

SAFE VIEW, INC. TEST REPORT

FOR THE

SECURITY PORTAL, SCOUT 100 VERSION 2 SWITCH

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.209

COMPLIANCE

DATE OF ISSUE: NOVEMBER 27, 2006

PREPARED FOR:

PREPARED BY:

Safe View, Inc. 910 East Franklin Road Meridian, ID 83642

P.O. No.: 4335E W.O. No.: 85484 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: July 25 – November 16, 2006

Report No.: FC06-056

This report contains a total of 74 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	4
FCC to Canada Standard Correlation Matrix	5
Conditions for Compliance	5
Approvals	5
FCC 15.31(e) Voltage Variation	6
FCC 15.31(m) Number Of Channels	6
FCC 15.33(a) Frequency Ranges Tested	6
FCC 15.35 Analyzer Bandwidth Settings	
FCC 15.203 Antenna Requirements	6
EUT Operating Frequency	6
Temperature And Humidity During Testing	
Equipment Under Test (EUT) Description	7
Equipment Under Test	7
Peripheral Devices	7
Report of Measurements	8
Table 1: FCC 15.207 Six Highest Conducted Emission Levels	8
Table 2: FCC 15.209 Six Highest Carrier Radiated Emission Levels	.9
Table 3: FCC 15.209 Six Highest Radiated Emission Levels: 9 kHz-1000 MHz	.10
Table 4: FCC 15.209 Six Highest Radiated Emission Levels: 1-100 GHz	.11
Table 5: Band Edge Emission Levels	.12
Occupied Bandwidth	.13
Band Edge	.15
EUT Setup	.17
Correction Factors	.17
Table A: Sample Calculations	.17
Test Instrumentation and Analyzer Settings	.18
Spectrum Analyzer Detector Functions	.18
Peak	.18
Quasi-Peak	.18
Average	.18
EUT Testing	
Mains Conducted Emissions	.19
Radiated Emissions	.19
Appendix A: Test Setup Photographs	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing 40-100 GHz Setup	.27

Photograph Showing 40-100 GHz Setup	28
Photograph Showing Carrier Power Of Antenna 16	29
Photograph Showing Carrier Power Radiated Emissions	30
Photograph Showing Occupied Bandwidth	
Photograph Showing Occupied Bandwidth	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	

ADMINISTRATIVE INFORMATION

DATE OF TEST:July 25 – November 16, 2006

DATE OF RECEIPT: July 25, 2006

MANUFACTURER:

Safe View, Inc. 910 East Franklin Road Meridian, ID 83642

CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Scott Trosper

REPRESENTATIVE:

TEST LOCATION:

TEST METHOD:

PURPOSE OF TEST:

ANSI C63.4 (2003)

To demonstrate the compliance of the Security Portal, SCOUT 100 Version 2 Switch with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.209 devices with FCC waiver DA 06-1589 dated August 4. 2006.

			-	
Canadian	Canadian	FCC	FCC	Test Description
Standard	Section	Standard	Section	
RSS GEN	7.1.4	47CFR	15.203	Antenna Connector Requirements
RSS GEN	7.2.1	47CFR	15.35(c)	Pulsed Operation
RSS GEN	7.2.2	47CFR	15.207	AC Mains Conducted Emissions Requirement
RSS 210	2.1	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	2.2	47CFR	15.205	Restricted Bands of Operation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
	IC 5933		958979	Site File No.

FCC TO CANADA STANDARD CORRELATION MATRIX

CONDITIONS FOR COMPLIANCE

Modifications: 1) Added a two-turn clamp on ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

These modifications or Safeview's engineering equivalencies of these modifications will ensure the EUT will continue to meet the FCC standards.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Shather

Joyce Walker Quality Assurance Administrative Manager

Amrinder Brar, EMC Engineer/Lab Manager

TEST PERSONNEL:

Art Rice, EMC Engineer

A. LM

Christine Nicklas, Senior EMC Engineer/Consultant

FCC 15.31(e) Voltage Variations

Nominal ACV=120. 85% is 102V. 115% is 138V.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209 Radiated Emissions: 130 MHz – 100 GHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	100 GHz	1 MHz					

FCC 15.203 Antenna Requirements

The Safeview Scout 100 system uses an antenna element permanently attached to a subcomponent in the mast switching array and thereby satisfies the requirements of FCC part 15.203.

EUT Operating Frequency

The EUT was operating at 24.25 GHz – 30 GHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Security Portal

Manuf:	SafeView, Inc.
Model:	SCOUT 100 Version 2 Switch
Serial:	A100062500152 &
	A100062300146
FCC ID:	pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Computer/Monitor

Computer	/Monitor	Keyboard
Manuf:	MPC	Manuf:
Model:	CLIENTPRO 474	Model:
Serial:	4007670-0001	Serial:

Computer Power Supply

Manuf:	Lite-on Technology Corp.
Model:	PA-1221-03
Serial:	5Y00045302

Mouse Manuf:

Model: Serial:

Microsoft Basic Optical Mouse 1.0A NA

MPC SK-1688 C0602086090

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: FCC 15.207 Six Highest Conducted Emission Levels											
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	RECTIO HPF dB	ON FACT Att dB	TORS Cable dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
0.184906	36.6	0.4	0.1	9.8	0.1	48.1	54.3	-6.2	W		
0.293986	33.5	0.3	0.3	9.8	0.1	44.0	50.4	-6.4	W		
0.330346	33.2	0.4	0.2	9.8	0.1	43.7	49.4	-5.7	В		
0.331073	32.6	0.3	0.2	9.8	0.1	43.0	49.4	-6.4	W		
0.364000	31.4	0.3	0.1	9.7	0.2	41.7	48.6	-6.9	WA		
0.432881	31.3	0.3	0.0	9.7	0.2	41.5	47.2	-5.7	W		

Test Method: Spec Limit: ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.207 NOTES:

COMMENTS: The SafeScout S-100 Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The SafeScout S-100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. Conducted Emissions 0.15 - 30 MHz.

A = Average Reading B = Black Lead W = White Lead

Table 2: FCC 15.209 Six Highest Carrier Radiated Emission Levels										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	DN FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES	
24484.000	91.5	-2.3		0.0	-13.0	76.2	77.9	-1.7	V	
24624.000	102.9	-17.0		7.2	-13.0	80.1	82.2	-2.1	V	
26973.000	74.7	2.0		7.4	-13.0	71.1	73.0	-1.9	V	
26973.000	74.3	2.0		7.4	-13.0	70.7	73.0	-2.3	V	
26974.000	74.6	2.0		7.4	-13.0	71.0	73.0	-2.0	V	
29802.000	78.3	3.6		7.9	-13.0	76.8	77.9	-1.1	V	

Table 2: FCC 15.209 Six Highest Carrier Radiated Emission Levels
--

Test Method: Spec Limit: Test Distance: ANSI C63.4 (2003) FCC Part 15 Subpart C Section 15.209 1 Meter

NOTES:

V = Vertical Polarization

COMMENTS: The Scout 100 V2 Switch Security Portal's antenna masts are reversed from their normal scanning position so these antennas are facing to the outside of the EUT. In actuality, the mast should be facing inward with the antenna 3 meters from the system which is 4.5 meters from the mast. This measurement technique relinquishes the power loss of 1.5 meters making the peak power greater than what it actually is in the system. For this testing the transmitter is transmitting continuously at each of the following frequencies. Low channel=24.65 GHz. Mid channel=27 GHz. Hi channel=29.8 GHz. Measuring Peak Carrier Power per DA 06-1589 paragraph 8b. RBW=100 kHz, VBW=3 MHz, Span=1 GHz. Sweep time=auto. Measuring Average RMS Power per DA 06-1589 paragraph 8a. RBW=1 MHz, VBW=3 MHz, Span=0 Hz. Sweep time=1 sec. Emissions reported represent worst case polarization. Peak limit was derived by adding 41 dB to the average RMS value for that channel and mast antenna number. Data for antenna 320 mid and hi channels was re-measured on 11-16-06. These readings were taken at different AC input voltages to observe the effect on the output power. No effect on output power was noticed by varying the AC input. Nominal ACV=120. 85% is 102V. 115% is 138V.

	Table 3: FC	C 15.20	9 Six Hig	ghest Ra	diated E	mission Levels: 9	kHz-1000 N	MHz	
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	DN FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
293.768	51.1	12.9	-25.4	1.7		40.3	46.0	-5.7	Н
295.329	50.6	12.9	-25.4	1.7		39.8	46.0	-6.2	VQ
310.234	51.1	13.2	-25.6	1.7		40.4	46.0	-5.6	Н
399.029	48.6	15.5	-25.9	2.0		40.2	46.0	-5.8	V
399.926	48.5	15.5	-25.9	2.0		40.1	46.0	-5.9	V
500.013	47.3	17.5	-26.7	2.2		40.3	46.0	-5.7	HQ

Test Method: ANSI C63.4 (2003)

Spec Limit: FCC Part 15 Subpart C Section 15.209

Test Distance: 3 Meters

COMMENTS: The Scout 100 Version 2 Switch Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The Scout 100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. Radiated Emissions 30 - 1000MHz. Maximized. Modifications:

NOTES:

Q = Quasi Peak Reading

V = Vertical Polarization

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

These modifications or Safeview's engineering equivalencies of these modifications will ensure the EUT will continue to meet the FCC standards.

The reasons for these modifications are to reduce emissions between 30 MHz and 1000 MHz: 1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks No transceiver related emissions were detected within 20dB of the limit below 30 MHz. Loop antenna was positioned in the horizontal and vertical polarity and rotated to maximize emissions in this range.

Table 4: FCC 15.209 Six Highest Radiated Emission Levels: 1-100 GHz										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES	
12349.240	57.7	39.4	-65.5	17.2		48.8	54.0	-5.2	V	
9343.941	57.4	37.9	-63.1	14.5		46.8	54.0	-7.2	Н	
9343.733	57.4	37.9	-63.1	14.5		46.8	54.0	-7.2	V	
12348.580	55.2	39.4	-65.6	17.2		46.3	54.0	-7.7	Н	
3087.833	71.8	30.2	-64.0	8.5		46.0	54.0	-8.0	Н	
1000.033	88.3	23.8	-68.9	2.3		45.5	54.0	-8.5	V	

Test Method:ANSI C63.4 (2003)Spec Limit:FCC Part 15 Subpart C Section 15.209 andTest Distance:.1 meters for 40-100 GHz and3 Meters for < 40 GHz testing</td>

NOTES:

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: The Scout 100 Version 2 Switch Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The Scout 100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. Radiated Emissions 1-12.5 GHz. Maximized Emissions. Modifications:

1) Added a two-turn clamp on ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reasons for these modifications are:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

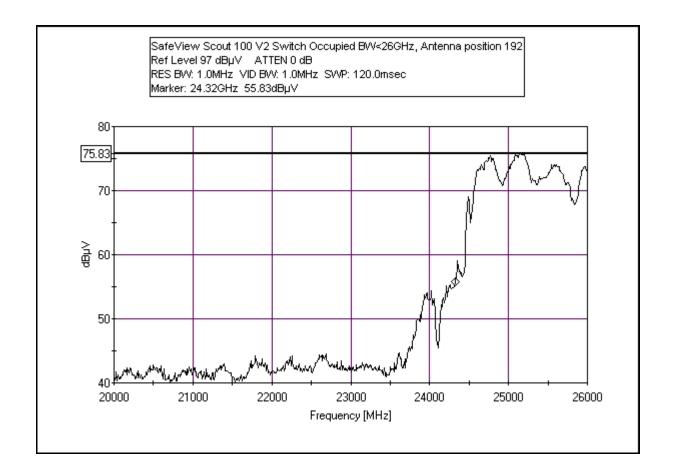
5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks Signals detected in the range of 40-100 GHz were determined to be noise floor readings, representing no EUT signals detected above this level.

Table 5: Band Edge Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
24250.000	43.0	-17.2		7.2	-10.0	23.0	54.0	-31.0	V-2
30000.000	25.3	4.1		7.9	-10.0	27.3	54.0	-26.7	VA-1
Test Method:ANSI C63.4 (2003)NOTES:A = Average ReadingSpec Limit:FCC Part 15 Subpart C Section 15.209 andV = Vertical PolarizationTest Distance:1 Meter1 = Upper Band						on			

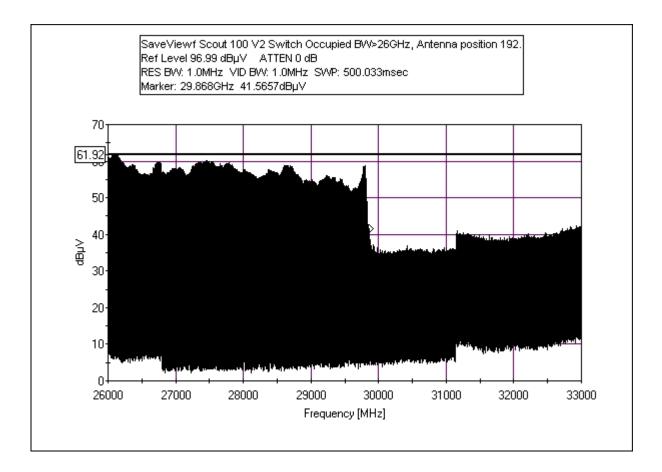
1 = Opper Band2 = Lower Band

COMMENTS: The Scout 100 V2 Switch Security Portal antenna mast is in normal position so antennas are facing to the inside of the EUT. Low channel=24.65 GHz. Mid channel=27 GHz. Hi channel=29.8 GHz. Measuring Peak Carrier Power per DA 06-1589 paragraph 8b. RBW=100 kHz, VBW=3 MHz, Span=1 GHz. Sweep time=auto. Measuring Average RMS Power per DA 06-1589 paragraph 8a. RBW=1 MHz, VBW=3 MHz, Span=0 Hz. Sweep time=1 sec. Emissions reported represent worst case polarization. Measuring CW peak values at low and high channel. Measuring sweeping average values at lower and upper band edges. Transmitting on antenna 192. Measurements were taken with the EMC antennas inside the EUT with the transmitter on continuously.

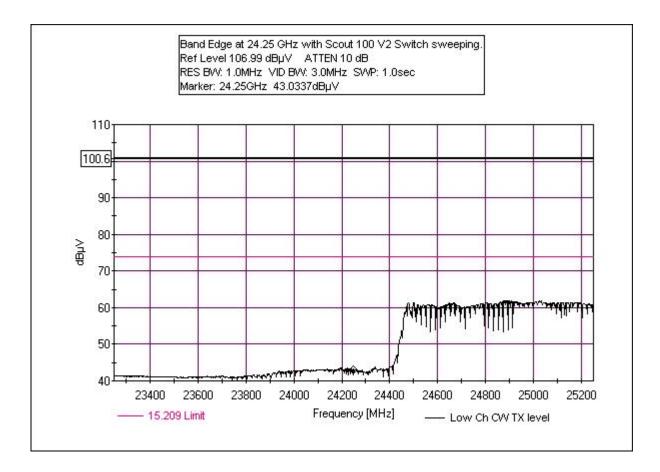
Band Edge Frequency requirements


Measurement	Measured Frequency	Limits	
Lower Band Edge	24.32 GHz (fill in)	24.25GHz	Pass
Upper Band Edge	29.868GHz (fill in)	30.00GHz	Pass

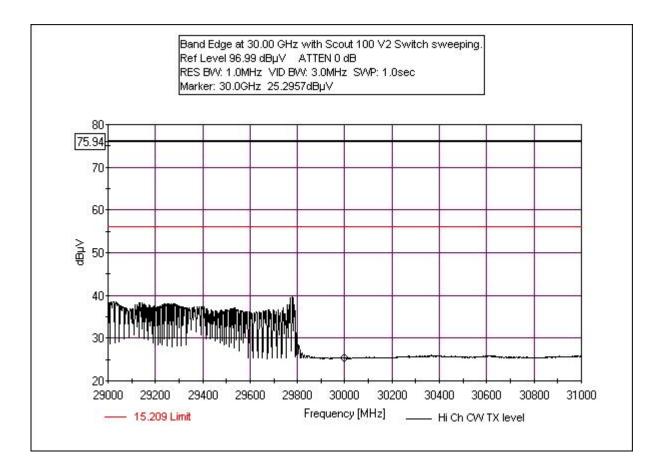
OCCUPIED BANDWIDTH 20-26 GHz


Summary of Occupied Bandwidth

Lower Frequency	Upper Frequency	Measured 20dB Bandwidth
24.32 GHz	29.868GHz	5.548 GHz



OCCUPIED BANDWIDTH 26-33 GHz



24.25 GHz BAND EDGE AVERAGE

30.0 GHz BAND EDGE AVERAGE

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS					
	Meter reading	(dBµV)				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP or Agilent spectrum analyzers were used for the measurements under which they are listed. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced. All Average readings listed except the Carrier Peak and Average Emissions Levels were measured using the definition of Average above. The Carrier Peak and Average Emissions Levels were measured using the Average method described in Waiver DA95-1589.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on the turntable in the alternative OATS site. The EUT was a minumum of 80cm from any other conductive surface.

Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane floor of the alternative OATS site. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

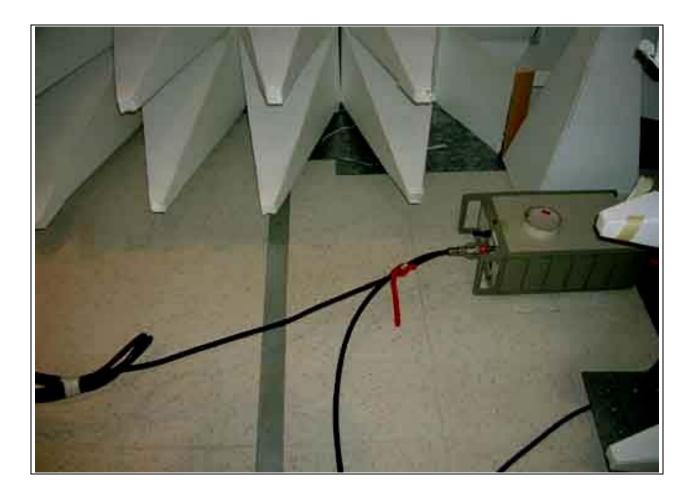
The LISNs used were 50 μ H-/+50 ohms. Automated measurements were used in the frequency band of 150 kHz to 30 MHz in the Manual Measurement mode. The automated software was utilized to set up the proper frequency bands and bandwidths for each frequency band. After each frequency band was properly set up, the test engineer set the spectrum analyzer to MAX Hold, Continuous sweep and allowed the spectrum analyzer to capture the data over at least three full cycles of the EUT. The test engineer then let the software know the data had been captured and the software recorded the data and set up the next frequency range. All readings within a minimum of 10 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was floor standing mounted directly on the rotating table.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.


APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 20 of 74 Report No.: FC06-056

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions

Page 21 of 74 Report No.: FC06-056

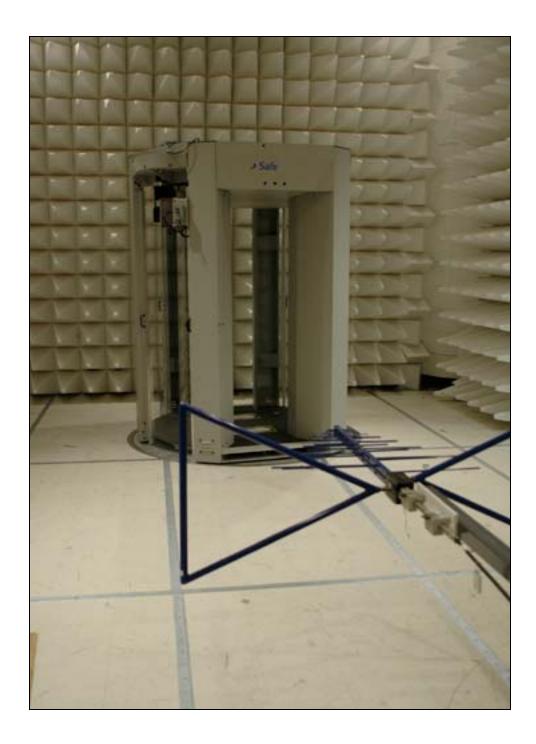
PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - 9 kHz - 30 MHz Parallel

Page 24 of 74 Report No.: FC06-056

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - 30-1000 MHz

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions – Overall View of Test Setup 18-40 GHz

PHOTOGRAPH SHOWING 40-100 GHz Setup

40-100 GHz Setup - Diplexer installed on SA

Page 27 of 74 Report No.: FC06-056

PHOTOGRAPH SHOWING 40-100 GHz Setup

40-100 GHz Typical Horn & Mixer Location near EUT antenna

PHOTOGRAPH SHOWING CARRIER POWER OF ANTENNA 16

PHOTOGRAPH SHOWING CARRIER POWER RADIATED EMISSIONS

Carrier Power Radiated Emissions - Back View

Page 30 of 74 Report No.: FC06-056

PHOTOGRAPH SHOWING OCCUPIED BANDWIDTH

18-26 GHz

Page 31 of 74 Report No.: FC06-056

PHOTOGRAPH SHOWING OCCUPIED BANDWIDTH

26-40 GHz

Page 32 of 74 Report No.: FC06-056

APPENDIX B

TEST EQUIPMENT LIST

FCC 15.207				
Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663
Attenuator	none	10/20/2005	10/20/2007	02223
LISN	9408-1006	05/23/2005	05/23/2007	00493
TTE High Pass Filter	H4120	04/20/2005	04/20/2007	05258
QP Adapter	2521A00909	07/12/2006	07/12/2008	00683
Cable		06/13/2006	06/13/2008	AN 00880
FCC 15.209 Carrier Power and	d Band Edge			
Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum Analyzer	US44300408	01/13/2005	01/13/2007	02668
Active Horn 18-26GHz	1087835	10/25/2005	10/25/2007	02694
Active Horn 26-40GHz	1097854	10/25/2005	10/25/2007	02695
Cable, HF	n/a	08/09/2005	08/09/2007	P02715
Cable, HF	n/a	07/12/2005	07/12/2007	P05315
FCC 15.209 9 kHz – 30 MHz				
Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663
QP Adapter HP-85650A	2043A00188	10/23/2004	10/23/2006	01508
Mag Loop - 6502	2078	05/13/2005	05/13/2007	00432
Cable	n/a	06/21/2005	06/21/2007	P05296
Cable	n/a	06/21/2005	06/21/2007	P05299
Cable	n/a	06/21/2005	06/21/2007	P05300
FCC 15.209 30-1000 MHz				
Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., Display HP-85662A	2542A12169	11/28/2005	11/28/2007	02662
S.A., RF Section HP-8568B	2601A02492	11/28/2005	11/28/2007	02663
QP Adapter	2521A00909	07/12/2006	07/12/2008	00683
Antenna	2630	01/24/2005	01/24/2007	00852
Cable	None	06/21/2005	06/21/2007	P05299
Cable	None	06/21/2005	06/21/2007	P05300
Cable	None	06/21/2005	06/21/2007	P05296
HP8447F opt H64 preamp	2944A03850	03/05/2005	03/05/2007	00501
FCC 15.209 1-12.5 GHz				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable, 6'	n/a	06/07/2006	06/07/2008	P04241
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810
Antenna, Horn 1-18 GHz	1064	03/08/2005	03/08/2007	02061
Preamp, HP83017A	3123A00283	05/09/2005	05/09/2007	00785
Cable HF	n/a	03/08/2005	03/08/2007	P05239
HP8564E SA	3623A00539	10/27/2006	10/27/2008	02410
HF Cable	56251100557	03/09/2005	03/09/2007	01956
		03/07/2003	03/09/2007	01950

Page 33 of 74 Report No.: FC06-056

FCC 15.209 1-18 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A. HP 8564E	3623A00539	08/01/2006	08/01/2008	01406
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810
Preamp, HP83017A	3123A00283	05/09/2005	05/09/2007	00785
Antenna, Horn	1064	03/08/2005	03/08/2007	02061
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
Cable, HF 48"	n/a	02/08/2005	02/08/2007	P05201
Cable, HF	n/a	02/20/2006	02/20/2008	P05318
HF-Cable-72" Pasternack	None	07/12/2005	07/12/2007	P05317
Active Horn 12-18GHz	1088714	09/22/2005	09/22/2007	02693
12.4-18GHz WaveGuide	n/a	12/19/2005	12/19/2007	P00928
Cable, HF	n/a	08/09/2005	08/09/2007	P02718

FCC 15.209 18-26.5 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A. HP 8564E	3623A00539	08/01/2006	08/01/2008	01406
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
Cable, HF	n/a	08/09/2005	08/09/2007	P02718
Cable, HF	n/a	07/12/2005	07/12/2007	P05314
Cable, HF 48"	n/a	02/08/2005	02/08/2007	P05201
Horn 18-26 GHz HP 84125-		04/30/2005	04/30/2007	01413
80008				
18-26.5GHz WaveGuide	n/a	12/20/2005	12/20/2007	P00929
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810
Horn 26-40 GHz HP 84125-		11/05/2004	11/05/2006	01414
80001				

FCC 15.209 26.5-40 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A. HP 8564E	3623A00539	08/01/2006	08/01/2008	01406
Cable, HF 36"	n/a	02/08/2005	02/08/2007	P05200
Cable, HF	n/a	07/12/2005	07/12/2007	P05314
Preamp, Agilent 83051A	00323	02/27/2006	02/27/2008	02810
Horn 26-40 GHz HP 84125-		11/05/2004	11/05/2006	01414
80001				
Cable, HF	n/a	08/09/2005	08/09/2007	P02715
26.5-40GHz WaveGuide	n/a	12/20/2005	12/20/2007	P00930

FCC 15.209 40-60 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Cable, HF	n/a	07/12/2005	07/12/2007	P05314	
S.A. Agilent 8564EC	3946A00232	01/19/2005	01/19/2007	1045025	
40-60GHz mixer M19HWA	U91211-1	09/26/2006	09/26/2008	02347	
40-60GHz Horn M19RH		09/28/2006	09/28/2008	02347	

FCC 15.209 60-90 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable, HF	n/a	07/12/2005	07/12/2007	P05314
S.A. Agilent 8564EC	3946A00232	01/19/2005	01/19/2007	1045025
60-90GHz Horn M12RH		09/28/2006	09/28/2008	02348
60-90GHz mixer M12HWA	E91211-1	09/26/2006	09/26/2008	02348

FCC 15.209 90-100 GHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable, HF	n/a	07/12/2005	07/12/2007	P05314
S.A. Agilent 8564EC	3946A00232	01/19/2005	01/19/2007	1045025
90-110GHz Horn M08RH		09/26/2006	09/26/2008	02349
90-110GHz mixer M08HWA	F91211-2	09/26/2006	09/26/2008	02349

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 36 of 74 Report No.: FC06-056

Customer: Specification: Work Order #: Test Type:	SafeView, Inc. FCC 15.207 COND [AVE] 85822 Conducted Emissions	Time:	11/8/2006 11:32:38
Equipment:	SafeScout Security Portal	Sequence#:	1
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	S-100		120V 60Hz
S/N:	A100062300146		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SafeScout Security Portal*	SafeView, Inc.	S-100	A100062300146

Support Devices:

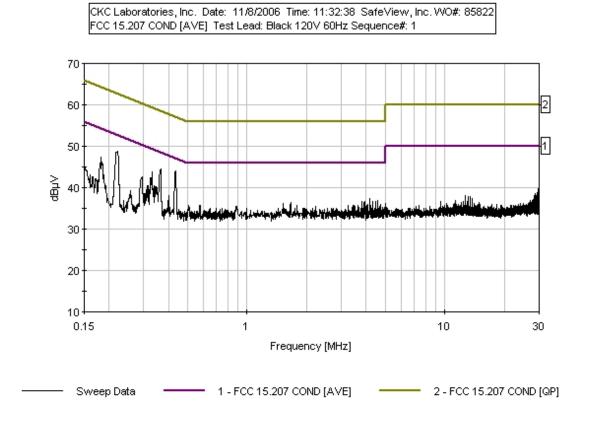
Support Devices.			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The SafeScout S-100 Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The SafeScout S-100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. Conducted Emissions 0.15 - 30 MHz.

Transducer Legend:	
T1=LISN - AN00493 - Black - ELC "OUT"	T2=TTE HP Filter P05258
T3=ANP02223 10dB Attenuator	T4=Cable P00880

Measur	rement Data:	Re	ading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	330.346k	33.2	+0.4	+0.2	+9.8	+0.1	+0.0	43.7	49.4	-5.7	Black
2	181.270k	35.6	+0.4	+1.4	+9.8	+0.1	+0.0	47.3	54.4	-7.1	Black
3	293.986k	32.1	+0.3	+0.3	+9.8	+0.1	+0.0	42.6	50.4	-7.8	Black
4	183.451k	34.7	+0.4	+1.3	+9.8	+0.1	+0.0	46.3	54.3	-8.0	Black
5	4.190M	27.0	+0.3	+0.1	+9.8	+0.1	+0.0	37.3	46.0	-8.7	Black
6	339.072k	30.0	+0.4	+0.1	+9.8	+0.1	+0.0	40.4	49.2	-8.8	Black
7	344.162k	29.9	+0.4	+0.1	+9.8	+0.1	+0.0	40.3	49.1	-8.8	Black



8	221.000k Ave	33.3	+0.4	+0.2	+9.8	+0.1	+0.0	43.8	52.8	-9.0	Black
^	221.266k	38.4	+0.4	+0.2	+9.8	+0.1	+0.0	48.9	52.8	-3.9	Black
10	4.590M	26.5	+0.4	+0.1	+9.8	+0.2	+0.0	37.0	46.0	-9.0	Black
11	3.790M	26.4	+0.3	+0.1	+9.8	+0.1	+0.0	36.7	46.0	-9.3	Black
12	3.922M	26.3	+0.3	+0.1	+9.8	+0.1	+0.0	36.6	46.0	-9.4	Black
13	4.318M	26.3	+0.3	+0.1	+9.8	+0.1	+0.0	36.6	46.0	-9.4	Black
14	4.454M	26.3	+0.3	+0.1	+9.8	+0.1	+0.0	36.6	46.0	-9.4	Black
15	313.620k	30.0	+0.3	+0.2	+9.8	+0.1	+0.0	40.4	49.9	-9.5	Black
16	1.660M	26.1	+0.3	+0.1	+9.7	+0.2	+0.0	36.4	46.0	-9.6	Black
17	400.157k	28.0	+0.3	+0.0	+9.7	+0.2	+0.0	38.2	47.9	-9.7	Black
18	4.990M	25.7	+0.4	+0.1	+9.8	+0.2	+0.0	36.2	46.0	-9.8	Black
19	360.000k Ave	28.4	+0.4	+0.1	+9.7	+0.2	+0.0	38.8	48.7	-9.9	Black
^	360.978k	34.1	+0.4	+0.1	+9.7	+0.2	+0.0	44.5	48.6	-4.1	Black
21	1.523M	25.8	+0.3	+0.1	+9.7	+0.2	+0.0	36.1	46.0	-9.9	Black
22	4.717M	25.5	+0.4	+0.1	+9.8	+0.2	+0.0	36.0	46.0	-10.0	Black
23	318.710k	29.2	+0.3	+0.2	+9.8	+0.1	+0.0	39.6	49.7	-10.1	Black
24	320.165k	29.2	+0.3	+0.2	+9.8	+0.1	+0.0	39.6	49.7	-10.1	Black
25	4.058M	25.6	+0.3	+0.1	+9.8	+0.1	+0.0	35.9	46.0	-10.1	Black
26	506.328k	25.7	+0.3	+0.0	+9.7	+0.1	+0.0	35.8	46.0	-10.2	Black
27	3.450M	25.4	+0.4	+0.1	+9.7	+0.2	+0.0	35.8	46.0	-10.2	Black
28	1.791M	25.4	+0.3	+0.1	+9.7	+0.2	+0.0	35.7	46.0	-10.3	Black
29	29.623M	28.1	+1.0	+0.3	+9.8	+0.5	+0.0	39.7	50.0	-10.3	Black
30	311.438k	29.0	+0.3	+0.3	+9.8	+0.1	+0.0	39.5	49.9	-10.4	Black

31	573.230k	25.5	+0.3	+0.0	+9.7	+0.1	+0.0	35.6	46.0	-10.4	Black
32	3.254M	25.2	+0.4	+0.1	+9.7	+0.2	+0.0	35.6	46.0	-10.4	Black
33	3.650M	25.3	+0.3	+0.1	+9.8	+0.1	+0.0	35.6	46.0	-10.4	Black
34	308.530k	29.0	+0.3	+0.3	+9.8	+0.1	+0.0	39.5	50.0	-10.5	Black
35	2.229M	25.2	+0.3	+0.1	+9.7	+0.2	+0.0	35.5	46.0	-10.5	Black
36	3.522M	25.2	+0.3	+0.1	+9.8	+0.1	+0.0	35.5	46.0	-10.5	Black
37	29.801M	27.9	+1.0	+0.3	+9.8	+0.5	+0.0	39.5	50.0	-10.5	Black
38	881.253k	25.2	+0.3	+0.0	+9.7	+0.2	+0.0	35.4	46.0	-10.6	Black
39	3.990M	25.1	+0.3	+0.1	+9.8	+0.1	+0.0	35.4	46.0	-10.6	Black
40	4.654M	24.9	+0.4	+0.1	+9.8	+0.2	+0.0	35.4	46.0	-10.6	Black
41	4.024M	25.0	+0.3	+0.1	+9.8	+0.1	+0.0	35.3	46.0	-10.7	Black
42	4.858M	24.7	+0.4	+0.1	+9.8	+0.2	+0.0	35.2	46.0	-10.8	Black
43	648.859k	25.0	+0.3	+0.0	+9.7	+0.1	+0.0	35.1	46.0	-10.9	Black
44	1.438M	24.8	+0.3	+0.1	+9.7	+0.2	+0.0	35.1	46.0	-10.9	Black
45	1.923M	24.8	+0.3	+0.1	+9.7	+0.2	+0.0	35.1	46.0	-10.9	Black
46	2.659M	24.7	+0.4	+0.1	+9.7	+0.2	+0.0	35.1	46.0	-10.9	Black
47	2.723M	24.7	+0.4	+0.1	+9.7	+0.2	+0.0	35.1	46.0	-10.9	Black
48	3.871M	24.8	+0.3	+0.1	+9.8	+0.1	+0.0	35.1	46.0	-10.9	Black
49	2.136M	24.7	+0.3	+0.1	+9.7	+0.2	+0.0	35.0	46.0	-11.0	Black
50	2.561M	24.6	+0.4	+0.1	+9.7	+0.2	+0.0	35.0	46.0	-11.0	Black
51	2.816M	24.6	+0.4	+0.1	+9.7	+0.2	+0.0	35.0	46.0	-11.0	Black
52	435.000k Ave	25.6	+0.3	+0.0	+9.7	+0.2	+0.0	35.8	47.2	-11.4	Black
^	435.062k	33.8	+0.3	+0.0	+9.7	+0.2	+0.0	44.0	47.2	-3.2	Black

Page 40 of 74 Report No.: FC06-056

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SafeScout Security Portal*	SafeView, Inc.	S-100	A100062300146

Support Devices:

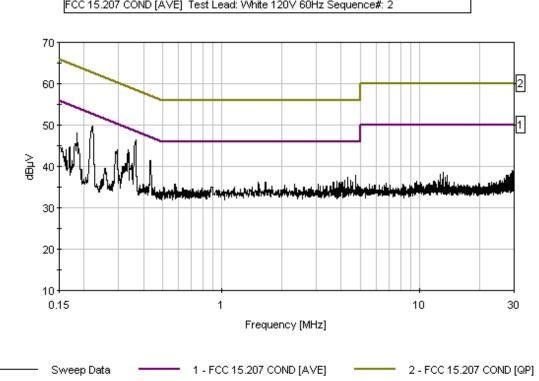
Support Dericesi			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The SafeScout S-100 Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The SafeScout S-100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. Conducted Emissions 0.15 - 30 MHz.

Transducer Legend:	
T1=LISN - AN00493 - White - ELC "OUT"	T2=TTE HP Filter P05258
T3=ANP02223 10dB Attenuator	T4=Cable P00880

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	432.881k	31.3	+0.3	+0.0	+9.7	+0.2	+0.0	41.5	47.2	-5.7	White
2	184.906k	36.6	+0.4	+1.2	+9.8	+0.1	+0.0	48.1	54.3	-6.2	White
3	293.986k	33.5	+0.3	+0.3	+9.8	+0.1	+0.0	44.0	50.4	-6.4	White
4	331.073k	32.6	+0.3	+0.2	+9.8	+0.1	+0.0	43.0	49.4	-6.4	White
5	364.000k Ave	31.4	+0.3	+0.1	+9.7	+0.2	+0.0	41.7	48.6	-6.9	White
^	365.978k	36.2	+0.3	+0.1	+9.7	+0.2	+0.0	46.5	48.6	-2.1	White
7	360.000k Ave	30.8	+0.3	+0.1	+9.7	+0.2	+0.0	41.1	48.7	-7.6	White
^	361.630k	33.7	+0.3	+0.2	+9.8	+0.1	+0.0	44.1	49.3	-5.2	White



9	4.726M	27.3	+0.4	+0.1	+9.8	+0.2	+0.0	37.8	46.0	-8.2	White
10	350.707k	30.3	+0.3	+0.1	+9.7	+0.2	+0.0	40.6	48.9	-8.3	White
11	4.322M	26.9	+0.4	+0.1	+9.8	+0.1	+0.0	37.3	46.0	-8.7	White
12	221.000k Ave	33.2	+0.4	+0.2	+9.8	+0.1	+0.0	43.7	52.8	-9.1	White
^	220.538k	39.3	+0.4	+0.2	+9.8	+0.1	+0.0	49.8	52.8	-3.0	White
14	4.190M	26.2	+0.4	+0.1	+9.8	+0.1	+0.0	36.6	46.0	-9.4	White
15	4.458M	26.2	+0.4	+0.1	+9.8	+0.1	+0.0	36.6	46.0	-9.4	White
16	3.790M	26.1	+0.4	+0.1	+9.8	+0.1	+0.0	36.5	46.0	-9.5	White
17	1.660M	26.0	+0.3	+0.1	+9.7	+0.2	+0.0	36.3	46.0	-9.7	White
18	3.654M	25.9	+0.4	+0.1	+9.8	+0.1	+0.0	36.3	46.0	-9.7	White
19	3.926M	25.9	+0.4	+0.1	+9.8	+0.1	+0.0	36.3	46.0	-9.7	White
20	4.054M	25.9	+0.4	+0.1	+9.8	+0.1	+0.0	36.3	46.0	-9.7	White
21	4.590M	25.7	+0.4	+0.1	+9.8	+0.2	+0.0	36.2	46.0	-9.8	White
22	1.523M	25.8	+0.3	+0.1	+9.7	+0.2	+0.0	36.1	46.0	-9.9	White
23	170.362k	32.2	+0.4	+2.3	+9.8	+0.1	+0.0	44.8	54.9	-10.1	White
24	2.327M	25.5	+0.3	+0.1	+9.7	+0.2	+0.0	35.8	46.0	-10.2	White
25	4.854M	25.3	+0.4	+0.1	+9.8	+0.2	+0.0	35.8	46.0	-10.2	White
26	3.059M	25.3	+0.4	+0.1	+9.7	+0.2	+0.0	35.7	46.0	-10.3	White
27	576.866k	25.5	+0.3	+0.0	+9.7	+0.1	+0.0	35.6	46.0	-10.4	White
28	3.990M	25.2	+0.4	+0.1	+9.8	+0.1	+0.0	35.6	46.0	-10.4	White
29	2.081M	25.2	+0.3	+0.1	+9.7	+0.2	+0.0	35.5	46.0	-10.5	White
30	4.569M	25.0	+0.4	+0.1	+9.8	+0.2	+0.0	35.5	46.0	-10.5	White
31	3.254M	24.9	+0.4	+0.1	+9.7	+0.2	+0.0	35.3	46.0	-10.7	White

32	3.361M	24.9	+0.4	+0.1	+9.7	+0.2	+0.0	35.3	46.0	-10.7	White
33	3.386M	24.9	+0.4	+0.1	+9.7	+0.2	+0.0	35.3	46.0	-10.7	White
34	3.518M	24.9	+0.4	+0.1	+9.8	+0.1	+0.0	35.3	46.0	-10.7	White
35	3.561M	24.9	+0.4	+0.1	+9.8	+0.1	+0.0	35.3	46.0	-10.7	White
36	3.127M	24.8	+0.4	+0.1	+9.7	+0.2	+0.0	35.2	46.0	-10.8	White
37	877.000k	24.9	+0.3	+0.0	+9.7	+0.2	+0.0	35.1	46.0	-10.9	White
38	1.413M	24.9	+0.3	+0.0	+9.8	+0.1	+0.0	35.1	46.0	-10.9	White
39	29.267M	27.3	+1.2	+0.3	+9.8	+0.5	+0.0	39.1	50.0	-10.9	White
40	2.591M	24.6	+0.4	+0.1	+9.7	+0.2	+0.0	35.0	46.0	-11.0	White
41	4.118M	24.6	+0.4	+0.1	+9.8	+0.1	+0.0	35.0	46.0	-11.0	White
42	155.818k	30.8	+0.4	+3.5	+9.8	+0.1	+0.0	44.6	55.7	-11.1	White
43	1.149M	24.7	+0.3	+0.0	+9.8	+0.1	+0.0	34.9	46.0	-11.1	White
44	1.298M	24.6	+0.3	+0.0	+9.8	+0.1	+0.0	34.8	46.0	-11.2	White
45	29.616M	27.0	+1.2	+0.3	+9.8	+0.5	+0.0	38.8	50.0	-11.2	White
46	163.090k	30.8	+0.4	+2.9	+9.8	+0.1	+0.0	44.0	55.3	-11.3	White
47	4.275M	24.3	+0.4	+0.1	+9.8	+0.1	+0.0	34.7	46.0	-11.3	White
48	29.794M	26.9	+1.2	+0.3	+9.8	+0.5	+0.0	38.7	50.0	-11.3	White
49	1.545M	24.3	+0.3	+0.1	+9.7	+0.2	+0.0	34.6	46.0	-11.4	White
50	13.067M	27.6	+0.6	+0.2	+9.8	+0.4	+0.0	38.6	50.0	-11.4	White
51	1.239M	24.3	+0.3	+0.0	+9.8	+0.1	+0.0	34.5	46.0	-11.5	White
52	28.917M	26.6	+1.2	+0.3	+9.8	+0.5	+0.0	38.4	50.0	-11.6	White
53	4.088M	23.9	+0.4	+0.1	+9.8	+0.1	+0.0	34.3	46.0	-11.7	White

CKC Laboratories, Inc. Date: 11/8/2006 Time: 11:30:21 SafeView, Inc. WO#: 85822 FCC 15.207 COND [AVE] Test Lead: White 120V 60Hz Sequence#: 2

Customer:	Safe View, Inc.		
Specification:	FCC 15.209 30Mhz to 100 GHz		
Work Order #:	85484	Date:	11/16/2006
Test Type:	Carrier Power	Time:	18:33:56
Equipment:	Security Portal	Sequence#:	45
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	

Support Devices:

Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 V2 Switch Security Portal's antenna mast is reversed in position so the EUT antennas are facing to the outside of the EUT. Low channel=24.65 GHz. Mid channel=27 GHz. Hi channel=29.8 GHz. Measuring Peak Carrier Power per DA 06-1589 paragraph 8b. RBW=100 kHz, VBW=3 MHz, Span=1 GHz. Sweep time=auto. Measuring Average RMS Power per DA 06-1589 paragraph 8a. RBW=1 MHz, VBW=3 MHz, Span=0 Hz. Sweep time=1 sec. Emissions reported represent worst case polarization. Peak limit was derived by adding 41 dB to the average RMS value for that channel and mast antenna number. Data for antenna 320 mid and hi channels was remeasured on 11-16-06. Nominal AC=120V, 85% is 102V, & 115% is 138V. Measurements were made at various input voltage levels from 85% to 115% of nominal voltage and no effect was observed on the output power. Transmitter is transmitting continuously during this testing.

T1=Horn AN02695 Miteq Active 26-40GHz	T2=ANT 18-26GHz Active Horn
T3=Cable AN2715 40 GHz	T4=CAB HF 72" ANP05315 Pasternack

Meas	urement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 1 Meter						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	29802.000M	78.3	+3.6	+0.0	+0.0	+7.9	-13.0	76.8	77.9	-1.1	Vert	
									Peak powe	r at hi	188	
									channel, ar	ntenna		
									16, 102 VA	AC. atten		
									10			
2	24484.000M	91.5	+0.0	-17.1	+14.8		-13.0	76.2	77.9	-1.7	Vert	
									Peak powe	r at low	100	
									channel, ar	ntenna		
									192, 120 V	AC.		

3 26973.000M	74.7	+2.0	+0.0	+0.0	+7.4	-13.0	71.1	73.0 -1.9 Peak power at mid channel, antenna 320, 102 VAC. atten 0	Vert 51
4 26974.000M	74.6	+2.0	+0.0	+0.0	+7.4	-13.0	71.0	73.0 -2.0 Peak power at mid channel, antenna 320, 138 VAC. atten 0	Vert 51
5 24624.000M	102.9	+0.0	-17.0	+0.0	+7.2	-13.0	80.1	82.2 -2.1 Peak power at low channel, antenna 16, 102VAC, atten 10	Vert 188
6 26973.000M	74.3	+2.0	+0.0	+0.0	+7.4	-13.0	70.7	73.0 -2.3 Peak power at mid channel, antenna 320, 120 VAC. atten 0	Vert 51
7 26974.000M	81.3	+2.0	+0.0	+0.0	+7.4	-13.0	77.7	80.1 -2.4 Peak power at mid channel, antenna 16, 138 VAC, atten 10	Vert 188
8 29802.000M	78.5	+3.6	+0.0	+0.0	+7.9	-13.0	77.0	79.6 -2.6 Peak power at hi channel, antenna 16, 120 VAC. atten 10	Vert 188
9 24632.000M	101.6	+0.0	-17.0	+0.0	+7.2	-13.0	78.8	81.5 -2.7 Peak power at low channel, antenna 320, 102VAC, atten 10	Vert 43
10 24633.000M	101.2	+0.0	-17.0	+0.0	+7.2	-13.0	78.4	81.4 -3.0 Peak power at low channel, antenna 320, 138 VAC, atten 10	Vert 43
11 24633.000M	101.3	+0.0	-17.0	+0.0	+7.2	-13.0	78.5	81.5 -3.0 Peak power at low channel, antenna 320, 120 VAC, atten 10	Vert 43
12 26994.000M	70.6	+1.9	+0.0	+14.5		-13.0	74.0	77.2 -3.2 Peak power at mid channel, antenna 192, 102 VAC.	Vert 100

13 26994.000M	80.5	+1.9	+0.0	+0.0	+7.4	-13.0	76.8	80.2 -3.4 Peak power at mid channel, antenna 16, 102 VAC, atten 10	Vert 188
14 26991.000M	70.3	+1.9	+0.0	+14.5		-13.0	73.7	77.4 -3.7 Peak power at mid channel, antenna 192, 138 VAC.	Vert 100
15 24481.000M	93.2	+0.0	-17.1	+14.8		-13.0	77.9	81.7 -3.8 Peak power at low channel, antenna 192, 138 VAC.	Vert 100
16 24482.000M	92.8	+0.0	-17.1	+14.8		-13.0	77.5	81.5 -4.0 Peak power at low channel, antenna 192, 102 VAC.	Vert 100
17 29786.000M	73.2	+3.5	+0.0	+0.0	+7.9	-13.0	71.6	75.7 -4.1 Peak power at hi channel, antenna 320, 138 VAC. atten 0	Vert 51
18 29785.000M	73.2	+3.5	+0.0	+0.0	+7.9	-13.0	71.6	75.8 -4.2 Peak power at hi channel, antenna 320, 120 VAC. atten 0	Vert 51
19 29785.000M	73.3	+3.5	+0.0	+0.0	+7.9	-13.0	71.7	76.0 -4.3 Peak power at hi channel, antenna 320, 102 VAC. atten 0	Vert 51
20 26986.000M	78.1	+1.9	+0.0	+0.0	+7.4	-13.0	74.4	79.5 -5.1 Peak power at mid channel, antenna 16, 120 VAC, atten 10	Vert 188
21 24622.970M Ave	64.1	+0.0	-17.0	+0.0	+7.2	-13.0	41.3	54.0 -12.7 Average RMS power at low channel, sweeping, antenna 16, 120VAC, atten 10	Vert 188
22 24622.970M Ave	64.0	+0.0	-17.0	+0.0	+7.2	-13.0	41.2	54.0 -12.8 Average RMS power at low channel, sweeping, antenna 16, 102 VAC, atten 10	Vert 188

23	24622.970M	64.0	+0.0	-17.0	+0.0	+7.2	-13.0	41.2	54.0 -12.8	Vert
	Ave								Average RMS power at low channel, sweeping, antenna 16, 138VAC, atten 10	188
	24483.070M Ave	56.0	+0.0	-17.1	+14.8		-13.0	40.7	54.0 -13.3 Average RMS power at low channel, sweeping, antenna 192, 138 V	Vert 100
	24622.970M Ave	63.3	+0.0	-17.0	+0.0	+7.2	-13.0	40.5	54.0 -13.5 Average RMS power at low channel, sweeping, antenna 320, 102 VAC, atten 10	Vert 43
^	24623.000M	103.4	+0.0	-17.0	+0.0	+7.2	-13.0	80.6	82.3 -1.7 Peak power at low channel, antenna 16, 120VAC, atten 10	Vert 188
^	24623.000M	102.8	+0.0	-17.0	+0.0	+7.2	-13.0	80.0	82.2 -2.2 Peak power at low channel, antenna 16, 138VAC, atten 10	Vert 188
	24622.970M Ave	63.3	+0.0	-17.0	+0.0	+7.2	-13.0	40.5	54.0 -13.5 Average RMS power at low channel, sweeping, antenna 320, 120 VAC, atten 10	Vert 43
	24483.070M Ave	55.8	+0.0	-17.1	+14.8		-13.0	40.5	54.0 -13.5 Average RMS power at low channel, sweeping, antenna 192, 102 V.	Vert 100
	24622.970M Ave	63.2	+0.0	-17.0	+0.0	+7.2	-13.0	40.4	54.0 -13.6 Average RMS power at low channel, sweeping, antenna 320, 138 VAC, atten 10	Vert 43
	29800.000M Ave	40.1	+3.6	+0.0	+0.0	+7.9	-13.0	38.6	54.0 -15.4 Average RMS power at hi channel, sweeping, antenna 16, 120 VAC, atten 10	Vert 188

32 27000.000M Ave	42.2	+1.9	+0.0	+0.0	+7.4	-13.0	38.5	54.0 -15.5 Average RMS power at mid channel, sweeping, antenna 16, 120 VAC, atten 10	Vert 188
^ 27000.000M	42.9	+1.9	+0.0	+0.0	+7.4	-13.0	39.2	54.0 -14.8 Average RMS power at mid channel, sweeping, antenna 16, 102 VAC, atten 10	Vert 188
^ 27000.000M	42.8	+1.9	+0.0	+0.0	+7.4	-13.0	39.1	54.0 -14.9 Average RMS power at mid channel, sweeping, antenna 16, 138 VAC, atten 10	Vert 188
35 29800.000M Ave	38.4	+3.6	+0.0	+0.0	+7.9	-13.0	36.9	54.0 -17.1 Average RMS power at hi channel, sweeping, antenna 16, 102 VAC, atten 10	Vert 188
36 24483.070M Ave	52.2	+0.0	-17.1	+14.8		-13.0	36.9	54.0 -17.1 Average RMS power at low channel, sweeping, antenna 192, 120 VAC.	Vert 100
37 26992.000M Ave	33.3	+1.9	+0.0	+14.5		-13.0	36.7	54.0 -17.3 Average RMS power at mid channel, sweeping, antenna 192, 120 V	Vert 100
38 26991.490M Ave	33.0	+1.9	+0.0	+14.5		-13.0	36.4	54.0 -17.6 Average RMS power at mid channel, sweeping, antenna 192, 138 V	Vert 100
39 29801.000M Ave	30.7	+3.6	+0.0	+15.0		-13.0	36.3	54.0 -17.7 Average RMS power at hi channel, sweeping, antenna 16, 138 VAC	Vert 188
^ 29801.000M	68.9	+3.6	+0.0	+15.0		-13.0	74.5	77.3 -2.8 Peak power at hi channel, antenna 16, 138 VAC.	Vert 188

^	29801.000M	68.3	+3.6	+0.0	+15.0		-13.0	73.9	77.1 -3.2	Vert
									Peak power at hi channel, antenna 192, 120 VAC.	100
42	26992.000M Ave	32.8	+1.9	+0.0	+14.5		-13.0	36.2	54.0 -17.8 Average RMS	Vert 100
									power at mid channel, sweeping,	100
									antenna 192, 102 VAC	
^	26992.000M	71.1	+1.9	+0.0	+14.5		-13.0	74.5	77.7 -3.2 Peak power at mid	Vert 100
									channel, antenna 192, 120 VAC.	
44	29799.000M Ave	30.5	+3.6	+0.0	+15.0		-13.0	36.1	54.0 -17.9 Average RMS	Vert 100
	1100								power at hi channel, sweeping, antenna	100
^	29799.000M	67.7	+3.6	+0.0	+15.0		-13.0	73.3	192, 138 VAC 76.0 -2.7	Vert
					. 1010		1010	1010	Peak power at hi channel, antenna	100
^	29799.000M	68.1	+3.6	+0.0	+15.0		-13.0	73.7	192, 138 VAC. 77.1 -3.4	Vert
									Peak power at hi channel, antenna	100
47	29800.000M	30.5	+3.6	+0.0	+15.0		-13.0	36.1	192, 102 VAC. 54.0 -17.9	Vert
	Ave								Average RMS power at hi channel,	100
									sweeping, antenna 192, 120 VAC	
48	29800.000M Ave	30.5	+3.6	+0.0	+15.0		-13.0	36.1	54.0 -17.9 Average RMS	Vert 100
	11,0								power at hi channel,	100
									sweeping, antenna 192, 102 VAC	
49	29786.490M Ave	36.6	+3.5	+0.0	+0.0	+7.9	-13.0	35.0	54.0 -19.0 Average RMS	Vert 51
									power at hi channel,	01
									antenna 320, 102 VAC. atten 0	
50	29786.490M Ave	36.4	+3.5	+0.0	+0.0	+7.9	-13.0	34.8	54.0 -19.2 Average RMS	Vert 51
									power at hi channel, antenna 320, 120	~
									VAC. atten 0	

51 29786.490M Ave	36.3	+3.5	+0.0	+0.0	+7.9	-13.0	34.7	54.0 -19.3 Average RMS power at hi channel antenna 320, 138 VAC. atten 0	Vert 51
52 26974.480M Ave	35.6	+2.0	+0.0	+0.0	+7.4	-13.0	32.0	54.0 -22.0 Average RMS power at mid channel, antenna 320, 138 VAC. atten 0	Vert 51
53 26974.480M Ave	35.6	+2.0	+0.0	+0.0	+7.4	-13.0	32.0	54.0 -22.0 Average RMS power at mid channel, antenna 320, 120 VAC. atten 0	Vert 51
54 26974.480M Ave	35.6	+2.0	+0.0	+0.0	+7.4	-13.0	32.0	54.0 -22.0 Average RMS power at mid channel, antenna 320, 102 VAC. atten 0	Vert 51

Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer: Madal:	SafeView, Inc. FCC 15.209 30Mhz to 100 GHz 85822 Maximized Emissions SafeScout Security Portal SafeView, Inc.		
Model: S/N:	S-100 A100062300146	100000 291	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SafeScout Security Portal*	SafeView, Inc.	S-100	A100062300146

Support Devices:

Support Derices.			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The SafeScout S-100 Security Portal is operating and running on an auto-cycle pause time of 6 seconds. The SafeScout S-100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. The software is setup to repeatedly run scan while the system is under test. 1) Added ferrite. 2 wraps to SCU serial line. 2) Taped AC line cable down, added two ferrites on AC line to motor controller. 3) Add ferrite to each DB37 cable at ISU. 4) Changed to custom made shielded encoder cable. 5) 6 dB attenuator on both masts at FDIV. The reason for each of these 4 modifications is as follows: 1) ferrite on serial line - addresses 60MHz broadband noise. 2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur. 3) DB37 ferrite - addresses 153MHz discrete spur. 4) custom Shielded encoder cable - multiple discrete frequencies 30-1000MHz. Radiated Emissions 9kHz-1000 MHz.

T1=0852-Bi-Log Antenna	T2=Amp Cal.HP-8447F OPT H64- AN 00501
T3=Cable P05296 25' RG214 N-N	T4=Cable P05299 2' RG214 N-N
T5=Cable P05300 12' RG214 N-N	

Measu	<i>Teasurement Data:</i> Reading listed by margin.		Test Distance: 3 Meters								
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	310.234M	51.1	+13.2	-25.6	+1.0	+0.1	+0.0	40.4	46.0	-5.6	Horiz
			+0.6				317				119
2	500.013M	47.3	+17.5	-26.7	+1.3	+0.2	+0.0	40.3	46.0	-5.7	Horiz
	QP		+0.7				298				174
^	500.030M	50.0	+17.5	-26.7	+1.3	+0.2	+0.0	43.0	46.0	-3.0	Horiz
			+0.7				298				174
4	293.768M	51.1	+12.9	-25.4	+1.0	+0.1	+0.0	40.3	46.0	-5.7	Horiz
			+0.6				315				170
5	399.029M	48.6	+15.5	-25.9	+1.1	+0.2	+0.0	40.2	46.0	-5.8	Vert
			+0.7				278				158

6 399.926M	48.5		-25.9	+1.1	+0.2	+0.0	40.1	46.0	-5.9	Vert
		+0.7				75				202
7 295.329M	50.6	+12.9	-25.4	+1.0	+0.1	+0.0	39.8	46.0	-6.2	Vert
QP		+0.6				242				99
^ 295.329M	53.6	+12.9	-25.4	+1.0	+0.1	+0.0	42.8	46.0	-3.2	Vert
	0010	+0.6		110		242			0.2	99
9 307.687M	49.8	+13.2	-25.5	+1.0	+0.1	+0.0	39.2	46.0	-6.8	Horiz
		+0.6				311				119
10 64.882M	52.6	+5.7	-25.9	+0.4	+0.1	+0.0	33.1	40.0	-6.9	Horiz
QP		+0.2				105				246
^ 64.891M	55.4	+5.7	-25.9	+0.4	+0.1	+0.0	35.9	40.0	-4.1	Horiz
		+0.2				104				246
12 398.300M	47.5	+15.5	-25.9	+1.1	+0.2	+0.0	39.1	46.0	-6.9	Horiz
		+0.7				239				179
13 307.728M	49.7	+13.2	-25.5	+1.0	+0.1	+0.0	39.1	46.0	-6.9	Vert
		+0.6				241				99
14 294.770M	49.6	+12.9	-25.4	+1.0	+0.1	+0.0	38.8	46.0	-7.2	Horiz
11 291.770101	17.0	+0.6	23.1	11.0	10.1	79	50.0	10.0	7.2	161
15 766.604M	41.7	+21.6	-27.0	+1.5	10.2	+0.0	38.8	46.0	-7.2	
13 /00.004M	41./	+21.0 +0.8	-27.0	+1.3	+0.2	+0.0	30.0	40.0	-1.2	Horiz 178
16 500 02214	15 (267	.1.2	.0.2		20.6	16.0	7.4	
16 500.033M	45.6	+17.5	-26.7	+1.3	+0.2	+0.0	38.6	46.0	-7.4	Vert
QP		+0.7				298				179
^ 500.013M	49.9	+17.5	-26.7	+1.3	+0.2	+0.0	42.9	46.0	-3.1	Vert
		+0.7				299				179
18 778.787M	41.3	+21.5	-27.0	+1.5	+0.2	+0.0	38.3	46.0	-7.7	Horiz
		+0.8				91				134
19 293.210M	49.0	+12.9	-25.4	+1.0	+0.1	+0.0	38.1	46.0	-7.9	Vert
		+0.5				80				177
20 919.234M	38.9	+22.8	-26.8	+1.8	+0.2	+0.0	37.8	46.0	-8.2	Vert
20 919.23 111	50.7	+0.9	20.0	11.0	10.2	88	57.0	10.0	0.2	144
21 778.470M	40.8	+21.5	-27.0	+1.5	+0.2	+0.0	37.8	46.0	-8.2	Vert
21 //0.4/0lvi	40.8		-27.0	± 1.3	± 0.2		57.8			
		+0.8				258		6 dB attenua		100
		1 - 0						both masts a		
22 35.217M	41.4	+15.8	-26.1	+0.3	+0.1	+0.0	31.7	40.0	-8.3	Vert
QP		+0.2				327				114
^ 35.217M	47.2	+15.8	-26.1	+0.3	+0.1	+0.0	37.5	40.0	-2.5	Vert
		+0.2				328				114
24 204.458M	50.0		-25.6	+0.8	+0.1		34.8	43.5	-8.8	
QP		+0.5				80				98
^ 204.441M	51.6	+9.0	-25.6	+0.8	+0.1	+0.0	36.4	43.5	-7.1	Vert
207.77111	51.0	+0.5	25.0	10.0	10.1	79	50.4	13.5	/.1	98
26 60.047M	50.9	+5.4	-26.1	+0.5	+0.1	+0.0	31.1	40.0	-8.9	Horiz
20 00.04/101	50.7	+0.3	20.1	10.5	10.1	+0.0 198	51.1	-0.0	0.7	280
27 765.777M	40.0		27.0	+1.5	10.2		37.1	46.0	-8.9	
	40.0	+21.6	-27.0	+1.3	+0.2	+0.0	5/.1	40.0	-0.9	Horiz
QP		+0.8				233			· -	178
^ 765.774M	44.2	+21.6	-27.0	+1.5	+0.2	+0.0	41.3	46.0	-4.7	Horiz
		+0.8				232				178
29 935.461M	37.4	+23.2	-26.5	+1.8	+0.2	+0.0	37.0	46.0	-9.0	Horiz
		+0.9				255				175
•										

CKC LABORATORIES, INC.

30 766.744M OP	39.4	+21.6 +0.8	-27.0	+1.5	+0.2	+0.0 258	36.5	46.0	-9.5	Vert 106
	42.0		07.0	.1.7	.0.0		40.1	16.0	5.0	
^ 766.715M	43.0	+21.6 +0.8	-27.0	+1.5	+0.2	$^{+0.0}_{258}$	40.1	46.0	-5.9	Vert 106
32 766.184M	39.4	+21.6	-27.0	+1.5	+0.2	+0.0	36.5	46.0	-9.5	Horiz
		+0.8				95		6 dB attenu		143
								both masts		
33 763.924M	39.4	+21.6	-27.0	+1.5	+0.2	+0.0	36.5	46.0	-9.5	Vert
OP	57.1	+0.8	27.0	11.5	10.2	256	50.5	10.0	7.5	100
^ 763.924M	49.4	+21.6	-27.0	+1.5	+0.2	+0.0	46.5	46.0	+0.5	Vert
703.924101	47.4	+21.0 +0.8	-27.0	± 1.3	± 0.2	+0.0 256	40.5	40.0	± 0.5	100
35 764.170M	39.3	+21.6	-27.0	+1.5	+0.2	+0.0	36.4	46.0	-9.6	Vert
	39.3		-27.0	+1.3	+0.2	+0.0 254	50.4	40.0	-9.0	
QP ^ 764 195M	167	+0.8	27.0	1.5	10.2		43.8	16.0	2.2	101 Vort
^ 764.195M	46.7	+21.6	-27.0	+1.5	+0.2	+0.0	43.8	46.0	-2.2	Vert
07 004 07014	16.0	+0.8	25.7	1.0	0.1	254	26.0	46.0	10.0	101
37 334.072M	46.3	+13.8	-25.7	+1.0	+0.1	+0.0	36.0	46.0	-10.0	Horiz
		+0.5				250				125
38 763.690M	38.5	+21.6	-27.0	+1.5	+0.2	+0.0	35.6	46.0	-10.4	Vert
QP		+0.8				254				101
^ 763.706M	45.8	+21.6	-27.0	+1.5	+0.2	+0.0	42.9	46.0	-3.1	Vert
		+0.8				254				101
40 764.933M	38.3	+21.6	-27.0	+1.5	+0.2	+0.0	35.4	46.0	-10.6	Vert
QP		+0.8				278				121
^ 764.933M	45.1	+21.6	-27.0	+1.5	+0.2	+0.0	42.2	46.0	-3.8	Vert
		+0.8				278				121
42 765.008M	37.9	+21.6	-27.0	+1.5	+0.2	+0.0	35.0	46.0	-11.0	Horiz
OP		+0.8				233				178
^ 765.072M	44.5	+21.6	-27.0	+1.5	+0.2	+0.0	41.6	46.0	-4.4	Horiz
,,,		+0.8	2710	110		232				178
44 765.700M	37.8	+21.6	-27.0	+1.5	+0.2	+0.0	34.9	46.0	-11.1	Vert
QP	57.0	+0.8	27.0	11.0	10.2	257	5115	6 dB attenu		100
×1		10.0				201		both masts		100
^ 765.688M	43.7	+21.6	-27.0	+1.5	+0.2	+0.0	40.8	46.0	-5.2	Vert
705.000101	43.7	+21.0 +0.8	-27.0	± 1.5	+0.2	+0.0 257	40.0	6 dB attent		100
		10.0				231		both masts		100
46 971.155M	42.8	+23.6	-26.7	+1.8	+0.2	+0.0	42.7		-11.3	Horiz
	42.0		-20.7	± 1.0	± 0.2		42.7	54.0	-11.5	
QP	15.0	+1.0 +23.6	267	+1.0	10.2	87	150	54.0	0.1	102 Horiz
^ 971.135M	45.9		-20./	+1.8	+0.2		43.8	54.0	-8.2	Horiz
40 00 65035	17 5	+1.0	25.7	.0.7	.0.0	88	20.1	42 5	11.4	102
48 99.650M	47.5	+9.6	-25.7	+0.5	+0.0	+0.0	32.1	43.5	-11.4	Horiz
QP	F2 0	+0.2	07.7	0.7	0.0	9	00.7	10 7		171
^ 99.632M	53.9	+9.6	-25.7	+0.5	+0.0	+0.0	38.5	43.5	-5.0	Horiz
		+0.2				9				185
50 101.004M	47.1	+9.7	-25.7	+0.5	+0.0	+0.0	31.8	43.5	-11.7	Horiz
		+0.2				15				149
51 275.367M	45.5	+12.7	-25.4	+0.9	+0.1	+0.0	34.2	46.0	-11.8	Vert
		+0.4				239				189
52 762.953M	37.1	+21.6	-27.0	+1.5	+0.2	+0.0	34.2	46.0	-11.8	Vert
QP		+0.8				252				100
^ 762.953M	49.2	+21.6	-27.0	+1.5	+0.2	+0.0	46.3	46.0	+0.3	Vert
		+0.8				252				100
<u></u>										

Page 54 of 74 Report No.: FC06-056

54 763.948M										
	35.4	+21.6	-27.0	+1.5	+0.2	+0.0	32.5	46.0	-13.5	Horiz
QP		+0.8				232				178
^ 763.948M	44.3	+21.6	-27.0	+1.5	+0.2	+0.0	41.4	46.0	-4.6	Horiz
		+0.8				233				178
56 216.408M	46.7	+9.9	-25.4	+0.8	+0.1	+0.0	32.5	46.0	-13.5	Horiz
		+0.4				360				103
57 200.003M	45.3	+8.6	-25.6	+0.8	+0.1	+0.0	29.7	43.5	-13.8	Horiz
		+0.5				223				229
58 215.956M	42.3	+9.9	-25.4	+0.8	+0.1	+0.0	28.1	43.5	-15.4	Vert
		+0.4				61				131
59 215.956M	42.3	+9.9	-25.4	+0.8	+0.1	+0.0	28.1	43.5	-15.4	Vert
		+0.4				61				99
60 212.880M	42.5	+9.6	-25.5	+0.8	+0.1	+0.0	27.9	43.5	-15.6	Vert
		+0.4				260				106
61 971.049M	38.2	+23.6	-26.7	+1.8	+0.2	+0.0	38.1	54.0	-15.9	Vert
QP		+1.0				235				106
^ 971.049M	42.9	+23.6	-26.7	+1.8	+0.2	+0.0	42.8	54.0	-11.2	Vert
		+1.0				235				106
63 779.506M	32.7	+21.5	-27.0	+1.5	+0.2	+0.0	29.7	46.0	-16.3	Vert
		+0.8				249		6 dB atten		100
								both masts	at FDIV.	
C1 01 C 10 F3 F	12.2	0.0	251	0.0	0.4	0.0	20.0	160		
64 216.105M	43.2	+9.9	-25.4	+0.8	+0.1	+0.0	29.0	46.0	-17.0	Horiz
		+0.4				36			-17.0	188
65 90.825M	43.2 39.3	+0.4 +8.5	-25.4 -25.9	+0.8	+0.1	36 +0.0	29.0 22.5	46.0 43.5		188 Horiz
65 90.825M QP	39.3	+0.4 +8.5 +0.2	-25.9	+0.4	+0.0	36 +0.0 358	22.5	43.5	-17.0 -21.0	188 Horiz 216
65 90.825M		+0.4 +8.5 +0.2 +8.5				36 +0.0 358 +0.0			-17.0	188 Horiz 216 Horiz
65 90.825M QP ^ 90.825M	39.3 54.7	+0.4 +8.5 +0.2 +8.5 +0.2	-25.9 -25.9	+0.4	+0.0	36 +0.0 358 +0.0 -3	22.5 37.9	43.5	-17.0 -21.0 -5.6	188 Horiz 216 Horiz 216
65 90.825M QP ^ 90.825M 67 92.781M	39.3	+0.4 +8.5 +0.2 +8.5 +0.2 +8.7	-25.9	+0.4	+0.0	36 +0.0 358 +0.0 -3 +0.0	22.5	43.5	-17.0 -21.0	188Horiz216Horiz216Horiz
65 90.825M QP ^ 90.825M 67 92.781M QP	39.3 54.7 38.9	+0.4 +8.5 +0.2 +8.5 +0.2 +8.7 +0.2	-25.9 -25.9 -25.9	+0.4 +0.4 +0.4	+0.0 +0.0 +0.0	36 +0.0 358 +0.0 -3 +0.0 361	22.5 37.9 22.3	43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2	188 Horiz 216 Horiz 216 Horiz 179
65 90.825M QP ^ 90.825M 67 92.781M	39.3 54.7	+0.4 +8.5 +0.2 +8.5 +0.2 +8.7 +0.2 +8.7	-25.9 -25.9	+0.4	+0.0	36 +0.0 358 +0.0 -3 +0.0 361 +0.0	22.5 37.9	43.5	-17.0 -21.0 -5.6	188Horiz216Horiz216Horiz179Horiz
65 90.825M <u>QP</u> ^ 90.825M 67 92.781M <u>QP</u> ^ 92.782M	39.3 54.7 38.9 53.8	$ \begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ \end{array} $	-25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0	$ \begin{array}{r} 36 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ \end{array} $	22.5 37.9 22.3 37.2	43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178
65 90.825M <u>QP</u> ^ 90.825M 67 92.781M <u>QP</u> ^ 92.782M 69 94.220M	39.3 54.7 38.9	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \end{array}$	-25.9 -25.9 -25.9	+0.4 +0.4 +0.4	+0.0 +0.0 +0.0	$ \begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ \end{array} $	22.5 37.9 22.3	43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2	188Horiz216Horiz179Horiz178Horiz
65 90.825M QP ^ 90.825M 67 92.781M QP ^ 92.782M 69 94.220M QP	39.3 54.7 38.9 53.8 37.5	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \end{array}$	-25.9 -25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0 +0.0	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \end{array}$	22.5 37.9 22.3 37.2 21.1	43.5 43.5 43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3 -22.4	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178 Horiz 188
65 90.825M <u>QP</u> ^ 90.825M 67 92.781M <u>QP</u> ^ 92.782M 69 94.220M	39.3 54.7 38.9 53.8	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \\ +8.9 \end{array}$	-25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \\ +0.0 \end{array}$	22.5 37.9 22.3 37.2	43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3	188Horiz216Horiz179Horiz178Horiz184Horiz
65 90.825M QP ^ ^ 90.825M 67 92.781M QP ^ ^ 92.782M 69 94.220M QP ^ ^ 94.139M	39.3 54.7 38.9 53.8 37.5 52.1	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \\ +8.9 \\ +0.2 \end{array}$	-25.9 -25.9 -25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \\ +0.0 \\ 358 \end{array}$	22.5 37.9 22.3 37.2 21.1 35.7	43.5 43.5 43.5 43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3 -22.4 -7.8	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178 Horiz 178 Horiz 178 Horiz 178 Horiz 178 Horiz 178
65 90.825M QP ^ ^ 90.825M 67 92.781M QP ^ ^ 92.782M 69 94.220M QP ^ ^ 94.139M 71 763.600M	39.3 54.7 38.9 53.8 37.5	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \\ +8.9 \\ +0.2 \\ +21.6 \end{array}$	-25.9 -25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0 +0.0	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \\ +0.0 \\ 358 \\ +0.0 \\ \end{array}$	22.5 37.9 22.3 37.2 21.1	43.5 43.5 43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3 -22.4	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178 Horiz 178 Horiz 178 Horiz 178 Horiz 184 Horiz 179 Horiz 179
65 90.825M QP ^ 90.825M 67 92.781M QP ^ 92.782M 69 94.220M QP ^ 94.139M 71 763.600M QP	39.3 54.7 38.9 53.8 37.5 52.1 23.1	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \\ +8.9 \\ +0.2 \\ +21.6 \\ +0.8 \end{array}$	-25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -27.0	+0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +1.5	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.2	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \\ +0.0 \\ 358 \\ +0.0 \\ 233 \\ \end{array}$	22.5 37.9 22.3 37.2 21.1 35.7 20.2	43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3 -22.4 -7.8 -25.8	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178 Horiz 178 Horiz 178 Horiz 184 Horiz 179 Horiz 184 Horiz 179 Horiz 179
65 90.825M QP ^ ^ 90.825M 67 92.781M QP ^ ^ 92.782M 69 94.220M QP ^ ^ 94.139M 71 763.600M	39.3 54.7 38.9 53.8 37.5 52.1	$\begin{array}{r} +0.4 \\ +8.5 \\ +0.2 \\ +8.5 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.7 \\ +0.2 \\ +8.9 \\ +0.2 \\ +8.9 \\ +0.2 \\ +21.6 \end{array}$	-25.9 -25.9 -25.9 -25.9 -25.9 -25.9	+0.4 +0.4 +0.4 +0.4 +0.4 +0.4	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0	$\begin{array}{r} 36 \\ +0.0 \\ 358 \\ +0.0 \\ -3 \\ +0.0 \\ 361 \\ +0.0 \\ 361 \\ +0.0 \\ 358 \\ +0.0 \\ 358 \\ +0.0 \\ \end{array}$	22.5 37.9 22.3 37.2 21.1 35.7	43.5 43.5 43.5 43.5 43.5 43.5 43.5	-17.0 -21.0 -5.6 -21.2 -6.3 -22.4 -7.8	188 Horiz 216 Horiz 216 Horiz 179 Horiz 178 Horiz 178 Horiz 178 Horiz 178 Horiz 184 Horiz 179 Horiz 179

Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/19/2006
Test Type:	Maximized Emissions	Time:	17:49:55
Equipment:	Security Portal	Sequence#:	12
Manufacturer:	SafeView, Inc.	Tested By:	C. Nicklas
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

	201)		
Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2 Switch	A100062500152
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite on Technology Corn	PA 1221 03	5200045302

e onip aten, monitor		
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03
Keyboard	MPC	SK-1688
Mouse	Microsoft	Basic Optical Mouse 1.0A

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. The Scout 100 is connected to a support PC by an ethernet connection. The support PC triggers the SCU to begin a security scan. Radiated Emissions 1-12.5 GHz. Maximized Emissions.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Transducer Legend:

T1=Horn Antenna AN02061 sn1064 (Fremont)	T2=AMP AN02810 50GHz
T3=ANP04241 HF-Heliax Cable	T4=P05138 HF Cable 25ft
T5=ANP5201 1-40GHz	T6=ANP05200 1-40GHz
T7=HP-83017A A/N 00785	

Measurement Data:		Re	Reading listed by margin.			Test Distance: 3 Meters						
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1	1297.067M	86.5	+24.7	-28.2	+0.4	+1.7	+0.0	47.7	54.0	-6.3	Horiz
				+0.9	+1.0	-39.3		63				211

5Y00045302 C0602086090

none

2 1000 010	N 00 0	22.0	20.2	0.4	1.4	0.0		510	7.5	
2 1000.010	M 88.2	+23.8	-28.3	+0.4	+1.4	+0.0	46.5	54.0	-7.5	Horiz
		+0.8	+0.8	-40.6		-2				209
3 3065.100	M 73.8	+30.2	-26.3	+0.5	+2.7	+0.0	46.2	54.0	-7.8	Horiz
		+1.5	+1.4	-37.6		25				206
4 1686.900	M 80.7	+26.8	-28.1	+0.5	+1.9	+0.0	45.5	54.0	-8.5	Vert
		+1.0	+1.1	-38.4		196				205
5 1096.800	M 85.7	+24.1	-28.3	+0.4	+1.5	+0.0	45.0	54.0	-9.0	Vert
		+0.8	+0.9	-40.1		147				204
6 3067.300	M 71.5	+30.2	-26.3	+0.5	+2.7	+0.0	43.9	54.0	-10.1	Horiz
		+1.5	+1.4	-37.6		25				206
7 1685.200	M 79.0	+26.7	-28.1	+0.5	+1.9	+0.0	43.7	54.0	-10.3	Vert
		+1.0	+1.1	-38.4		196				205
8 9201.225	M 57.3	+37.7	-26.6	+1.4	+4.9	+0.0	42.9	54.0	-11.1	Horiz
Ave		+2.6	+2.4	-36.7		244				210
^ 9201.225	M 65.2	+37.7	-26.6	+1.4	+4.9	+0.0	50.9	54.0	-3.1	Horiz
		+2.6	+2.4	-36.7		244				210

Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/20/2006
Test Type:	Maximized Emissions	Time:	14:35:12
Equipment:	Security Portal	Sequence#:	15
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302

Test Conditions / Notes:

Keyboard

Mouse

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 1-18 GHz. No signals seen above 12.5 GHz. Notes: 1) Not sweeping, transmitting on LOW channel from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions.

SK-1688

Basic Optical Mouse 1.0A

C0602086090

none

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

MPC

Microsoft

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

T1=Horn Antenna AN02061 sn1064 (Fremont)	T2=AMP AN02810 50GHz
T3=P05138 HF Cable 25ft	T4=ANP5201 1-40GHz
T5=ANP05200 1-40GHz	T6=HP-83017A, A/N 00785
T7=CAB HF 72" ANP05317 Pasternack	

Ι	<i>Measurement Data:</i> Reading listed by margin.			rgin.	Test Distance: 3 Meters							
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1	12349.240M	57.7	+39.4	-29.0	+6.0	+3.2	+0.0	48.8	54.0	-5.2	Vert
				+2.8	-36.5	+5.2						175

2 12348.580M	55.2	+39.4	-29.0	+6.0	+3.2	+0.0	46.3	54.0	-7.7	Horiz
		+2.8	-36.5	+5.2		346				209
3 3087.833M	71.8	+30.2	-26.4	+2.7	+1.5	+0.0	46.0	54.0	-8.0	Horiz
		+1.4	-37.6	+2.4		370				137
4 6175.167M	63.8	+34.5	-27.3	+4.1	+2.1	+0.0	45.4	54.0	-8.6	Horiz
		+1.9	-37.2	+3.5		346				99
5 9262.866M	55.7	+37.8	-26.6	+5.0	+2.6	+0.0	44.7	54.0	-9.3	Horiz
		+2.4	-36.6	+4.4		97				99
6 3087.575M	70.5	+30.2	-26.4	+2.7	+1.5	+0.0	44.7	54.0	-9.3	Vert
		+1.4	-37.6	+2.4		340				100
7 6175.467M	61.7	+34.5	-27.3	+4.1	+2.1	+0.0	43.3	54.0	-10.7	Vert
		+1.9	-37.2	+3.5		352				148
8 12348.780M	50.5	+39.4	-29.0	+6.0	+3.2	+0.0	41.6	54.0	-12.4	Vert
Ave		+2.8	-36.5	+5.2						175
9 9262.764M	51.3	+37.8	-26.6	+5.0	+2.6	+0.0	40.3	54.0	-13.7	Vert
		+2.4	-36.6	+4.4		11				215
10 1096.500M	79.5	+24.1	-28.3	+1.5	+0.8	+0.0	39.9	54.0	-14.1	Vert
		+0.9	-40.1	+1.5		216				219
11 1090.133M	76.7	+24.1	-28.3	+1.5	+0.8	+0.0	37.0	54.0	-17.0	Vert
		+0.9	-40.2	+1.5		216				219

Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/20/2006
Test Type:	Maximized Emissions	Time:	16:03:48
Equipment:	Security Portal	Sequence#:	18
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Equipment Chuer 1050 (
Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090

Test Conditions / Notes:

Mouse

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 1-18 GHz. No signals seen above 12.5 GHz. Notes: 1) Not sweeping, transmitting on MID channel from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions.

Basic Optical Mouse 1.0A

none

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

Microsoft

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

T1=Horn Antenna AN02061 sn1064 (Fremont)	T2=AMP AN02810 50GHz
T3=P05138 HF Cable 25ft	T4=ANP5201 1-40GHz
T5=ANP05200 1-40GHz	T6=HP-83017A, A/N 00785
T7=CAB HF 72" ANP05317 Pasternack	,

1	<i>Measurement Data:</i> Reading listed by margin.			rgin.	Test Distance: 3 Meters							
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	9343.941M	57.5	+37.9	-26.6	+5.0	+2.7	+0.0	46.8	54.0	-7.2	Horiz
				+2.4	-36.5	+4.4		189				121

2 9343.733M	57.5	+37.9	-26.6	+5.0	+2.7	+0.0	46.8	54.0	-7.2	Vert
		+2.4	-36.5	+4.4		265				103
3 11544.790M	55.0	+39.6	-28.3	+5.5	+3.1	+0.0	46.7	54.0	-7.3	Horiz
		+2.8	-36.1	+5.1				Noise floor		103
4 11619.310M	53.8	+39.4	-28.4	+5.5	+3.1	+0.0	45.1	54.0	-8.9	Horiz
		+2.8	-36.2	+5.1		-11		Noise floor		103
5 11675.500M	53.8	+39.3	-28.4	+5.5	+3.1	+0.0	45.0	54.0	-9.0	Vert
		+2.8	-36.2	+5.1		-11		Noise floor		99
6 11889.730M	54.2	+38.8	-28.6	+5.7	+3.2	+0.0	44.9	54.0	-9.1	Vert
		+2.8	-36.3	+5.1				Noise floor		99

Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/20/2006
Test Type:	Maximized Emissions	Time:	17:32:54
Equipment:	Security Portal	Sequence#:	21
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	
Support Devices:			
Function	Manufacturer	Model #	S/N

Computer/Monitor MPC CLIENTPRO 474 4007670-0001	
Computer Power Supply Lite-on Technology Corp. PA-1221-03 5Y00045302	
Keyboard MPC SK-1688 C0602086090	
Mouse Microsoft Basic Optical Mouse 1.0A none	

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 1-18 GHz. No signals seen above 12.5 GHz. Notes: 1) Not sweeping, transmitting on HI channel from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

T1=Horn Antenna AN0206	l sn1064 (Fremont)	T2=AMP AN02810 50GHz	
T3=P05138 HF Cable 25ft		T4=ANP5201 1-40GHz	
T5=ANP05200 1-40GHz		T6=HP-83017A, A/N 00785	
T7=CAB HF 72" ANP0531	7 Pasternack		

Ι	Ieası	rement Data:	Re	ading lis	ted by ma	rgin.	Test Distance: 3 Meters					
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	11619.480M	55.8	+39.4	-28.4	+5.5	+3.1	+0.0	47.1	54.0	-6.9	Vert
				+2.8	-36.2	+5.1				Noise floor	r	100

2 12425.710M	55.3	+39.6	-29.1	+6.0	+3.3	+0.0	46.7	54.0	-7.3	Horiz
		+2.9	-36.6	+5.3				Noise floor		100
3 11199.010M	55.3	+39.2	-28.1	+5.3	+3.1	+0.0	46.6	54.0	-7.4	Vert
		+2.7	-35.9	+5.0		-11		Noise floor		100
4 11796.910M	54.8	+39.0	-28.5	+5.6	+3.1	+0.0	45.6	54.0	-8.4	Horiz
		+2.8	-36.3	+5.1		-11		Noise floor		100

Test Location:	CKC Laboratories, Inc. •1120 Fulton P	Place • Fremont, CA 94539 • 510-249-1170
Customer:	Safe View, Inc.	
Specification:	FCC 15.209	
Work Order #:	85484	Date: 9/21/2006
Test Type:	Maximized Emissions	Time: 16:29:19
Equipment:	Security Portal	Sequence#: 37
Manufacturer:	SafeView, Inc.	Tested By: Art Rice
Model:	SCOUT 100 Version 2 Switch	S/N: A100062500152

<u>Equipment Under Test (*</u>	= EUT):		
Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2 Switch	A100062500152
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 18-26.5 GHz. Notes: 1) Not sweeping, transmitting on LOW, MID, or HI channel (24.65, 27.0, 29.8 GHz) from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions. 2) Did not list signals from the transmitter fundamental.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Signals detected in this range were determined to be noise floor readings, representing no EUT signals detected above this level.

T1=AMP AN02810 50GHz	T2=ANP05200 1-40GHz
T3=Cable AN2718 40 GHz	T4=CAB HF 48" ANP05314 Pasternack
T5=18-26.5 WG F-C3	T6=Horn AN02695 Miteq Active 26-40GHz

Meas	surement Data:	Re	eading lis	ted by ma	argin.						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 26197.830M	27.2	-31.7	+4.2	+29.7	+5.6	+0.0	42.6	54.0	-11.4	Horiz
	Ave		+4.0	+3.6			9		MID, noise	e floor.	100
	^ 26197.830M	32.0	-31.7	+4.2	+29.7	+5.6	+0.0	47.4	54.0	-6.6	Horiz
			+4.0	+3.6			9		MID, noise	e floor.	100

CKC AM Testing the Future

3 26201.170M	27.2	-31.7	+4.2	+29.7	+5.6	+0.0	42.5	54.0	-11.5	Horiz
Ave		+4.0	+3.6			5		HI, noise f	loor.	100
^ 26201.170M	32.2	-31.7	+4.2	+29.7	+5.6	+0.0	47.6	54.0	-6.4	Horiz
		+4.0	+3.6			5		HI, noise f	loor.	100
5 26202.840M	27.1	-31.7	+4.2	+29.7	+5.6	+0.0	42.5	54.0	-11.5	Vert
Ave		+4.0	+3.6			364		MID, noise	e floor.	100
^ 26202.840M	32.3	-31.7	+4.2	+29.7	+5.6	+0.0	47.7	54.0	-6.3	Vert
		+4.0	+3.6			364		MID, noise	e floor.	100
7 26151.920M	26.7	-31.6	+4.2	+29.7	+5.7	+0.0	42.5	54.0	-11.5	Vert
Ave		+4.1	+3.7					LOW, nois	se floor.	100
^ 26151.890M	31.3	-31.6	+4.2	+29.7	+5.7	+0.0	47.1	54.0	-6.9	Vert
		+4.1	+3.7					LOW, nois	100	
9 26144.410M	26.6	-31.6	+4.2	+29.7	+5.7	+0.0	42.4	54.0	-11.6	Vert
Ave		+4.1	+3.7			214		MID, noise floor.		100
^ 26144.410M	32.0	-31.6	+4.2	+29.7	+5.7	+0.0	47.8	54.0	-6.2	Vert
		+4.1	+3.7			214		MID, noise	e floor.	100
11 26105.180M	26.2	-31.6	+4.2	+29.7	+5.7	+0.0	42.2	54.0	-11.8	Horiz
Ave		+4.2	+3.8			361		MID, noise	e floor.	100
^ 26105.160M	31.3	-31.6	+4.2	+29.7	+5.7	+0.0	47.3	54.0	-6.7	Horiz
		+4.2	+3.8			361		MID, noise	e floor.	100
13 26299.670M	26.6	-31.7	+4.3	+29.8	+5.6	+0.0	42.1	54.0	-11.9	Vert
Ave		+4.0	+3.5			358		HI, noise f	loor.	100
^ 26299.670M	30.8	-31.7	+4.3	+29.8	+5.6	+0.0	46.3	54.0	-7.7	Vert
		+4.0	+3.5			358		HI, noise f	loor.	100
15 26280.800M	26.7	-31.7	+4.3	+29.8	+5.6	+0.0	42.0	54.0	-12.0	Horiz
Ave		+3.9	+3.5			187		LOW, nois	se floor.	100
^ 26280.800M	32.8	-31.7	+4.3	+29.8	+5.6	+0.0	48.2	54.0	-5.8	Horiz
		+3.9	+3.5			187		LOW, nois	se floor.	100

fe View, Inc.	
CC 15.209	
484 Date:	9/22/2006
aximized Emissions Time:	11:15:57
curity Portal Sequence#:	44
feView, Inc. Tested By:	Art Rice
COUT 100 Version 2 Switch	
00062500152	
	CC 15.209484Date:aximized EmissionsTime:curity PortalSequence#:feView, Inc.Tested By:COUT 100 Version 2 Switch

Equipment Under Test (* = EUT):

	===),		
Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 26.5-40 GHz. Notes: 1) Not sweeping, transmitting on LOW, MID, or HI channel (24.65, 27.0, 29.8 GHz) from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions. 2) Did not list the transmitter fundamentals or in-band signals (24-30 GHz).

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

- 3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.
- 4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Signals detected in this range were determined to be noise floor readings, representing no EUT signals detected above this level.

CKC -M Testing the Future

Transducer Legend:

T1=AMP AN02810 50GHz T3=CAB HF 48" ANP05314 Pasternack T5=Cable AN2715 40 GHz

T2=ANP05200 1-40GHz T4=Horn AN02695 Miteq Active 26-40GHz T6=26.5-40 WG F-C3

Measu	rement Data:	Re	eading lis	ted by ma	rgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	39972.970M	26.1	-30.3	+5.4	+6.9	+9.0	+0.0	40.2	54.0	-13.8	Horiz
	Ave		+18.1	+5.0			-11		LOW, Noi	se floor	100
^	39973.040M	31.2	-30.3	+5.4	+6.9	+9.0	+0.0	45.3	54.0	-8.7	Horiz
			+18.1	+5.0			-11		LOW, Noi	se floor	100
3	39970.720M	26.0	-30.3	+5.4	+6.9	+9.0	+0.0	40.1	54.0	-13.9	Vert
	Ave		+18.1	+5.0			-11		MID, Nois		100
^	39970.790M	31.5	-30.3	+5.4	+6.9	+9.0	+0.0	45.6	54.0	-8.4	Vert
			+18.1	+5.0			-11		MID, Nois	e floor	100
5	39970.820M	26.0	-30.3	+5.4	+6.9	+9.0	+0.0	40.1	54.0	-13.9	Vert
	Ave		+18.1	+5.0					HI, Noise f		100
^	39970.820M	31.7	-30.3	+5.4	+6.9	+9.0	+0.0	45.8	54.0	-8.2	Vert
			+18.1	+5.0					HI, Noise f		100
7	39912.160M	26.0	-30.4	+5.4	+6.9	+8.8	+0.0	39.8	54.0	-14.2	Horiz
-	Ave		+18.1	+5.0			-11		HI, Noise f		100
^	39912.180M	31.5	-30.4	+5.4	+6.9	+8.8	+0.0	45.3	54.0	-8.7	Horiz
			+18.1	+5.0			-11		HI, Noise f		100
9	39754.490M	26.1	-30.4	+5.4	+6.9	+8.3	+0.0	39.4	54.0	-14.6	Vert
	Ave		+18.0	+5.1			370		LOW, Noi		100
^	39754.520M	31.7	-30.4	+5.4	+6.9	+8.3	+0.0	45.0	54.0	-9.0	Vert
			+18.0	+5.1			370		LOW, Noi	se floor	100
11	39709.450M	26.2	-30.5	+5.4	+6.9	+8.2	+0.0	39.3	54.0	-14.7	Horiz
	Ave		+18.0	+5.1			-11		LOW, Noi		100
^	39709.450M	31.3	-30.5	+5.4	+6.9	+8.2	+0.0	44.4	54.0	-9.6	Horiz
			+18.0	+5.1			-11		LOW, Noi		100
13	39563.040M	26.6	-30.6	+5.4	+6.9	+7.7	+0.0	39.2	54.0	-14.8	Horiz
	Ave		+18.0	+5.2			369		LOW, Noi	se floor	100
^	39563.110M	31.5	-30.6	+5.4	+6.9	+7.7	+0.0	44.1	54.0	-9.9	Horiz
			+18.0	+5.2			369		LOW, Noi		100
15	39650.880M	26.3	-30.5	+5.4	+6.9	+8.0	+0.0	39.2	54.0	-14.8	Horiz
	Ave		+18.0	+5.1			361		MID, Nois		100
^	39650.950M	32.7	-30.5	+5.4	+6.9	+8.0	+0.0	45.6	54.0	-8.4	Horiz
			+18.0	+5.1			361		MID, Nois		100
17	39466.190M	26.8	-30.6	+5.5	+6.9	+7.4	+0.0	39.1	54.0	-14.9	Horiz
	Ave		+17.9	+5.2			370		LOW, Noi	se floor	100
^	39466.260M	32.2	-30.6	+5.5	+6.9	+7.4	+0.0	44.5	54.0	-9.5	Horiz
			+17.9	+5.2			370		LOW, Noi	se floor	100

Test Location: Customer: Specification:	CKC Laboratories, Inc. •1120 Fulton Pl Safe View, Inc. FCC 15.209	ace • Fremont, CA 94	539 • 510-249-1170
Work Order #:	85484	Date:	9/28/2006
Test Type:	Radiated Scan/Maximized	Time:	13:24:14
Equipment:	Security Portal	Sequence#:	49
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

<u>-1</u>			
Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152
		Switch	

Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 40-60 GHz. Notes: 1) Not sweeping, transmitting on LO, MID, or HI channel (24.65, 27.0, 29.8 GHz) from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions. The mast is reversed so antennas are facing out for easier access. 2) Measurement range is 40-60 GHz. 3) RBW=VBW=30 kHz to reduce noise floor. 4) Antenna placed 0.1 meter directly in front of the antenna that was determined to be the emitter by checking the fundamental.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Signals detected in this range were determined to be noise floor readings, representing no EUT signals detected above this level.

CKC AM Testing the Future

Transducer Legend: T1=P5314 40-120GHz

T3=Mixer 40-60GHz 02347 M19HWA

T2=Horn 40-60GHz 02347 M19RH

I easu	irement Data:	Reading listed by margin.					Test Distance: 0.1 Meter				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	59600.000M	-6.4	+2.3	+41.7	+35.1		-30.0	42.7	54.0	-11.3	Vert
	Ave								Hi channel floor.	, noise	
۸	59600.030M	3.2	+2.3	+41.7	+35.1		-30.0	52.3	54.0 Hi channel floor.	-1.7 , noise	Vert
3	59600.000M Ave	-6.7	+2.3	+41.7	+35.1		-30.0	42.4	54.0 Hi channel floor.	-11.6 , noise	Horiz
۸	59600.000M	3.2	+2.3	+41.7	+35.1		-30.0	52.3	54.0 Hi channel floor.	-1.7 , noise	Horiz
5	54000.000M Ave	-6.5	+2.2	+40.9	+32.0		-30.0	38.6	54.0 Mid chann floor.	-15.4 el, noise	Vert
۸	54000.000M	4.3	+2.2	+40.9	+32.0		-30.0	49.4	54.0 Mid chann floor.	-4.6 el, noise	Vert
7	49400.000M Ave	-6.2	+2.1	+40.1	+30.4		-30.0	36.4	54.0 Low chann floor.	-17.6 nel, noise	Vert
^	49400.000M	6.5	+2.1	+40.1	+30.4		-30.0	49.1	54.0 Low chann floor.	-4.9 nel, noise	Vert

Test Location:	CKC Laboratories, Inc. •1120 Fulton Place	• Fremont, CA 94	539 • 510-249-1170
Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/28/2006
Test Type:	Radiated Scan/Maximized	Time:	14:16:24
Equipment:	Security Portal	Sequence#:	50
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2 Switch	A100062500152
Same and Dania and			

Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 60-90 GHz. Notes: 1) Not sweeping, transmitting on LO, MID, or HI channel (24.65, 27.0, 29.8 GHz) from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions. The mast is reversed so antennas are facing out for easier access. 2) Measurement range is 60-90 GHz. 3) RBW reduced during measurements to reduce noise floor. 4) Antenna placed 0.1 meter directly in front of the antenna that was determined to be the emitter by checking the fundamental.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

- 3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.
- 4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Signals detected in this range were determined to be noise floor readings, representing no EUT signals detected above this level.

Transducer Legend:

T1=P5314 40-120GHz
T3=Mixer 60-90GHz 02348 M12HWA

T2=Horn 60-90GHz 02348 M12RH

Measurement Data: Rea			Reading listed by margin.				Test Distance: 0.1 Meter				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 73949.980M	-11.3	+2.1	+43.6	+43.4		-30.0	47.8	54.0	-6.2	Horiz
	Low channel, noise										
			floor.								

2 73949.970M	-11.5	+2.1	+43.6	+43.4	-30.0	47.6	54.0	-6.4	Vert	
							Low chann	el, noise		
							floor.			
3 89400.300M	-10.7	+2.3	+45.2	+40.6	-30.0	47.4	54.0	-6.6	Vert	
							Hi channel, noise			
							floor.			
4 81000.180M	-10.8	+2.2	+44.4	+40.6	-30.0	46.4	54.0	-7.6	Vert	
							Mid channe	el, noise		
							floor.			

Customer: Specification:	Safe View, Inc. FCC 15.209		
Work Order #:	85484	Date:	9/28/2006
Test Type:	Radiated Scan/Maximized	Time:	14:41:37
Equipment:	Security Portal	Sequence#:	51
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		
Equipment Und	ler Test (* = EUT):		

Function	Manufacturer	Model #	S/N	
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2	A100062500152	
		Switch		
Support Devices:				
Function	Manufacturer	Model #	S/N	
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001	
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302	
Keyboard	MPC	SK-1688	C0602086090	
Mouse	Microsoft	Basic Optical Mouse 1.0A	none	

Test Conditions / Notes:

The Scout 100 Version 2 Switch Security Portal is transmitting continuously. Radiated Emissions 90-100 GHz. Notes: 1) Not sweeping, transmitting on LO, MID, or HI channel (24.65, 27.0, 29.8 GHz) from antenna 192. Disabled the brake, so we can rotate the mast to the pre-cal position for worst case emissions. The mast is reversed so antennas are facing out for easier access. 2) Measurement range is 90-100 GHz. 3) RBW reduced during measurements to reduce noise floor. 4) Antenna placed 0.1 meter directly in front of the antenna that was determined to be the emitter by checking the fundamental. Since the Mid and Hi channels were beyond 100 GHz and no signals were observed, these were not reported.

Modifications in at time of testing were:

1) Added a two-turn ferrite on the SCU serial line.

2) Taped AC line cable down to the chassis and added two clamp-on ferrites on AC line to the motor controller.

3) Added a clamp-on ferrite to each of the DB37 cables at the ISU end of the cables.

4) Changed the encoder cable to a custom made, shielded encoder cable.

5) A 6 dB attenuator was installed on both antenna masts at the FDIV.

The reason for each of these 5 modifications is as follows:

1) ferrite on serial line - addresses 60MHz broadband noise

2) AC line with ferrites to motor controller - addresses discrete 60MHz and 80MHz spur

3) DB37 ferrite - addresses 153MHz discrete spur

4) custom shielded encoder cable - multiple discrete frequencies 30-1000MHz

5) 6 dB attenuators addresses the divided down VCO frequencies removing the 700 MHz peaks

Signals detected in this range were determined to be noise floor readings, representing no EUT signals detected above this level.

Transducer Legend: T1=P5314 40-120GHz T2=Horn 90-110GHz 02349 M08RH T3=Mixer 90-110GHz 02349 M08HWA T2=Horn 90-110GHz 02349 M08RH

Me	Measurement Data: Reading listed by margin. Test Distance: 0.1 Meter				r							
#	ŧ	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	98409.720M	-16.5	+2.0	+46.0	+44.9		-30.0	46.4	54.0	-7.6	Horiz
										Low chann	el, noise	
										floor.		
	2	98399.000M	-16.8	+2.0	+46.0	+44.9		-30.0	46.1	54.0	-7.9	Vert
										Low chann	el, noise	
										floor.		

Customer:	Safe View, Inc.		
Specification:	FCC 15.209		
Work Order #:	85484	Date:	9/27/2006
Test Type:	Band Edge	Time:	17:40:19
Equipment:	Security Portal	Sequence#:	46
Manufacturer:	SafeView, Inc.	Tested By:	Art Rice
Model:	SCOUT 100 Version 2 Switch		
S/N:	A100062500152		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Security Portal*	SafeView, Inc.	SCOUT 100 Version 2 Switch	A100062500152
Support Devices:			
Function	Manufacturer	Model #	S/N
Computer/Monitor	MPC	CLIENTPRO 474	4007670-0001
Computer Power Supply	Lite-on Technology Corp.	PA-1221-03	5Y00045302
Keyboard	MPC	SK-1688	C0602086090
Mouse	Microsoft	Basic Optical Mouse 1.0A	none

Test Conditions / Notes:

The Scout 100 V2 Switch Security Portal antenna mast is in normal position so antennas are facing to the inside of the EUT. Low channel=24.65 GHz. Mid channel=27 GHz. Hi channel=29.8 GHz. Measuring Peak Carrier Power per DA 06-1589 paragraph 8b. RBW=100 kHz, VBW=3 MHz, Span=1 GHz. Sweep time=auto. Measuring Average RMS Power per DA 06-1589 paragraph 8a. RBW=1 MHz, VBW=3 MHz, Span=0 Hz. Sweep time=1 sec. Emissions reported represent worst case polarization. Measuring CW peak values at low and high channel. Measuring sweeping average values at lower and upper band edges. Transmitting on antenna 192. Transmitter is transmitting continuously during this testing. Measurements were taken with the EMC antennas inside of the EUT.

Transducer Legend:

T1=Horn AN02695 Miteq Active 26-40GHz T2=ANT 18-26GHz Active Horn T3=CAB HF 72" ANP05315 Pasternack

Me	Measurement Data: Reading listed by margin. Test Distance: 1 Meter											
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant	
	1 30000.000M	25.3	+4.1	+0.0	+7.9		-10.0	27.3	54.0	-26.7	Vert	
	Ave					Upper Band Edge						
	1 24250.000M	43.0	+0.0	-17.2	+7.2		-10.0	23.0	54.0	-31.0	Vert	
						Lower Band Edge						