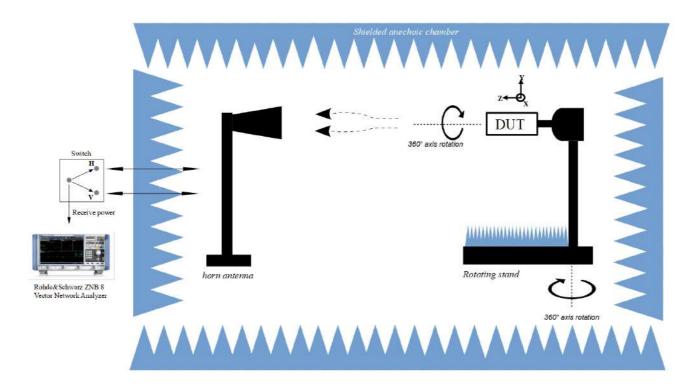
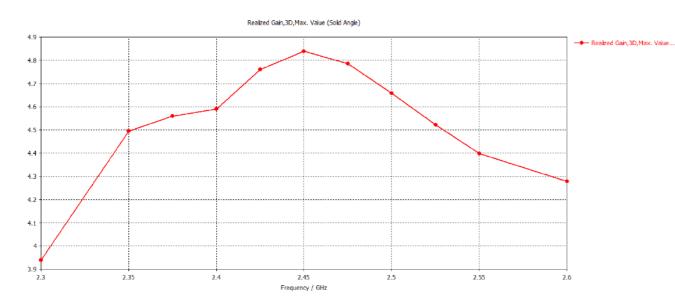


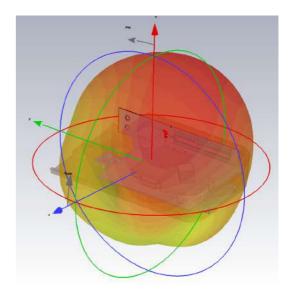

Mikrotikls SIA (SIA "Mikrotīkls")

Address: Brivibas gatve 214i, Rīga, LV-1039, Latvia Phone: +371 67317700 Fax: +371 67317701 Email: Certification@mikrotik.com


Antenna details - R11e-LR2

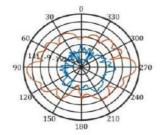
Ant No.	Number of Antennas	Туре	Manufacturer	Model	Family	Peak Gain (dBi)	Dir BW	Frequency Band (MHz)
1	1	PCB	MikroTik	95XKAN15.GAE	PCB Omnidirectional	4.84	360	2400-2483.5
2	1	FRP	MikroTik	TOF-2400-8V-4	FRP Omnidirectional	8.8888	360	2400-2483.5


Antenna Gain Testing Setup



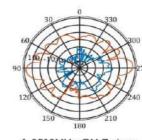
Explanation: Antenna testing is performed using the test setup above. Antenna gain is measured in 3d plane. The measurments are then taken and ran through CST studio Time domain solver sumulation system to draw Antenna peak gain diagram. Simulation is performed taking into account pcb with components, case desing, heatsink and etc.

Realized antenna gain Diagram

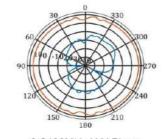


Antenna	No.	2
---------	-----	---

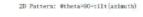
Frequency (MHz)	Gain [dBi]	H_BW(°)	V_BW(°)	Roundness(dB)(90°)	Roundness(dB)(60°)
2400	8.757	360	14.5144	2.4126	3. 1838
2450	8.8888	360	14.386	2.4463	4.6774
2500	8.6843	265	13, 4262	2, 1889	7.3618



f=2400MHz,@Y-Z plane

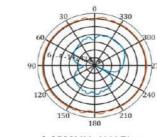

2D Pattern: @phi=90(elevation)

2D Pattern: @phi=90(elevation)



f=2500MHz,@Y-Z plane

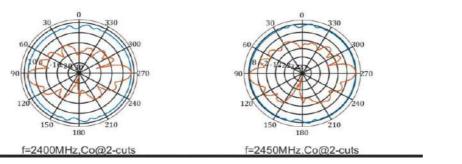
2D Pattern: @theta=90+tilt(azimuth)

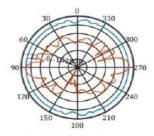

f=2400MHz,X-Y Plane

180

f=2450MHz,@Y-Z plane

2D Pattern: @theta=90+tilt(azimuth)


f=2500MHz,X-Y Plane


2D Pattern: Co@2-cuts

2D Pattern: Co@2-cuts

180

f=2450MHz,X-Y Plane

2D Pattern: Co@2-cuts

f=2500MHz,Co@2-cuts