

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 15.247, RSS-247 Issue 2

Report No.: MIKO92-U2 Rev A

Company: Mikrotikls SIA

Model Name: RBLHGG-5acD Wireless Module

REGULATORY COMPLIANCE TEST REPORT

Company: Mikrotikls SIA

Model Name: RBLHGG-5acD Wireless Module

To: FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2

Test Report Serial No.: MIKO92-U2 Rev A

This report supersedes: NONE

Applicant:

Mikrotikls SIA Brivibas gatve 214i Riga, LV-1039 Latvia

Issue Date: 9th September 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

MiC@MLabs.

1. ACCREDITATION, LISTINGS & RECOGNITION	5
1.1. TESTING ACCREDITATION	5
1.2. RECOGNITION	6
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	9
4. REFERENCES AND MEASUREMENT UNCERTAINTY	10
4.1. Normative References	
4.2. Test and Uncertainty Procedure	11
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	13
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	15
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	16
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted Test Setup	17
7.2. Radiated Emissions - 3m Chamber	
7.3. Dynamic Frequency Selection (DFS)	21
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. Peak Transmit Power	
9.2. 26 dB & 99% Bandwidth	
9.3. Power Spectral Density	
9.4. Transmit Power Control (TPC)	
9.5. Dynamic Frequency Selection (DFS)	
9.5.1. DFS Detection Thresholds	
9.5.2. Response Requirements	
9.5.3. Radar Test Waveforms	
9.5.3.1. Short Radar Pulses 9.5.3.2. Long Radar Pulse Test	
9.5.3.3. Frequency Hopping Radar Test Waveform	
9.5.4. Radar Waveform Calibration	
9.5.4. Radar Wavelorn Calibration	
9.5.5.4. Initial CAC	
9.5.5.5. Beginning CAC	
9.5.5.6. End CAC	
9.5.6. Channel Close / Transmission Time	
9.5.7. Non-Occupancy Period	
9.5.8. Probability of Detection	
9.5.9. Detection Bandwidth	
9.6. Radiated	
9.6.1. TX Spurious & Restricted Band Emissions	
9.6.1.7. Mikrotik RBLHGG-5acD-XL	
9.6.1.8. Mikrotik RBSXTsqG-5acD	
9.6.2. Edge & Band-Edge Emissions	

Page: 3 of 160

9.6.2.9. Mikrotik RBLHGG-5acD-XL	
9.6.2.10. Mikrotik RBSXTsqG-5acD	
9.6.3. Digital Emissions	
9.7. AC Wireline	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. 26 dB & 99% Bandwidth	
A.2. Power Spectral Density	
A.3. Probability of Detection – Radar Signatures	
A.4. Radiated	
A.4.1. TX Spurious & Restricted Band Emissions	
A.4.1.1. Ńikrotik RBLHGG-5acD-XL	
A.4.1.2. Mikrotik RBSXTsqG-5acD	
A.4.2. Restricted Edge & Band-Edge Emissions	
A.4.2.3. Mikrotik RBLHGG-5acD-XL	
A.4.2.4. Mikrotik RBSXTsqG-5acD	
A.4.3. Digital Emissions	

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

1.2. RECOGNITION

MíC[®]íMLabs.

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
-	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MICOMLabs.

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	23 rd August 2019	Draft for comment This program adds DFS bands onto the non-DFS bands certified under MiCOM Labs MIKO60 test and certification program (October 2017)				
Rev A	9 th September 2019	Initial Release				

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer:	MikrotikIs SIA Brivibas gatve 214i Riga LV-1039 Latvia	Tested By:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Model:	RBLHGG-5acD Wireless Module	Telephone:	+1 925 462 0304
Equipment Type:	802.11ac WLAN Wireless Module	Fax:	+1 925 462 0306
S/N's:	80BA0913F70B/908 (Radiated), 9E6D0A956A0A/917 (Radiated), 80BA0968A2E5/908 (Conducted/DFS)		
Test Date(s):	19 th – 23 rd August 2019	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

EQUIPMENT COMPLIES

FCC CFR 47 Part 15 Subpart E 15.407

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & OEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

MiC@MLabs.

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
11	KDB 905462 D07 v02	22nd August 2016	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.
Ш	KDB 926956 D01 v02	22nd August 2016	U-NII Device Transition Plan
IV	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
V	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VI	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VII	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VIII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
IX	FCC 06-96	Jun 30 2006	Memorandum Opinion and Order
x	FCC 47 CFR Part 15.407	2016	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices
XI	ICES-003	Issue 6 Jan 2016; Updated April 2019	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XII	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XIII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and License-Exempt Local Area Network (LE-LEN) Devices
XIV	RSS-Gen Issue 5	March 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
XV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XVI	KDB 905462 D02 v02	April 8 2016	Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
XVII	KDB 789033 D02 V02r01	14th December, 2017	Guidelines for Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

MiC[®]MLabs.

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Mikrotikls SIA RBLHGG-5acD Wireless Module to
	FCC CFR 47 Part 15 Subpart E 15.407.
	Compliance Measurement Procedures for Unlicensed National
	Information Infrastructure devices operating in the 5250 to 5350
	MHz and 5470 to 5725 MHz bands incorporating Dynamic
	Frequency Selection.
Applicant:	Mikrotikls SIA
	Brivibas gatve 214i
Manufacturer:	Riga LV-1039 Latvia
Laboratory performing the tests:	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	
Dates of test (from - to):	19 th –23 rd August 2019
No of Units Tested:	
Product Family Name:	
Model(s):	
	Indoor and Outdoor
	5250 - 5350 MHz; 5470 - 5725 MHz;
Modulation Type:	
	802.11a; ac-80; HT-20; HT-40;
Declared Nominal Output Power (dBm):	
Rated Input Voltage and Current:	
Operating Temperature Range:	-40°C to +70°C
ITU Emission Designator:	802.11a: 16M9D1D
	802.11ac-80: 77M3D1D
	802.11n HT-20: 18M0D1D
	802.11n HT-40: 37M0D1D
Equipment Dimensions:	
Weight:	
Hardware Rev:	
Software Rev:	6.45.3
Product Application:	Transmission of voice and data

5.2. Scope Of Test Program

MíC[®]íMLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module

The scope of the test program was to test the Mikrotikls SIA RBLHGG-5acD Wireless Module, configurations in the frequency ranges 5250 - 5350 MHz; 5470 - 5725 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart E 15.407

Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.

ISED RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT Conducted & DFS	Wireless Module Host High gain	MikroTik	RBLHGG-5ac-XL	80BA0968A2E5/908
EUT Radiated	Wireless Module Host High gain	MikroTik	RBLHGG-5ac-XL	80BA0913F70B/908
EUT Radiated	Wireless Module Host Low gain	MikroTik	RBSXTsqG-5acD	9E6D0A956A0A/917
Support	Laptop	HP		
Support	Test Equipment	MiCOM Labs	MiTest	ML512

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X- Pol	Frequency Band (MHz)
integral	Mikrotik	RBLDFG-5acD	Dual Polarity, Directional	9.0	-	360	-	
integral	Mikrotik	RBSXTsqG-5acD	Dual Polarity, Directional	16.0	-	360	-	5250 - 5725
integral	Mikrotik	RBDiscG-5acD	Parabolic Dish	21.0	-	360	-	5250 - 5725
integral	Mikrotik	RBLHGG-5acD	Parabolic Dish	24.5	-	360	-	
integral	Mikrotik	RBLHGG-5acD-XL	Parabolic Dish	27.0	-	360	-	
BF Gain - Beamforming Gain								
Dir BW - Directional BeamWidth								
X-Pol - Cr	oss Polarization							

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Connector Type	Data Type	Data Rate(s)
Ethernet PoE IN	>30m	1	No	RJ45	Packet	10,100,1000

5.6. Test Configurations

MiC@MLabs.

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power		Channel Frequency (MHz)	
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High
		5250 - 5350 MHz		
а	6	5,260.00	5,300.00	5,320.00
ac-80	29.3			5,290.00
HT-20	6.5	5,260.00	5,300.00	5,320.00
HT-40	13.5	5,270.00		5,310.00
		5470 - 5725 MHz		
а	6	5,500.00	5,580.00	5,720.00
ac-80	29.3	5,530.00	5,610.00	5,690.00
HT-20	6.5	5,500.00	5,580.00	5,720.00
HT-40	13.5	5,510.00	5,550.00	5,710.00

5.7. Equipment Modifications

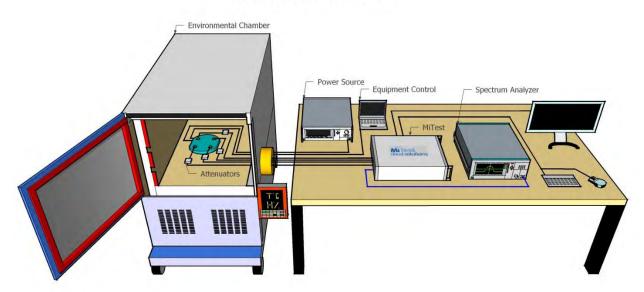
The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Title: To: Serial #: MikrotikIs SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

6. TEST SUMMARY


Test Header	Result	Data Link
Peak Transmit Power	Complies	View Data
26 dB & 99% Bandwidth	Complies	View Data
Power Spectral Density	Complies	View Data
Transmit Power Control (TPC)	Complies	View Data
Dynamic Frequency Selection (DFS)	Complies	See Document Part 2 of 3
Channel Availability Check	Complies	
Initial CAC	Complies	
Beginning CAC	Complies	
End CAC	Complies	
Channel Close / Transmission Time	Complies	
Non-Occupancy Period	Complies	
Probability of Detection	Complies	
Detection Bandwidth	Complies	
Radiated	Complies	See Document Part 3 of 3
TX Spurious & Restricted Band Emissions	Complies	
Mikrotik RBLHGG-5acD-XL	Complies	
Mikrotik RBSXTsqG-5acD	Complies	
Restricted Edge & Band-Edge Emissions	Complies	
Mikrotik RBLHGG-5acD-XL	Complies	
Mikrotik RBSXTsqG-5acD	Complies	
Digital Emissions	Complies	
AC Wireline	Complies	See Document Part 3 of 3

7. TEST EQUIPMENT CONFIGURATION(S)

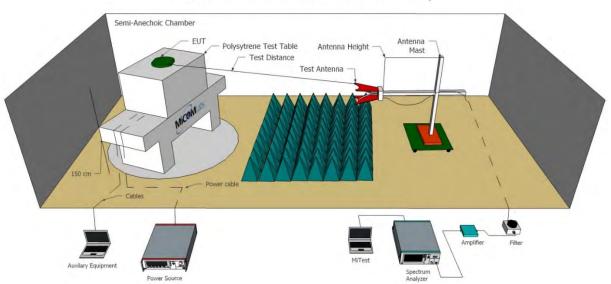
7.1. Conducted Test Setup

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

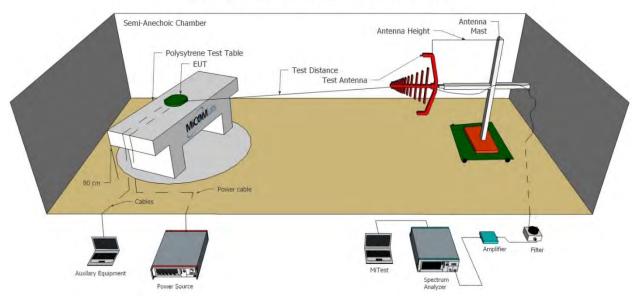
Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Sep 2019
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Sep 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Sep 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Sep 2019
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Sep 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required

Issue Date:9th September 2019Page:17 of 160This test report may be reproduced in full only.The document may only be updated by MiCOM Labs
personnel. All changes will be noted in the Document History section of the report.MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Sep 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

7.2. Radiated Emissions - 3m Chamber

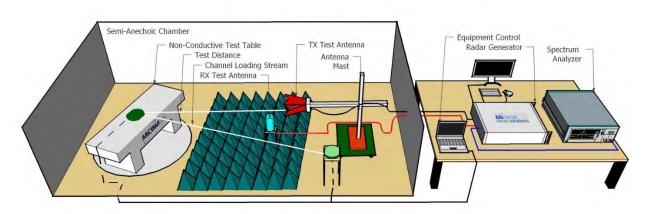

MiC[®]MLabs.

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.



Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Apr 2020
336	Active Loop Antenna	Emco	6502	00060498	29 Nov 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 2019
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019

7.3. Dynamic Frequency Selection (DFS)

MiC@MLabs.

Setup for Radiated DFS testing in 3 m chamber where the EUT is the Client device communicating with Master device over the air. Radar Test Waveforms are injected from the MiTest equipment and detected by the Master.

Dynamic Frequency Selection (DFS) - Radiated

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
0507	Power Meter EPM Series	Agilent	E4418B	MY40511221	20 Oct 2019
104	Antenna Horn 1-18GHz	Electro- Mechanics	3115	9205-3882	28 Sep 2019
117	Low Power Sensor - 70dBm to -20dBm 50 MHz - 50GHz	HP	8487D	3318A00371	21 Sep 2019
207	Radiated Immunity Chamber Maintenance Check	MiCOM	Rad Imm Chamber	207	18 Sep 2019
444	SMA Cable Assembly	ETS-Lindgren	RFC-NMS- 100-SMS- 256 IN	001	Cal when used
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
71	Spectrum Analyser 9KHz-50GHz	HP	8565E	3425A00181	18 Sep 2019
DFS PCle#1	PCIe cable for Aeroflex	National Instruments	PCIe cable	None	Not Required
512	MiTest DFS Test System	MiCOM Labs Inc.	MiTest	3C:FD:FE:9F:B4:58	15 Sep 2019

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

MiC[®]MLabs,

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. TEST RESULTS

MiC@MLabs

9.1. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power						
	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):		Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References					

Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All operational modes and frequency bands were measured independently and the resultant calculated. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported separately. A summation (Σ) of each antenna port output power is provided which includes any offset due to Duty Cycle Correction Factor (DCCF). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are

MiC@MLabs

Title: Mikrotikls SIA RBLHGG-5acD Wireless Module To: FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 Serial #: MIKO92-U2 Rev A

used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15.407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15.407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	I Output Pow	er (dBm)	Calculated Minimum		Lineld	Manain	
Frequency		Por	rt(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5260.0	14.58	15.61			18.14	26.270	21.00	-2.86	24.00
5300.0	14.93	16.20			18.62	27.530	21.00	-2.38	24.00
5320.0	15.52	16.32			18.95	26.130	21.00	-2.05	24.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Minimum				
Frequency		Por	t(s)		Total 26 dB Limit Marg Power Bandwidth		Margin	EUT Power Setting	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5290.0	13.45	14.29			16.90	112.800	21.00	-4.10	24.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:				

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)			Lingit	Morain	EUT Power
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5260.0	14.68	15.56	-		18.15	30.070	21.00	-2.85	24.00
5300.0	14.84	16.14	-		18.55	24.470	21.00	-2.45	24.00
5320.0	15.51	16.23			18.90	26.270	21.00	-2.10	24.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	red Conducted Output Power (dBm) Calculated Minimum							
Frequency		Рог	rt(s)		Total 26 dB Limit Power Bandwidth		Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5270.0	14.51	15.61		-	18.11	55.730	21.00	-2.89	24.00
5310.0	14.95	15.94			18.48	56.930	21.00	-2.52	24.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for Peak Transmit Power

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	d Conducted			Minimum	Lingit	Morain		
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5500.0	14.40	13.25	-		16.87	21.600	21.00	-4.13	20.00
5580.0	13.30	12.80	-		16.07	21.800	21.00	-4.93	20.00
5720.0	12.56	13.46			16.04	24.800	21.00	-4.96	20.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Equipment Configuration for Peak Transmit Power

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
Test	Measure	leasured Conducted Cutput i Ower (abili)		Minimum	Lingit				
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5530.0	11.96	11.23			14.62	87.730	21.00	-6.38	20.00
5610.0	10.92	10.45			13.70	88.270	21.00	-7.30	20.00
5690.0	10.62	11.39			14.03	88.800	21.00	-6.97	20.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measur	Test Measurement Results								
Test	Test Measured Conducted Output Power (dBm)					Minimum	Lineld	Manada	
Frequency	/ Port(s)			Total Power	26 dB Bandwidth	Limit	Margin	EUT Power	
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5500.0	14.19	13.29	-		16.77	22.200	21.00	-4.23	20.00
5580.0	13.33	12.91	-		16.14	22.000	21.00	-4.86	20.00
5720.0	12.71	13.49			16.13	23.270	21.00	-4.87	20.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for Peak Transmit Power

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measur	Test Measurement Results								
Test	Test Measured Conducted Output Power (dBm)					Minimum	Lineld		
Frequency	Port(s)			Total Power	26 dB Bandwidth	Limit	Margin	EUT Power	
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dB	Setting
5510.0	13.97	12.98	-		16.51	43.870	21.00	-4.49	20.00
5550.0	13.43	12.80	-		16.14	44.400	21.00	-4.86	20.00
5710.0	12.23	13.46			15.90	45.600	21.00	-5.10	20.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

9.2. 26 dB & 99% Bandwidth

MiC@MLabs.

Conducted Test Conditions for 26 dB and 99% Bandwidth					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results							
Test Frequency	м	easured 26 dB Ba	ndwidth (MHz	:)	26 dB Bandy	width (MUz)	
rest riequency		Port(s)				
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>26.270</u>	<u>28.200</u>			28.200	26.270	
5300.0	<u>27.600</u>	<u>27.530</u>			27.600	27.530	
5320.0	<u>26.200</u>	<u>26.130</u>			26.200	26.130	
Toot Fragmanay	N	leasured 99% Ban	dwidth (MHz)	l.	00% Bondwidth (MHz)		
Test Frequency		Port(s)		99% Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>16.749</u>	<u>16.875</u>			16.875	16.749	
5300.0	<u>16.789</u>	<u>16.829</u>			16.829	16.789	
5320.0	<u>16.839</u>	<u>16.796</u>			16.839	16.796	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results							
Toot Fraguanay	Measured 26 dB Bandwidth (MHz)					dwidth (MU-)	
Test Frequency		Port(s)		26 dB Bandwidth (MHz)		
MHz	a b c d			Highest	Lowest		
5290.0	<u>123.730</u>	<u>112.800</u>			123.730	112.800	
Toot Fraguanay	Μ	Measured 99% Bandwidth (MHz)			99% Bandwidth (MHz)		
Test Frequency	Port(s)				99% Danu		
MHz	а	b	С	d	Highest	Lowest	
5290.0	<u>77.283</u>	<u>77.007</u>			77.283	77.007	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results							
Toot Fragmanay	Measured 26 dB Bandwidth (MHz)				26 dB Bandwidth (MHz)		
Test Frequency		Port(
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>31.200</u>	<u>30.070</u>			31.200	30.070	
5300.0	<u>24.470</u>	<u>28.670</u>			28.670	24.470	
5320.0	<u>26.270</u>	<u>27.470</u>			27.470	26.270	
Test Frequency	Measured 99% Bandwidth (MHz)				99% Bandwidth (MHz)		
	Port(s)						
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>17.962</u>	<u>18.067</u>			18.067	17.962	
5300.0	<u>18.049</u>	<u>18.028</u>			18.049	18.028	
5320.0	<u>18.004</u>	<u>17.934</u>			18.004	17.934	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Fest Measurement Results							
Test Frequency Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz)							
	Port(s	5)		26 dB Bandwidth (MHz)			
а	b	С	d	Highest	Lowest		
<u>55.730</u>	<u>67.600</u>			67.600	55.730		
<u>56.930</u>	<u>65.200</u>			65.200	56.930		
Test Frequency Measured 99% Bandwidth (MHz) 99% Bandwidth					vidth (MLL=)		
	Port(s)						
а	b	С	d	Highest	Lowest		
<u>37.173</u>	<u>37.040</u>			37.173	37.040		
<u>36.998</u>	<u>36.903</u>			36.998	36.903		
	a <u>55.730</u> <u>56.930</u> N <u>a</u> <u>37.173</u>	Measured 26 dB Ba Port(s a b 55.730 67.600 56.930 65.200 Measured 99% Bas Port(s Port(s a b 37.173	Measured 26 dB Bandwidth (MHz) Port(s) a b c 55.730 67.600 56.930 65.200 Measured 99% Bandwidth (MHz) Port(s) Port(s) a b c 37.173 37.040	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 55.730 67.600 56.930 65.200 Measured 99% Bandwidth (MHz) Port(s) Port(s) A b c d 37.173 37.040	Measured 26 dB Bandwidth (MHz) 26 dB Band Port(s) 26 dB Band a b c d Highest 55.730 67.600 67.600 56.930 65.200 65.200 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 91% Bandwidth (MHz) <t< th=""></t<>		

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement	Results						
	Ν	leasured 26 dB I	26 dB Bono				
Test Frequency		Por	t(s)			26 dB Bandwidth (MHz)	
MHz	а	b	с	d	Highest	Lowest	
5500.0	<u>21.600</u>	<u>22.000</u>			22.000	21.600	
5580.0	<u>21.870</u>	<u>21.800</u>			21.870	21.800	
5720.0	<u>24.800</u>	<u>27.800</u>			27.800	24.800	
Toot Fragmanay		Measured 99% B	andwidth (MHz)	00% Band	vidth (MLL-)	
Test Frequency		Por	t(s)		99% Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5500.0	<u>16.672</u>	<u>16.578</u>			16.672	16.578	
5580.0	<u>16.620</u>	<u>16.553</u>			16.620	16.553	
5720.0	<u>16.591</u>	<u>16.702</u>			16.702	16.591	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement	Results					
		Measured 26 dB	26 dB Bandy	26 dB Bandwidth (MHz)		
Test Frequency		Po	ort(s)			wiath (winz)
MHz	а	b	С	d	Highest	Lowest
5530.0	<u>87.730</u>	<u>89.070</u>			89.070	87.730
5610.0	<u>89.330</u>	<u>88.270</u>			89.330	88.270
5690.0	<u>89.600</u>	<u>88.800</u>			89.600	88.800
		Measured 99%	Bandwidth (MHz	<u>z)</u>	99% Bandw	idth (MLL=)
Test Frequency		Po	ort(s)		99% Bandw	
MHz	а	b	С	d	Highest	Lowest
5530.0	<u>76.546</u>	<u>76.610</u>			76.610	76.546
5610.0	<u>76.684</u>	<u>76.602</u>			76.684	76.602
5690.0	<u>76.855</u>	<u>76.595</u>			76.855	76.595

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measuremen	t Results					
Toot Eronuonou		Measured 26 dl	26 dB Bandwidth (MHz)			
Test Frequency		Р	ort(s)			
MHz	а	b	С	d	Highest	Lowest
5500.0	<u>23.400</u>	<u>22.200</u>			23.400	22.200
5580.0	22.800	22.000			22.800	22.000
5720.0	<u>23.270</u>	<u>27.000</u>			27.000	23.270
Measured 99% Bandwidth (MHz)				00% Rondwidth (MHz)		
Test Frequency		Р	ort(s)		99% Bandwidth (MHz)	
MHz	а	b	С	d	Highest	Lowest
5500.0	<u>17.887</u>	<u>17.745</u>			17.887	17.745
5580.0	<u>17.761</u>	<u>17.739</u>			17.761	17.739
5720.0	<u>17.762</u>	<u>17.882</u>			17.882	17.762

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement	t Results					
Test Frequency		Measured 26 dB	26 dB Bandwidth (MUz)			
Test Frequency		Po	rt(s)		26 dB Bandwidth (MHz)	
MHz	а	b	с	d	Highest	Lowest
5510.0	<u>44.930</u>	<u>43.870</u>			44.930	43.870
5550.0	<u>44.400</u>	<u>44.400</u>			44.400	44.400
5710.0	<u>45.600</u>	<u>54.670</u>			54.670	45.600
Toot Fromuonov		Measured 99%	Bandwidth (MHz)	00% Bandy	vidth (MLL=)
Test Frequency		Port(s)				vidth (MHz)
MHz	а	b	С	d	Highest	Lowest
5510.0	<u>36.632</u>	<u>36.643</u>			36.643	36.632
5550.0	<u>36.713</u>	<u>36.573</u>			36.713	36.573
5710.0	<u>36.873</u>	<u>36.908</u>			36.908	36.873

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

9.3. Power Spectral Density

MiC@MLabs

Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.407	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References	See Normative References				

Test Procedure for Power Spectral Density

The in-band power spectral density was measured using the test technique specified in KDB 789033. A 1 MHz measurement bandwidth was implemented for the analyzer sweep. Once the sweep is complete the analyzer trace data is downloaded and used for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE: It may be observed that spectrum in some plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$ x = Duty Cycle

x - Duly Cycle

Limits Power Spectral Density

Operating Frequency Band 5150-5250 MHz

15.407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any

MiC@MLabs

Title: Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 To: MIKO92-U2 Rev A

corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Serial #:

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 - 5850 MHz

15.407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Equipment Configuration for Power Spectral Density

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	у	Summation Peak Marker +	Margin		
Frequency		Port(s) (d	lBm/MHz)		DCCF (+0.09 dB)	Limit		
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB	
5260.0	<u>3.518</u>	<u>4.022</u>			<u>6.766</u>	8.0	-1.2	
5300.0	<u>3.889</u>	<u>4.622</u>			<u>7.327</u>	8.0	-0.7	
5320.0	<u>4.651</u>	<u>4.977</u>			<u>7.770</u>	8.0	-0.2	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurem	ent Results						
Test	Measured Power Spectral Density				Summation Peak Marker +	Limit	Margin
Frequency	Port(s) (dBm/MHz)			DCCF (+0.09 dB)			
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5290.0	<u>-3.223</u>					8.0	-8.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	у	Summation Peak Marker +		
Frequency	Port(s) (dBm/MHz)			DCCF (+0.09 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5260.0	<u>3.422</u>	<u>3.918</u>			<u>6.623</u>	8.0	-1.4
5300.0	<u>3.761</u>	<u>4.467</u>			<u>7.153</u>	8.0	-0.9
5320.0	<u>4.423</u>	<u>4.395</u>	-	-	<u>7.324</u>	8.0	-0.7

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density			Summation			
Test Frequency	Port(s) (dBm/MHz)			Peak Marker + DCCF (+0.09 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5270.0	<u>0.535</u>	<u>0.804</u>			<u>3.620</u>	8.0	-4.4
5310.0	<u>0.981</u>	<u>1.189</u>			<u>4.067</u>	8.0	-3.9

Traceability to Industry Recognized Test Methodologies

, , , , ,	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11a	Duty Cycle (%):	98.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density Port(s) (dBm/MHz)			Summation Peak Marker + DCCF (+0.09	Limit	Margin	
MHz	а	b	С	d	dB) dBm/MHz	dBm/MHz	dB
5500.0	<u>3.465</u>	<u>1.703</u>			<u>5.540</u>	8.0	-2.5
5580.0	<u>2.794</u>	<u>1.629</u>			<u>5.264</u>	8.0	-2.7
5720.0	<u>1.724</u>	<u>2.055</u>			<u>4.759</u>	8.0	-3.3

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11ac-80	Duty Cycle (%):	98.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density			Summation Peak Marker +			
Frequency	Port(s) (dBm/MHz)			DCCF (+0.09 dB)	Limit	Margin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5530.0	<u>-4.930</u>	<u>-6.266</u>			<u>-2.512</u>	8.0	-10.5
5610.0	<u>-6.407</u>	<u>-7.104</u>			<u>-3.717</u>	8.0	-11.7
5690.0	<u>-6.425</u>	<u>-6.205</u>			<u>-3.474</u>	8.0	-11.5

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-20	Duty Cycle (%):	98.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

	Measured Power Spectral Density				Summation		
Test Frequency	Port(s) (dBm/MHz)			Peak Marker + DCCF (+0.09 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5500.0	<u>2.446</u>	<u>1.547</u>			<u>4.797</u>	8.0	-3.2
5580.0	<u>2.321</u>	<u>1.473</u>			<u>4.899</u>	8.0	-3.1
5720.0	<u>1.613</u>	<u>1.754</u>			<u>4.675</u>	8.0	-3.3

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Equipment Configuration for Power Spectral Density

Variant:	802.11n HT-40	Duty Cycle (%):	98.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density Port(s) (dBm/MHz)			Summation Peak Marker + DCCF (+0.09 dB)	Limit	Margin	
Frequency							
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5510.0	<u>-0.552</u>	<u>-1.497</u>			<u>1.760</u>	8.0	-6.3
5550.0	<u>-0.678</u>	<u>-1.674</u>			<u>1.847</u>	8.0	-6.2
5710.0	<u>-1.751</u>	<u>-1.226</u>			<u>1.510</u>	8.0	-6.5

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

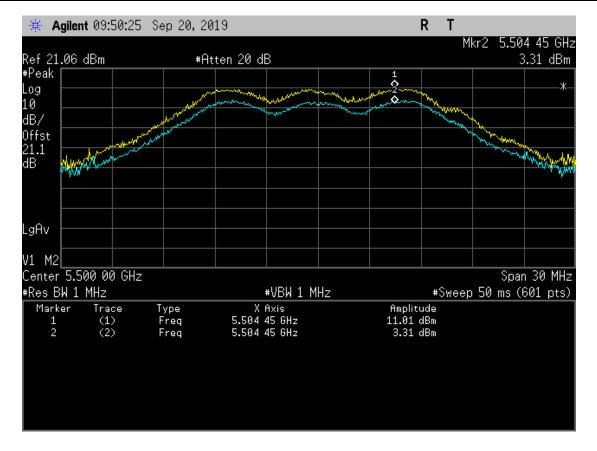
DCCF - Duty Cycle Correction Factor

9.4. Transmit Power Control (TPC)

Conducted Test Conditions for Maximum Conducted Output Power			
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Transmit Power Control (TPC)	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (h)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Requirement for TPC

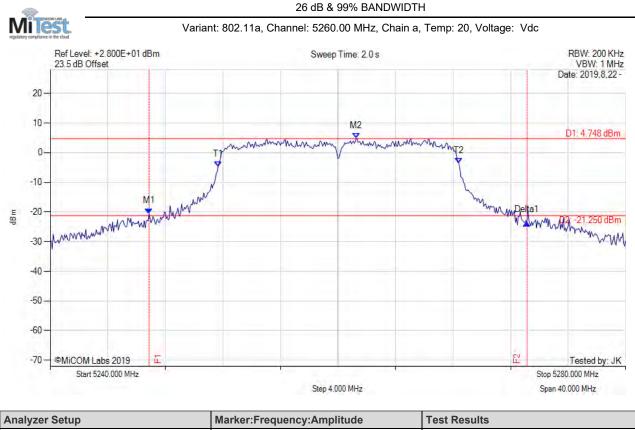
Transmit power control (TPC). U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.


Test Procedure for TPC

The TPC mechanism is demonstrated by setting the U-NII device in normal operation mode, connecting it with a client device and loading the channel per the DFS requirements. The U-NII device is monitored by a spectrum analyzer set with a span wide enough to capture the entire channel, the RBW and VBW set to 1 MHz with an adequate sweep time to fill out the trace. A trace is captured with the U-NII device operating at maximum power output using Trace 1, then power is reduced, and a trace captured using Trace 2. Markers at the same frequency on each trace demonstrate the delta power level.

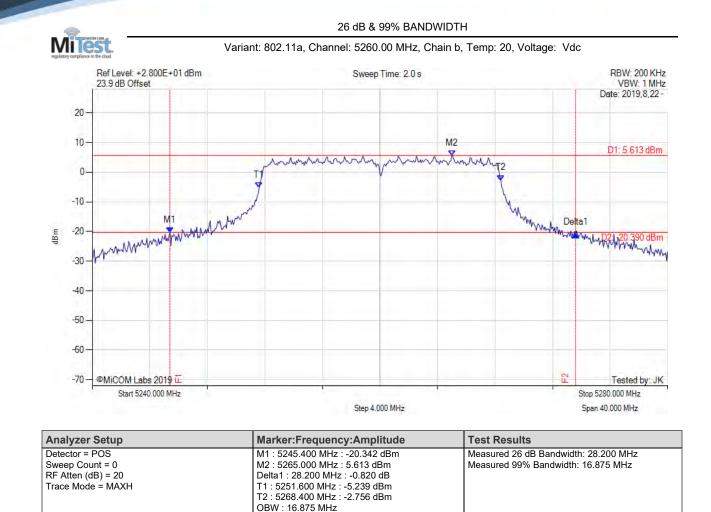
Equipment Configuration for Transmit Power Control (TPC)

Variant:	802.11a	Duty Cycle (%):	17.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	9.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			


Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

A. APPENDIX - GRAPHICAL IMAGES

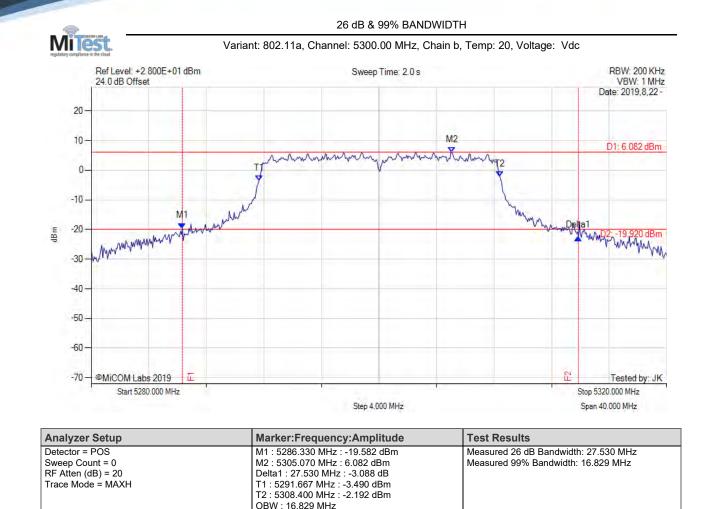
A.1. 26 dB & 99% Bandwidth


MiC@MLabs.

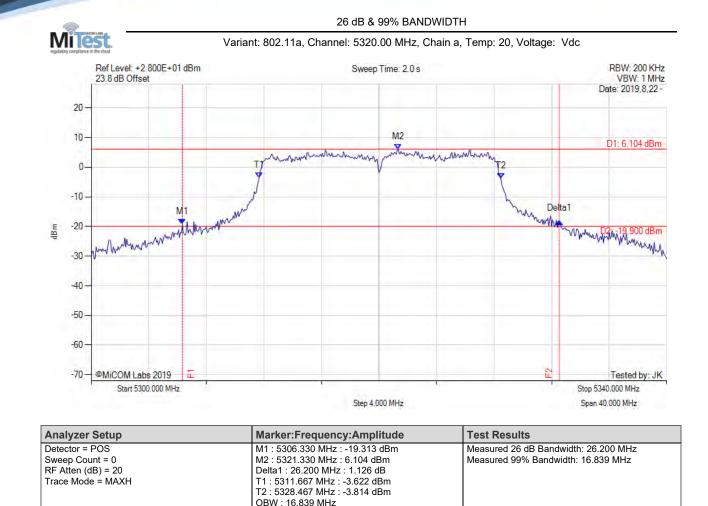
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 : 5246.870 MHz : -20.525 dBm	Measured 26 dB Bandwidth: 26.270 MHz
Sweep Count = 0	M2 : 5261.270 MHz : 4.748 dBm	Measured 99% Bandwidth: 16.749 MHz
RF Atten (dB) = 20	Delta1 : 26.270 MHz : -3.049 dB	
Trace Mode = MAXH	T1 : 5251.667 MHz : -4.732 dBm	
	T2 : 5268.400 MHz : -3.517 dBm	
	OBW : 16.749 MHz	


MiC@MLabs.

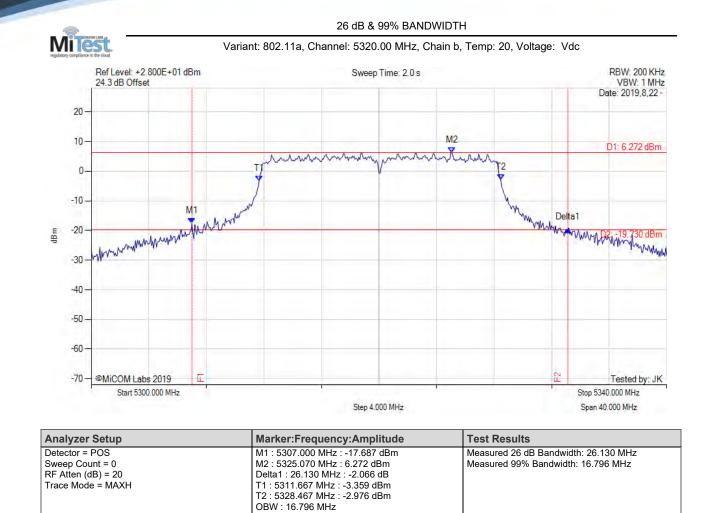
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

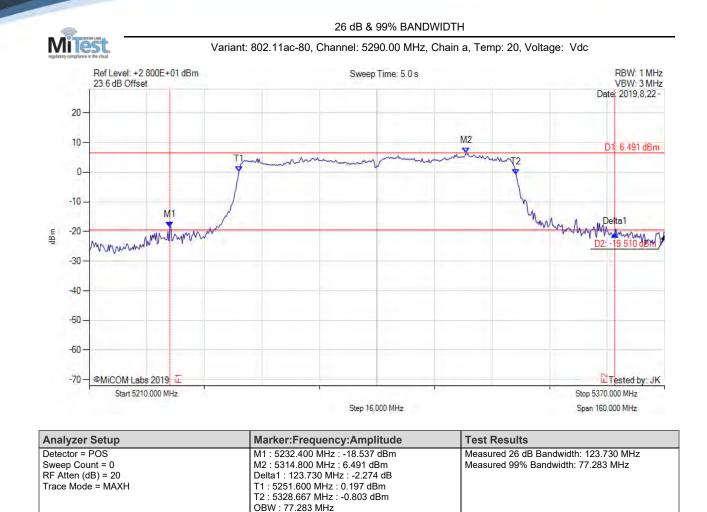
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

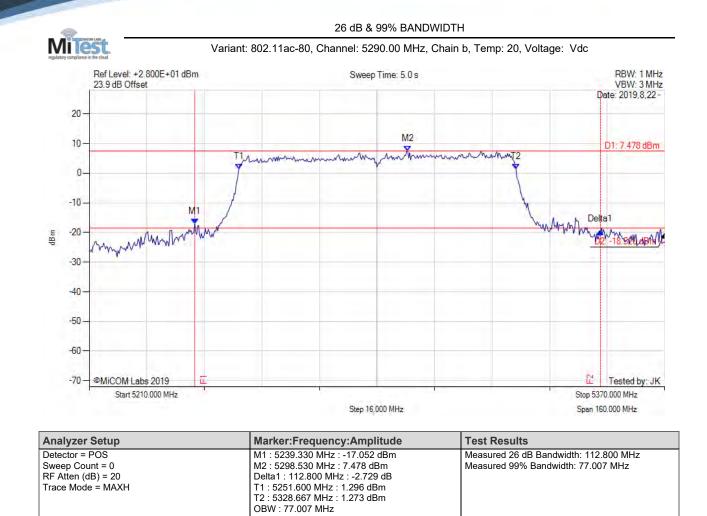
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

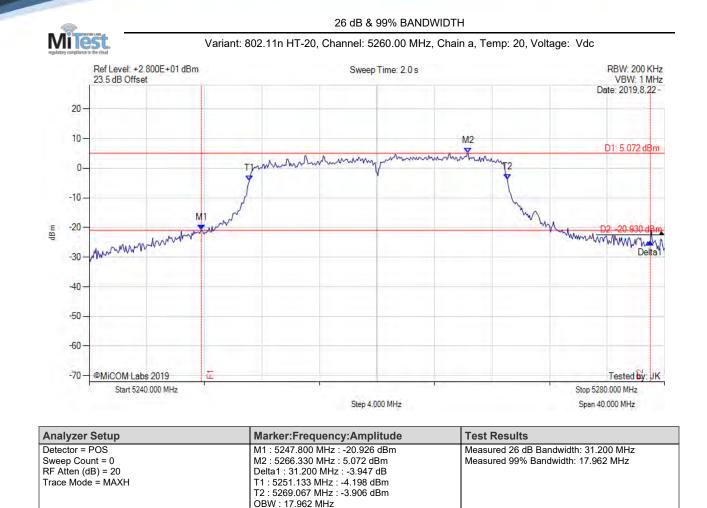
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

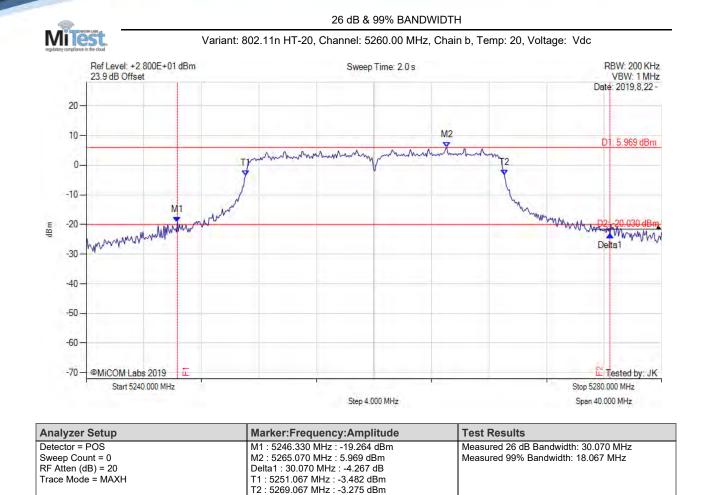
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

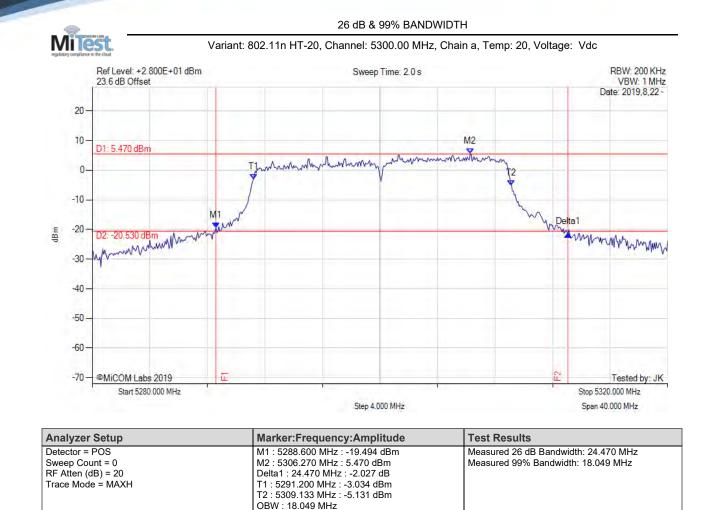

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

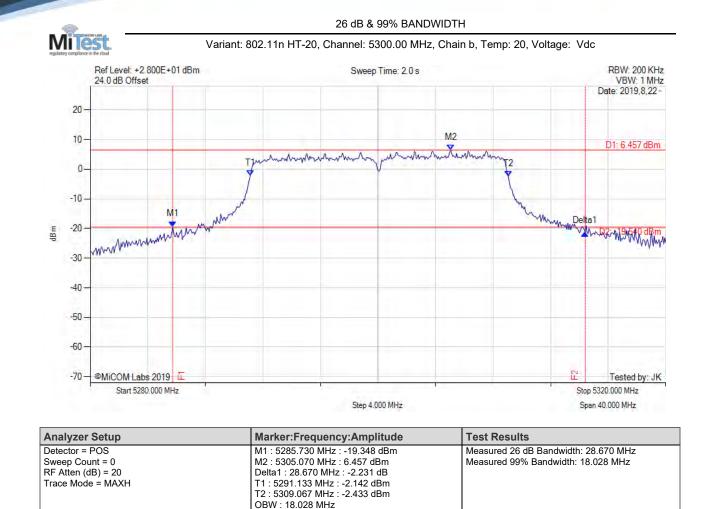

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

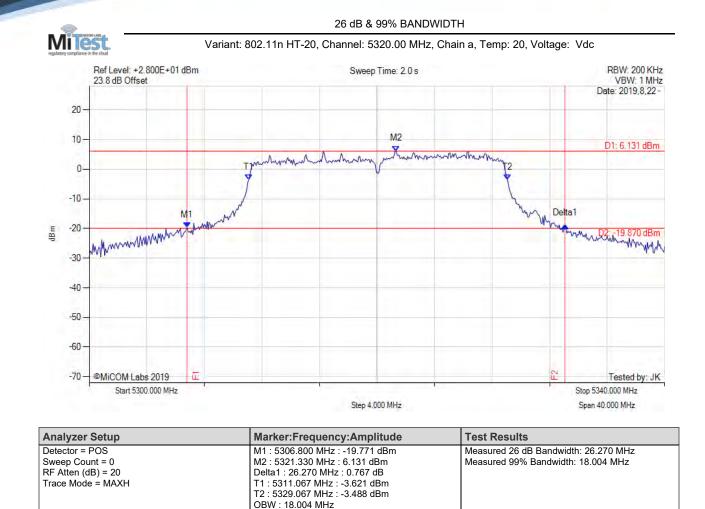
MiC@MLabs.


Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

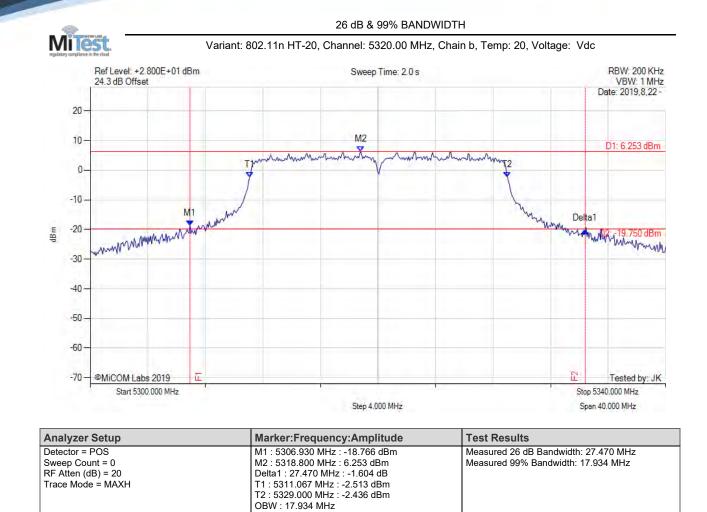
OBW : 18.067 MHz


MiC@MLabs.

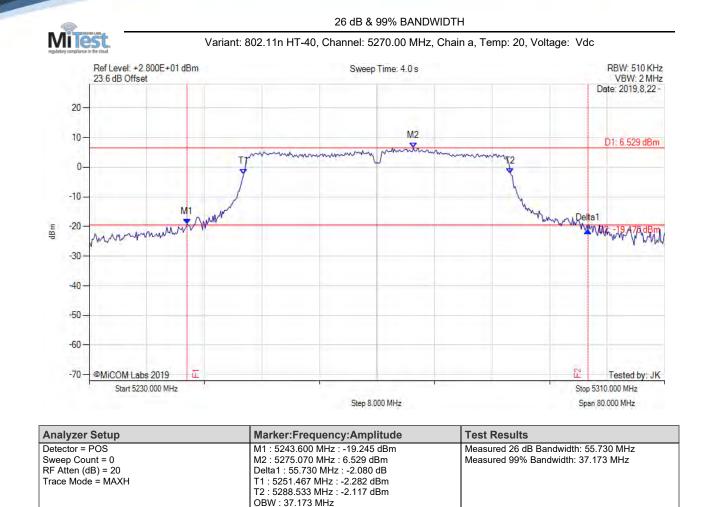
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

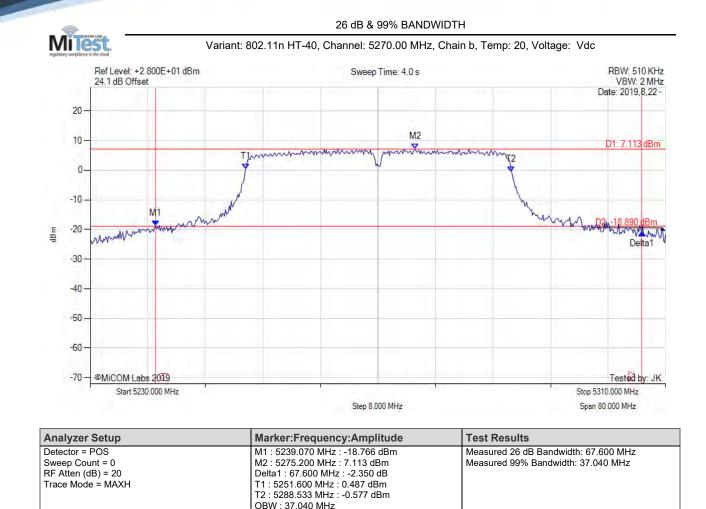
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

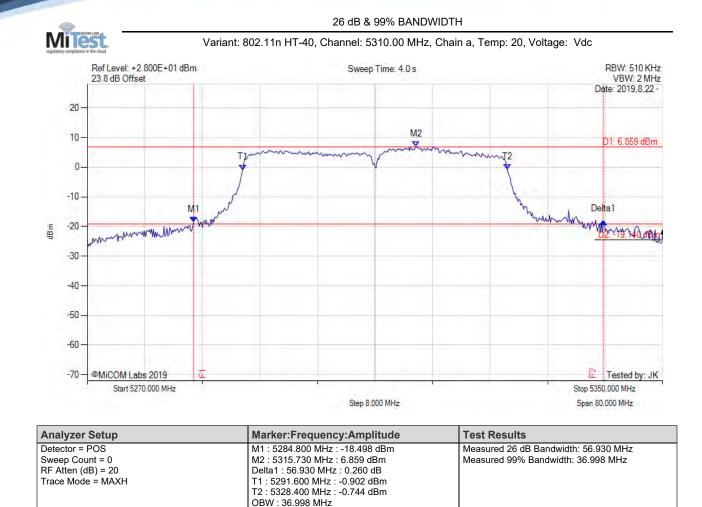
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

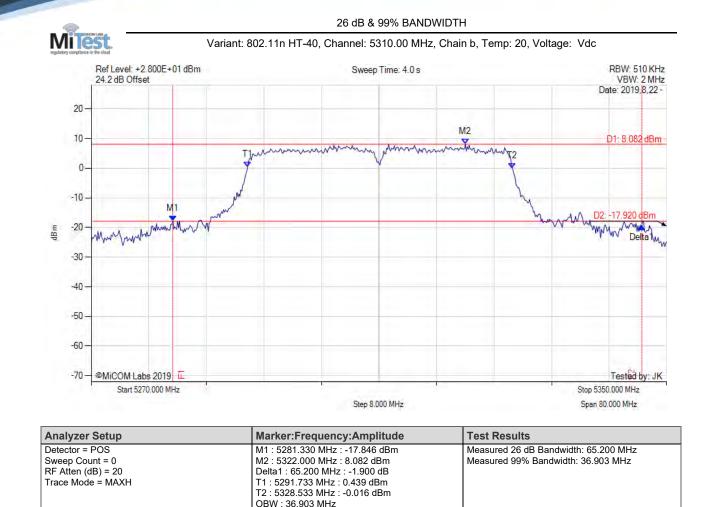
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

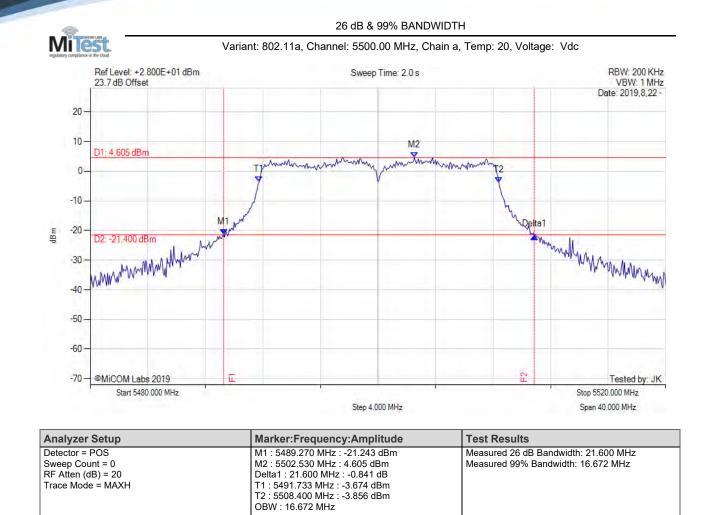
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

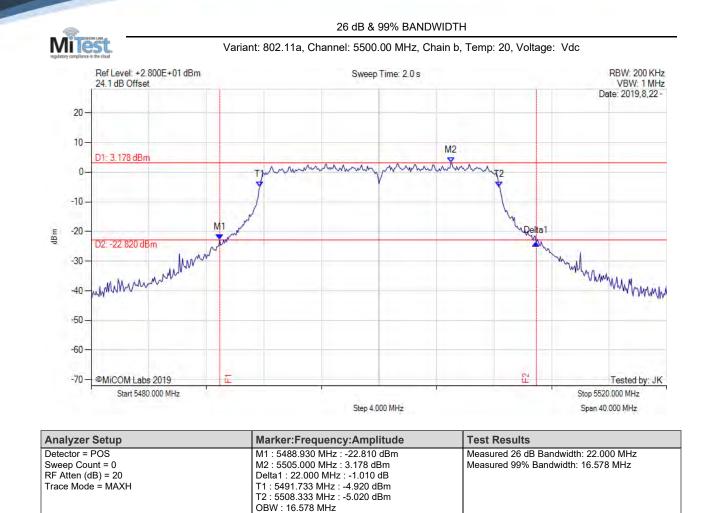
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

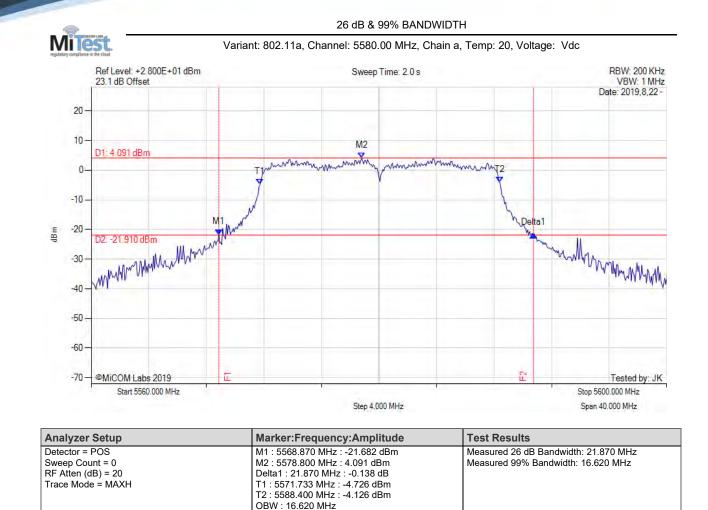
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

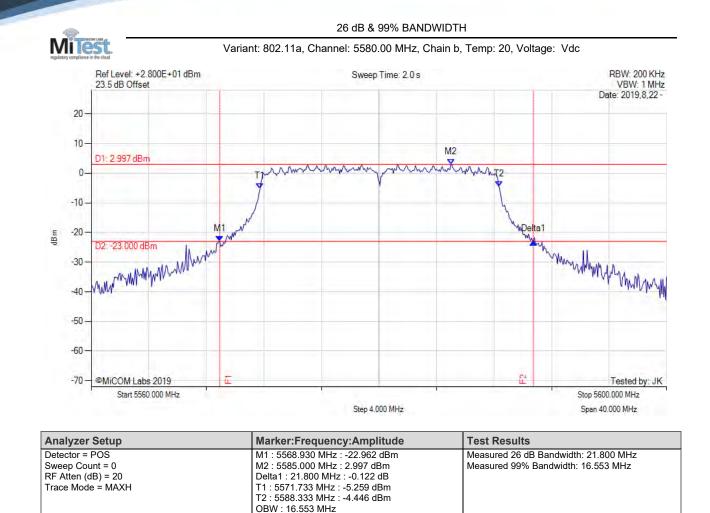
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

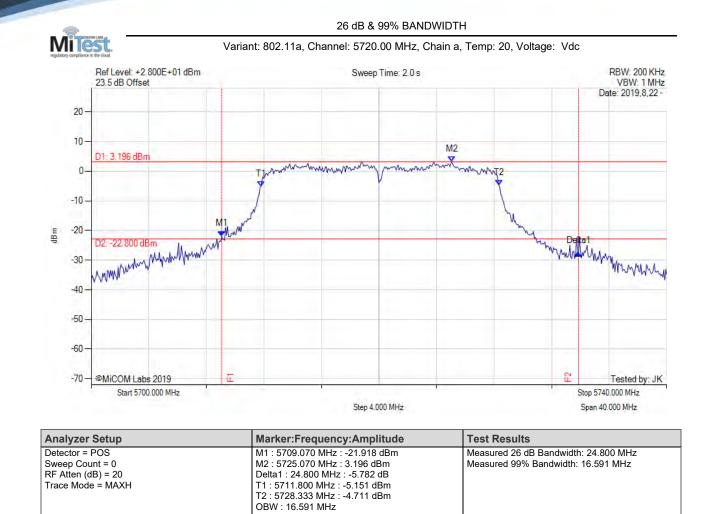
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

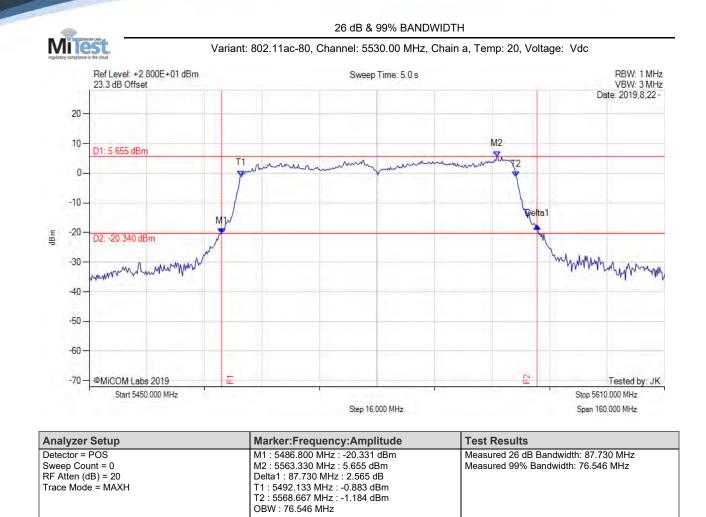
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

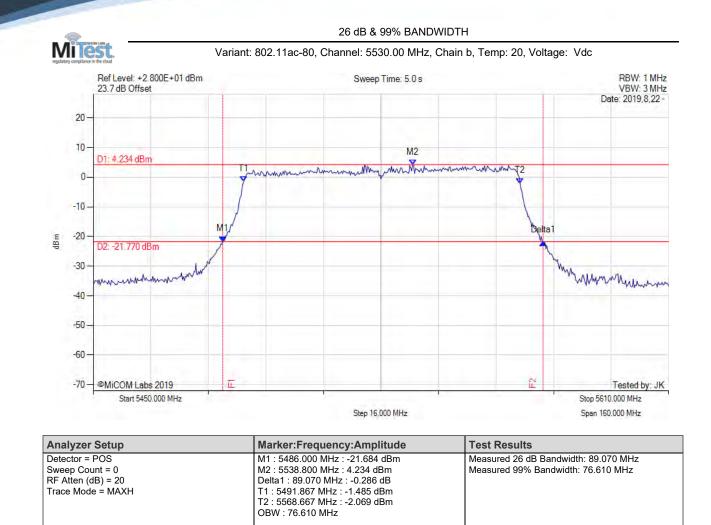
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

MiC@MLabs.

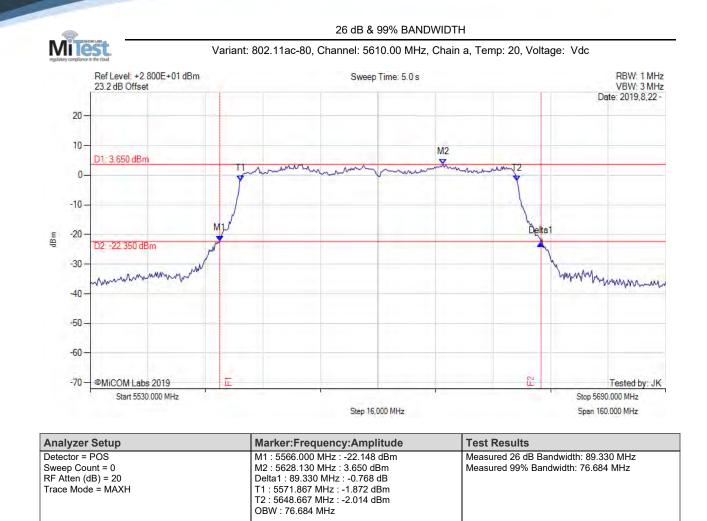
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

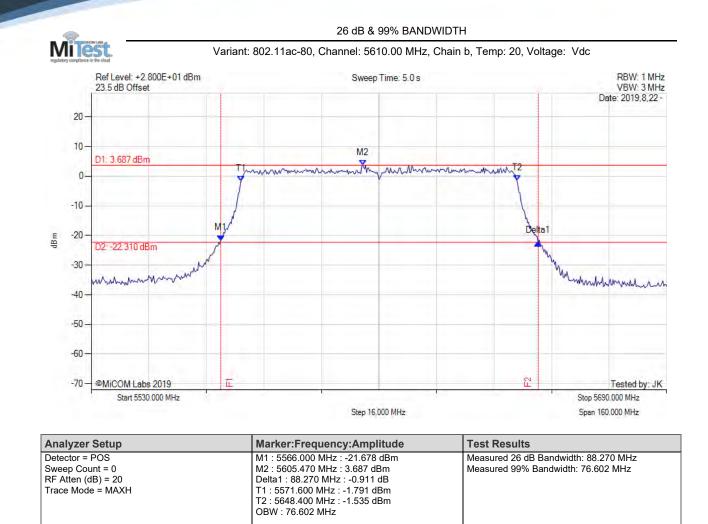
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

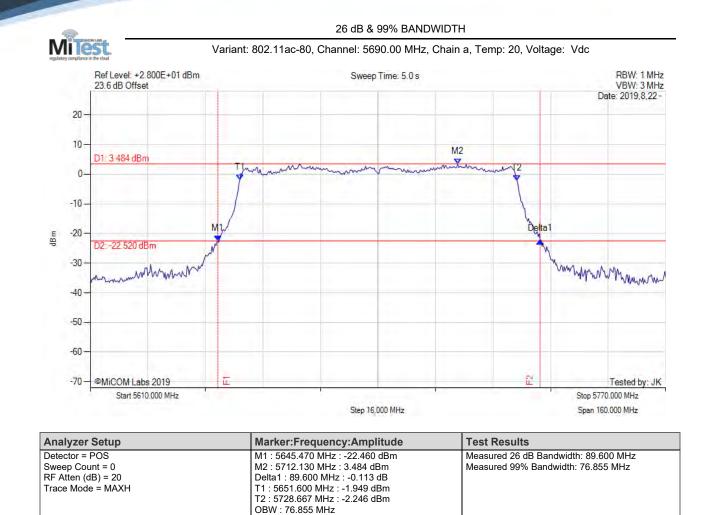
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

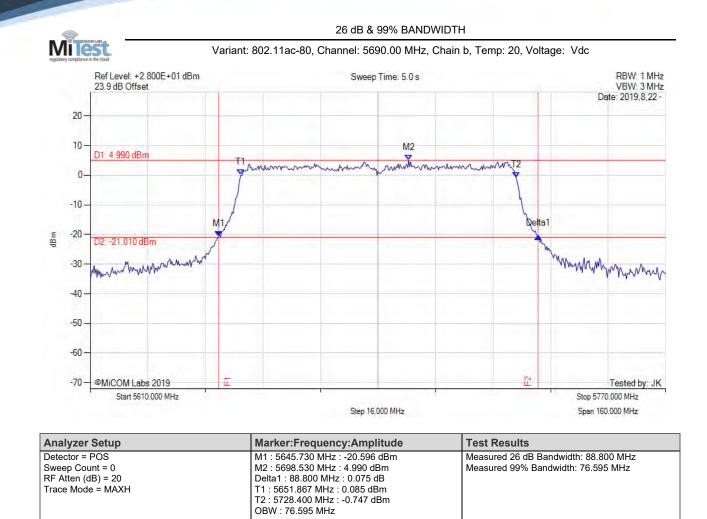
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

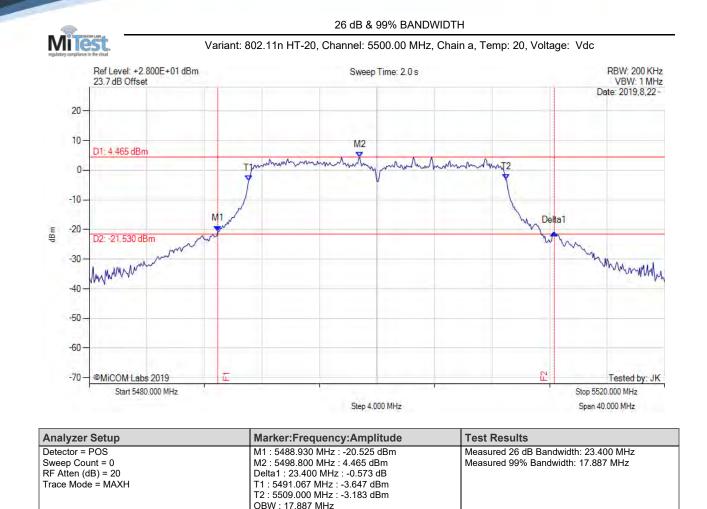
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

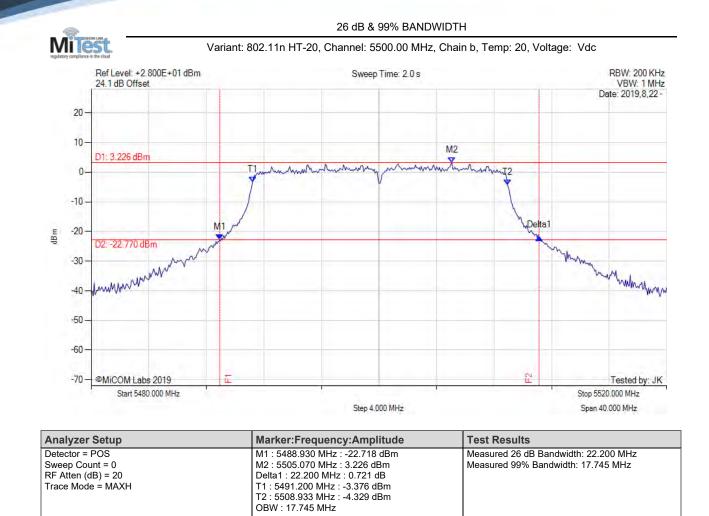
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

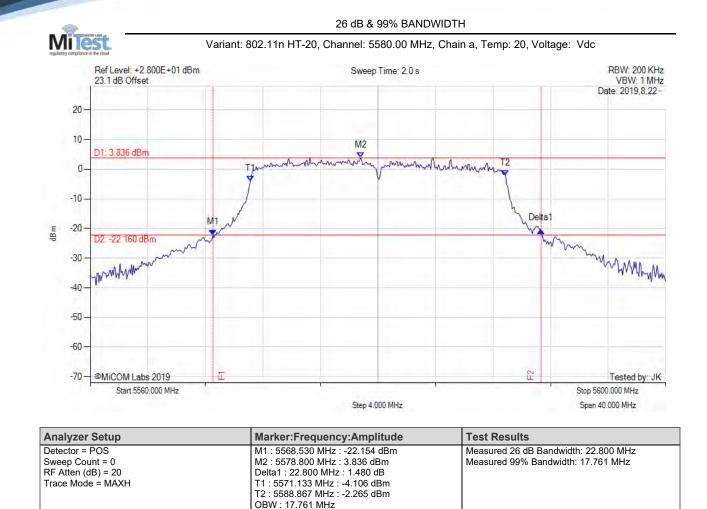
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

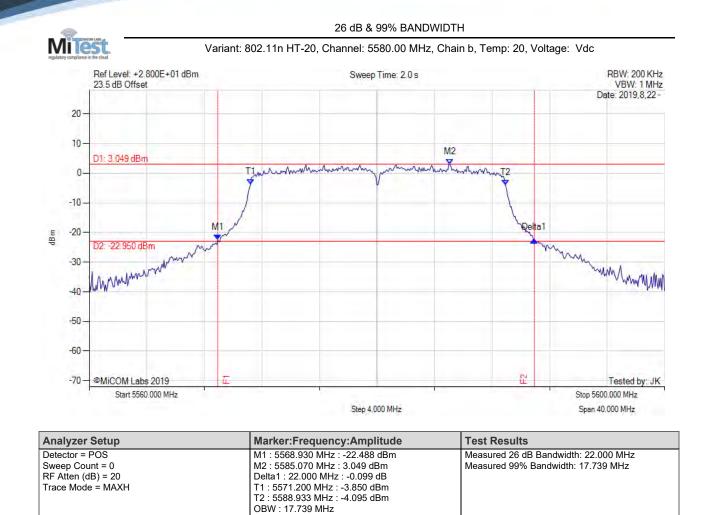
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

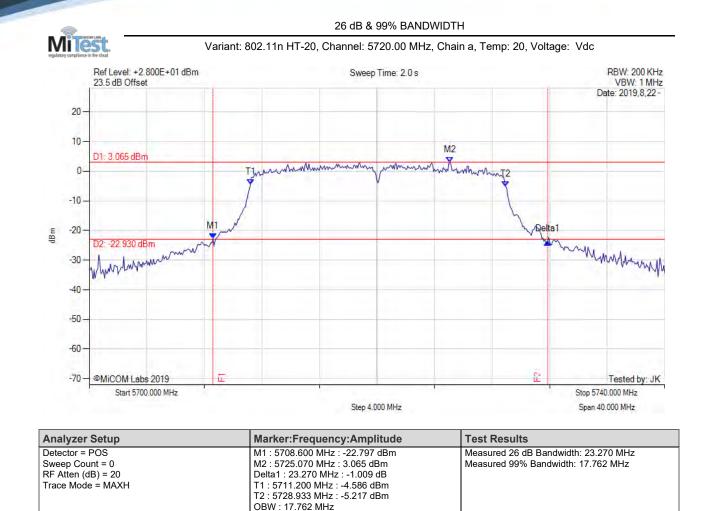
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

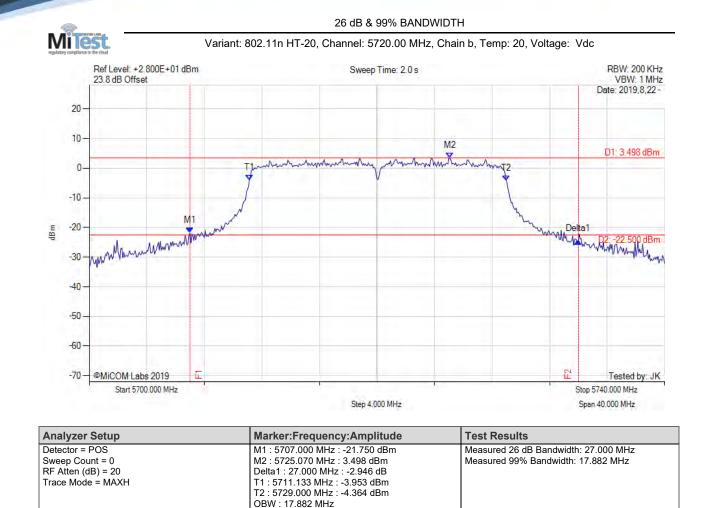
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

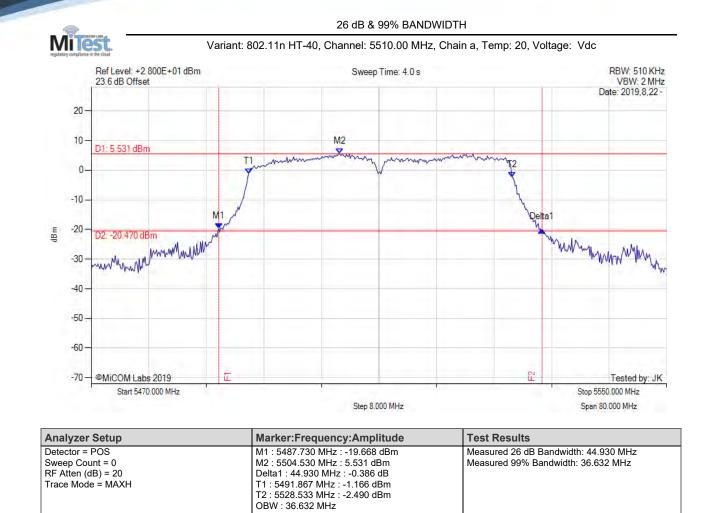
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

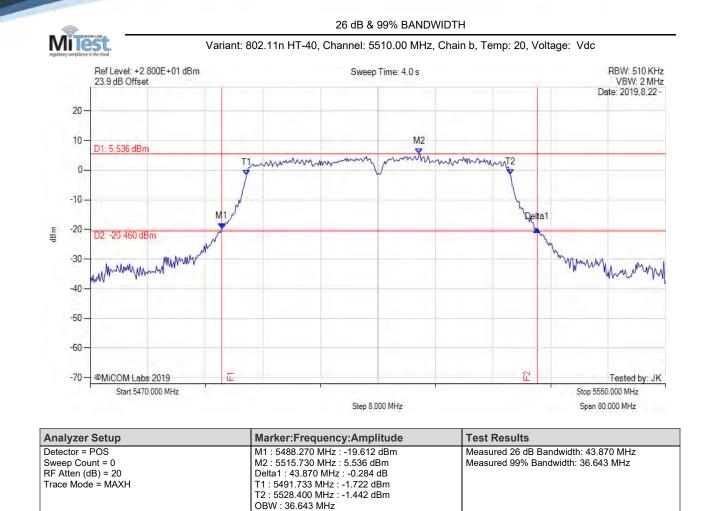
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

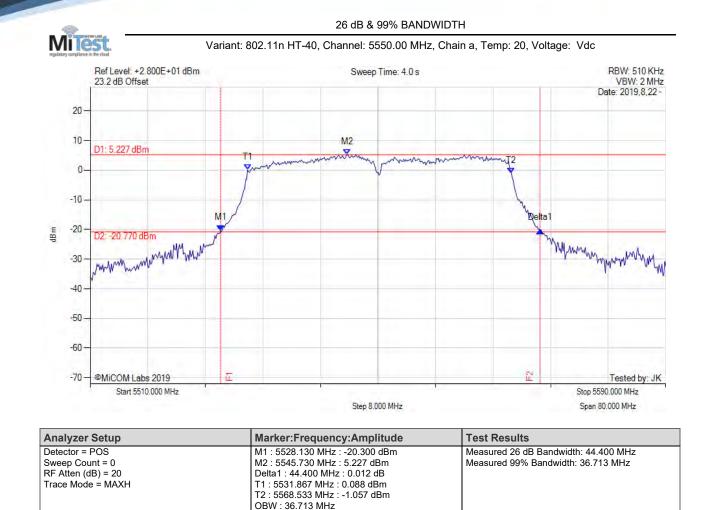
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

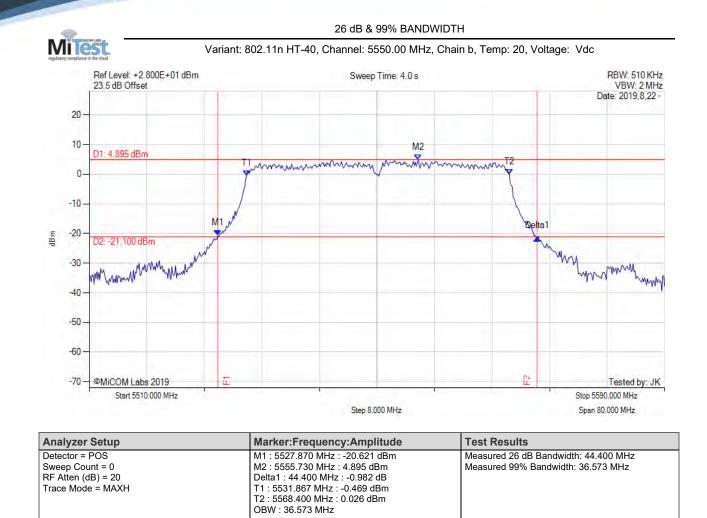
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

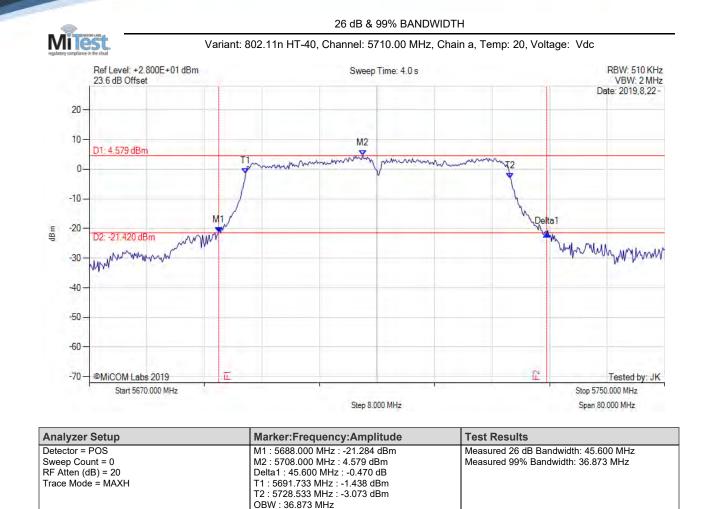
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

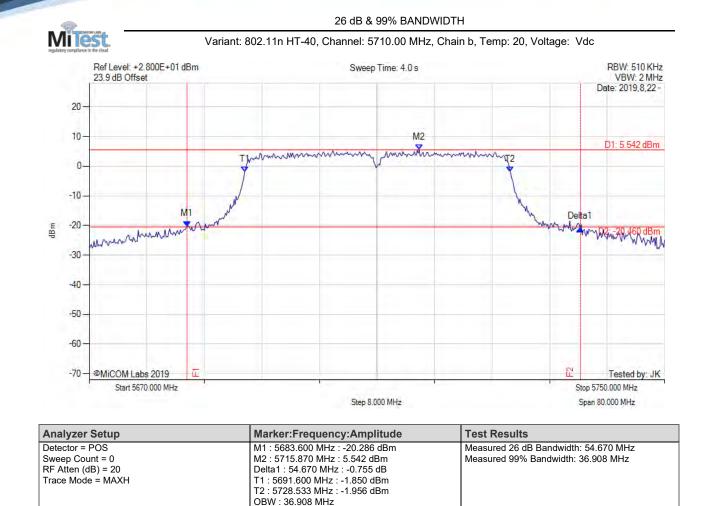
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

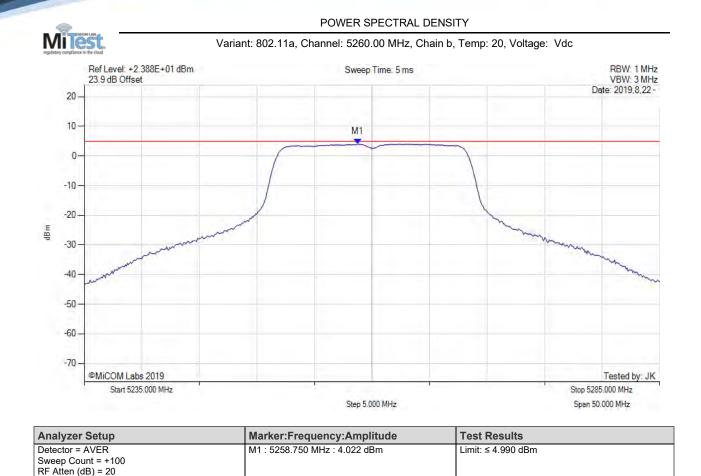

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

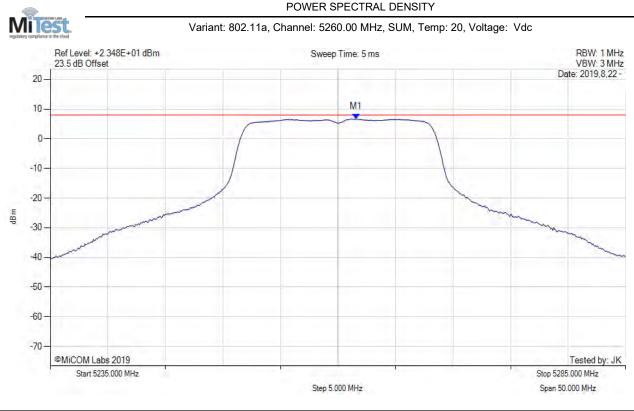
A.2. Power Spectral Density


MiC@MLabs.

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = +100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5261.170 MHz : 3.518 dBm	Limit: ≤ 4.990 dBm

MiC@MLabs.

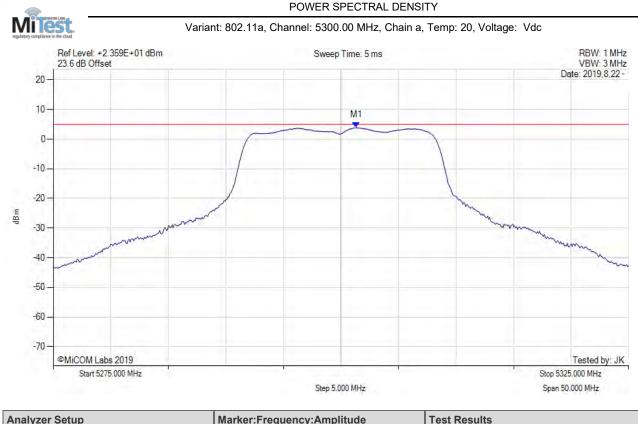
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


hac	k to	matrix
Dau	κ ιυ	IIIauin

Trace Mode = VIEW

 Issue Date:
 9th September 2019
 Page:
 98 of 160

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



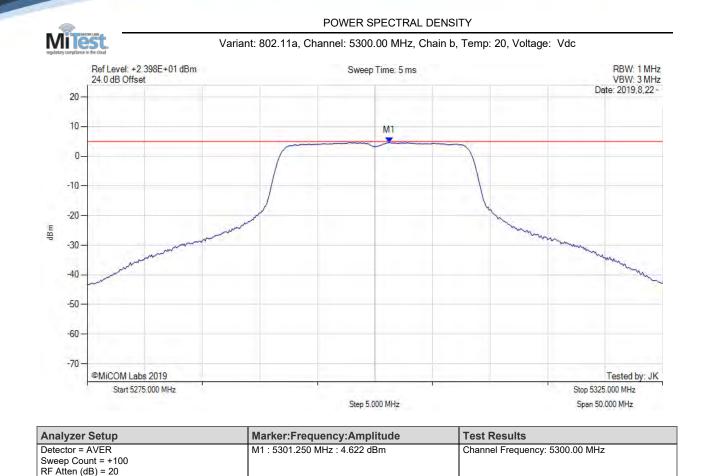
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5261.600 MHz : 6.678 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5261.600 MHz : 6.766 dBm	Margin: -1.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	lest Results
Detector = AVER	M1 : 5301.330 MHz : 3.889 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


 Issue Date:
 9th September 2019
 Page:
 100 of 160

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module
 FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2
 MIKO92-U2 Rev A

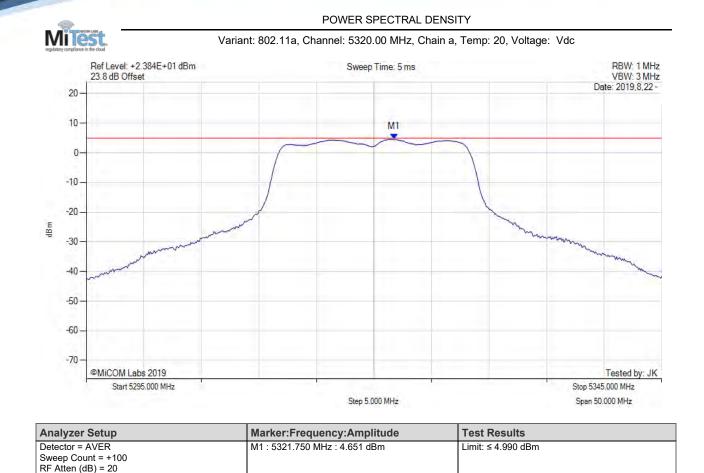
back to matrix

Trace Mode = VIEW

 Issue Date:
 9th September 2019
 Page:
 101 of 160

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

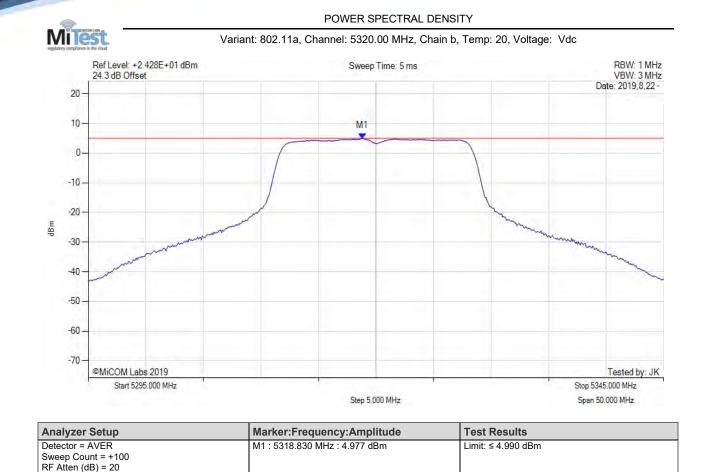


POWER SPECTRAL DENSITY Mi Variant: 802.11a, Channel: 5300.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.359E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 M1 10 0--10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5275.000 MHz Stop 5325.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5301.300 MHz : 7.239 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5301.300 MHz : 7.327 dBm	Margin: -0.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A



back to matrix

Trace Mode = VIEW

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

had	k to	matrix
Dau	ιυ	IIIauix

Trace Mode = VIEW

 Issue Date:
 9th September 2019
 Page:
 104 of 160

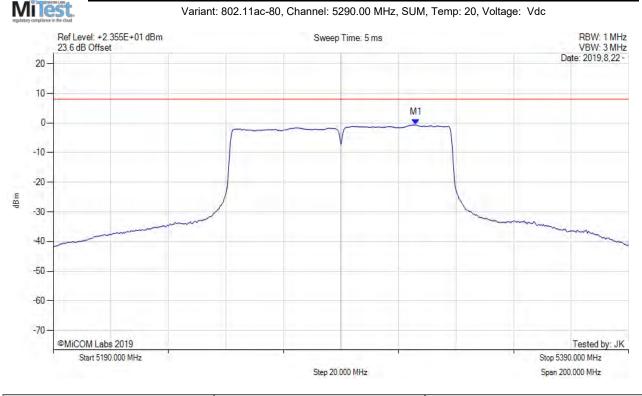
 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY Mi Variant: 802.11a, Channel: 5320.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.384E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.8 dB Offset Date: 2019,8,22 -20 M1 10 0--10--20dBm -30 --40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5295.000 MHz Stop 5345.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5321.700 MHz : 7.682 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5321.700 MHz : 7.770 dBm	Margin: -0.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5290.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.355E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10 M1 0--10 -20 dBm -30--40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5190.000 MHz Stop 5390.000 MHz Step 20.000 MHz Span 200.000 MHz

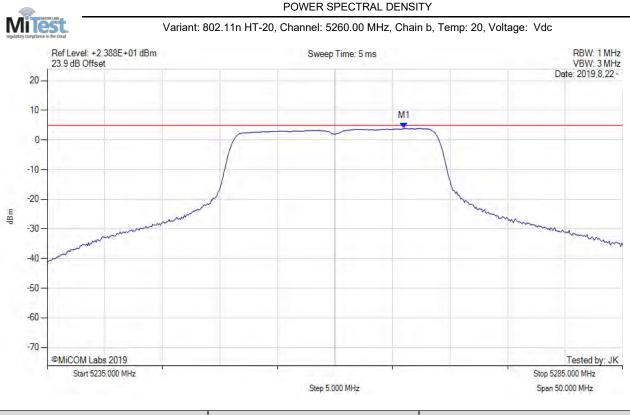
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5316.000 MHz : -3.223 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		



POWER SPECTRAL DENSITY MĨT Variant: 802.11ac-80, Channel: 5290.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.392E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.9 dB Offset Date: 2019,8,22 -20 10 M1 0--10 -20dBm -30--40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5190.000 MHz Stop 5390.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5323.700 MHz : -3.027 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY

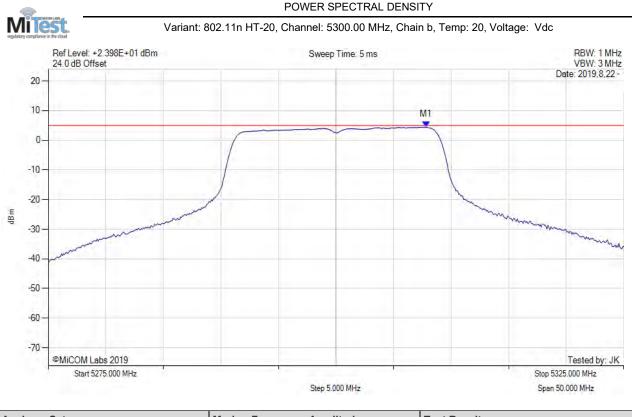

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5316.000 MHz : -0.583 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5316.000 MHz : -0.495 dBm	Margin: -8.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mit Variant: 802.11n HT-20, Channel: 5260.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.348E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10-M1 0--10--20 dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5235.000 MHz Stop 5285.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5263.500 MHz : 3.422 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5266.000 MHz : 3.918 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mi Variant: 802.11n HT-20, Channel: 5260.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.348E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 M1 10 0--10--20 dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5235.000 MHz Stop 5285.000 MHz Step 5.000 MHz Span 50.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5266.000 MHz : 6.535 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5266.000 MHz : 6.623 dBm	Margin: -1.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

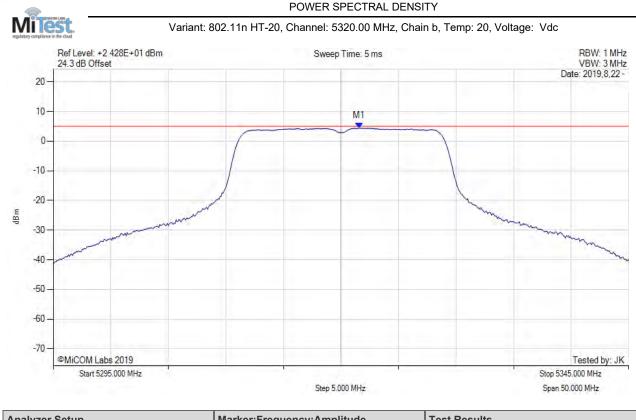
POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-20, Channel: 5300.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.359E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10 M1 0--10--20 dBm -30-Whene -40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5275.000 MHz Stop 5325.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5306.330 MHz : 3.761 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5307.830 MHz : 4.467 dBm	Channel Frequency: 5300.00 MHz
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY MiT Variant: 802.11n HT-20, Channel: 5300.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.359E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 M1 10 0--10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5275.000 MHz Stop 5325.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5306.900 MHz : 7.065 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5306.900 MHz : 7.153 dBm	Margin: -0.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		



POWER SPECTRAL DENSITY Mit Variant: 802.11n HT-20, Channel: 5320.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.384E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.8 dB Offset Date: 2019.8.22 -20 10 M1 0--10--20dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5295.000 MHz Stop 5345.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5325.420 MHz : 4.423 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5321.580 MHz : 4.395 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100 RF Atten (dB) = 20 Trace Mode = VIEW		
		1

POWER SPECTRAL DENSITY Mi Variant: 802.11n HT-20, Channel: 5320.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.384E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.8 dB Offset Date: 2019,8,22 -20 M1 10 0--10--20dBm -30--40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5295.000 MHz Stop 5345.000 MHz Step 5.000 MHz Span 50.000 MHz

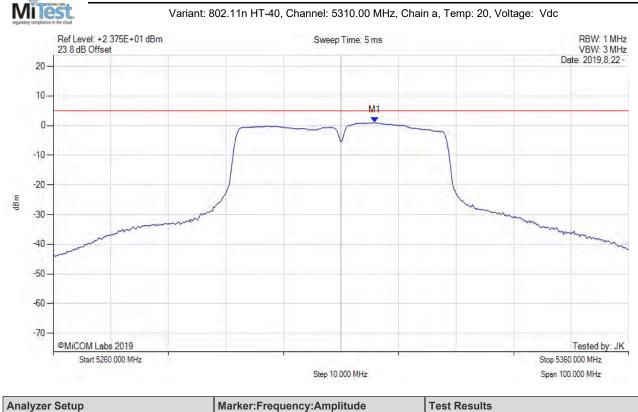
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5325.400 MHz : 7.236 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5325.400 MHz : 7.324 dBm	Margin: -0.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-40, Channel: 5270.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.365E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10-M1 0--10--20 dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5220.000 MHz Stop 5320.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = +100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5275.170 MHz : 0.535 dBm	Limit: ≤ 4.990 dBm

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-40, Channel: 5270.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.406E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 24.1 dB Offset Date: 2019,8,22 -20 10 M1 0--10 -20dBm -30--40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5220.000 MHz Stop 5320.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5272.170 MHz : 0.804 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		



POWER SPECTRAL DENSITY MiT Variant: 802.11n HT-40, Channel: 5270.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.365E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10 MI 0--10--20 dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5220.000 MHz Stop 5320.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5272.200 MHz : 3.532 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5272.200 MHz : 3.620 dBm	Margin: -4.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

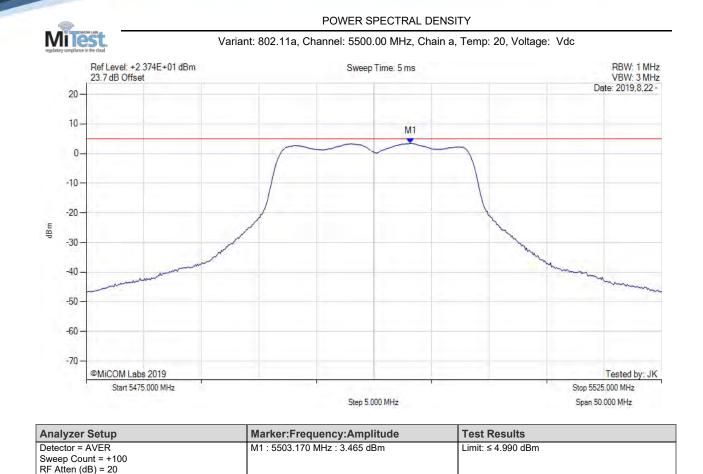
POWER SPECTRAL DENSITY

Analyzer Setup	warker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5315.830 MHz : 0.981 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Mille Variant: 802.11n HT-40, Channel: 5310.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.417E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 24.2 dB Offset Date: 2019,8,22 -20 10 MI 0--10--20 dBm -30 -40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5260.000 MHz Stop 5360.000 MHz Step 10.000 MHz Span 100.000 MHz

POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5307.500 MHz : 1.189 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		



POWER SPECTRAL DENSITY MiT Variant: 802.11n HT-40, Channel: 5310.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.375E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.8 dB Offset Date: 2019,8,22 -20 10 M1 0--10--20 dBm -30 --40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5260.000 MHz Stop 5360.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5315.800 MHz : 3.979 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5315.800 MHz : 4.067 dBm	Margin: -3.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

back to matrix

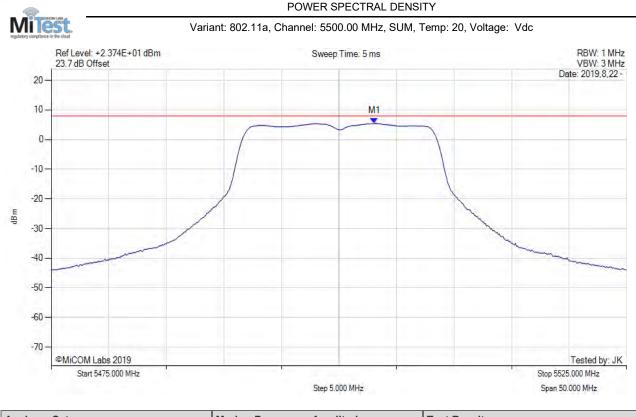
Trace Mode = VIEW

 Issue Date:
 9th September 2019
 Page:
 124 of 160

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

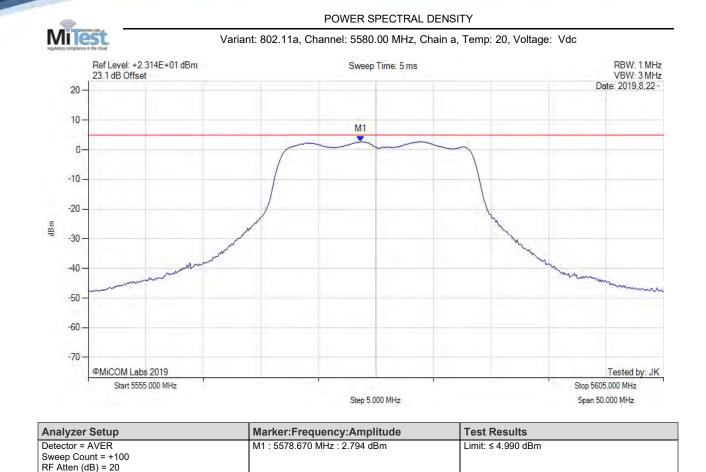
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

MiC@MLabs.


Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	lest Results
Detector = AVER	M1 : 5501.250 MHz : 1.703 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

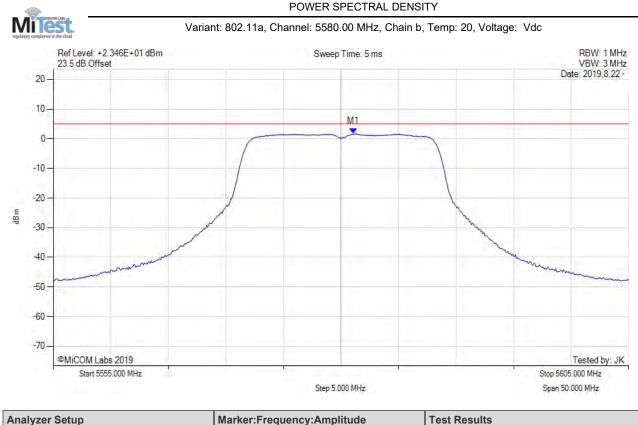
MiC@MLabs.


Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5503.100 MHz : 5.452 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5503.100 MHz : 5.540 dBm	Margin: -2.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

MiC@MLabs.

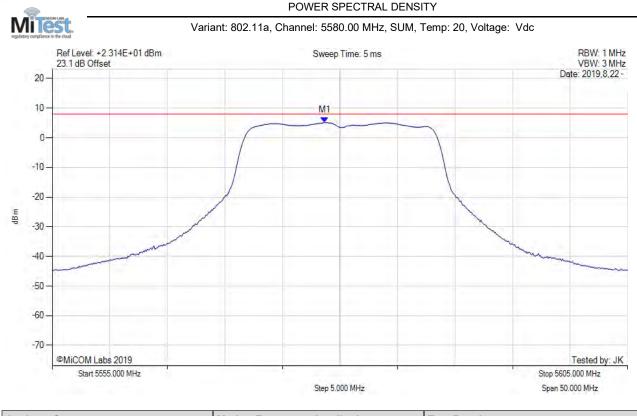
Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A



back to matrix

Trace Mode = VIEW

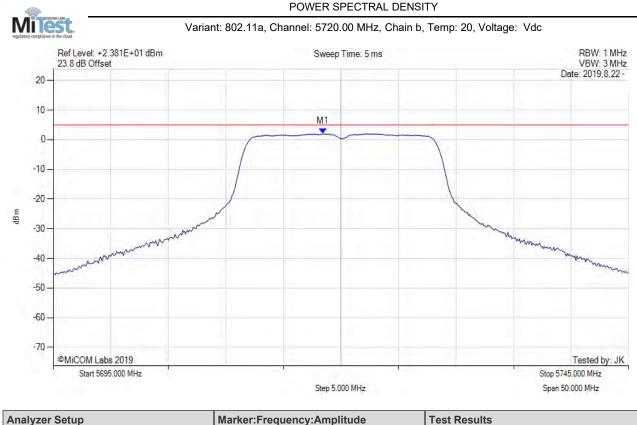
MiC@MLabs.


Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A

Analyzer Setup	warker: Frequency: Amplitude	Test Results
Detector = AVER	M1 : 5581.080 MHz : 1.629 dBm	Channel Frequency: 5580.00 MHz
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

MiC@MLabs.

Mikrotikls SIA RBLHGG-5acD Wireless Module FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 MIKO92-U2 Rev A


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5578.700 MHz : 5.176 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5578.700 MHz : 5.264 dBm	Margin: -2.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

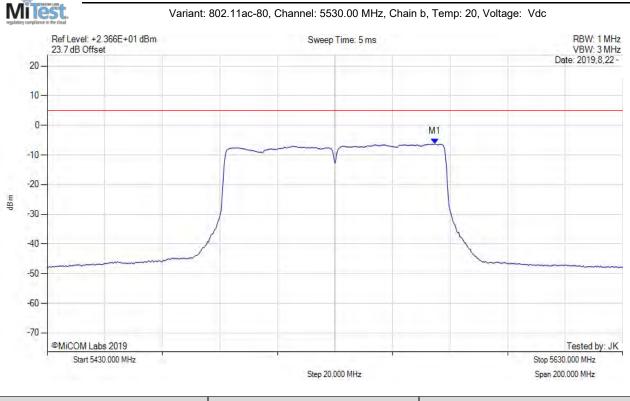
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5724.580 MHz : 1.724 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

itle: MikrotikIs SIA RBLHGG-5acD Wireless Module To: FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 al #: MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5718.420 MHz : 2.055 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100 RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mi Variant: 802.11a, Channel: 5720.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.345E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10 M1 T 0--10--20dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5695.000 MHz Stop 5745.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5719.000 MHz : 4.671 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5719.000 MHz : 4.759 dBm	Margin: -3.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		



POWER SPECTRAL DENSITY Mite Variant: 802.11ac-80, Channel: 5530.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.334E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.3 dB Offset Date: 2019,8,22 -20 10 0-M1 --10--20 dBm -30--40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5430.000 MHz Stop 5630.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5567.300 MHz : -4.930 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5564.700 MHz : -6.266 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5530.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.334E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.3 dB Offset Date: 2019,8,22 -20 10 M1 0-T -10--20 dBm -30--40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5430.000 MHz Stop 5630.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5567.000 MHz : -2.600 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5567.000 MHz : -2.512 dBm	Margin: -10.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mit Variant: 802.11ac-80, Channel: 5610.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.320E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.2 dB Offset Date: 2019,8,22 -20 10-0-M1 . -10--20 dBm -30 --40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5510.000 MHz Stop 5710.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5644.300 MHz : -6.407 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mit Variant: 802.11ac-80, Channel: 5610.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.353E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10-0-M1 V -10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5510.000 MHz Stop 5710.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5645.000 MHz : -7.104 dBm	Channel Frequency: 5610.00 MHz
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5610.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.320E+01 dBm Sweep Time: 5 ms RBW: 1 MHz VBW: 3 MHz 23.2 dB Offset Date: 2019,8,22 -20 10 M1 0v -10--20dBm -30--40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5510.000 MHz Stop 5710.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5645.000 MHz : -3.805 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5645.000 MHz : -3.717 dBm	Margin: -11.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

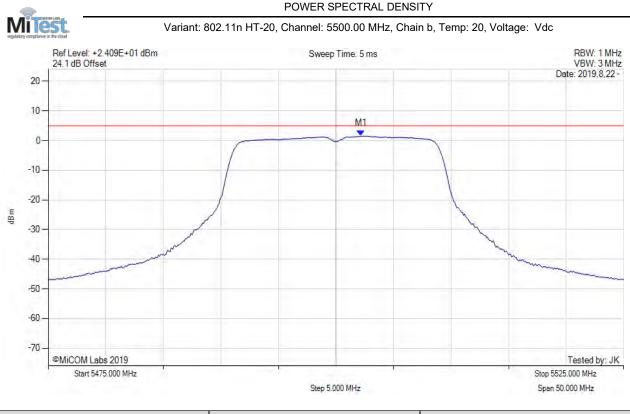
POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5690.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.364E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10-0-M1 -10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5590.000 MHz Stop 5790.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5712.300 MHz : -6.425 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

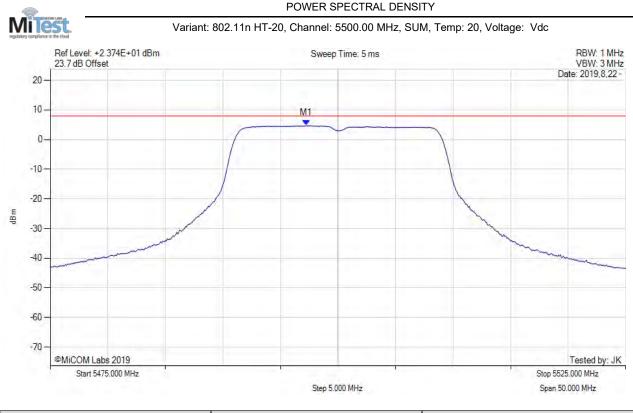
POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5690.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.387E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.9 dB Offset Date: 2019.8.22 -20 10 0-M1 -10--20dBm -30--40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5590.000 MHz Stop 5790.000 MHz Step 20.000 MHz Span 200.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5686.300 MHz : -6.205 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

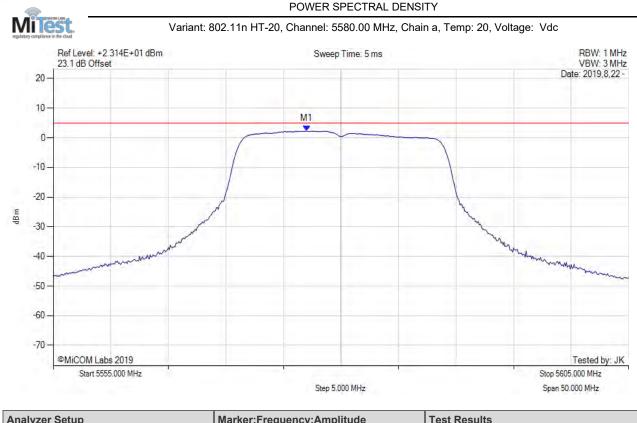
POWER SPECTRAL DENSITY MiT Variant: 802.11ac-80, Channel: 5690.00 MHz, SUM, Temp: 20, Voltage: Vdc RBW: 1 MHz VBW: 3 MHz Ref Level: +2.364E+01 dBm Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10 M1 0---10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5590.000 MHz Stop 5790.000 MHz Step 20.000 MHz Span 200.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5712.300 MHz : -3.562 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5712.300 MHz : -3.474 dBm	Margin: -11.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-20, Channel: 5500.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.374E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.7 dB Offset Date: 2019,8,22 -20 10 M1 V 0--10--20dBm -30--40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5475.000 MHz Stop 5525.000 MHz Step 5.000 MHz Span 50.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5493.500 MHz : 2.446 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5502.170 MHz : 1.547 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

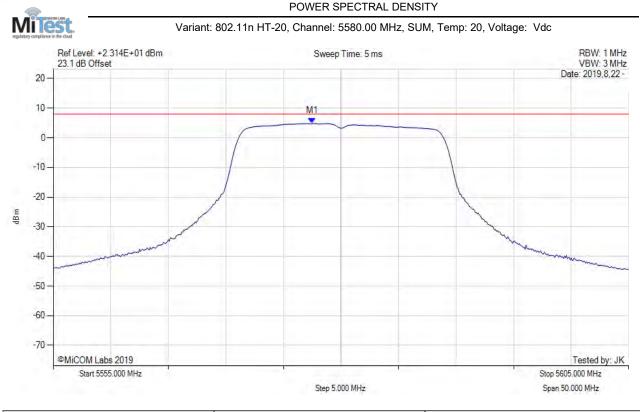


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5497.300 MHz : 4.709 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5497.300 MHz : 4.797 dBm	Margin: -3.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

Title: To: Serial #:

itle: Mikrotikls SIA RBLHGG-5acD Wireless Module To: FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 al #: MIKO92-U2 Rev A

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5577.000 MHz : 2.321 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		



POWER SPECTRAL DENSITY MĨT Variant: 802.11n HT-20, Channel: 5580.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.346E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10-M1 0--10--20 dBm -30 --40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5555.000 MHz Stop 5605.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = +100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5579.080 MHz : 1.473 dBm	Channel Frequency: 5580.00 MHz

MiceMLabs, Serial #:

Title:Mikrotikls SIA RBLHGG-5acD Wireless ModuleTo:FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2rial #:MIKO92-U2 Rev A

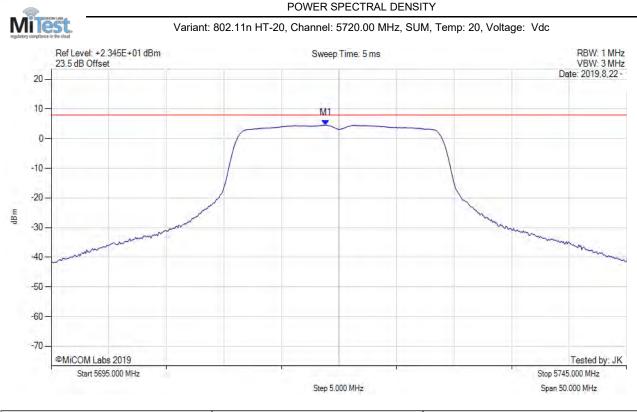
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5577.500 MHz : 4.811 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5577.500 MHz : 4.899 dBm	Margin: -3.1 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

back to matrix

 Issue Date:
 9th September 2019
 Page:
 147 of 160

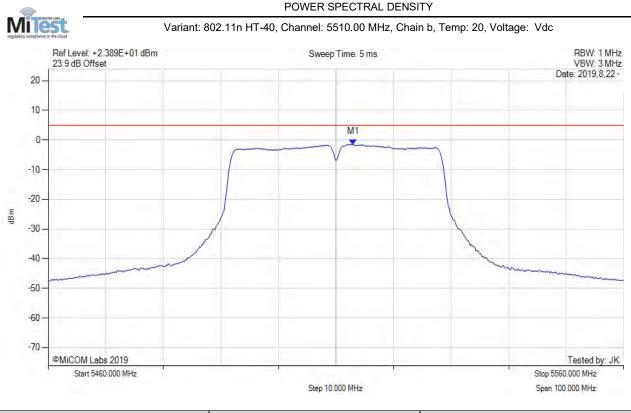
 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-20, Channel: 5720.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.345E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10 M1 0--10--20dBm -30 --40mm how -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5695.000 MHz Stop 5745.000 MHz Step 5.000 MHz Span 50.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5718.830 MHz : 1.613 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-20, Channel: 5720.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.381E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.8 dB Offset Date: 2019.8.22 -20 10 M1 0--10--20dBm -30 --40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5695.000 MHz Stop 5745.000 MHz Step 5.000 MHz Span 50.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5722.170 MHz : 1.754 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5718.800 MHz : 4.587 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5718.800 MHz : 4.675 dBm	Margin: -3.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-40, Channel: 5510.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.358E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10-M1 0---10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5460.000 MHz Stop 5560.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5504.830 MHz : -0.552 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5513.000 MHz : -1.497 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5507.300 MHz : 1.672 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5507.300 MHz : 1.760 dBm	Margin: -6.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mit Variant: 802.11n HT-40, Channel: 5550.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.320E+01 dBm Sweep Time: 5 ms RBW: 1 MHz VBW: 3 MHz 23.2 dB Offset Date: 2019,8,22 -20 10-MT 0---10--20 dBm -30 --40--50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5500.000 MHz Stop 5600.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5546.670 MHz : -0.678 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mit Variant: 802.11n HT-40, Channel: 5550.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.349E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.5 dB Offset Date: 2019,8,22 -20 10-M1 0---10--20 dBm -30 --40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5500.000 MHz Stop 5600.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5553.000 MHz : -1.674 dBm	Channel Frequency: 5550.00 MHz
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

23.2 dB Offset

MiT

Title: Mikrotikls SIA RBLHGG-5acD Wireless Module To: FCC CFR 47 Part 15 Subpart E 15.407, RSS-247 Issue 2 Serial #: MIKO92-U2 Rev A

RBW: 1 MHz VBW: 3 MHz

Variant: 802.11n HT-40, Channel: 5550.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.320E+01 dBm Sweep Time: 5 ms

POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5547.300 MHz : 1.759 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5547.300 MHz : 1.847 dBm	Margin: -6.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mite Variant: 802.11n HT-40, Channel: 5710.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.356E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10-M1 0--10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5660.000 MHz Stop 5760.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5707.500 MHz : -1.751 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY Mille Variant: 802.11n HT-40, Channel: 5710.00 MHz, Chain b, Temp: 20, Voltage: Vdc Ref Level: +2.389E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.9 dB Offset Date: 2019.8.22 -20 10 M1 0-1 -10 -20dBm -30 --40 -50 -60 -70-©MiCOM Labs 2019 Tested by: JK Start 5660.000 MHz Stop 5760.000 MHz Step 10.000 MHz Span 100.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5704.830 MHz : -1.226 dBm	Limit: ≤ 4.990 dBm
Sweep Count = +100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

MĨT Variant: 802.11n HT-40, Channel: 5710.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.356E+01 dBm RBW: 1 MHz VBW: 3 MHz Sweep Time: 5 ms 23.6 dB Offset Date: 2019,8,22 -20 10 M1 7 0--10--20 dBm -30--40 -50 -60 -70 ©MiCOM Labs 2019 Tested by: JK Start 5660.000 MHz Stop 5760.000 MHz Step 10.000 MHz Span 100.000 MHz

POWER SPECTRAL DENSITY

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 5706.200 MHz : 1.422 dBm	Limit: ≤ 8.0 dBm
Sweep Count = +100	M1 + DCCF : 5706.200 MHz : 1.510 dBm	Margin: -6.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com