

FCC Radio Test Report

Report No. : FR760928

Project No: CB10701142

FCC Radio Test Report

Equipment	: RouterBOARD LHG G-60ad
Brand Name	: RouterBOARD
Model No.	: RBLHGG-60ad
FCC ID	: TV7LHGG60AD
Standard	: 47 CFR FCC Part 15.255
Applicant	: Mikrotikls SIA Brivibas gatve 214i, Riga, LV-1039 LATVIA
Manufacturer	: Mikrotikls SIA Brivibas gatve 214i, Riga, LV-1039 LATVIA

The product sample received on Oct. 30, 2017 and completely tested on Jan. 10, 2018. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013, 47 CFR FCC Part 15.255 and Millimeter Wave Test Procedures and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Cliff Chang

SPORTON INTERNATIONAL INC.

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Additional Information Provided by the Submitter	6
1.3	Accessories	7
1.4	Support Equipment,	7
1.5	EUT Operation during Test	7
1.6	Test Setup Diagram	8
1.7	Testing Applied Standards	10
1.8	Testing Location	10
2	TEST CONFIGURATION OF EQUIPMENT UNDER TEST	11
2.1	Test Channel Frequencies	11
2.2	Conformance Tests and Related Test Frequencies	11
2.3	Far Field Boundary Calculations	12
3	TRANSMITTER TEST RESULT	13
3.1	AC Power Conducted Emissions	
	AC FOWER COnducted Emissions	13
3.2	Occupied Bandwidth	
3.2 3.3		18
	Occupied Bandwidth	
3.3	Occupied Bandwidth EIRP Power	18 23 26
3.3 3.4	Occupied Bandwidth EIRP Power Peak Conducted Power	
3.3 3.4 3.5	Occupied Bandwidth EIRP Power Peak Conducted Power Transmitter Spurious Emissions	
3.3 3.4 3.5 3.6	Occupied Bandwidth EIRP Power Peak Conducted Power Transmitter Spurious Emissions Frequency Stability	
3.3 3.4 3.5 3.6 3.7	Occupied Bandwidth EIRP Power Peak Conducted Power Transmitter Spurious Emissions Frequency Stability Operation Restriction and Group Installation	
3.3 3.4 3.5 3.6 3.7 4 5	Occupied Bandwidth EIRP Power Peak Conducted Power Transmitter Spurious Emissions Frequency Stability Operation Restriction and Group Installation TEST EQUIPMENT AND CALIBRATION DATA	

Standard Requirements and Conformance Test Specifications						
Report	Ref. Std.	Description	Result	Remark		
Clause	Clause	Description	Result	Remark		
3.1	FCC 15.207	AC Power Conducted Emissions	Complied	-		
3.2	FCC 15.255(d)	Occupied Bandwidth	Complied	-		
3.3	FCC 15.255(b)(1)	EIRP Power	Complied	-		
3.4	FCC 15.255(d)	Peak Conducted Power	Complied	-		
3.5	FCC 15.255(c)	Transmitter Spurious Emissions	Complied	-		
3.6	FCC 15.255(e)	Frequency Stability	Complied	-		
3.7	FCC 15.255(a),(g)	Operation Restriction and Group Installation	Complied	-		

Summary of Test Result

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR760928	Rev. 01	Initial issue of report	Feb. 12, 2018

1 General Description

1.1 Information

1.1.1 **RF General Information**

RF General Information			
Frequency Range 57-71 GHz			
The Channel Plan(s)	Channel 1: 58.32 GHz		
Channel 2: 60.48 GHz			
	Channel 3: 62.64 GHz		

1.1.2 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Mikrotik	60G-phased-array	Parabolic Dish Antenna	Soldered	42

1.1.3 EUT Power Type

EUT Power Type

From PoE

1.1.4 Equipment Use Condition

Equipment Use Condition			
Fixed field disturbance sensors at 61-61.5GHz			
Except fixed field disturbance sensors at 61-61.5GHz			
Except fixed field disturbance sensors			

1.1.5 User Condition

Intended Operation		
Indoor		
Outdoor		

1.1.6 Duty Cycle

Duty Cycle			Duty Cycle Factor
The transmitter is intended for	Low Channel	100.00 %	0.00

1.2 Additional Information Provided by the Submitter

1.2.1 Product Details

IEEE 802.11ad Modulation Scheme

MCS Index	Modulation	Code rate	Data rate (Mbit/s)	
0	π/-2BPSK	1/2	27.5	
1	π/-2BPSK	1/2	385	
2	π/-2BPSK	1/2	770	
3	π/-2BPSK	5/8	962.5	
4	π/-2BPSK	3/4	1155	
5	π/-2BPSK	13/16	1251.25	
6	π/-2QPSK	1/2	1540	
7	π/-2QPSK	5/8	1925	
8	π/-2QPSK	3/4	2310	
9	π/-2QPSK	13/16	2502.5	
10	π/2-16QAM	1/2	3080	
11	π/2-16QAM	5/8	3850	
12 π/2-16QAM		3/4	4620	
The Channel Bandwidth is 2.16GHz				
Can the transmitt	Can the transmitter operate un-modulated: Xes No			

1.3 Accessories

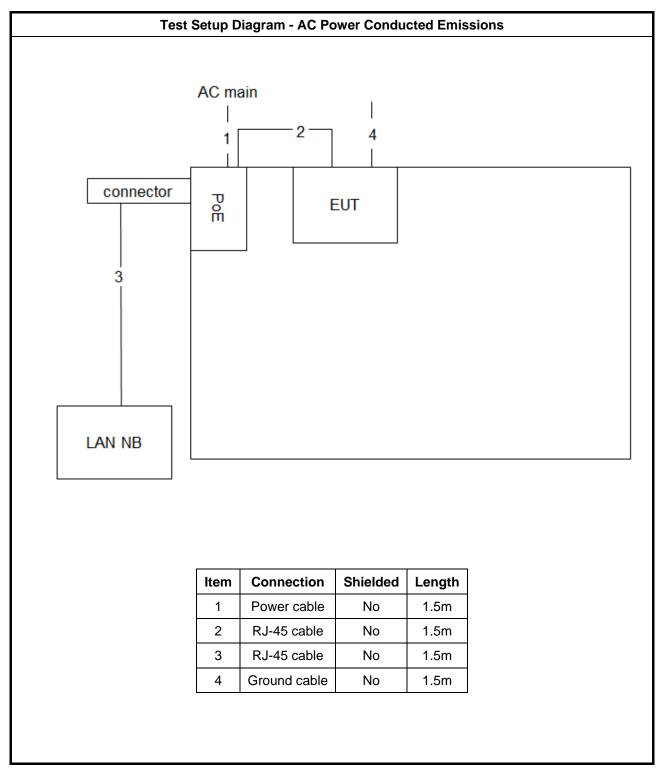
	Accessories						
No.	Equipment Name	Brand Name	Model Name	Rating			
1	Adapter	MLF	MLF-A00122400380U0141	Input: 100-240V ~ 50/60Hz, 0.4Amax Output: 24V, 0.38A			
2	PoE	MikroTik	RBGPOE	Input: 9-48V			
	Others						
	Standing dock (Round type)*1 Standing dock (Long type)*2						

1.4 Support Equipment,

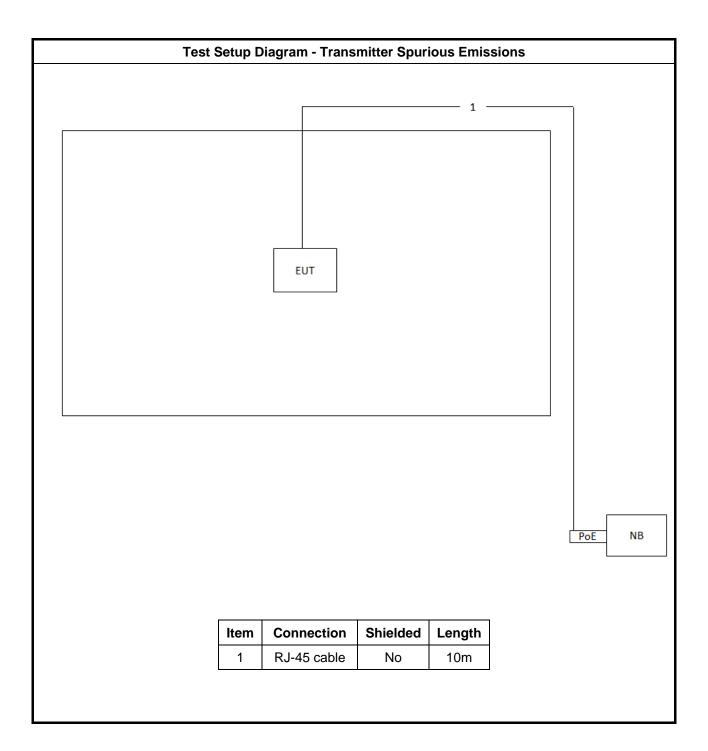
For AC Power Conducted Emissions test:

	Support Equipment					
No.	No. Equipment Brand Name Model Name FCC ID					
1	NB	DELL	E6430	DoC		

For other tests:


Support Equipment							
No.	Equipment Brand Name Model Name FCC ID						
1	NB	ACER	TravelMate P645	DoC			

1.5 EUT Operation during Test


During the test, executed the test program to control the EUT continuously transmit RF signal.

1.6 Test Setup Diagram

1.7 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.255
- ANSI C63.10-2013 Section 9. "Procedures for testing millimeter-wave systems"

1.8 Testing Location

Testing Location									
	HWA YA	ADD	:	No. 52,	lo. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
		TEL	:	886-3-3	886-3-327-3456 FAX : 886-3-327-0973				
\square	JHUBEI	ADD	:	No.8, La	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-6	886-3-656-9065 FAX : 886-3-656-9085				
	Test Site No.								
	CO	01-CB			(03CH01-	СВ		TH01-CB

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

2 Test Configuration of Equipment under Test

2.1 Test Channel Frequencies

Test Channel Frequencies Configuration					
Low Channel (GHz) 58.32					
Middle Channel (GHz)	60.48				
High Channel (GHz)	62.64				

2.2 Conformance Tests and Related Test Frequencies

Test Item	Test Frequencies (GHz)				
AC Power Conducted Emissions	СТХ				
Occupied Bandwidth	58.32, 60.48, 62.64				
EIRP Power	58.32, 60.48, 62.64				
Peak Conducted Power	58.32, 60.48, 62.64				
Transmitter Spurious Emissions (below 1 GHz)	СТХ				
Transmitter Spurious Emissions (1 GHz-40 GHz)	58.32, 60.48, 62.64				
Transmitter Spurious Emissions (above 40 GHz)	58.32, 60.48, 62.64				
Frequency Stability	Un-Modulation				

Note: The EUT can only be used at standing position.

2.3 Far Field Boundary Calculations

The far-field boundary is given as:

far field = (2 * L^2) / λ

where:

L = Largest Antenna Dimension, including the reflector, in meters

 λ = wavelength in meters

Far Field (m)						
Frequency (GHz)	L (m)	Lambda (m)	d(Far Field) (m)	d(Far Field) (cm)		
58.32	0.35	0.0051440	47.628	4762.80		
60.48	0.35	0.0049603	49.392	4939.20		
62.64	0.35	0.0047893	51.156	5115.60		

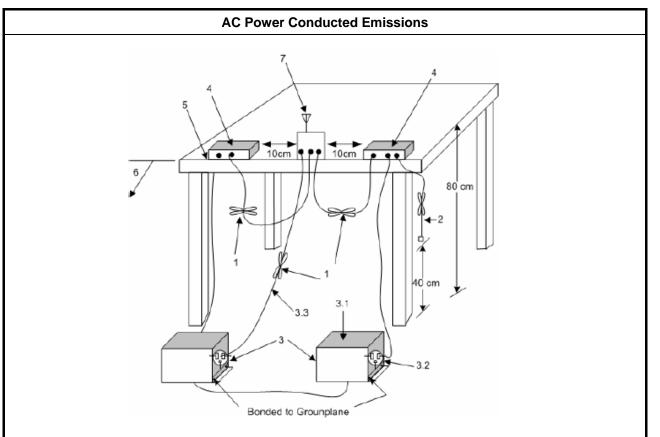
3 Transmitter Test Result

3.1 AC Power Conducted Emissions

3.1.1 Limit of AC Power Conducted Emissions

AC Power Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note: * Decreases with the logarithm of the free	Note: * Decreases with the logarithm of the frequency.					

3.1.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 6.2.

3.1.4 Test Setup

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.

3.1—All other equipment powered from additional LISN(s).

3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.

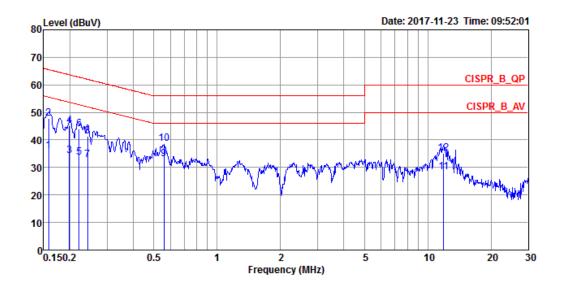
3.3—LISN at least 80 cm from nearest part of EUT chassis.

4—Non-EUT components of EUT system being tested.

5-Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.

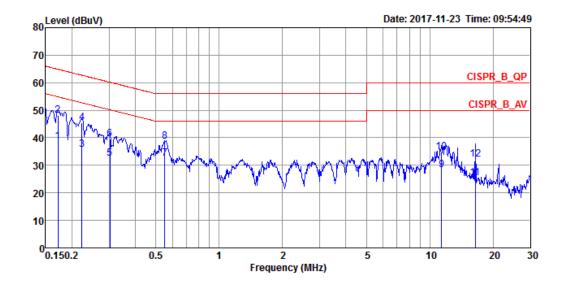
6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.



3.1.5 Test Result of AC Power Conducted Emissions

Test Conditions	see ANSI C63.10, clause 5.11						
Test Setupsee ANSI C63.10, clause 6.2.3							
NOTE 1: If equipn	NOTE 1: If equipment having different channel plan and nominal channel bandwidth modes (see test report						
clause 1.	1.1), the measurements are uninfluenced by different channel plan and nominal channel						
bandwidt	th modes, may not need to be repeated for all modes. If equipment having different						
transmit	operating modes (see test report clause 1.1.2), the measurements are uninfluenced by						
different	transmit operating modes, may not need to be repeated for all the operating modes.						
Similar, i	if the equipment supports different modulations and/or data rates, the measurements						
described	d in ANSI C63.10, clause 5.12 may not need to be repeated for all these modulations and						
data rate	es. Simple comparison of engineering test across all operating modes, modulations and						
data rate	es may need to be performed to define the worse case combination to be used for the						
conforma	ance testing.						
NOTE 2: ">20dB"	means the tables in this clause should only list values of spurious emissions that exceed						
the level	of 20 dB below the applicable limit, see ANSI C63.4, clause 10.1.8.1.						


Тетр	21°C	Humidity	60%
Test Engineer	Rick Yeh	Phase	Line
Configuration	СТХ		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1582	35.90	-19.66	55.56	25.91	9.98	0.01	Average	LINE
2	0.1582	47.79	-17.77	65.56	37.80	9.98	0.01	QP	LINE
3	0.1986	34.33	-19.34	53.67	24.41	9.91	0.01	Average	LINE
4	0.1986	45.14	-18.53	63.67	35.22	9.91	0.01	QP	LINE
5	0.2208	33.79	-19.00	52.79	23.88	9.90	0.01	Average	LINE
6	0.2208	43.95	-18.84	62.79	34.04	9.90	0.01	QP	LINE
7	0.2429	32.68	-19.32	52.00	22.76	9.90	0.02	Average	LINE
8	0.2429	41.33	-20.67	62.00	31.41	9.90	0.02	QP	LINE
9	0.5581	33.13	-12.87	46.00	23.20	9.90	0.03	Average	LINE
10	0.5581	38.75	-17.25	56.00	28.82	9.90	0.03	QP	LINE
11	11.8747	28.47	-21.53	50.00	18.30	10.09	0.08	Average	LINE
12	11.8747	35.08	-24.92	60.00	24.91	10.09	0.08	QP	LINE

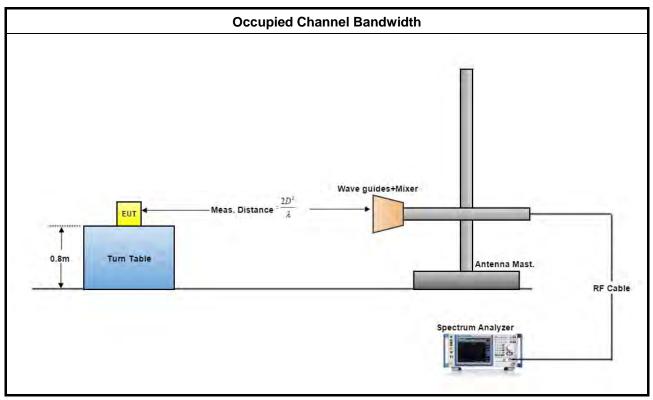
Тетр	21°C	Humidity	60%
Test Engineer	Rick Yeh	Phase	Neutral
Configuration	СТХ		

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
	MITZ	ubuv	ub	abuv	abuv	ub	uр		
1	0.1712	38.74	-16.16	54.90	28.73	10.00	0.01	Average	NEUTRAL
2	0.1712	47.97	-16.93	64.90	37.96	10.00	0.01	QP	NEUTRAL
3	0.2232	35.85	-16.85	52.70	25.88	9.96	0.01	Average	NEUTRAL
4	0.2232	45.49	-17.21	62.70	35.52	9.96	0.01	QP	NEUTRAL
5	0.3035	32.43	-17.72	50.15	22.46	9.95	0.02	Average	NEUTRAL
6	0.3035	39.58	-20.57	60.15	29.61	9.95	0.02	QP	NEUTRAL
7	0.5523	32.42	-13.58	46.00	22.44	9.95	0.03	Average	NEUTRAL
8	0.5523	38.58	-17.42	56.00	28.60	9.95	0.03	QP	NEUTRAL
9	11.3771	28.38	-21.62	50.00	18.14	10.16	0.08	Average	NEUTRAL
10	11.3771	34.73	-25.27	60.00	24.49	10.16	0.08	QP	NEUTRAL
11	16.4856	25.27	-24.73	50.00	14.92	10.24	0.11	Average	NEUTRAL
12	16.4856	32.09	-27.91	60.00	21.74	10.24	0.11	QP	NEUTRAL

3.2 Occupied Bandwidth

3.2.1 Limit of Occupied Bandwidth

6dBc Bandwidth (see Note 1)	None						
26dBc Bandwidth	None						
99% Occupied Bandwidth (see Note 2)	None						
NOTE 1: The 6dBc bandwidth is the frequency bandwidth of the signal power at the -6 dBc points when							
measured with a 100 kHz resolution bandwidth. These measurements shall also be performed at							
normal test conditions.	normal test conditions.						
NOTE 2: The 99% occupied bandwidth is the frequer	ncy bandwidth of the signal power at the 99% channel						
power of occupied bandwidth when resolution	power of occupied bandwidth when resolution bandwidth should be approximately 1 % to 5 % of						
the occupied bandwidth (OBW). These me	the occupied bandwidth (OBW). These measurements shall also be performed at normal test						
conditions.	conditions.						


3.2.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.2.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 6.9.2.

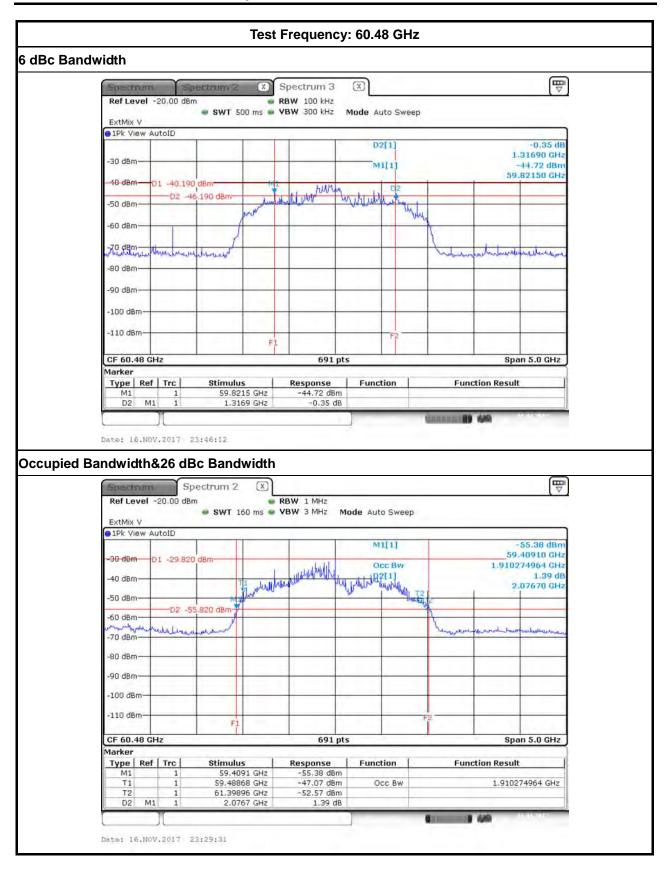
3.2.4 Test Setup

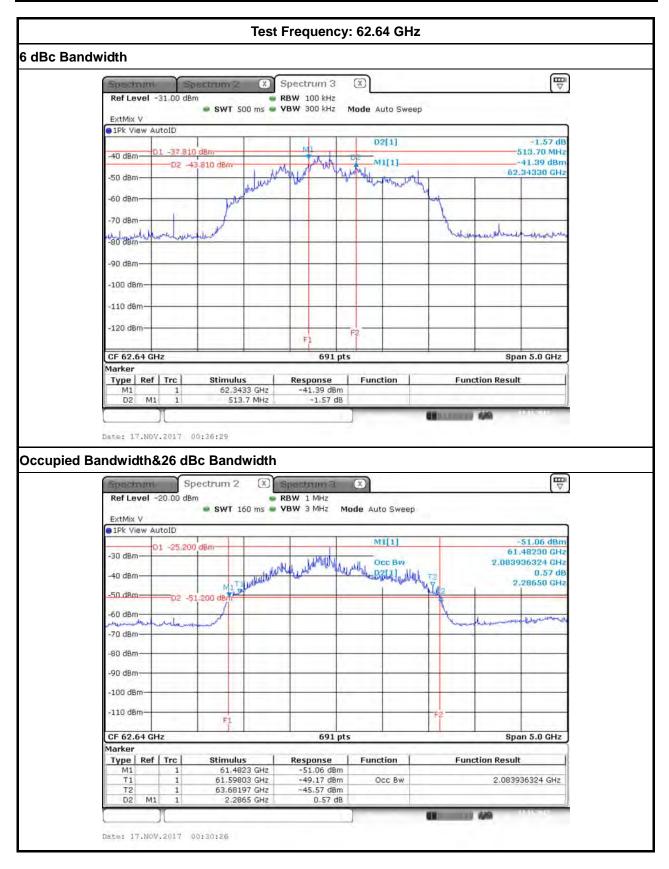
SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-327-0973 FCC ID: TV7LHGG60AD

Page No.	: 18 of 45
Report Version	: Rev. 01
Issued Date	: Feb. 12, 2018

3.2.5 Test Result of Occupied Bandwidth

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.9.2
NOTE: If equipme	ent having different transmit operating modes (see test report clause 1.1.2), the
measurem	nents are uninfluenced by different transmit operating modes, may not need to be
repeated f	for all the operating modes. Similar, if the equipment supports different modulations
and/or dat	a rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be
repeated f	or all these modulations and data rates. Simple comparison of engineering test across
all operation	ng modes, modulations and data rates may need to be performed to define the worse
case com	bination to be used for the conformance testing. Refer as ANSI C63.10, clause 15,
observe a	nd record with plotted graphs or photographs the worst-case (i.e., widest) occupied
bandwidth	produced by these different modulation sources.


Temp	22 ℃	22 ℃		Humidity 54%		
Test Engineer	Cloa Fan	Cloa Fan				
	Те	est Result	s			
Test Freq. (GHz)	6 dBc Bandwidth (MHz)	Ban	upied dwidth IHz)	Ban	dBc dwidth /IHz)	Limit (MHz)
58.32	1099.90	182	23.44	19	97.10	N/A
60.48	1316.90	191	10.27	20	76.70	N/A
62.64	513.70	208	33.94	22	86.50	N/A


3.2.5.1 Bandwidth Plots

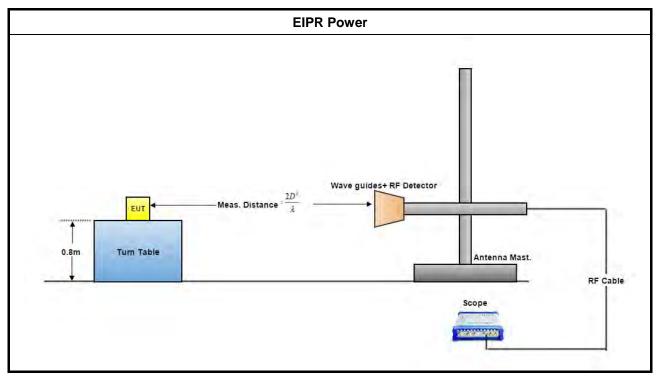
3.3 EIRP Power

3.3.1 Limit of EIRP Power

EIRP Power Limit						
Use Condition	EIRP Average Power	EIRP Peak Power				
Fixed field disturbance sensors at within the frequency band 61-61.5GHz	40 dBm	43 dBm				
Fixed field disturbance sensors at outside of the band 61-61.5GHz	10 dBm	13 dBm				
Except fixed field disturbance sensors at 61-61.5GHz	N/A	10 dBm				
Except fixed field disturbance sensors(indoor)	40 dBm	43 dBm				
Except fixed field disturbance sensors(outdoor)	82 dBm	85 dBm				

NOTE: For the applicable limit, see FCC 15.255 (b)

3.3.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.3.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013 clause 9.3 & 9.5.

3.3.4 Test Setup

3.3.5 Test Result of EIRP Power

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9				
Test Setup	see ANSI C63.10, clause 9.11				
NOTE: If the equip	oment supports different modulations and/or data rates, the measurements described in				
ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates.					
Simple comparison of engineering test across all operating modes, modulations and data rates may					
need to be	performed to define the worst case combination to be used for the conformance testing.				

Temp			22 ℃			Hum	Humidity			54%		
Test Eng	jineer		Co	Cola Fan Test Distance			ce 55.00m					
Test Dat	e	Nov. 16, 2017 ~ Jan. 10, 2018				Nov. 16, 2017 ~ Jan. 10, 2018						
	Test Results											
Test	Rx	DS	60	Power Measured E _{Meas}			Elf	EIRP EIRP Lim		Limit		
Freq.	Gain	(m	V)	(dBm) (dBuV/m)		ıV/m)	(dBm)		(dBm) (note 1)			
(GHz)	(dBi)	Peak	AV	Peak	AV	Peak	AV	Peak	AV	Peak	AV	
58.32	23	2.7	0.62	-27.66	-36.24	121.91	113.33	52.02	43.44	67	64	
60.48	23	4.5	0.77	-25.69	-35.48	124.20	114.41	54.31	44.52	67	64	
62.64	23	3.3	0.53	-26.75	-36.93	123.44	113.26	53.55	43.37	67	64	

3.3.5.1 Test Result of EIRP Power

The measured power level is converted to EIRP using the Friis equation:

For radiated emissions, calculate the field strength (E) in $dB\mu V/meter$.

 $E = 126.8 - 20log(\lambda) + P - G$

where:

E : is the field strength of the emission at the measurement distance, in $dB\mu V\!/m$

P : is the power measured at the output of the test antenna, in dBm

 λ : is the wavelength of the emission under investigation [300/fMHz], in m

G : is the gain of the test antenna, in dBi For radiated emissions, calculate the EIRP (dBm). If the measurement was performed in the far field, calculate the EIRP.

EIRP = E-meas +20log(d-meas)-104.7

where:

EIRP : is the equivalent isotopically radiated power, in dBm

E-meas. : is the field strength of the emission at the measurement distance, in $dB\mu V/m$

d-meas. : is the measurement distance, in m

NOTE 1: For the applicable limit, see FCC 15.255 (b)

NOTE 2: The comparison method which replaces EUT with a signal generator is used to find the correct conversion factor between "DSO(mV)" & "Power Measured(dBm)".

3.4 Peak Conducted Power

3.4.1 Limit of Peak Conducted Power

Peak Conducted Power Limit					
6dBc Bandwidth Peak Conducted Power (note 1)					
> 100MHz 500mW					
≤ 100MHz 500mW x (BW/100) (see note 2)					
NOTE 1: For the applicable limit, see FCC 15.255(e)					
NOTE 2: BW= 6dB bandwidth (measured at RBW 100kHz)					

3.4.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.4.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 9.5

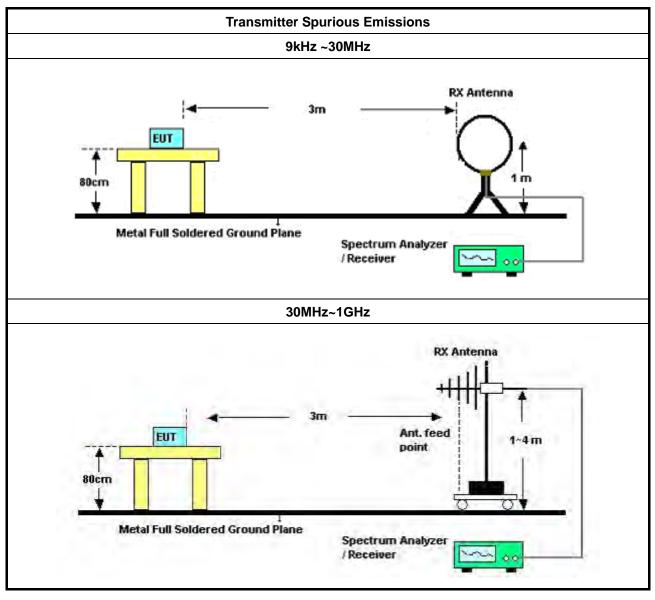
3.4.4 Test Result of Peak Conducted Power

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9				
Test Setup	see ANSI C63.10, clause 9.11				
NOTE: If the equ	ipment supports different modulations and/or data rates, the measurements described in				
ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates.					
Simple comparison of engineering test across all operating modes, modulations and data rates may					
need to be	performed to define the worst case combination to be used for the conformance testing.				

3.4.4.1 Peak Conducted Power

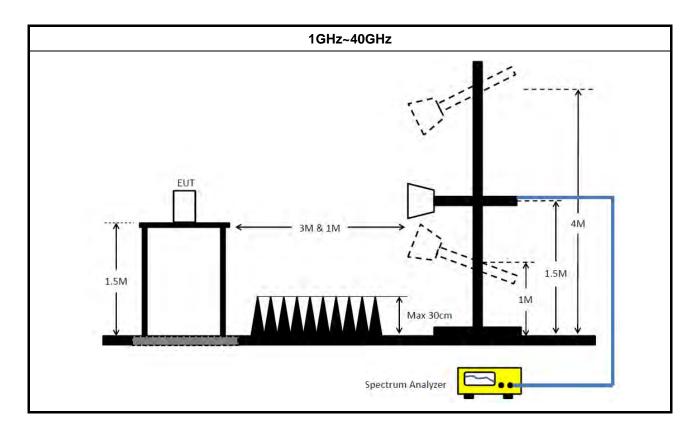
Temp	22 °C		Humidity	549	%	
Test Engineer	Cola Fan					
Test Date	Nov. 16, 2	017 ~ Jan. 10	, 2018			
		Test R	esults			
Test Freq. (GHz)	EIRP (dBm)	Max. Ant. Gain (dBi)	Peak Power (dBm) (note1)	Peak Power (mW)	6dBc BW (MHz) (note2)	Peak Power Limit (mW) (note3)
58.32	52.02	42	10.02	10.049	1099.90	500.00
60.48	54.31	42	12.31	17.010	1316.90	500.00
62.64	53.55	42	11.55	14.295	513.70	500.00
NOTE 1: Because EUT used for the integral antenna without temporary RF connector provided. Therefore peak conducted power is equal to EIRP power subtract the antenna gain. NOTE 2: For the 6dBc bandwidth, see test report clause 3.2.5.						
NOTE 3: For the applicable limit, see FCC 15.255(e) NOTE 4: For radiated emission measurements, calculate conducted transmitter output power P(cond)(dBm)						
P(cond) = EIRP - G(dBi) where: G(dBi) is gain of EUT antenna.						

3.5 Transmitter Spurious Emissions

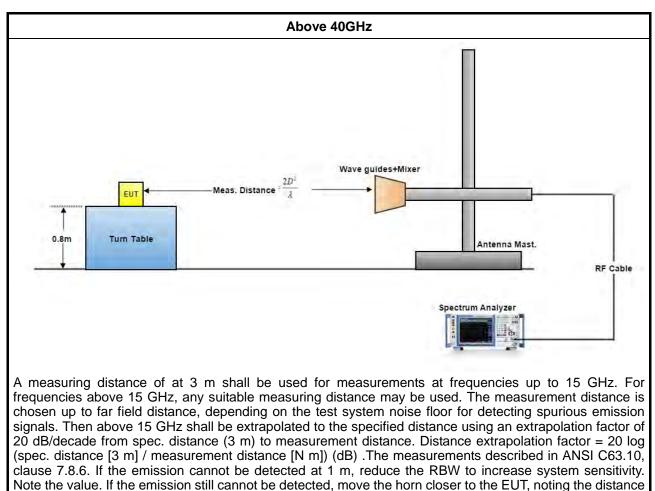

3.5.1 Limit of Transmitter Spurious Emissions

Frequency Range	Limit				
Radiated emissions below 40 GHz	FCC 15.209				
Radiated emissions above 40 GHz – 200GHz	90 pW/cm ² @ 3 m (Equivalent EIRP 102 µW, -9.91dBm)				
NOTE 1: For the applicable limit, see FCC 15.255(c)					
NOTE 2: Spurious emissions shall not exceed the level of the fundamental emission.					

3.5.2 Test Procedures


Method of measurement: Refer as ANSI C63.10-2013, clause 9.12

3.5.3 Test Setup



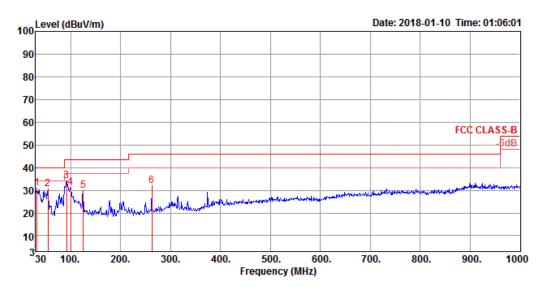
SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-327-0973 FCC ID: TV7LHGG60AD

at which a measurement is made.

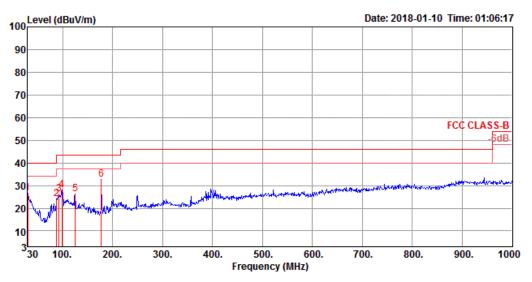
3.5.4 Test Result of Transmitter Spurious Emissions

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9				
Test Setup	see ANSI C63.10, clause 9.12 9.13				
NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report					
clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel					
bandwidth modes, may not need to be repeated for all modes.					

3.5.4.1 Test Result of Transmitter Spurious Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.5.4.2 Test Result of Transmitter Spurious Emissions


Тетр	22°C	Humidity	54%
Test Engineer	Cola Fan	Test Range	30 MHz – 1000 MHz
Test Configuration	СТХ		

Vertical

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	32.91	30.77	40.00	-9.23	38.32	0.99	23.89	32.43	100	92	Peak	VERTICAL
2	54.25	30.50	40.00	-9.50	47.73	1.32	13.87	32.42	150	253	Peak	VERTICAL
3	92.08	34.28	43.50	-9.22	50.21	0.81	15.64	32.38	150	2	Peak	VERTICAL
4	99.84	31.31	43.50	-12.19	45.76	0.83	17.10	32.38	100	259	Peak	VERTICAL
5	125.06	29.69	43.50	-13.81	42.30	1.15	18.60	32.36	100	161	Peak	VERTICAL
6	262.80	32.04	46.00	-13.96	42.28	2.45	19.59	32.28	100	36	Peak	VERTICAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	30.00	26.48	40.00	-13.52	32.34	0.97	25.60	32.43	200	261	Peak	HORIZONTAL
2	88.20	24.24	43.50	-19.26	40.93	0.77	14.93	32.39	200	75	Peak	HORIZONTAL
3	93.05	26.21	43.50	-17.29	41.94	0.82	15.83	32.38	300	78	Peak	HORIZONTAL
4	98.87	28.10	43.50	-15.40	42.74	0.83	16.91	32.38	300	261	Peak	HORIZONTAL
5	125.06	26.42	43.50	-17.08	39.03	1.15	18.60	32.36	300	78	Peak	HORIZONTAL
6	177.44	32.75	43.50	-10.75	47.94	1.43	15.70	32.32	200	60	Peak	HORIZONTAL

Тетр	22°C	Humidity	54%
Test Engineer	Cola Fan	Test Range	1 GHz – 40 GHz
Test Configuration	СТХ	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018
Test Freq. (MHz)	58.32		

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	1350.11 1350.16										Peak Average	VERTICAL VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	1349.88 1350.03										Average Peak	HORIZONTAL HORIZONTAL

Тетр	22°C	Humidity	54%
Test Engineer	Cola Fan	Test Range	1 GHz – 40 GHz
Test Configuration	CTX	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018
Test Freq. (MHz)	60.48		

Vertical

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
	1349.86 1349.91										Peak Average	VERTICAL VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	1349.55 1349.79										Average Peak	HORIZONTAL HORIZONTAL

Тетр	22°C	Humidity	54%
Test Engineer	Cola Fan	Test Range	1 GHz – 40 GHz
Test Configuration	CTX	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018
Test Freq. (MHz)	62.64		

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	1399.63 1403.51								158 158		Average Peak	VERTICAL VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
	1399.82 1400.38										Average Peak	HORIZONTAL HORIZONTAL

Тетр	24°C	Humidity	64%
Test Engineer	Cola Fan	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018
Test Range	40GHz – 200GHz		

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
58.32	23	1.00	40.50	-58.74
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-17.15	3	17.0465	90.00	Complied

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
60.48	23	1.00	56.57	-70.08
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-25.59	3	2.4428	90.00	Complied

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
62.64	23	1.00	41.76	-62.62
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-20.76	3	7.4169	90.00	Complied

Note:

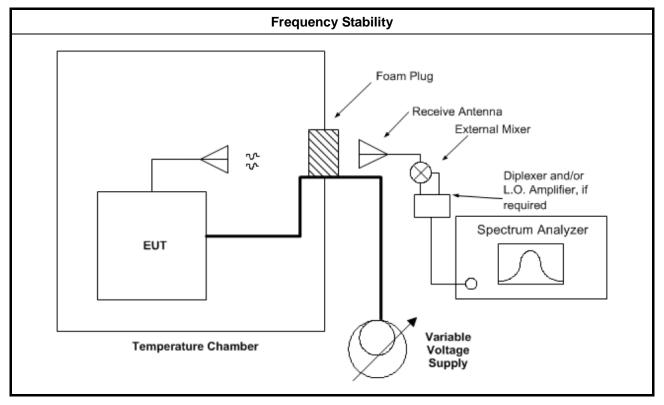
 $\begin{array}{l} \mathsf{EIRP}=\mathsf{Prx}-\mathsf{Grx}+\mathsf{Free Space Path Loss}=\mathsf{Prx}-\mathsf{Grx}+20\mathsf{Log}(4\pi d/\,\lambda)2\\ \mathsf{Which}\\ \mathsf{Prx}=\mathsf{Read Level}.\\ \mathsf{Grx}=\mathsf{Rx} \: \mathsf{Antenna \ Gain}.\\ \mathsf{A} \: \mathsf{distance \ factor \ is \ offset \ and \ the \ formula \ is \ 20\mathsf{LOG}(\mathsf{D1/D2})}\\ \mathsf{Which} \end{array}$

D1 = Specification Distance D2 = Measurement Distance

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Frequency Stability	Limit				
Refer as FCC 15.255(e) and	within the frequency bands				
ANSI C63.10-2013, clause 9.14	within the frequency bands				
Note: These measurements shall also be performed at normal and extreme test conditions.					


3.6.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.6.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 9.14.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Test Conditions see ANSI C63.10, clause 5.11 & clause
--

Test Setup see ANSI C63.10, clause 9.14

NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel bandwidth modes, may not need to be repeated for all modes.

3.6.5.1 Frequency Stability with Respect to Ambient Temperature

	Free	quency Stability with Res	spect to Ambient Ter	nperature
Тетр	24°C		Humidity	64%
Test Engineer	Cola I	Fan	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018
		Test	Results	
Test Temperature	• (°C)	Measured Frequency	Delta Frequency	Limit
rest temperature	/ 0/	(MHz)	(kHz)	(±kHz)
-40		60461.9612	11.200	Within band
-30		60461.9614	11.400	Within band
-20		60461.9614	11.400	Within band
-10		60461.9619	11.900	Within band
0		60461.9674	17.400	Within band
10		60461.9656	15.600	Within band
20		60461.9500	Reference	Within band
30		60461.9574	7.400	Within band
40		60461.9574	7.400	Within band
50		60461.9566	6.600	Within band
60		60461.9567	6.700	Within band
70		60461.9568	6.800	Within band
NOTE: The manufa	cturer's	s specified temperature rai	nge of -40 to 70°C.	

3.6.5.2 Frequency Stability When Varying Supply Voltage

Frequency Stability When Varying Supply Voltage							
Тетр	24	°C	Humidity	64%			
Test Engineer	Сс	ola Fan	Test Date	Nov. 16, 2017 ~ Jan. 10, 2018			
Test Results							
Test Voltage: (Vdc)		Measured Frequency (MHz)	Delta Frequency (kHz)	Limit (±kHz)			
40.8		60461.9501	0.100	Within band			
48		48 60461.9500		Within band			
55.2		60461.9500	0.000	Within band			
NOTE: For the appl	icat	ble limit, see FCC 15.255(e).					

3.7 Operation Restriction and Group Installation

3.7.1 Limit of Operation Restriction and Group Installation

ltem	Limit			
	Operation is not permitted for the following products:			
	• Equipment used on aircraft or satellites. (Refer as FCC 15.255 (a))			
Operation Restriction	• Field disturbance sensors, including vehicle radar systems, unless the field			
	disturbance sensors are employed for fixed operation. (Refer as FCC			
	15.255 (a))			
	Operation is not permitted for the following products:			
Group Installation	External phase-locking (Refer as FCC 15.255 (g))			

3.7.2 Result of Operation Restriction

Manufacturer declares that EUT will not been used on aircraft or satellites. Then user manual will include a statement to caution EUT is not permitted for used on aircraft or satellites. EUT is a wireless video area network (WVAN) for the connection of consumer electronic (CE) audio and video devices.

3.7.3 Result of Group Installation

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 23, 2017	Jan. 22, 2018	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Dec. 14, 2016	Dec. 13, 2017	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 21, 2016	Dec. 20, 2017	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 23, 2017	May 22, 2018	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D & N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 30, 2017	Aug. 29, 2018	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Mar. 15, 2018*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 10, 2016	Nov. 09, 2017	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 20, 2017	Nov. 19, 2018	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 05, 2017	Jul. 04, 2018	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2017	May 01, 2018	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 16, 2017	Jan. 15, 2018	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 10, 2017	Jul. 09, 2018	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 22, 2016	Nov. 21, 2017	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 23, 2017	Nov. 22, 2018	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 06, 2017	May 05, 2018	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16+17	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)

: Feb. 12, 2018

FCC Radio Test Report

Report No. : FR760928

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	High Cable-40G#1	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#2	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 22, 2016	Nov. 21, 2017	Radiation (03CH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 20, 2017	Nov. 19, 2018	Radiation (03CH01-CB)
Mixer	OML	M19HW/A	U91113-1	40 ~ 60 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M15HW/A	V91113-1	50 ~ 75 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M12HW/A	E91113-1	60 ~ 90 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M08HW/A	F91113-1	90 ~ 140 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Mixer	OML	M05HW/A	G91113-1	140 ~ 220 GHz	Oct. 12, 2017	Oct. 11, 2018	Radiation (03CH01-CB)
Detector	Millitech	DET-15-RPFW 0	#A16473(074)	50 ~ 75 GHz	Mar. 06, 2017	Mar. 05, 2018	Radiation (03CH01-CB)
Pico Scope	Pico	Pico Scope 6402C	CX372/002	N/A	Jul. 26, 2017	Jul. 25, 2018	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M19RH	U91113-A	40 ~ 60 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M15RH	V91113-A	50 ~ 75 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M12RH	E91113-A	60 ~ 90 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M08RH	F91113-A	90 ~ 140 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M05RH	G91113-A	140 ~ 220 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Temp. and Humidity Chamber	Gaint Force	GTH-408-40-C P-AR	MAA1410-011	-40~100 degree	Sep. 15, 2017	Sep. 14, 2018	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Radiated Emission (40GHz ~ 220GHz)	4.7 dB	Confidence levels of 95%
Temperature	0.7°C	Confidence levels of 95%