

Submittal Application Report

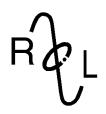
FOR Grant of Certification

FOR

Model: RB962UiGS-5HacT2HnT-US 2412-2462 MHz Broadband Digital Transmission System FCC ID: TV7RB962-5ACT2NT IC: 7442A-9625AC

FOR

Mikrotikls SIA


Pernavas 46 Str. Riga LV-1009 Latvia

Test Report Number: 160514b IC Test Site Registration: 3041A-1

Authorized Signatory: Scot D. Rogers

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 1 of 53

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report for Grant of Certification Application FOR Broadband Digital Transmission System CFR 47, PART 15C - Paragraph 15.247 Industry Canada RSS-247 Issue1

License Exempt Intentional Radiator

Mikrotikls SIA

Pernavas 46 Str. Riga LV-1009 Latvia

Broadband Digital Transmission System

Model: RB962UiGS-5HacT2HnT-US Frequency Range 2412-2462 MHz FCC: TV7RB962-5ACT2NT IC: 7442A-9625AC

Test Date: May 14, 2016

Certifying Engineer:

Soot DRogers

Scot D. Rogers Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 2 of 53

Table Of Contents

TABLE OF CONTENTS.		3
REVISIONS		5
FORWARD		6
OPINION / INTERPRETA	TION OF RESULTS	6
EQUIPMENT TESTED		6
EQUIPMENT FUNCTION	AND CONFIGURATION	7
Equipment Configuration		7
APPLICANT COMPANY	INFORMATION	8
Equipment information		8
Product Details		9
Accessories		10
Table for Filed Antennas		10
Table for Carrier Frequence	ies	10
Table for Test Modes		11
Test Result of Occupied Ba	ndwidth	12
APPLICATION FOR CEF	RTIFICATION	13
APPLICABLE STANDAR	DS & TEST PROCEDURES	14
EQUIPMENT TESTING F	PROCEDURES	14
AC Line Conducted Emissi	on Test Procedure	14
Radiated Emission Test Pro	ocedure	14
Diagram 1 Test arrangemen	t for Conducted emissions	15
Diagram 2 Test arrangemen	t for radiated emissions of tabletop equipment	16
Diagram 3 Test arrangemen	tt for radiated emissions tested on Open Area Test Site (OATS)	17
TEST SITE LOCATIONS		17
LIST OF TEST EQUIPME	ENT	18
UNITS OF MEASUREME	NTS	19
Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision2 File: Mikroti	Mikrotikls SIA S/N: 673705E3318F/603 Model: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NT Test #: 160514b IC: 7442A-9625AC Test to: 47CFR 15.247, RSS-247 Date: August 19, 2016 kls RB962UiGS5HacT2HnT DTS TstRpt 160514b2 Page 3 of 53	1

ENVIRONMENTAL	CONDITIONS	19
INTENTIONAL RAD	DIATORS	19
Antenna Requiremen	nts	19
Restricted Bands of	Operation	
Table 1 General Rad	liated Emissions in Restricted Bands Data (worst-case, all modes)	20
Summary of Results	for Radiated Emissions in Restricted Bands	20
	Emissions Procedure	
	onducted Emissions Line 1	
e	onducted Emissions Line 2	
-	nducted Emissions Data (Highest Emissions Line L1)	
	nducted Emissions Data (Highest Emissions Line L2)	
	for AC Line Conducted Emissions	
-	nissions Procedure	
	liated Emissions from EUT Data (Highest Emissions)	
	for General Radiated Emissions	
	0-2483.5 MHz Frequency Band	
-		
-	nsmitter Emissions (Across Operational Band 802.11b, Chain 0)	
•	nsmitter Emissions (Across Operational Band, 802.11g, Chain 0)	
e	nsmitter Emissions (Across Operational Band, 802.11n (40), Chain 0)	
-	nsmitter Low Band Edge (802.11b, Chain 0)	
	nsmitter Low Band Edge (802.11g, Chain 0)	
-	nsmitter Low Band Edge (802.11n (40), Chain 0)	
-	nsmitter High Band Edge (802.11b, Chain 0)	
•	ansmitter High Band Edge (802.11g, Chain 0)	
•	ansmitter High Band Edge (802.11n (40), Chain 0)	
-	ansmitter 6-dB Occupied Band Width (802.11b, Chain 0)	
Figure 13 Plot of Tra	ansmitter 6-dB Occupied Band Width (802.11g, Chain 0)	
Figure 14 Plot of Tra	ansmitter 6-dB Occupied Band Width (802.11n (40), Chain 0)	
Figure 15 Plot of Tra	ansmitter Emissions (Across Operational Band 802.11b, Chain 1)	
Figure 16 Plot of Tra	ansmitter Emissions (Across Operational Band, 802.11g, Chain 1)	
Figure 17 Plot of Tra	ansmitter Emissions (Across Operational Band, 802.11n (40), Chain 1)	
	ansmitter Low Band Edge (802.11b, Chain 1)	
Figure 19 Plot of Tra	ansmitter Low Band Edge (802.11g, Chain 1)	35
Figure 20 Plot of Tra	ansmitter Low Band Edge (802.11n (40), Chain 1)	35
Figure 21 Plot of Tra	ansmitter High Band Edge (802.11b, Chain 1)	
Figure 22 Plot of Tra	ansmitter High Band Edge (802.11g, Chain 1)	
Figure 23 Plot of Tra	ansmitter High Band Edge (802.11n (40), Chain 1)	
Figure 24 Plot of Tra	ansmitter 6-dB Occupied Band Width (802.11b, Chain 1)	
ogers Labs, Inc.	Mikrotikls SIA S/N: 673705E331	
405 W. 259th Terrace	Model: RB962UiGS-5HacT2HnT-US FCC: TV7RB962	
ouisburg, KS 66053	Test #: 160514b IC: 7442A-	
hone/Fax: (913) 837-321		
evision2 File: M	ikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2 Page	c 4 01 JJ

Figure 25 Plot of Transmitter 6-dB Occupied Band Width (802.11g, Chain 1)	
Figure 26 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40), Chain 1)	
Figure 27 Plot of Transmitter Emissions (Across Operational Band, 802.11b (20), Chain 2)	
Figure 28 Plot of Transmitter Emissions (Across Operational Band, 802.11g, Chain 2)	
Figure 29 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40), Chain 2)	40
Figure 30 Plot of Transmitter Low Band Edge (802.11b, Chain 2)	40
Figure 31 Plot of Transmitter Low Band Edge (802.11g, Chain 2)	41
Figure 32 Plot of Transmitter Low Band Edge (802.11n (40), Chain 2)	41
Figure 33 Plot of Transmitter High Band Edge (802.11b, Chain 2)	42
Figure 34 Plot of Transmitter High Band Edge (802.11g, Chain 2)	42
Figure 35 Plot of Transmitter High Band Edge (802.11n (40), Chain 2)	43
Figure 36 Plot of Transmitter 6-dB Occupied Band Width (802.11b, Chain 2)	43
Figure 37 Plot of Transmitter 6-dB Occupied Band Width (802.11g, Chain 2)	44
Figure 38 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40), Chain 2)	44
Transmitter Emissions Data	45
Table 5 Transmitter Power and Emissions	45
Table 6 Transmitter Radiated Emissions (Worst-case all modes)	46
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	47
STATEMENT OF MODIFICATIONS AND DEVIATIONS	47
ANNEX	48
Annex A Measurement Uncertainty Calculations	49
Annex B Rogers Labs Test Equipment List	50
Annex C Rogers Qualifications	51
Annex D FCC Site Registration Letter	52
Annex E Industry Canada Site Registration Letter	53

Revisions

Revision 2 Issued August 19, 2016 – corrected PMN (8/53) and ant gain (10/53) Revision 1 Issued August 16, 2016

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 5 of 53

Forward

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under 47CFR Paragraph 15.247 and RSS-247 Issue 1 Digital Modulation transmitter operation in the 2412-2462 MHz band.

Name of Applicant:	Mikrotikls SIA	FRN: 0014 43 1100	
	Pernavas 46 Str.		
	Riga LV-1009 Latvia		
Model: RB962UiGS-5HacT2HnT-US			
FCC ID: TV7RB962-	5ACT2NT	IC: 7442A-9625AC	

Frequency Range: 2412-2462 MHz (802.11b/g/n mode operation), 2422-2452 MHz (802.11n 40 MHz channel operation)

Total Operating Power: average power 0.581 watts all chains, OBW 19,280 or 40,125 kHz

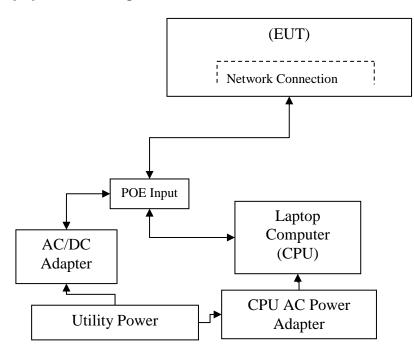
Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Frequency Bands 15.205, RSS-GEN 8.10	-2.8	Complies
AC Line Conducted 15.207, RSS-GEN 7.2.4	-12.7	Complies
Radiated Emissions 15.209, RSS-GEN 7.2.5	-1.2	Complies
Harmonic Emissions per 15.247, RSS-247	-10.3	Complies
Peak Power Spectral Density per 15.247, RSS-247	-3.0	Complies

Equipment Tested

<u>Equipment</u>	Model	FCC I.D.
EUT	RB962UiGS-5HacT2HnT-US	TV7RB962-5ACT2NT
AC Adapter	FLD301-240120-U	N/A
Power Adapter	POE	N/A
Dell Studio XPS	921LBN1	N/A

Test results in this report relate only to the items tested.


Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 6 of 53

Equipment Function and Configuration

The EUT is a 2412-2462 MHz 3x3 MiMo Digital Transmission System used to transmit data in applications offering broadband wireless connectivity. The design utilizes internal fixed PIFA antenna systems and offers no provision for antenna replacement or modification. The system provides three transmitter chains and may operate in a 3x3 MiMo configuration. Two samples were provided for testing, one representative of production sample, and the other modified to provide antenna port connections for each chain. For testing purposes, the EUT transceiver was connected to the manufacturer supplied AC/DC supply and communicating to the laptop computer through Ethernet network interface. This configuration provided operational control of the EUT and communications over the network interface between the EUT and supporting computer system. The design provides five network connections points for network interface and/or Power-Over-Ethernet (POE), USB and AC/DC adapter for power. The design provides no other interfacing options. For testing purposes, the RB962UiGS-5HacT2HnT-US was configured to transmit in available data modes receiving power from the manufacturer provided AC/DC power adapter and POE. The antenna system complies with requirements for unique antenna connection port.

Equipment Configuration

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 7 of 53

Applicant Company information

Applicants Company	MikroTik ("Mikrotīkls, SIA")
Applicants Address Pernavas 46 Str., Riga LV-1009 Latvia	
FCC Identifier	TV7RB962-5ACT2NT
Industry Canada Identifier	7442A-9625AC
Manufacturer Company	MikroTik ("Mikrotīkls, SIA")
Manufacturer Address	Pernavas 46 Str., Riga LV-1009 Latvia

Equipment information

Product Marketing Name (PMN) : The PMN is the name or model number under which the product will be marketed/offered for sale in Canada. If the product has PMN, it must be provided.	RB962UiGS-5HacT2HnT-US
Unique Product Number (UPN): The applicant, made up of a maximum of 11 alphanumeric characters (A-Z, 0-9), assigns the UPN.	9625AC
Hardware Version Identification Number (HVIN): The HVIN identifies hardware specifications of a product version. The HVIN replaces the ISED Model Number in the legacy E- filing System. An HVIN is required for all products for certification applications.	RB962UiGS-5HacT2HnT-US
Host Marketing Name (HMN) (if applicable): The HMN is the name or model number of a final product, which contains a certified radio module.	n/a
Brand Name	hAP ac
Model Number	RB962UiGS-5HacT2HnT-US
Test Rule Part(s)	47CFR PART 15C 15.247, RSS-247
Test Frequency Range	2,400 – 2,483.5 MHz, 5.15-5.25 and 5.725-5.85GHz
Project Number	160514b
Submission Type	Certification

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 8 of 53

Product Details

Items	Description
Product Type	WLAN [3x3 MIMO, (3TX, 3RX)] 2 GHz and WLAN [3x3 MIMO, (3TX, 3RX)] 5 GHz
Radio Type	Intentional Transceiver
Power Type	External Power Supply and POE adapter
Modulation	IEEE 802.11a: OFDM IEE 802.11a/n: see the below table
Data Modulation	IEEE 802.11 a/n: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM) IEEE 802.11 g/n: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11 b: DSSS
Data Rate (Mbps)	IEEE 802.11a/g: OFDM (6/9/12/18/24/36/48/54) IEEE 802.11n/ac: see the below table IEEE 802.11b: (1/21/2s/51/5s/111/11s)
Frequency Range	2400-2483.5 MHz / 5150-5250 MHz / 5725-5850 MHz
Channel Number	802.11b: 11 for 20MHz bandwidth 802.11g/n: 11 for 20MHz bandwidth; 5 for 40MHz bandwidth 802.11a/n: 9 for 20MHz bandwidth; 4 for 40MHz bandwidth 802.11 a/c: 2 for 80 MHz bandwidth
Channel Band Width (99%)	802.11 b: 11,000.0 kHz 802.11 g: 19,280.0 kHz 802.11 n (HT-40): 40,125.0 kHz U-NII-1: IEEE 802.11a: 17,400 kHz IEEE 802.11a/n MCSO/Nss1 (VHT20): 17,400 kHz IEEE 802.11a/n MCSO/Nss1 (VHT40): 37,275 kHz IEEE 802.11a/c (VHT80): 77,700 kHz U-NII-4: IEEE 802.11a: 17,400 kHz IEEE 802.11a: 17,400 kHz IEEE 802.11a/n MCSO/Nss1 (VHT20): 17,400 kHz IEEE 802.11 a/n MCSO/Nss1 (VHT20): 37,275 kHz IEEE 802.11 a/n MCSO/Nss1 (VHT40): 37,275 kHz IEEE 802.11 a/c MCSO/Nss1 (VHT80): 77,850 kHz
Maximum Conducted Output Power	IEEE 802.11b: 0.197 W per chain, 0.549 W total IEEE 802.11g: 0.196 W per chain, 0.543 W total IEEE 802.11n (40): 0.196 W per chain, 0.516 W total
Carrier Frequencies	Please refer to Table for Carrier Frequencies
Antenna	Internal Metal Stamped PIFA 2.4 GHz, and PCB PIFA 5 GHz
Communication Mode	Device is operating in a 3x3 Spatial Multiplexing MIMO configuration. design utilizes Multiple-Input-Multiple-Output (MIMO) operational capability. The design may be configured to transmit on all same time or chosen single chain (without automatic switching between chains). The
ers Labs, Inc. 5 W. 259th Terrace isburg, KS 66053 ne/Fax: (913) 837-3214 ision2 File: Mikrotil	Mikrotikls SIA S/N: 673705E3318F/603 Model: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NT Test #: 160514b IC: 7442A-9625AC Test to: 47CFR 15.247, RSS-247 Date: August 19, 2016 ds RB962UiGS5HacT2HnT DTS TstRpt 160514b2 Page 9 of 53

	may receive on single or all chains and may transmit on single or all chains. Configuration could be (1tx, 1rx); (1tx, 2rx); (2tx, 1rx); (2tx, 2rx), (3x3). Design provides transmitting on both chains at same time.
Beamforming Function	Without beamforming
Operating Mode	2.4 GHz, 5150-5250 MHz (U-NII-1 band) and 5725-5825 MHz (U-NII-3) and

Accessories

AC Power Adapter	FLD301-240120-U
Power Over Ethernet (POE) adapter	POE

Table for Filed Antennas

Ant.	Brand	Model Name	P/N	Antenna Type	Connector	Gain (dBi)
						2.4GHZ	5GHZ
1	Mikrotikls	-		Stamped PIFA		2.7 dBi	
2	Mikrotikls			PCB PIFA			2.7 dBi

Table for Carrier Frequencies

There are two bandwidth systems: For 20MHz bandwidth systems, use Channel 1,6,11, 36, 40, 44, 48, 149, 153, 157, 161, 165, and for 40MHz bandwidth systems, use Channel 38, 46, 151, 159

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412MHZ	7	2442MHZ
2400-2483.5 MHz	2	2417MHZ	8	2447MHZ
	3	2422MHZ	9	2452MHZ
	4	2427MHZ	10	2457MHZ
	5	2432MHZ	11	2462MHZ
	6	2437MHZ	-	-

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
2400-2483.5MHz	1	2412	2	2422
	6	2437	7	2447
	11	2462	10	2452

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 10 of 53

Table for Test Modes

Preliminary tests were performed in different data rates to define the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all possible configurations while searching the worst cases. The following table is a list of the test modes investigated for this report.

Test Items	Mode	Data Rate	Channel	Chain
Max. Conducted	802.11b	11	1,6,11	1,2,3
Output Power	802.11g	54	1,6,11	1,2,3
	802.11n HT40	135	2,7,10	1,2,3
Power Spectral	802.11b		1,6,11	1,2,3
Density	802.11g		1,6,11	1,2,3
	802.11n HT40		2,7,10	1,2,3
26dB, 99%	802.11b		1,6,11	1,2,3
Occupied Bandwidth	802.11g		1,6,11	1,2,3
Measurement	802.11n HT40		2,7,10	1,2,3
6dB Spectrum Bandwidth	802.11b		1,6,11	1,2,3
Measurement	802.11g		1,6,11	1,2,3
	802.11n HT40		2,7,10	1,2,3
Radiated Emission Below 1GHz		-	-	
Radiated Emission Above 1GHz	802.11b/g/n			1,2,3
Band Edge Emission	802.11b			
	802.11g			
	802.11n HT20			
	802.11n HT40			

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 11 of 53

Test Result of Occupied Bandwidth

Mode	Frequency	26dB Bandwidth (kHz)	6dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
802.11b	2412 MHz	N/A	6195 kHz	10725 kHz
	2437 MHz	N/A	6195 kHz	11000 kHz
	2462 MHz	N/A	6195 kHz	10900 kHz
802.11g	2412 MHz	N/A	16760 kHz	19080 kHz
	2437 MHz	N/A	16800 kHz	19200 kHz
	2462 MHz	N/A	16720 kHz	19280 kHz
802.11n (HT20)	2412 MHz	N/A	16760 kHz	19080 kHz
	2437 MHz	N/A	16800 kHz	19200 kHz
	2462 MHz	N/A	16720 kHz	19280 kHz
802.11n (HT40)	2422 MHz	N/A	36975 kHz	40125 kHz
	2447 MHz	N/A	36900 kHz	39900 kHz
	2452 MHz	N/A	36600 kHz	39450 kHz
	5180 MHz	22120 kHz	N/A	17400 kHz
802.11a	5200 MHz	21840 kHz	N/A	17400 kHz
002.11a	5240 MHz	22280 kHz	N/A	17400 kHz
	5745 MHz	N/A	16160 kHz	17400 kHz
	5785 MHz	N/A	16400 kHz	17400 kHz
	5825 MHz	N/A	16400 kHz	17400 kHz
802.11a/n	5190 MHz	44700 kHz	N/A	37275 kHz
MCSO/Nss1 VHT40	5230 MHz	45075 kHz	N/A	37050 kHz
	5755 MHz	N/A	36450 kHz	37275 kHz
	5795 MHz	N/A	36375 kHz	37275 kHz
802.11ac VHT80	5210 MHz	88950 kHz	N/A	77850 kHz
802.11ac VHT80	5775 MHz	N/A	76350 kHz	77700 kHz

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 12 of 53

Application for Certification

(1) Manufacturer: Mikrotikls SIA

Pernavas 46 Str.

Riga LV-1009 Latvia

- (2) Identification: Model: RB962UiGS-5HacT2HnT-USFCC I.D.: TV7RB962-5ACT2NT IC: 7442A-9625AC
- (3) Instruction Book:Refer to Exhibit for Instruction Manual.
- (4) Description of Circuit Functions:Refer to Exhibit of Operational Description.
- (5) Block Diagram with Frequencies:Refer to Exhibit of Operational Description.
- (6) Report of Measurements:Report of measurements follows in this Report.
- (7) Photographs: Construction, Component Placement, etc.:Refer to Exhibit for photographs of equipment.
- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from power received from authorized AC/DC power adapter. The EUT provides five Ethernet, one USB connection ports for communications and power. During testing, the EUT was powered from AC/DC power supply, POE, and connected to CPU through network cable.
- (9) Transition Provisions of 47CFR 15.37 are not requested
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. Not applicable to this filing.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provide in this report and Test Setup Exhibits provided with the application filing.

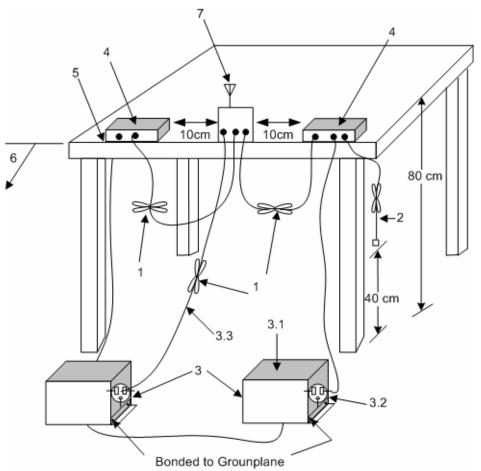
Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 13 of 53

Applicable Standards & Test Procedures

The following information is submitted in accordance 47CFR dated October 1, 2015, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247 and Industry Canada RSS-247. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013, KDB 558074 D01 v03r05, KDB 662911 D01 v01, RSS-247 Issue 1, and RSS-GEN Issue 4, the following information is submitted for processing application for Certification.

Equipment Testing Procedures

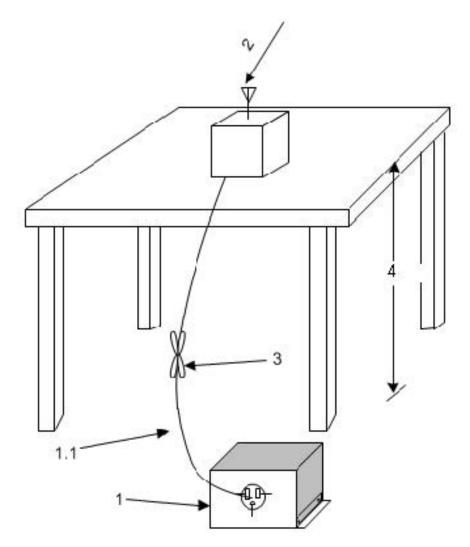
AC Line Conducted Emission Test Procedure


Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- μ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

Radiated Emission Test Procedure

Radiated emission testing was performed as required and specified in ANSI C63.10-2013 and referenced KDB documents. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. The table permitted orientation of the EUT in each of three orthogonal axis positions during testing. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 25,000 MHz was searched for during preliminary investigation. Refer to diagrams two and three showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

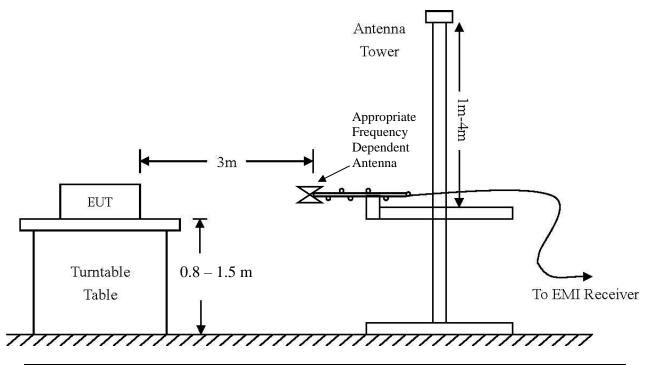
Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 14 of 53


- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.2).
- 2. The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80 cm from nearest part of EUT chassis
- 4. Non-EUT components of EUT system being tested
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop (see 6.2.3.2).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).

7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc.		Mikrotikls SIA	S/N: 673705	E3318F/603
4405 W. 259th Te	errace	Model: RB962UiGS-5Ha	acT2HnT-US FCC: TV7F	B962-5ACT2NT
Louisburg, KS 66	5053	Test #: 160514b	IC: 74	142A-9625AC
Phone/Fax: (913)	837-3214	Test to: 47CFR 15.247, I	RSS-247 Date:	August 19, 2016
Revision2	File: Mikrotik	ls RB962UiGS5HacT2Hr	T DTS TstRpt 160514b2	Page 15 of 53



- 1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
 - 1.1 LISN spaced at least 80 cm from nearest part of EUT chassis.
- 2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
- 4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions of tabletop equipment

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 16 of 53

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 120 kHz	VBW = 1 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK , AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Test Site Locations

Conducted EMI	he AC power line conducted emissions testing performed in a shielded				
S	reen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg,				
]	S				
Radiated EMI	The radiated emissions tests were performed at the 3 meters, Open Area Test				
\$	te (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg,				
]	S				
Site Registration	efer to Annex for Site Registration Letters				
NVLAP Accreditation	Lab code 200087-0				
Rogers Labs, Inc.	Mikrotikls SIA S/N: 673705E3318F/603				
405 W. 259th Terrace	Model: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NT				

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 17 of 53

List of Test Equipment

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

Ī	AC Line Conducted Emissions (0.150 -30 MHz)							
	RBW 9 kHz		AVG. BW	Detector	Function			
			30 kHz	Peak / Q	uasi Peak			
			Emissions (30-1000 MHz)	_				
		RBW	AVG. BW	Detector	Function			
	1	20 kHz	300 kHz	Peak / Q	uasi Peak			
		E	Emissions (Above 1000 MHz	2)				
		RBW	Video BW		Function			
		00 kHz	100 kHz		ak			
		1 MHz	1 MHz	Peak / A	Average			
\boxtimes	LISN	FCC FCC-LI	SN-50-2-10(1PA) (160611)	.15-30MHz	5/16	5/17		
\boxtimes	Cable	Time Microwave	750HF290-750 (L10M)	9kHz-40 GHz	10/15	10/16		
\boxtimes	Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/15	10/16		
\boxtimes	Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/15	10/16		
	Antenna	ARA	BCD-235-B (169)	20-350MHz	10/15	10/16		
	Antenna	EMCO	3147 (40582)	200-1000MHz	10/15	10/16		
\boxtimes	Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	5/16	5/18		
	Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/15	10/16		
\boxtimes	Antenna	Com Power	AH-840 (101046)	18-40 GHz	5/16	5/18		
\boxtimes	Antenna	EMCO	6509 (9502-1374)	.001-30 MHz	10/15	10/16		
\boxtimes	Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/15	10/16		
	Antenna	EMCO	3143 (9607-1277)	20-1200 MHz	5/16	5/17		
	Analyzer	HP	8591EM (3628A00871)	9kHz-1.8GHz	5/16	5/17		
	Analyzer	HP	8562A (3051A05950)	9kHz-110GHz	5/16	5/17		
	Analyzer	HP External Mixer	rs11571, 11970	25GHz-110GH	z5/16	5/17		
\boxtimes	Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	5/16	5/17		
\boxtimes	Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/15	10/16		
\boxtimes	Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/15	10/16		
\boxtimes	Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/15	10/16		

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 18 of 53

Units of Measurements

Conducted EMIData is in dBµV; dB referenced to one microvoltRadiated EMIData is in dBµV/m; dB/m referenced to one microvolt per meterSample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength MeasuredA.F. = Receive antenna factor, Gain = amplification gains and/or cable losses RFS (dBµV/m @ 3m) = FSM (dBµV) + A.F. (dB) - Gain (dB)

Environmental Conditions

Ambient Temperature	20.1° C
Relative Humidity	31%
Atmospheric Pressure	1020.5 mb

Intentional Radiators

As per 47CFR part 15 subpart C, and Industry Canada RSS-247, Issue 1, the following information is submitted for consideration and demonstration of compliance with regulation and standards.

Antenna Requirements

The EUT incorporates integral antenna system and offers no provision for connection to alternate system. The EUT utilizes permanently attached metal stamped Planar Inverted F antenna (PIFA) antennas mounted inside the enclosure. The antenna connection point complies with the unique antenna connection requirements. The requirements of 15.203 are fulfilled there are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the on the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in restricted bands. Emissions were investigated at the antenna port and OATS, using appropriate antennas or pyramidal horns, amplification stages, and spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed radiated emission values take into account the measured radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 19 of 53

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
2390.0	50.2	N/A	36.1	54.1	N/A	32.0	54.0
2483.5	55.2	N/A	47.9	54.1	N/A	35.1	54.0
4824.0	46.5	N/A	34.1	45.3	N/A	34.4	54.0
4874.0	47.7	N/A	38.7	45.6	N/A	34.5	54.0
4924.0	46.8	N/A	16.6	16.1	N/A	38.0	54.0
7236.0	45.9	N/A	32.5	45.8	N/A	33.0	54.0
7311.0	48.7	N/A	33.6	46.1	N/A	33.4	54.0
7386.0	50.5	N/A	16.6	16.1	N/A	33.8	54.0
12060.0	51.4	N/A	37.7	50.6	N/A	37.7	54.0
12185.0	50.8	N/A	38.0	51.2	N/A	38.1	54.0
12310.0	50.9	N/A	37.9	50.9	N/A	37.5	54.0
14472.0	52.4	N/A	39.4	52.5	N/A	39.4	54.0
125.0	42.2	40.7	N/A	41.2	39.8	N/A	43.5
135.8	32.3	26.7	N/A	36.9	32.5	N/A	43.5
258.2	42.8	39.4	N/A	34.9	29.6	N/A	46.0
271.7	37.8	34.2	N/A	31.6	26.7	N/A	46.0

Table 1 General Radiated Emissions in Restricted Bands Data (worst-case, all modes)

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the emissions requirements of 47CFR 15.205, RSS-GEN and RSS-247, Issue 1 Intentional Radiators. The EUT provided a worst-case minimum margin of -2.8 dB below the emissions requirements in restricted frequency bands. Peak, Quasipeak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 20 of 53

AC Line Conducted Emissions Procedure

The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. Testing for the line-conducted emissions were the procedures of ANSI C63.10-2013 paragraph 6. The AC adapter for the EUT was connected to the LISN for line-conducted emissions testing. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT support equipment. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the EUT support equipment AC Line Conducted emissions.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 21 of 53

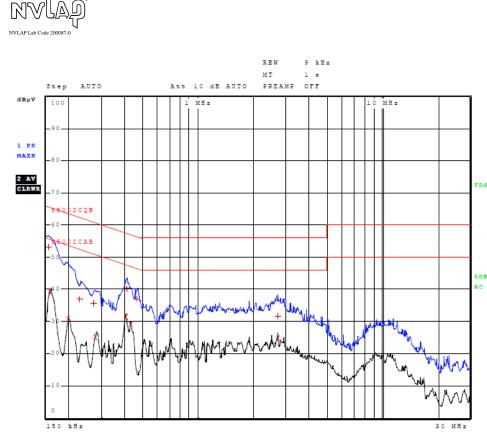


Figure 1 AC Line Conducted Emissions Line 1

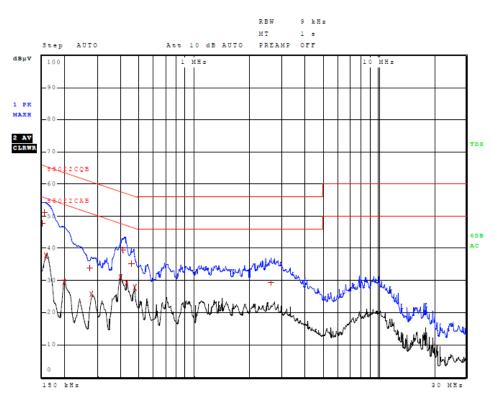


Figure 2 AC Line Conducted Emissions Line 2

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 22 of 53

Trace	Frequency	,	Level (dBµV)	Detector	Delta Limit/dB
1	154.000000000	kHz	53.05	Quasi Peak	-12.73
2	158.000000000	kHz	39.36	Average	-16.21
2	198.000000000	kHz	30.81	Average	-22.89
1	230.000000000	kHz	36.93	Quasi Peak	-25.52
1	274.000000000	kHz	35.71	Quasi Peak	-25.29
2	278.00000000	kHz	25.07	Average	-25.80
2	402.000000000	kHz	31.48	Average	-16.33
1	410.00000000	kHz	40.33	Quasi Peak	-17.32
2	426.000000000	kHz	29.19	Average	-18.14
1	466.000000000	kHz	37.07	Quasi Peak	-19.52
1	2.702000000	MHz	31.62	Quasi Peak	-24.38
2	2.706000000	MHz	24.64	Average	-21.36
0.1	• • • • • • • •	1. 1		1 .1 1	

Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)

Other emissions present had amplitudes at least 20 dB below the limit.

Trace	Frequency		Level (dBµV) Detector		Delta Limit/dB	
1	150.00000000	kHz	47.74	Quasi Peak	-18.26	
1	154.000000000	kHz	51.11	Quasi Peak	-14.67	
2	158.00000000	kHz	37.77	Average	-17.80	
2	198.00000000	kHz	29.59	Average	-24.10	
1	274.00000000	kHz	33.99	Quasi Peak	-27.01	
2	278.00000000	kHz	25.82	Average	-25.06	
2	394.000000000	kHz	30.98	Average	-16.99	
1	414.000000000	kHz	39.48	Quasi Peak	-18.09	
2	426.00000000	kHz	29.35	Average	-17.98	
1	454.00000000	kHz	35.27	Quasi Peak	-21.53	
2	470.00000000	kHz	27.75	Average	-18.76	
1	2.618000000	MHz	29.39	Quasi Peak	-26.61	

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for AC Line Conducted Emissions

The EUT test system demonstrated compliance to the conducted emissions requirements of 47CFR 15.207, RSS-247 Issue 1 and RSS-GEN. The EUT demonstrated minimum margin of -12.7 dB below the limit. Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 23 of 53

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or Double Ridge or pyramidal horns and mixers from 1 GHz to 25 GHz, notch filters, and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 24 of 53

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Quasi-Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Quasi-Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
51.0	32.8	27.7	N/A	38.5	34.3	N/A	40.0
64.2	32.2	27.5	N/A	38.7	34.2	N/A	40.0
125.0	42.2	40.7	N/A	41.2	39.8	N/A	43.5
135.8	32.3	26.7	N/A	36.9	32.5	N/A	43.5
141.2	33.2	28.7	N/A	38.7	34.6	N/A	43.5
143.3	34.3	29.4	N/A	39.6	35.2	N/A	43.5
258.2	42.8	39.4	N/A	34.9	29.6	N/A	46.0
271.7	37.8	34.2	N/A	31.6	26.7	N/A	46.0
375.0	45.9	44.8	N/A	45.7	44.4	N/A	46.0

Table 4 General Radiated Emissions from EUT Data (Highest Emissions)

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR part 15 and Industry Canada RSS-247 Issue 1 Intentional Radiators. The EUT demonstrated a minimum margin of -1.2 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 25 of 53

Operation in the 2400-2483.5 MHz Frequency Band

Radiated emissions were measured on the Open Area Test Site (OATS) at a three-meter distance. The EUT utilizes permanently attached printed circuit board antenna. A second test sample was provided with antenna port connection points replacing the internal antennas. Antenna conducted measurements were take on the second test sample. Radiated emissions measurements were performed on the test sample with integral antennas. The EUT was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the FSM antenna located on the OATS. The peak and quasi-peak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz were measured using a spectrum analyzer. Emissions data was recorded from the measurement results. Data presented reflects measurement result corrected to account for measurement system gains and losses. Plots were made of transmitter performance for reference purposes.



Figure 3 Plot of Transmitter Emissions (Across Operational Band 802.11b, Chain 0)

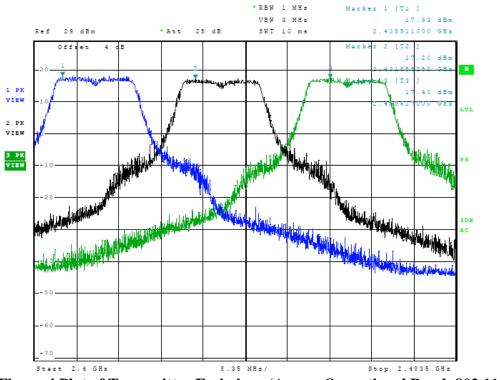


Figure 4 Plot of Transmitter Emissions (Across Operational Band, 802.11g, Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 27 of 53

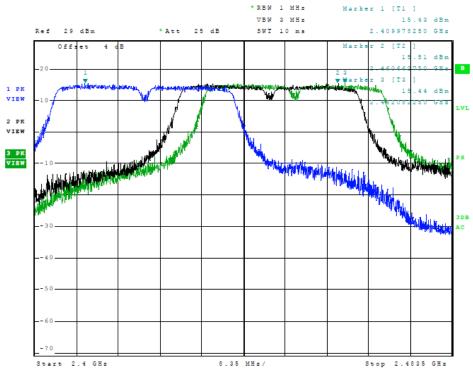


Figure 5 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40), Chain 0)

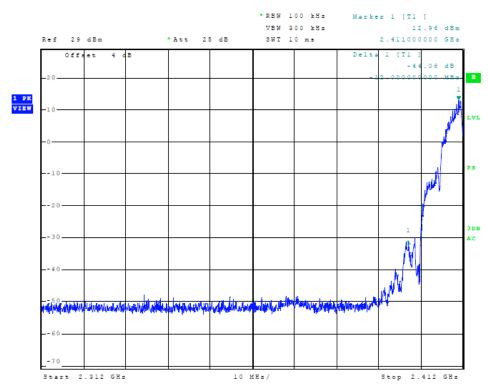


Figure 6 Plot of Transmitter Low Band Edge (802.11b, Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 28 of 53

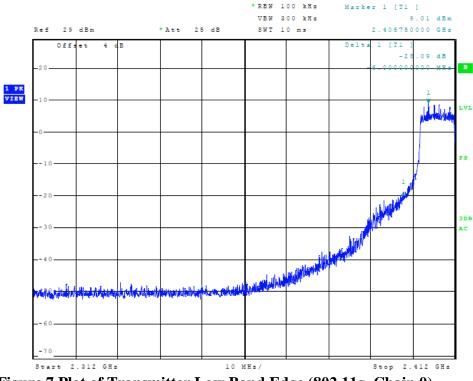


Figure 7 Plot of Transmitter Low Band Edge (802.11g, Chain 0)

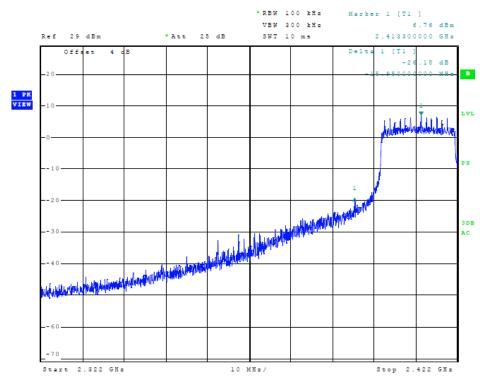


Figure 8 Plot of Transmitter Low Band Edge (802.11n (40), Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 29 of 53

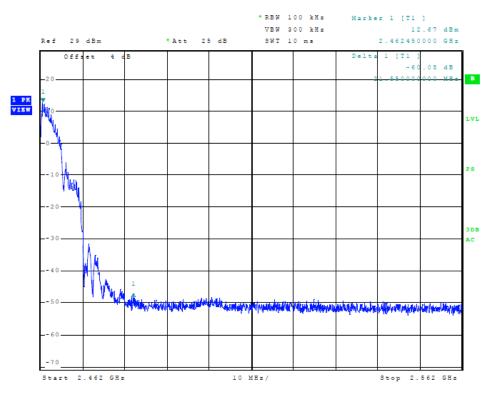


Figure 9 Plot of Transmitter High Band Edge (802.11b, Chain 0)

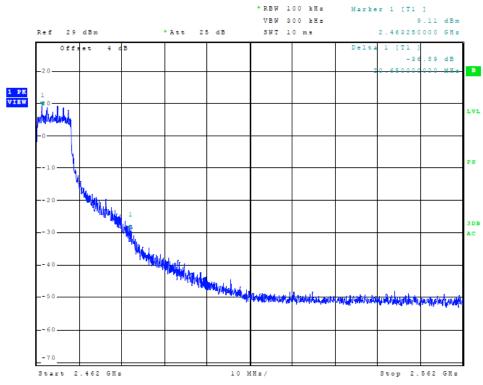


Figure 10 Plot of Transmitter High Band Edge (802.11g, Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 30 of 53

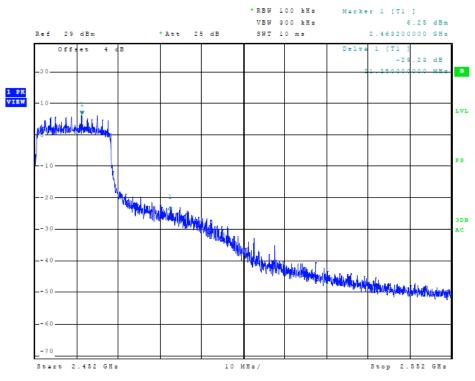


Figure 11 Plot of Transmitter High Band Edge (802.11n (40), Chain 0)



Figure 12 Plot of Transmitter 6-dB Occupied Band Width (802.11b, Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 31 of 53

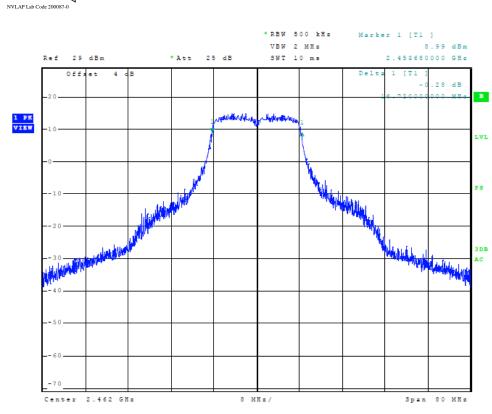


Figure 13 Plot of Transmitter 6-dB Occupied Band Width (802.11g, Chain 0)

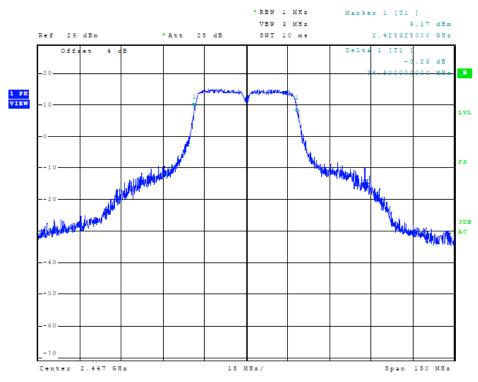


Figure 14 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40), Chain 0)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 32 of 53

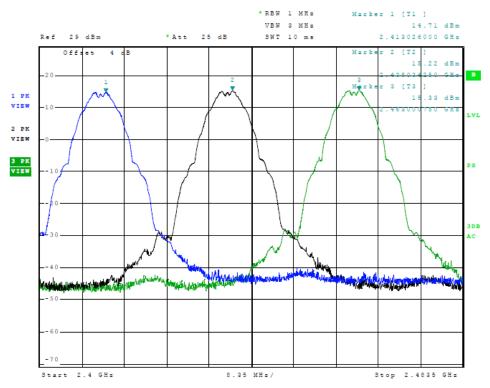


Figure 15 Plot of Transmitter Emissions (Across Operational Band 802.11b, Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 33 of 53

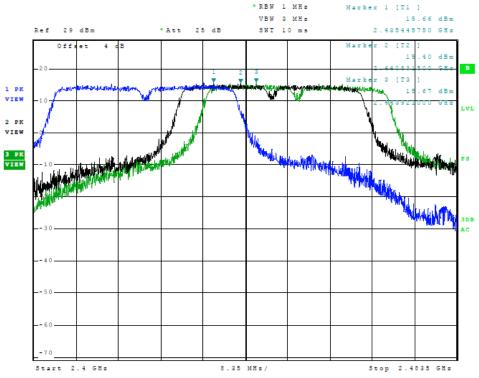


Figure 17 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40), Chain 1)

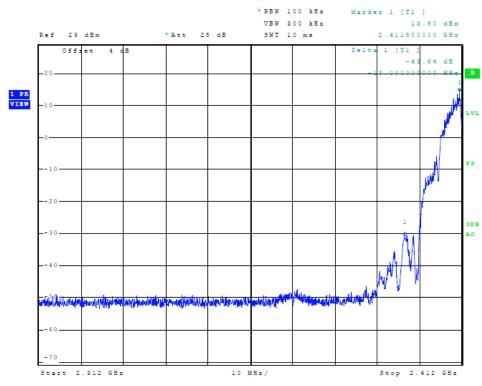


Figure 18 Plot of Transmitter Low Band Edge (802.11b, Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 34 of 53

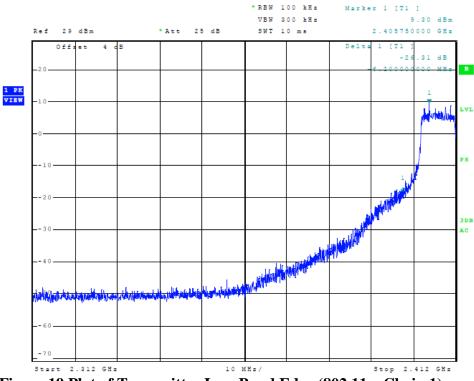


Figure 19 Plot of Transmitter Low Band Edge (802.11g, Chain 1)

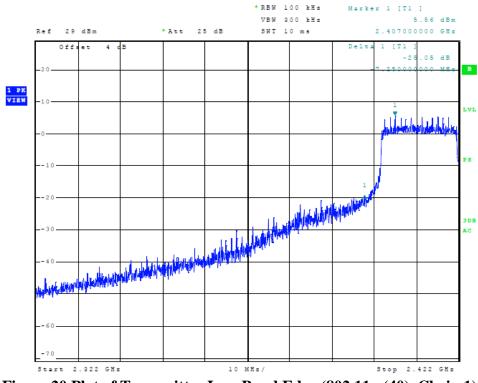


Figure 20 Plot of Transmitter Low Band Edge (802.11n (40), Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 35 of 53

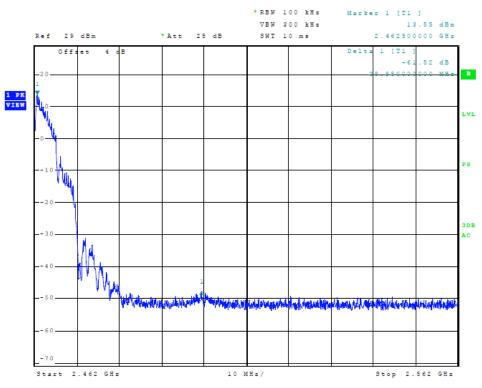
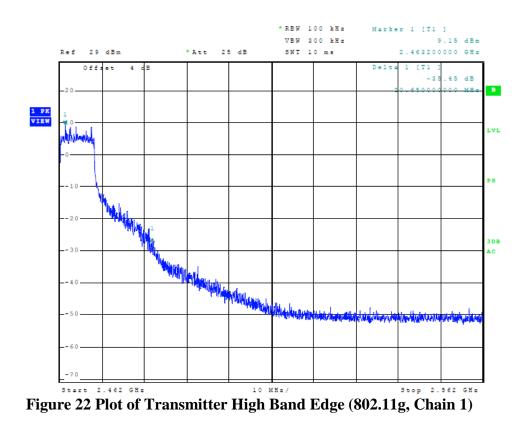



Figure 21 Plot of Transmitter High Band Edge (802.11b, Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 36 of 53

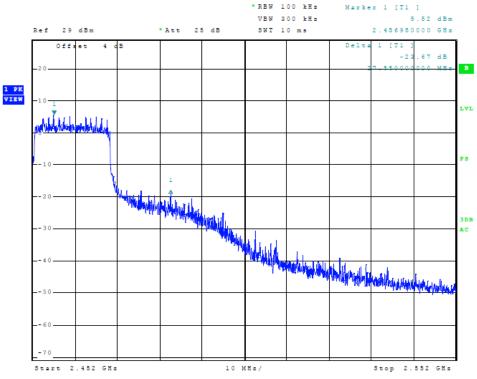


Figure 23 Plot of Transmitter High Band Edge (802.11n (40), Chain 1)

Figure 24 Plot of Transmitter 6-dB Occupied Band Width (802.11b, Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 37 of 53

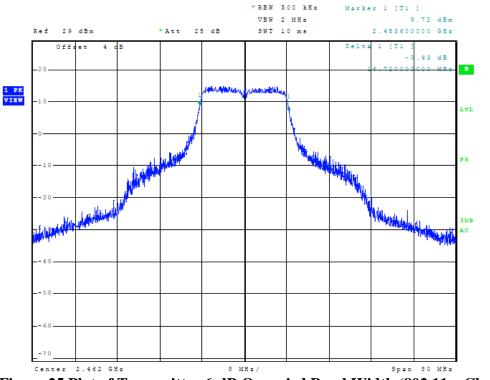


Figure 25 Plot of Transmitter 6-dB Occupied Band Width (802.11g, Chain 1)

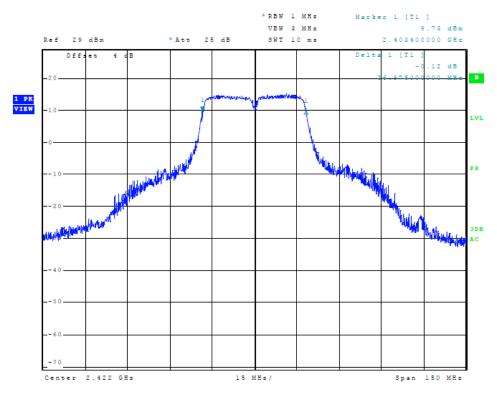


Figure 26 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40), Chain 1)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 38 of 53

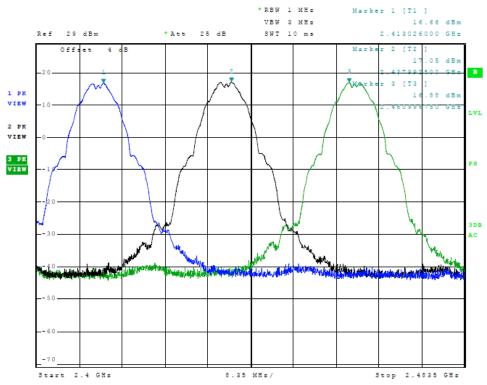


Figure 27 Plot of Transmitter Emissions (Across Operational Band, 802.11b (20), Chain 2)

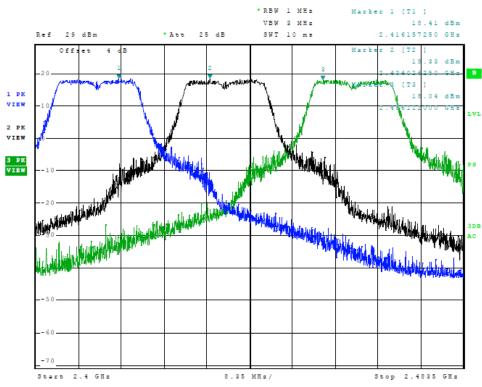


Figure 28 Plot of Transmitter Emissions (Across Operational Band, 802.11g, Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 39 of 53

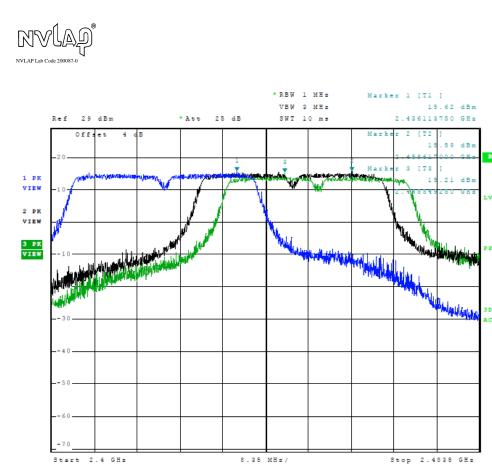


Figure 29 Plot of Transmitter Emissions (Across Operational Band, 802.11n (40), Chain 2)

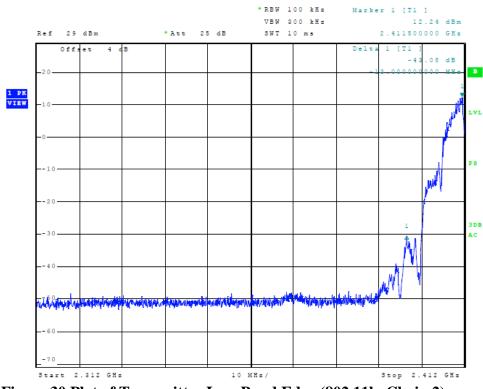


Figure 30 Plot of Transmitter Low Band Edge (802.11b, Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 40 of 53

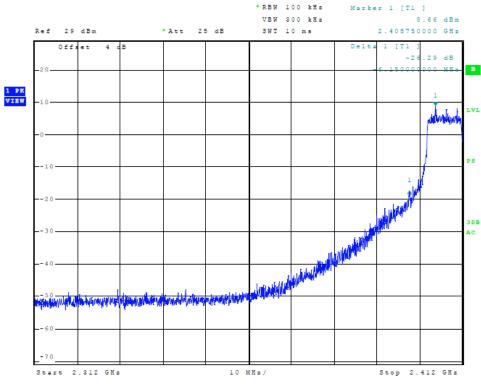


Figure 31 Plot of Transmitter Low Band Edge (802.11g, Chain 2)

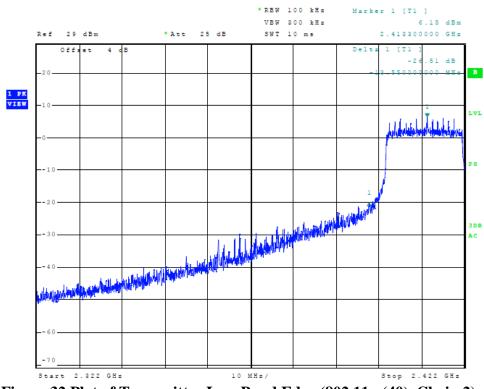


Figure 32 Plot of Transmitter Low Band Edge (802.11n (40), Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 41 of 53

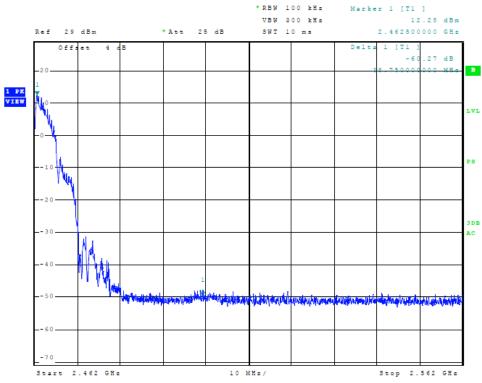


Figure 33 Plot of Transmitter High Band Edge (802.11b, Chain 2)

Figure 34 Plot of Transmitter High Band Edge (802.11g, Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 42 of 53

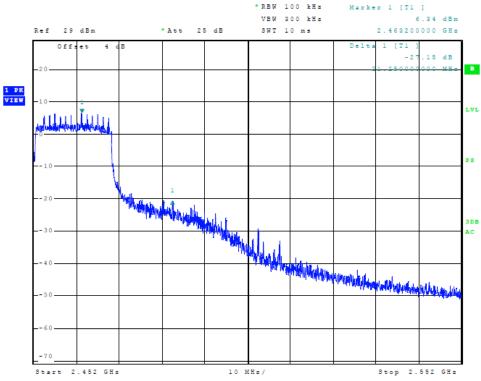


Figure 35 Plot of Transmitter High Band Edge (802.11n (40), Chain 2)



Figure 36 Plot of Transmitter 6-dB Occupied Band Width (802.11b, Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 43 of 53

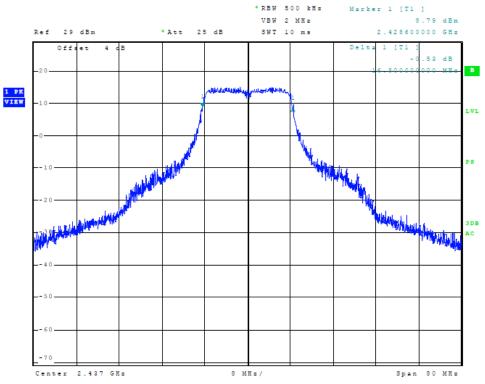


Figure 37 Plot of Transmitter 6-dB Occupied Band Width (802.11g, Chain 2)

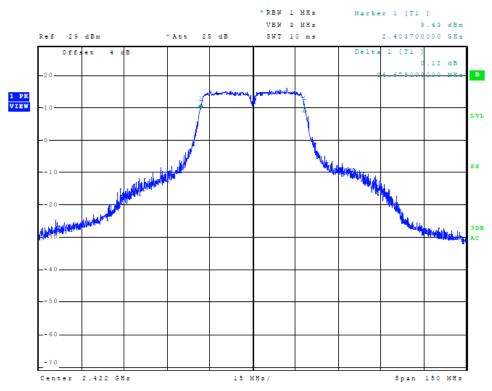


Figure 38 Plot of Transmitter 6-dB Occupied Band Width (802.11n (40), Chain 2)

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 44 of 53

Transmitter Emissions Data

Table 5 Transmitter Power and Emissions

Frequency MHz	Conducted Antenna Port Output Power (Watts) Total / Chain 0 / Chain 1 / Chain 2	6-dB Occupied Bandwidth kHz	Power Spectral Density dBm Total / Chain 0 / Chain 1 / Chain 2	
20 MHz b-Mode				
2412.0	0.549 / 0.184 / 0.188 / 0.178	6,180.0	4.3 / -0.6 / -0.4 / -0.4	
2437.0	0.581 / 0.197 / 0.192 / 0.191	6,195.0	5.0 / 0.4 / 0.5 / -0.3	
2462.0	0.568 / 0.190 / 0.190 / 0.188	6,195.0	4.3 / -1.4 / 0.2 / -0.2	
20 MHz g-Mode				
2412.0	0.514 / 0.184 / 0.189 / 0.141	16,720.0	0.2 / -4.2 / -4.9 / -4.7	
2437.0	0.543 / 0.196 / 0.195 / 0.152	16,720.0	1.6 / -3.3 / -3.2 / -3.1	
2462.0	0.527 / 0.189 / 0.191 / 0.148	16,800.0	0.6 / -5.0 / -4.0 / -3.6	
40 MHz Mode				
2422.0	0.514 / 0.184 / 0.189 / 0.142	36,900.0	-2.8 / -7.7 / -7.5 / -7.5	
2447.0	0.543 / 0.196 / 0.195 / 0.152	36,975.0	-2.7 / -7.9 / -8.1 / -8.0	
2452.0	0.516 / 0.183 / 0.194 /0.149	36,675.0	-3.1 / -7.6 / -6.6 / -7.85	

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 45 of 53

Frequency in MHz	Horizontal Peak (dBµV/m)	Horizontal Average (dBµV/m)	Vertical Peak (dBµV/m)	Vertical Average (dBµV/m)	Limit @ 3m (dBµV/m)
2412.0	-	-	-	-	-
4824.0	46.5	34.1	45.3	34.4	54.0
7236.0	45.9	32.5	45.8	33.0	54.0
9648.0	46.7	33.7	46.8	33.7	54.0
12060.0	51.4	37.7	50.6	37.7	54.0
14472.0	52.4	39.4	52.5	39.4	54.0
16884.0	55.8	42.8	56.1	42.8	54.0
2437.0	-	-	-	-	-
4874.0	47.7	38.7	45.6	34.5	54.0
7311.0	48.7	33.6	46.1	33.4	54.0
9748.0	48.0	34.7	47.5	34.8	54.0
12185.0	50.8	38.0	51.2	38.1	54.0
14622.0	52.4	39.5	52.7	39.6	54.0
17059.0	56.1	42.7	55.4	43.0	54.0
2462.0	-	-	-	-	-
4924.0	46.8	38.6	46.2	38.0	54.0
7386.0	50.5	33.7	49.0	33.8	54.0
9848.0	47.1	34.4	47.5	34.4	54.0
12310.0	50.9	37.9	50.9	37.5	54.0
14772.0	52.7	40.1	52.7	40.1	54.0
17234.0	56.6	43.7	56.4	43.7	54.0

Table 6 Transmitter Radiated Emissions (Worst-case all modes)

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 46 of 53

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15.247 and Industry Canada RSS-247. The highest conducted power was 0.581-Watts. The worst-case total peak power spectral density provided a minimum margin of -3.0 dB below the requirements. The minimum radiated harmonic emission provided -10.3 dB margin below requirements. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. There were no other deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the 47CFR Part 15C and Industry Canada RSS-247 emissions requirements. There were no deviations or modifications to the specifications.

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 47 of 53

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 48 of 53

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	U _(lab)
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 49 of 53

Annex B Rogers Labs Test Equipment List

			D
List of Test Equipment	Calibration	Date 5/16	<u>Due</u>
Spectrum Analyzer: Rohde & Schwarz ESU40	11500	5/16	5/17
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and		5/16	5/17
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 119	/0W	F /1 C	E (1 E
Spectrum Analyzer: HP 8591EM		5/16	5/17
Antenna: EMCO Biconilog Model: 3143		5/16	5/17
Antenna: Sunol Biconilog Model: JB6			10/16
Antenna: EMCO Log Periodic Model: 3147			
Antenna: Com Power Model: AH-118			10/16
Antenna: Com Power Model: AH-840		5/16	5/18
Antenna: Antenna Research Biconical Model: BCD 235			10/16
Antenna: EMCO 6509		10/15	10/16
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/	50 ohm/0.1 μf	10/15	10/16
R.F. Preamp CPPA-102		10/15	10/16
Attenuator: HP Model: HP11509A		10/15	10/16
Attenuator: Mini Circuits Model: CAT-3		10/15	10/16
Attenuator: Mini Circuits Model: CAT-3		10/15	10/16
Cable: Belden RG-58 (L1)		10/15	10/16
Cable: Belden RG-58 (L2)		10/15	10/16
Cable: Belden 8268 (L3)		10/15	10/16
Cable: Time Microwave: 4M-750HF290-750		10/15	10/16
Cable: Time Microwave: 10M-750HF290-750		10/15	10/16
Frequency Counter: Leader LDC825		2/16	2/17
Oscilloscope Scope: Tektronix 2230		2/16	2/17
Wattmeter: Bird 43 with Load Bird 8085		2/16	2/17
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCl	R 140	2/16	2/17
R.F. Generators: HP 606A, HP 8614A, HP 8640B		2/16	2/17
R.F. Power Amp 65W Model: 470-A-1010		2/16	2/17
R.F. Power Amp 50W M185- 10-501		2/16	2/17
R.F. Power Amp A.R. Model: 10W 1010M7		2/16	2/17
R.F. Power Amp EIN Model: A301		2/16	2/17
LISN: Compliance Eng. Model 240/20		$\frac{2}{16}$	$\frac{2}{17}$
LISN: Fischer Custom Communications Model: FCC-LISN-50-16	5-2-08	2/16	$\frac{2}{17}$
Antenna: EMCO Dipole Set 3121C	/ 2 00	2/16	$\frac{2}{17}$
Antenna: C.D. B-101		2/16	$\frac{2}{17}$
Antenna: Solar 9229-1 & 9230-1		2/16	2/17
Audio Oscillator: H.P. 201CD		2/16	2/17
ELGAR Model: 1751		2/16	2/17
ELGAR Model: TG 704A-3D		2/16	2/17
ESD Test Set 2010i		2/10	2/17
Fast Transient Burst Generator Model: EFT/B-101		2/10	2/17
Field Intensity Meter: EFM-018		2/10	2/17
KEYTEK Ecat Surge Generator		2/10	2/17
Shielded Room 5 M x 3 M x 3.0 M		2/10	<i>∠</i> / 1 /

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 50 of 53

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer:	A/C Controls Mfg. Co., Inc. 6 Years
Electrical Engineer:	Rogers Consulting Labs, Inc. 5 Years
Electrical Engineer:	Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot DRogers

Scot D. Rogers

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 51 of 53

Annex D FCC Site Registration Letter FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 16, 2015

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Attention: Scot Rogers,

Re: Measurement facility located at Louisburg 3 & 10 meter site Date of Renewal: April 16, 2015

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Phyllis Parrish

Industry Analyst

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 52 of 53

Annex E Industry Canada Site Registration Letter

Industry Industrie Canada Canada

June 08, 2015

OUR FILE: 46405-3041 Authorization No: 010277847-001

Rogers Labs Inc. 4405 West 259th Terrace Louisburg, KS USA 66053

Attention: Mr. Scot D. Rogers

Dear Sir:

The Bureau has received your application for the renewal of 3m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 3041A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2009 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2009 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2009 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Bill Payn For: Wireless Laboratory Manager **Certification and Engineering Bureau** 3701 Carling Ave., Building 94 P.O. Box 11490, Station AH@ Ottawa, Ontario K2H 8S2 Email: certification.bureau@ic.gc.ca

Rogers Labs, Inc.Mikrotikls SIAS/N: 673705E3318F/6034405 W. 259th TerraceModel: RB962UiGS-5HacT2HnT-US FCC: TV7RB962-5ACT2NTLouisburg, KS 66053Test #: 160514bIC: 7442A-9625ACPhone/Fax: (913) 837-3214Test to: 47CFR 15.247, RSS-247Date: August 19, 2016Revision2File: Mikrotikls RB962UiGS5HacT2HnT DTS TstRpt 160514b2Page 53 of 53