Test of: Mikrotik RBLHG-5HPnD

To: FCC CFR 47 Part 15B; ICES-003 Issue 6: 2016

Test Report Serial No.: MIKO62-U9 Rev A

Test of: Mikrotik RBLHG-5HPnD

To: FCC CFR 47 Part 15B & IC ICES-003

Test Report Serial No.: MIKO62-U9 Rev A

This report supersedes: NONE

Manufacturer: Mikrotik

> Pernavas 46 Riga, LV 1009

Latvia

Product Function: 802.11 a/n WLAN Access point

Copy No: Issue Date: 1st August 2017 pdf

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc. 575 Boulder Court, Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306 www.micomlabs.com

ACCREDITE TESTING CERT #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 3 of 37

This page has been left intentionally blank

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 4 of 37

TABLE OF CONTENTS

1.	ACCREDITATION, LISTINGS & RECOGNITION	5
	1.1. Test Accreditation	
	1.2. Recognition	6
	1.3. Product Certification	
2.	DOCUMENT HISTORY	8
3.	TEST RESULT CERTIFICATE	9
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	4.1. Normative References	
	4.2. Test and Uncertainty Procedures	
5.	TEST SUMMARY	12
6.	PRODUCT DETAILS AND TEST CONFIGURATIONS	13
	6.1. Test Program Scope	
	6.2. EUT Details	16
	6.3. External A.C/D.C. Power Adaptor	
	6.4. Antenna Details	
	6.5. Cabling and I/O Ports	17
	6.6. Equipment Details	
	6.7. Equipment Modifications	18
	6.8. Deviations from the Test Standard	
	6.9. EUT Configurations	
	6.9.1. EUT Configuration - Radiated Emissions:	
7.	TEST RESULTS	21
	7.1. EMC EMISSIONS TEST RESULTS	
	7.1.1. Radiated Emissions	
	7.1.2. AC Mains Power Input/Output Ports	
8.	PHOTOGRAPHS	
	8.1. Radio Emissions Front	
	8.2. Radiated Emissions Back	
	8.1. AC Wireline Emissions	35

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 5 of 37

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. Test Accreditation

MiCOM Labs, Inc. an accredited laboratory complies with the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 6 of 37

1.2. Recognition

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
model	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
'	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A - Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries

^{**}EU MRA – European Union Mutual Recognition Agreement.

^{**}NB – Notified Body

FCC CFR 47 Part 15B & IC ICES-003 To:

MIKO62-U9 Rev A Serial #: Date: 1st August 2017

Page: 7 of 37

1.3. **Product Certification**

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 4th day of February 2016.

Senior Director of Quality & Communications For the Accreditation Council

Certificate Number 2381.02 Valid to November 30, 2017

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB)

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB)

RCB Identifier - 210

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 8 of 37

2. **DOCUMENT HISTORY**

Document History						
Revision	Date	Comments				
Draft	19 th June 2017					
Rev A	1st August 2017	Initial release				

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 9 of 37

3. TEST RESULT CERTIFICATE

Applicant: Mikrotik Tested By: MiCOM Labs, Inc.

Pernavas 46 575 Boulder Court

Riga, LV 1009 Pleasanton, California 94566

Latvia USA

EUT 802.11 a/n WLAN Access point Tel: +1 925 462 0304

Model: RBLHG-5HPnD Fax: +1 925 462 0306

S/N: 7BEC040F32E2/714

Test Dates: 30th May 2017 Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15B & IC ICES-003

TEST RESULTS
EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

 This document reports conditions under which testing was conducted and the results of testing performed.

 Details of the test methods used have been recorded and are kept on file by the laboratory.

• Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERT #2381.01

CCREDITED

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 10 of 37

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC CFR 47 Part 15, Subpart B	2016	Title 47 CFR Part 15, Sub Part B; Unintentional Radiators
(ii)	ICES-003	Issue 6 January 2016	Information Technology Equipment (ITE) - Limits and methods of measurement
(iii) ANSI C63.4 2014 Measurement of Radio-Noise Emission		American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
(iv) IEC 55016-2-3 2006 immunity measuring appara Methods of measurements		CISPR 16-2-3: "Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurements of disturbances and immunity - Radiated disturbance measurements".	
(v)	M 3003	Edition 2 Dec. 2007	Expression of Uncertainty and Confidence in Measurements
(vi) LAB34 Edition 1 August 2002 The expression of uncertainty in		The expression of uncertainty in EMC Testing	
(vii)	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	R105 - Requirement's When Making Refere		R105 - Requirement's When Making Reference to A2LA Accreditation Status

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 11 of 37

4.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 12 of 37

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under CISPR 24 standard.

TABLE OF REQUIRED TESTS - Emissions

Test Standard Description		Limits	Compliance
FCC Part 15B & ICES-003	Radiated Emissions	Class A	Complies
FCC Part 15B & Conducted Emissions - ac power I/O port		Class B	Complies

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 13 of 37

6. PRODUCT DETAILS AND TEST CONFIGURATIONS

6.1. Test Program Scope

The scope of the test program was to test the Mikrotik RBLHG-5HPnD for compliance against the appropriate emission standards listed within this report in order to satisfy the following standards.

- FCC CFR 47 Part 15, Subpart B Title 47 CFR Part 15, SubPart B; Unintentional Radiators
- ICES-003 Issue 6 Information Technology Equipment (ITE) Limits and methods of measurement

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 14 of 37

Mikrotik RBLHG-5HPnD Front

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 15 of 37

Mikrotik RBLHG-5HPnD Back

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 16 of 37

6.2. EUT Details

Detail	Description
Purpose:	Test of the Mikrotik RBLHG-5HPnD for compliance to;
	FCC specification FCC Part 15B; ICES-003 Issue 6.
Applicant:	Mikrotik
	Pernavas 46, Riga, LV 1009
	Latvia
Manufacturer:	Same as Applicant
Test Laboratory:	MiCOM Labs, Inc.
	575 Boulder Court,
	Pleasanton, California 94566, USA
Test report reference number:	MIKO62-U9 Rev A
Date EUT received:	23 rd May 2017
Dates of test (from - to):	30th May 2017
No of Units Tested:	One
Type of Equipment:	Wireless Access Point
Product Name:	Mikrotik RBLHG-5HPnD
Model No.:	RBLHG-5HPnD
Serial No.:	7BEC040F32E2/714
Equipment Secondary Function(s):	None
Type of Technology:	802.11a/b/g/n
Installation type:	Fixed
Construction/Location for Use:	Indoor/Outdoor
Software/Firmware Release:	6.38.5
Hardware Release:	r4
Transmit/Receive Operation:	Transceiver - Full Duplex
Rated Input Voltage and Current:	100 – 240 V _{AC} 0.4A MAX, 50-60 Hz, PoE: 24Vdc, 0.38mA
Operating Frequency:	Rated: 50/60 Hz
Equipment Dimensions:	391x391x222mm
Weight:	519g
Primary Function:	Transmission of voice and data

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 17 of 37

6.3. External A.C/D.C. Power Adaptor

Power adaptor/s were support items to the RBLHG-5HPnD during testing. The AC/DC adapter can be used for PoE options.

AC/DC Adaptor

Manufacturer Unknown Model: AC Power Adapter

Part Number: A00122400380FE0041 I: 100 – 240 V_{AC} 0.4A MAX, 50-60 Hz

0: +24 V_{DC} 0.38 A

6.4. Antenna Details

No antennas were tested as part of this test program.

6.5. Cabling and I/O Ports

The following is a description of the cable and input, output ports available on the EUT;

Number and type of I/O ports;

Port Type	Port Description	Qty	Screened (Yes/ No)	Length
Ethernet	Ethernet Port	1	Yes	> 3m

6.6. Equipment Details

The following is a description of supporting equipment used during the test program.

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr.	Model No.	Serial No.
EUT	802.11 a/n WLAN Access point	Mikrotik	RBLHG-5HPnD	7BEC040F32E2/714
Support	AC/DC Adaptor	-	AC Power Adapter	A00122400380FE0041
Support	PoE injector 9-48Vdc	Mikrotik	-	-
Support	Laptop PC	HP	Compact 8510p	
Support	Laptop PC	IBM	Thinkpad	None

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 18 of 37

6.7. Equipment Modifications

No modifications were required to bring the equipment into compliance:

6.8. Deviations from the Test Standard

No deviations from the test standard were required in order to complete the test program:

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 19 of 37

6.9. EUT Configurations

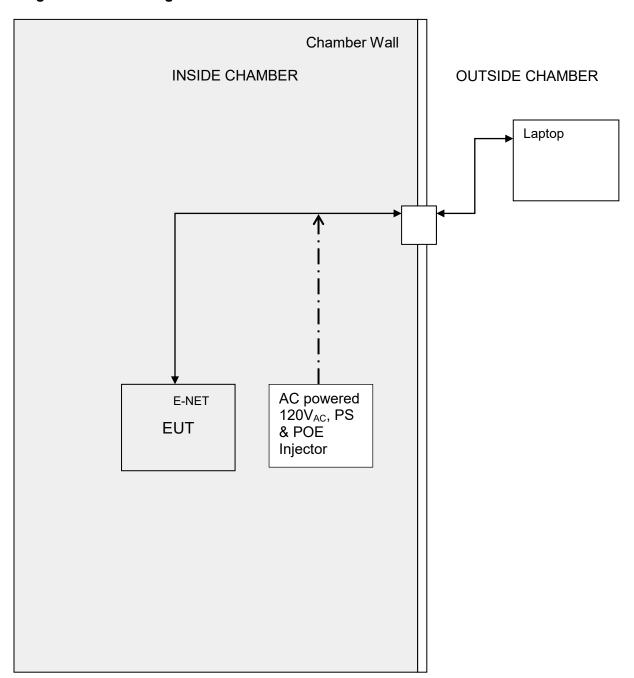
6.9.1. EUT Configuration - Radiated Emissions:

The RBLHG-5HPnD setup consist of 1 configuration AC/DC connected with a PoE injector.

Laptop (1) used to initiate settings of EUT into normal operation and in continuous transmissions TX mode.

Laptop (1) used to exercise/monitor Ethernet network connected to EUT via Ethernet port.

1m of unshielded CAT5 cables was left exposed running from the EUT. The remaining cable length was routed under the ground plane into an attached shielded "control" room outside the chamber. EUT USB Ports were left un-terminated during emissions testing (Maintenance Only).



To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 20 of 37

Diagram of EUT Configuration for Emissions Measurements

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 21 of 37

7. TEST RESULTS

7.1. EMC EMISSIONS TEST RESULTS

7.1.1. Radiated Emissions

FCC, Part 15 Subpart B §15.109 Industry Canada ICES-003 Section 6.2

Test Procedure

Testing 30 – 1,000 MHz was performed in a anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 22 of 37

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

FO = Distance Falloff Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \, dB_{\mu}V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}_{\mu}\text{V/m} = 100 \text{ }_{\mu}\text{V/m}$

 $48 \text{ dB}_{\mu}\text{V/m} = 250 \,\mu\text{V/m}$

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 23 of 37

Limits

The ancillary equipment shall meet the class B limits given in CISPR 22, and the limits above 1 GHz shown below.

FCC Spurious Emissions Limits

Limits below 1 GHz:

Class A limits

Frequency(MHz)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)
30 to 88	40	10	49.5	3
88-216	43.5	10	54	3
216-960	46.4	10	56.5	3
960-1000	49.5	10	60	3

Class B limits

Frequency(MHz)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)	Quasi-peak Limit (dBμV/m)	Measurement Distance (meters)
30 to 88	29.5	10	40	3
88-216	33	10	43.5	3
216-960	35.6	10	46	3
960-1000	43.5	10	54	3

Limits above 1GHz:

Frequency(MHz)	Average Limit (dBμV/m)	Peak Limit (dBμV/m)	Measurement Distance (meters)	Class (A/B)
1 000 to 6000	54	74	3	Class B

Frequency(MHz)	Average Limit (dBμV/m)	Peak Limit (dBμV/m)	Measurement Distance (meters)	Class (A/B)
1 000 to 6000	60	80	3	Class A

Traceability

Laboratory Measurement Uncertainty	
Measurement uncertainty	+5.6/ -4.5 dB

Method

Measurements were made per work instruction Work instruction WI-07 Radiated Emissions Test

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 24 of 37

Test Equipment Utilized

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	02 May 2018
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2017
373	26III RMS Multimeter	Fluke	Fluke 26 series	76080720	26 Oct 2017
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	16 Aug 2017
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	16 Aug 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	09 Jul 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 OCt 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	09 Jul 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0.109	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	16 Aug 2017
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	16 Aug 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	16 Aug 2017

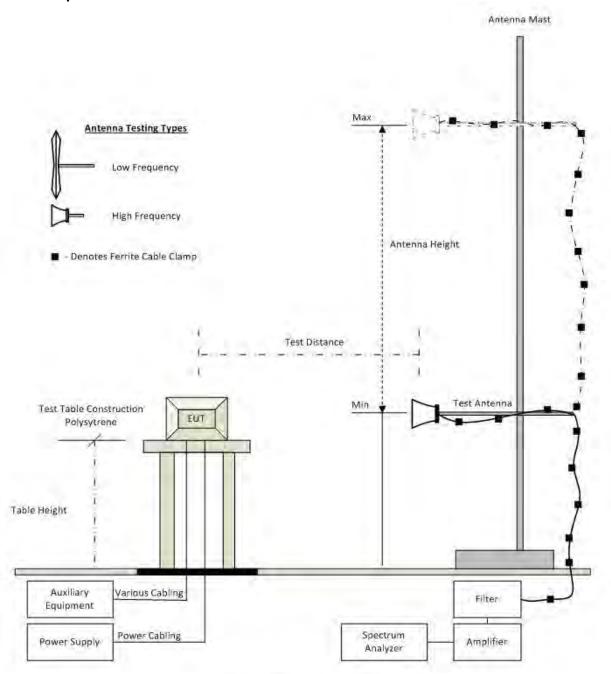
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel and any changes noted in the Document History section of the report.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 25 of 37

480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	16 Aug 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	16 Aug 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	16 Aug 2017
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
CC05	Confidence Check	MiCOM	CC05	None	26 Jun 2017



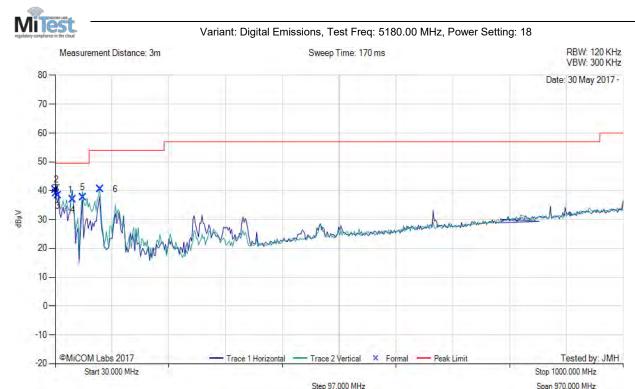
To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 26 of 37

Test Setup for Radiated Emissions for above and below 1 GHz

Radiated Emission Test Setup


To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 27 of 37

7.1.1.1. Measurement Results: 30-1000MHz - Class A Only

Model:	RBLHG-5HPnD	Configuration tested:	AC/DC Powered
Input power:	120V/60Hz	Standard:	FCC 15B

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	30.62	47.49	3.43	-10.61	40.31	MaxQP	Vertical	105	163	49.5	- 9.2	Pass
2	31.42	47.01	3.44	-11.21	39.24	MaxQP	Vertical	101	200	49.5	-9.3	Pass
3	34.64	48.51	3.46	-13.58	38.39	MaxQP	Vertical	103	256	49.5	-10.1	Pass
4	60.25	57.21	3.65	-23.92	36.94	MaxQP	Vertical	101	99	49.5	-11.6	Pass
5	77.22	57.34	3.76	-23.37	37.73	MaxQP	Vertical	100	152	49.5	-11.8	Pass
6	106.70	55.96	3.92	-19.43	40.45	MaxQP	Vertical	100	296	54.0	-13.6	Pass

Test Notes: EUT on table powered by POE injector. Data connection to laptop outside chamber. Tx on 5180 MHz for Loading

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 28 of 37

7.1.2. AC Mains Power Input/Output Ports

Scope

This test assesses the ability of the EUT to limit its internal noise from being present on the AC mains power input/output ports.

Test Method

The test method shall be in accordance with CISPR 22 and the Artificial Mains Networks (AMNs) shall be connected to the AC mains power source.

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies for measurements in the transmit mode of operation.

Test Procedure

The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 29 of 37

Limits

The equipment shall meet the class B limits given in CISPR 22. Alternatively, for equipment intended to be used in telecommunication centres only, the class A limits given in CISPR 22 may be used.

Class B Emissions

Frequency of Emission (MHz)	Conduc	ted Limit (dBμV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency

Class A Emissions

Frequency of Emission (MHz)	Conduc	ted Limit (dBμV)
	Quasi-peak	Average
0.15-0.5	79	66
0.5-30	73	60

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz - 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	±2.64 dB

Method

Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'

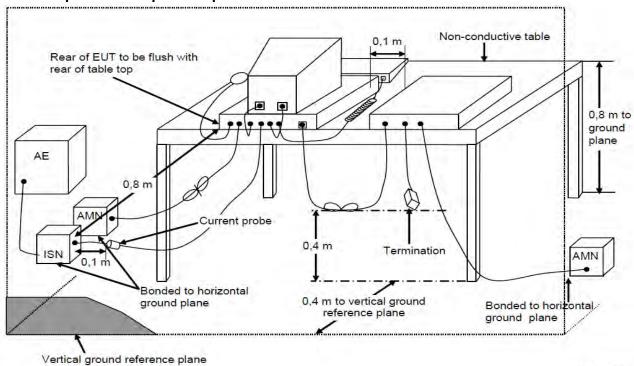
To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 30 of 37

Test Equipment Utilized

TOST Equ	rest Equipment Offized									
Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date					
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017					
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	6 Jul 2017					
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	29 Oct 2017					
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	10 Oct 2017					
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	6 Oct 2017					
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required					
351	Data Impedance Stabilization Network	Teseq	ISN T800	24809	30 Nov 2017					
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used					
388	LISN (3 Phase) 9kHz - 30MHz	Rohde & Schwarz	ESH2-Z5	892107/022	30 Oct 2017					
496	MiTest Conducted Emissions Test Software	MiCOM	Conducted Emissions Test Software Version 1.0.87	496	Not Required					
ADAPT SMA#1	SMA Cable	Megaphase	SMA Cable #1	None	6 Oct 2017					
CCEMC01	Confidence Check	MiCOM	CCEMC01	None	6 Jul 2017					

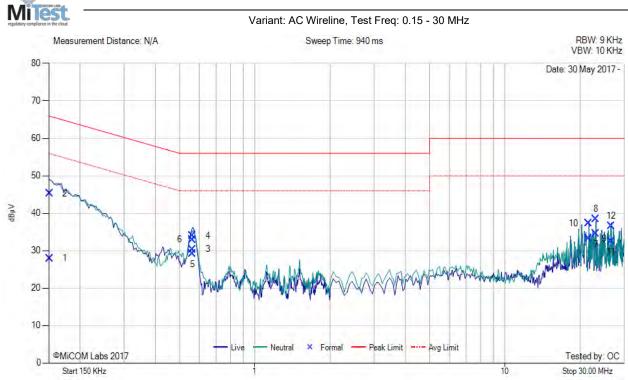

To: FCC CFR 47 Part 15B & IC ICES-003

IEC 1344/08

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 31 of 37

Test Setup - Power Input / Output Port


To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

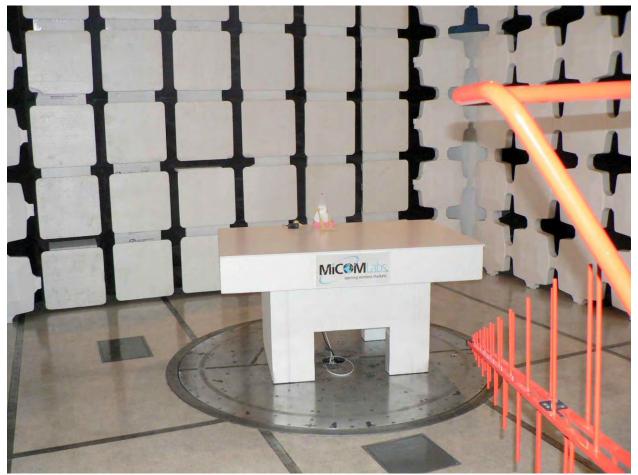
Page: 32 of 37

Measurement Results

Model:	RBLHG-5HPnD	Configuration tested:	AC/DC POWERED
Input power:	120V _{AC} /60Hz	Standard:	FCC 15B

Num	Frequency MHz	Raw dBµV	Cable Loss dB	Factor dB	Total Correction dB _µ V	Corrected Value dBµV	Measurement Type	Line	Limit dBµV/m	Margin dB	Pass /Fail
1	0.151	18.00	0.05	9.92	9.97	27.97	Max Avg	Neutral	56.0	-28.0	Pass
2	0.151	35.33	0.05	9.92	9.97	45.30	Max Qp	Neutral	66.0	-20.7	Pass
3	0.564	20.33	0.10	9.92	10.02	30.35	Max Avg	Live	46.0	-15.7	Pass
4	0.564	24.00	0.10	9.92	10.02	34.02	Max Qp	Live	56.0	-22.0	Pass
5	0.564	19.15	0.10	9.92	10.02	29.17	Max Avg	Neutral	46.0	-16.8	Pass
6	0.564	22.93	0.10	9.92	10.02	32.95	Max Qp	Neutral	56.0	-23.1	Pass
7	23.129	23.03	0.64	10.85	11.49	34.52	Max Avg	Live	50.0	-15.5	Pass
8	23.129	26.90	0.64	10.85	11.49	38.39	Max Qp	Live	60.0	-21.6	Pass
9	21.664	21.86	0.65	10.72	11.37	33.23	Max Avg	Live	50.0	-16.8	Pass
10	21.664	25.89	0.65	10.72	11.37	37.26	Max Qp	Live	60.0	-22.7	Pass
11	26.610	20.83	0.73	10.88	11.61	32.44	Max Avg	Live	50.0	-17.6	Pass
12	26.610	24.94	0.73	10.88	11.61	36.55	Max Qp	Live	60.0	-23.5	Pass

Test Notes: Model: RBLHG-5HPnD (LHG HP5). AC/DC powered configuration. 120V, 60Hz. AC Mains


To: FCC CFR 47 Part 15B & IC ICES-003

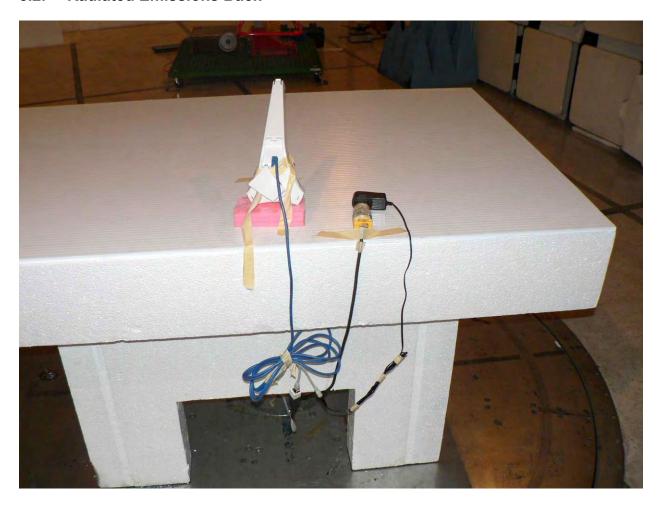
Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 33 of 37

8. PHOTOGRAPHS

8.1. Radiated Emissions Front

Note: Laptop located outside chamber.



To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 34 of 37

8.2. Radiated Emissions Back

Note: Laptop located outside chamber.

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A Date: 1st August 2017

Page: 35 of 37

8.1. AC Wireline Emissions

AC/DC powered

To: FCC CFR 47 Part 15B & IC ICES-003

Serial #: MIKO62-U9 Rev A
Date: 1st August 2017

Page: 36 of 37

AC/DC powered Side View

575 Boulder Court, Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com