)	2422 MHz	N/A	34125 kHz	36000 kHz
	2447 MHz	N/A	34500 kHz	36075 kHz
	2452 MHz	N/A	33825 kHz	36150 kHz
	5180 MHz	21880 kHz	N/A	17400 kHz
802.11a	5200 MHz	22040 kHz	N/A	17360 kHz
002.11a	5240 MHz	22480 kHz	N/A	17400 kHz
	5745 MHz	N/A	16400 kHz	17360 kHz
	5785 MHz	N/A	16400 kHz	17360 kHz
	5825 MHz	N/A	16400 kHz	17400 kHz
802.11n (ht20)	5180 MHz	22080 kHz	N/A	17360 kHz
	5200 MHz	22120 kHz	N/A	17400 kHz
	5240 MHz	21800 kHz	N/A	17400 kHz
	5745 MHz	N/A	16400 kHz	22320 kHz
	5785 MHz	N/A	16400 kHz	22280 kHz
	5825 MHz	N/A	16400 kHz	22880 kHz
802.11a/n MCS0/Nss1	5190 MHz	45225 kHz	N/A	37275 kHz
VHT40	5230 MHz	46950 kHz	N/A	37275 kHz
	5755 MHz	N/A	36375 kHz	37200 kHz
	5795 MHz	N/A	36375 kHz	37200 kHz
802.11ac VHT80	5210 MHz	90300 kHz	N/A	77850 kHz
802.11ac VHT80	5775 MHz	N/A	76350 kHz	77850 kHz

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 15 of 44

Application for Certification

(1) Manufacturer: Mikrotikls SIA

Pernavas 46 Str.

Riga LV-1009 Latvia

(2) Identification: Model: RBSXT5HacD2n-US

FCC I.D.: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from power received from authorized AC/DC power adapter and POE. The EUT provides single Ethernet port for communications and power. During testing, the EUT was powered from the POE and AC/DC power supply and connected to CPU through network cable.
- (9) Transition Provisions of 47CFR 15.37 are not requested
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. Not applicable to this filing.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provide in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc.

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 16 of 44

Applicable Standards & Test Procedures

The following information is submitted in accordance eCFR47 dated October 1, 2015, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247 and Industry Canada RSS-247 Issue 1 and RSS-Gen Issue 4. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013, KDB 558074 D01 v03r05, RSS-247 Issue 1, and RSS-GEN Issue 4, the following information is submitted for processing application for Certification.

Equipment Testing Procedures

AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50-µHy choke. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emission testing was performed as required and specified in ANSI C63.10-2013 and referenced KDB documents. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. The table permitted orientation of the EUT in each of three orthogonal axis positions during testing. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 25,000 MHz was searched for during preliminary investigation. Refer to diagrams two and three showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc.

Mikrotikls SIA

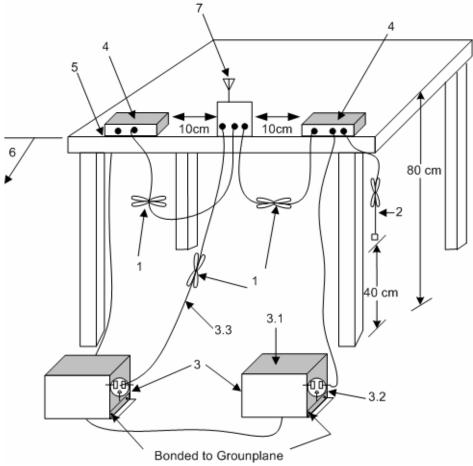
S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Test #: 160823


Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 17 of 44

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.2).
- 2. The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis
- 4. Non-EUT components of EUT system being tested
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop (see 6.2.3.2).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 18 of 44

- 1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
 - 1.1 LISN spaced at least 80 cm from nearest part of EUT chassis.
- 2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
- 4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions of tabletop equipment

Rogers Labs, Inc.

Mikrotikls SIA

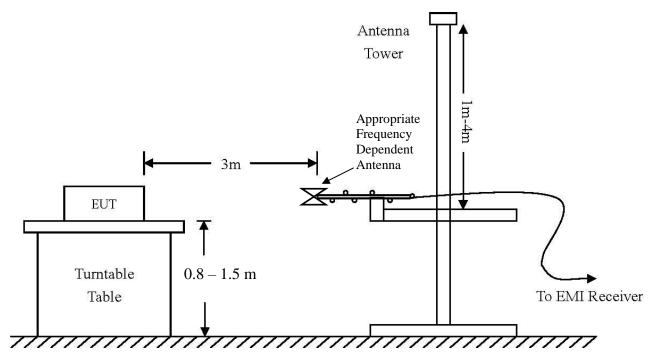
Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US


FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 19 of 44

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 120 kHz	VBW = 1 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK, AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded

screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg,

KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test

Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg,

KS

Site Registration Refer to Annex for Site Registration Letters

NVLAP Accreditation Lab code 200087-0

Rogers Labs, Inc.

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 20 of 44

List of Test Equipment

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

AC Line Conducted Emissions (0.150 -30 MHz)							
RBW	AVG. BW	Detector Function					
9 kHz	30 kHz Peak / Quasi Pe						
	Emissions (30-1000 MHz)						
RBW	AVG. BW	Detector Function					
120 kHz	300 kHz	Peak / Quasi Peak					
	Emissions (Above 1000 MHz)						
RBW	Video BW	Detector Function					
100 kHz	100 kHz	Peak					
1 MHz	1 MHz	Peak / Average					

<u>Equipment</u>	<u>Manufacturer</u>	Model (SN)	<u>Band</u>	Cal Date	<u>Due</u>
\boxtimes LISN	FCC FCC-LIS	SN-50-2-10(1PA) (160611)	.15-30MHz	5/16	5/17
⊠ Cable	Time Microwave	750HF290-750 (L10M)	9kHz-40 GHz	10/15	10/16
⊠ Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/15	10/16
⊠ Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/15	10/16
Antenna	ARA	BCD-235-B (169)	20-350MHz	10/15	10/16
Antenna	EMCO	3147 (40582)	200-1000MHz	10/15	10/16
Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	5/16	5/18
Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/15	10/16
Antenna	Com Power	AH-840 (101046)	18-40 GHz	5/16	5/18
Antenna	EMCO	6509 (9502-1374)	.001-30 MHz	10/15	10/16
Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/15	10/16
Antenna	EMCO	3143 (9607-1277)	20-1200 MHz	5/16	5/17
Analyzer	HP	8591EM (3628A00871)	9kHz-1.8GHz	5/16	5/17
Analyzer	HP	8562A (3051A05950)	9kHz-110GHz	5/16	5/17
Analyzer	HP External Mixer	s11571, 11970	40GHz-110GH	z5/16	5/17
Analyzer 🔀	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	5/16	5/17
Margar Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/15	10/16
Margar Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/15	10/16
	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/15	10/16

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 21 of 44

Units of Measurements

Conducted EMI Data is in dBµV; dB referenced to one microvolt

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$

Environmental Conditions

Ambient Temperature 23.6° C

Relative Humidity 35%

Atmospheric Pressure 1001.1 mb

Intentional Radiators

As per 47CFR part 15 subpart C, and Industry Canada RSS-247, Issue 1, the following information is submitted for consideration and demonstration of compliance with regulation and standards.

Antenna Requirements

The EUT incorporates integral antenna system and offers no provision for connection to alternate system. The EUT utilizes permanently attached metal stamped Planar Inverted F antenna (PIFA) mounted inside the enclosure. The antenna connection point complies with the unique antenna connection requirements. The requirements of 15.203 are fulfilled there are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the on the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in restricted bands. Emissions were investigated at the antenna port and OATS, using appropriate antennas or pyramidal horns, amplification stages, and spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed radiated emission values take into account the measured radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 22 of 44

Table 1 General Radiated Emissions in Restricted Bands Data (worst-case, all modes)

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
2390.0	52.4	N/A	32.2	58.1	N/A	47.0	54.0
2483.5	50.2	N/A	36.5	51.5	N/A	40.1	54.0
4824.0	55.8	N/A	53.2	56.2	N/A	52.9	54.0
4874.0	55.8	N/A	53.3	55.5	N/A	52.1	54.0
4924.0	53.6	N/A	50.2	53.7	N/A	50.2	54.0
7236.0	46.1	N/A	33.0	45.8	N/A	32.7	54.0
7311.0	46.2	N/A	33.7	46.3	N/A	33.7	54.0
7386.0	46.8	N/A	33.8	46.3	N/A	33.5	54.0
12060.0	52.8	N/A	39.3	52.0	N/A	39.5	54.0
12185.0	53.3	N/A	40.1	50.2	N/A	37.3	54.0
12310.0	50.6	N/A	38.0	51.5	N/A	38.1	54.0
14472.0	53.4	N/A	39.9	53.3	N/A	40.1	46.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the emissions requirements of 47CFR 15.205, RSS-GEN and RSS-247, Issue 1 Intentional Radiators. The EUT provided a worst-case minimum margin of -0.7 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Test #: 160823

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 23 of 44

AC Line Conducted Emissions Procedure

The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC adapter for the EUT was connected to the LISN for line-conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT support equipment. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the EUT support equipment AC Line Conducted emissions.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 24 of 44

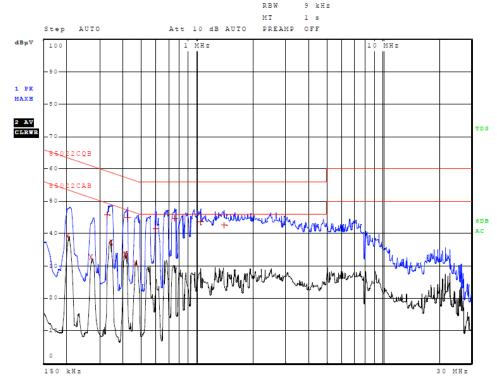


Figure 1 AC Line Conducted Emissions Line 1

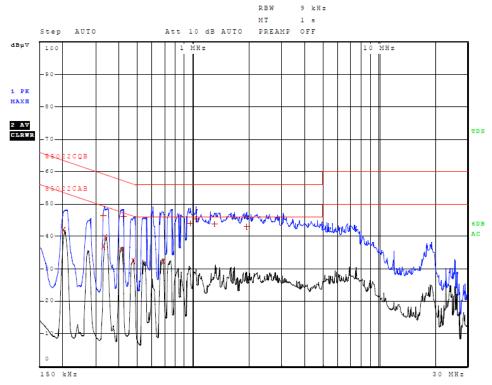


Figure 2 AC Line Conducted Emissions Line 2

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 25 of 44

Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
2	202.000000000	kHz	39.22	Average	-14.31
2	270.000000000	kHz	32.58	Average	-18.54
1	330.000000000	kHz	45.73	Quasi Peak	-13.72
2	342.000000000	kHz	37.26	Average	-11.89
2	406.000000000	kHz	33.43	Average	-14.30
2	414.000000000	kHz	33.49	Average	-14.08
1	418.000000000	kHz	45.09	Quasi Peak	-12.39
2	466.000000000	kHz	30.84	Average	-15.74
1	594.000000000	kHz	41.42	Quasi Peak	-14.58
1	758.000000000	kHz	44.65	Quasi Peak	-11.35
1	1.046000000	MHz	43.52	Quasi Peak	-12.48
1	1.394000000	MHz	42.46	Quasi Peak	-13.54

Other emissions present had amplitudes at least 20 dB below the limit.

Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2)

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
2	202.000000000	kHz	41.90	Average	-11.62
1	330.000000000	kHz	46.24	Quasi Peak	-13.21
2	330.000000000	kHz	36.80	Average	-12.65
2	338.000000000	kHz	39.70	Average	-9.55
2	414.000000000	kHz	35.85	Average	-11.72
1	418.000000000	kHz	46.09	Quasi Peak	-11.40
2	470.000000000	kHz	32.44	Average	-14.08
2	686.000000000	kHz	32.27	Average	-13.73
1	958.000000000	kHz	43.92	Quasi Peak	-12.08
1	1.038000000	MHz	45.23	Quasi Peak	-10.77
1	1.306000000	MHz	43.71	Quasi Peak	-12.29
1	1.938000000	MHz	42.92	Quasi Peak	-13.08

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions

The EUT test system demonstrated compliance to the conducted emissions requirements of 47CFR 15.207, RSS-247 Issue 1 and RSS-GEN. The EUT demonstrated minimum margin of -9.5 dB below the limit. Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 26 of 44

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or Double Ridge or pyramidal horns and mixers from 1 GHz to 25 GHz, notch filters, and appropriate amplifiers and external mixers were utilized.

 Rogers Labs, Inc.
 Mikrotikls SIA
 S/N: 5E7801DDBBE0/522

 4405 W. 259th Terrace
 Models: RBSXT5HacD2n-US
 FCC ID: TV7SXT5HACD2N

 Louisburg, KS 66053
 Test #: 160823
 IC: 7442A-SXT5HACD2N

 Phone/Fax: (913) 837-3214
 Test to: 47CFR 15.247, RSS-247
 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 27 of 44

Table 4 General Radiated Emissions from EUT Data (Highest Emissions)

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
47.8	34.2	29.4	N/A	40.2	32.2	N/A	40.0
50.4	36.3	33.4	N/A	35.8	30.4	N/A	40.0
51.1	38.1	32.9	N/A	39.8	28.8	N/A	40.0
63.4	36.7	25.5	N/A	33.6	25.9	N/A	40.0
70.8	36.5	26.4	N/A	34.5	23.9	N/A	40.0
76.5	39.7	27.2	N/A	31.1	23.2	N/A	40.0
108.8	38.2	31.2	N/A	33.0	26.1	N/A	43.5
113.1	33.7	24.3	N/A	30.8	23.3	N/A	43.5
143.4	39.7	27.2	N/A	27.2	21.3	N/A	43.5
155.7	36.5	24.6	N/A	30.1	26.2	N/A	43.5
179.2	33.8	23.3	N/A	23.1	17.4	N/A	43.5
183.0	33.5	19.1	N/A	23.0	14.9	N/A	43.5
222.7	34.1	21.3	N/A	32.2	17.9	N/A	46.0
230.9	35.2	20.9	N/A	26.9	21.0	N/A	46.0
252.8	45.2	31.3	N/A	33.0	22.3	N/A	46.0
258.2	46.6	33.2	N/A	29.4	23.2	N/A	46.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR part 15 and Industry Canada RSS-247 Issue 1 Intentional Radiators. The EUT demonstrated a minimum margin of -6.6 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 28 of 44

Operation in the 2400-2483.5 MHz Frequency Band

Radiated emissions were measured on the Open Area Test Site (OATS) at a three-meter distance. The EUT utilizes metal stamped PIFA permanently attached to the printed circuit board. A second test sample was provided with antenna port connection points replacing the internal antenna. Antenna conducted measurements were take on the second test sample. Radiated emissions measurements were performed on the test sample with integral antenna. The EUT was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the FSM antenna located on the OATS. The peak and quasi-peak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz were measured using a spectrum analyzer. Emissions data was recorded from the measurement results. Data presented reflects measurement result corrected to account for measurement system gains and losses. Plots were made of transmitter performance for reference purposes.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 29 of 44



Figure 3 Plot of Transmitter Emissions (Across Operational Band 802.11b)

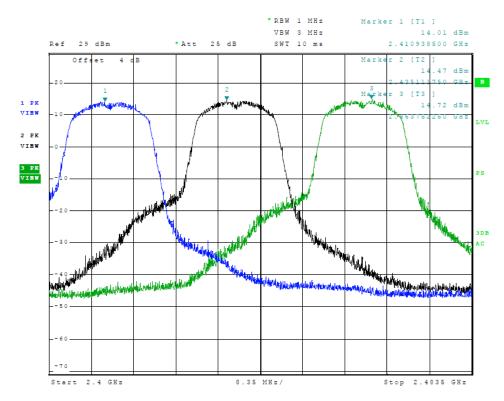


Figure 4 Plot of Transmitter Emissions (Across Operational Band, 802.11g)

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 30 of 44

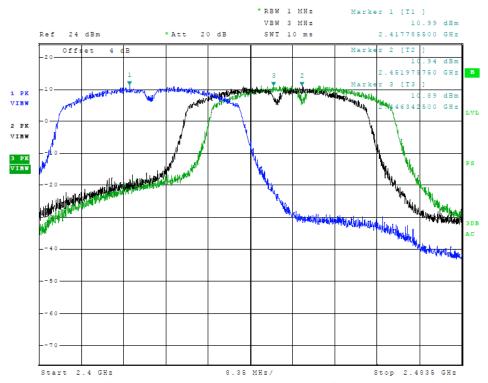


Figure 5 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40))

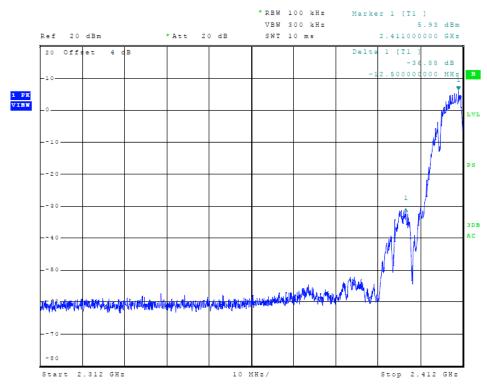


Figure 6 Plot of Transmitter Low Band Edge (802.11b)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR 15.247, RSS-247

File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 10, 2016

Page 31 of 44

Figure 7 Plot of Transmitter Low Band Edge (802.11g)

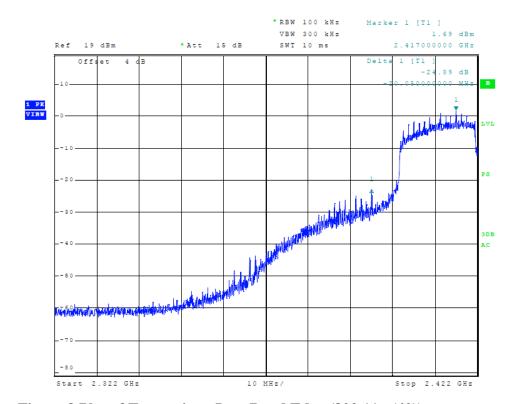


Figure 8 Plot of Transmitter Low Band Edge (802.11n (40))

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 32 of 44

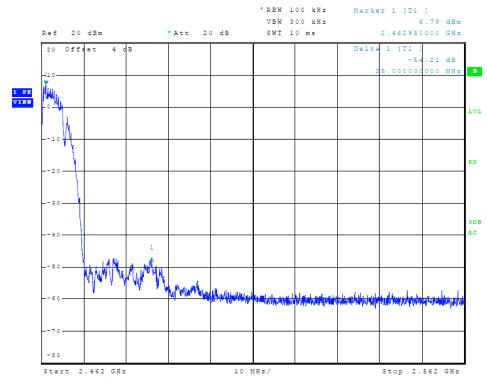


Figure 9 Plot of Transmitter High Band Edge (802.11b)

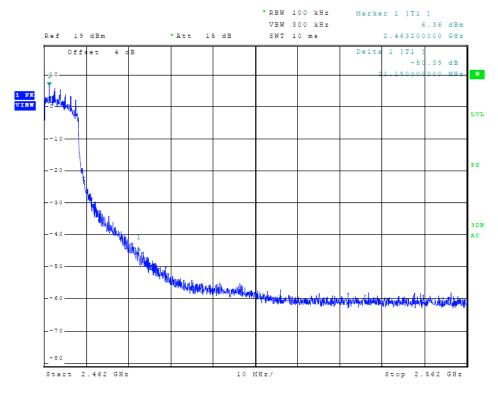


Figure 10 Plot of Transmitter High Band Edge (802.11g)

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 33 of 44

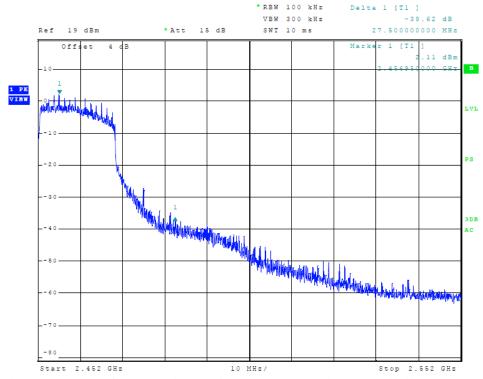


Figure 11 Plot of Transmitter High Band Edge (802.11n (40))

Figure 12 Plot of Transmitter 6-dB Occupied Band Width (802.11b)

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 34 of 44

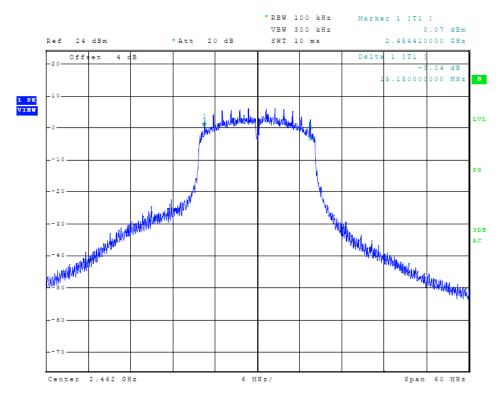


Figure 13 Plot of Transmitter 6-dB Occupied Band Width (802.11g)

Figure 14 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40))

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR 15.247, RSS-247 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 10, 2016

File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823

Page 35 of 44

Transmitter Emissions Data

Table 5 Transmitter Power and Emissions

Frequency MHz	Conducted Antenna Port Output Power (Watts)	6-dB Occupied Bandwidth kHz	Power Spectral Density dBm				
20 MHz b-Mode							
2412.0	0.036	10220	-7.25				
2437.0	0.039	10100	-6.94				
2462.0	0.038	10120	-6.79				
20 MHz g-Mode							
2412.0	0.035	15150	-8.74				
2437.0	0.039	15150	-7.50				
2462.0	0.042	15150	-7.17				
40 MHz Mode							
2422.0	0.029	34125	-12.77				
2447.0	0.030	34500	-12.76				
2452.0	0.033	33825	-12.64				

Rogers Labs, Inc.

Mikrotikls SIA

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 36 of 44

Table 6 Transmitter Radiated Emissions (Worst-case all modes)

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBμV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
2412.0	-	-	-	-	-
4824.0	55.8	53.2	56.2	52.9	54.0
7236.0	46.1	33.0	45.8	32.7	54.0
9648.0	48.1	35.8	47.3	34.5	54.0
12060.0	52.8	39.3	52.0	39.5	54.0
14472.0	53.4	39.9	53.3	40.1	54.0
16884.0	55.9	43.1	56.0	43.2	54.0
2437.0	-	-	-	-	-
4874.0	55.8	53.3	55.5	52.1	54.0
7311.0	46.2	33.7	46.3	33.7	54.0
9748.0	48.4	36.2	49.3	37.2	54.0
12185.0	53.3	40.1	50.2	37.3	54.0
14622.0	53.8	40.8	53.9	40.8	54.0
17059.0	56.0	43.2	56.1	43.2	54.0
2462.0	-	-	-	-	-
4924.0	53.6	50.2	53.7	50.2	54.0
7386.0	46.8	33.8	46.3	33.5	54.0
9848.0	48.8	36.6	48.9	35.6	54.0
12310.0	50.6	38.0	51.5	38.1	54.0
14772.0	53.4	40.4	53.3	40.6	54.0
17234.0	57.5	44.5	57.4	44.1	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Test #: 160823

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 37 of 44

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15.247 and Industry Canada RSS-247. The highest conducted power was 0.042-Watts. The worst-case total peak power spectral density provided a minimum margin of -14.9 dB below the requirements. The minimum radiated harmonic emission provided -0.7 dB margin below requirements. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. There were no other deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the 47CFR Part 15C and Industry Canada RSS-247 emissions requirements. There were no deviations or modifications to the specifications.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 38 of 44

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

 Rogers Labs, Inc.
 Mikrotikls SIA
 S/N: 5E7801DDBBE0/522

 4405 W. 259th Terrace
 Models: RBSXT5HacD2n-US
 FCC ID: TV7SXT5HACD2N

 Louisburg, KS 66053
 Test #: 160823
 IC: 7442A-SXT5HACD2N

 Phone/Fax: (913) 837-3214
 Test to: 47CFR 15.247, RSS-247
 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 39 of 44

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	U _(lab)
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR 15.247, RSS-247 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 40 of 44

List of Test Equipment Calibration Spectrum Analyzer: Rohde & Schwarz ESU40 Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520 5/10	5/17
•	
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520 5/10	5/17
2/10 2/10 2/10 2/10 2/10 2/10 2/10 2/10	
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
Spectrum Analyzer: HP 8591EM 5/10	5/17
Antenna: EMCO Biconilog Model: 3143 5/10	5/17
Antenna: Sunol Biconilog Model: JB6	5 10/16
Antenna: EMCO Log Periodic Model: 3147	5 10/16
Antenna: Com Power Model: AH-118	5 10/16
Antenna: Com Power Model: AH-840 5/10	5/18
Antenna: Antenna Research Biconical Model: BCD 235	5 10/16
Antenna: EMCO 6509	5 10/16
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/50 ohm/0.1 µf 10/	5 10/16
R.F. Preamp CPPA-102	5 10/16
Attenuator: HP Model: HP11509A	5 10/16
Attenuator: Mini Circuits Model: CAT-3	5 10/16
Attenuator: Mini Circuits Model: CAT-3	5 10/16
Cable: Belden RG-58 (L1)	5 10/16
Cable: Belden RG-58 (L2)	5 10/16
Cable: Belden 8268 (L3) 10/	5 10/16
Cable: Time Microwave: 4M-750HF290-750	5 10/16
Cable: Time Microwave: 10M-750HF290-750	5 10/16
Frequency Counter: Leader LDC825 2/10	2/17
Oscilloscope Scope: Tektronix 2230 2/10	2/17
Wattmeter: Bird 43 with Load Bird 8085	2/17
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140 2/10	2/17
R.F. Generators: HP 606A, HP 8614A, HP 8640B 2/10	2/17
R.F. Power Amp 65W Model: 470-A-1010 2/10	2/17
R.F. Power Amp 50W M185- 10-501 2/10	2/17
R.F. Power Amp A.R. Model: 10W 1010M7 2/10	2/17
R.F. Power Amp EIN Model: A301	
LISN: Compliance Eng. Model 240/20 2/10	2/17
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08 2/10	
Antenna: EMCO Dipole Set 3121C 2/10	2/17
Antenna: C.D. B-101 2/10	2/17
Antenna: Solar 9229-1 & 9230-1 2/10	
Audio Oscillator: H.P. 201CD 2/10	
ELGAR Model: 1751 2/10	
ELGAR Model: TG 704A-3D 2/10	2/17
ESD Test Set 2010i 2/10	
Fast Transient Burst Generator Model: EFT/B-101 2/10	
Field Intensity Meter: EFM-018 2/10	
KEYTEK Ecat Surge Generator 2/10	2/17
Shielded Room 5 M x 3 M x 3.0 M	

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 41 of 44

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

Scot DRogers

 Rogers Labs, Inc.
 Mikrotikls SIA
 S/N: 5E7801DDBBE0/522

 4405 W. 259th Terrace
 Models: RBSXT5HacD2n-US
 FCC ID: TV7SXT5HACD2N

 Louisburg, KS 66053
 Test #: 160823
 IC: 7442A-SXT5HACD2N

 Phone/Fax: (913) 837-3214
 Test to: 47CFR 15.247, RSS-247
 Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 42 of 44

Annex D FCC Site Registration Letter

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 16, 2015

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Attention:

Scot Rogers,

Re:

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: April 16, 2015

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Singrely,

Phylifs Parrish Industry Analyst

Rogers Labs, Inc. 4405 W. 259th Terrace

Mikrotikls SIA Models: RBSXT5HacD2n-US S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N

Louisburg, KS 66053

Revision 1

Test #: 160823

FCC ID: TV/SXT5HACD2N IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR 15.247, RSS-247

Date: October 10, 2016

File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823

Page 43 of 44

Annex E Industry Canada Site Registration Letter

Industry Canada Industrie Canada

June 08, 2015

OUR FILE: 46405-3041 Authorization No: 010277847-001

Rogers Labs Inc. 4405 West 259th Terrace Louisburg, KS USA 66053

Attention: Mr. Scot D. Rogers

Dear Sir:

The Bureau has received your application for the renewal of 3m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 3041A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2009 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2009 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2009 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Bill Payn

For: Wireless Laboratory Manager
Certification and Engineering Bureau
3701 Carling Ave., Building 94
P.O. Box 11490, Station AH@
Ottawa. Ontario K2H 8S2

Email: certification.bureau@ic.gc.ca

Rogers Labs, Inc.

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 10, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n DTS TstRpt 160823 Page 44 of 44