

LEIDOS SECURITY **DETECTION &** AUTOMATION, INC. TEST REPORT

SCOPE OF WORK

EMISSIONS TESTING - ProVision 3, SafeView HD, PV2 to PV3 upgrade kit

REPORT NUMBER 104357499BOX-001

ISSUE DATE 06-August-2020

[REVISED DATE] June 3, 2021

PAGES 44

DOCUMENT CONTROL NUMBER

IEC 60601-1-2 ed 4.0 EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 104357499BOX-001 Project Number: G104357499

Report Issue Date: 08/06/2020 Revision Date: 06/03/2021

Model(s) Tested:ProVision 3, SafeView HD, PV2 to PV3 upgrade kitModel(s) Partially Tested:NoneModel(s) Not Tested but declared equivalent by the client:None

Standards: CFR 47 FCC Part 15C, 15.209 (08/2020) FCC Waver ET Docket No. 16-45

Tested by: Intertek Testing Services 70 Codman Hill Road Boxborough, MA 01719 USA Client: Leidos Security Detection & Automation, Inc. One Radcliff Drive Tewksbury, MA 01876 USA

Report prepared by:

Vettana 2 Vor

Vathana Ven / EMC Staff Engineer

Report reviewed by:

Kouma Sinn / EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	. 4
2	Test Summary	. 4
3	Client Information	. 5
4	Description of Equipment Under Test and Variant Models	. 5
5	System Setup and Method	. 7
6	Fundamental Emissions	. 7
7	Unwanted Emissions	14
8	AC Mains Conducted Emissions	26
9	Appendix A - FCC Waver ET Docket No. 16-45	30
10	Appendix B - Mixer/Horn Calibration Certificates	36
11	Revision History	44

Report Number: 104357499BOX-001

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Fundamental Emissions CFR 47 FCC Part 15C, 15.209(a) (08/2020), FCC Waver ET Docket No. 16-45	Pass
7	Unwanted Emissions CFR 47 FCC Part 15C, 15.209(c) (08/2020)	Pass
8	AC Mains Conducted Emissions CFR 47 FCC Part 15C, 15.207(a) (08/2020)	Pass
9	Appendix A - FCC Waiver ET Docket No. 16-45	
10	Appendix B – Mixer/Horn Calibration Certificates	
11	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Leidos Security Detection & Automation, Inc. One Radcliff Drive Tewksbury, MA 01876 USA
Contact:	Uresh Patel
Telephone:	(781) 939-1614
Fax:	None
Email:	Uresh.Patel@leidos.com

4 Description of Equipment Under Test and Variant Models

Manufacturer:	Leidos Security Detection &
	Automation, Inc.
	One Radcliff Drive
	Tewksbury, MA 01876
	USA

Equipment Under Test				
Description Manufacturer Model Number Seria				
Security Body Scanner	Leidos Security Detection & Automation, Inc.	ProVision 3, SafeView HD, PV2 to PV3 upgrade kit	BOX2006091441-001 (Intertek Assigned)	

Receive Date:	06/09/2020
Received Condition:	Good
Туре:	Production

Description of Equipment Under Test (provided by client)

The ProVision[®] 3 security scanner is an advanced personnel screener that uses wideband frequencies to drive superior levels of detection and throughput while achieving the industry's lowest alarm rates. The system quickly screens passengers using safe millimeter wave (MMW) technology to automatically detect concealed objects made of a broad variety of materials – both metallic and nonmetallic, including emerging threats like HMEs.

Equipment Under Test Power Configuration				
Rated Voltage Rated Current Rated Frequency Number of Phases				
100-120 VAC	12 Amps	50/60 Hz	1	
220-240 VAC	6 Amps	50/60 Hz	1	

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmitter frequency sweep active
2	Transmitter frequency sweep disabled. Low, Mid, and High channels were selected.

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	FCC -FieldTest

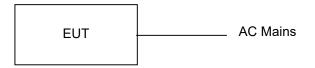
Radio/Receiver Characteristics			
Frequency Band(s)	20.5-39.9 GHz		
Modulation Type(s)	FMCW		
Maximum Output Power	-21.64 dBm or 0.0000069W (EIRP)		
Test Channels	20.5, 30.0, 39.9 GHz (Sweep Ranges: 20.5-39.9 GHz)		
Occupied Bandwidth	19.52 GHz		
Equipment Type	20-40 GHz Radio in a host		
Antenna Type and Gain	Integrated antenna, +4 dBi		

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method


	Cables					
ID Description Length (m) Shielding Ferrites Terminatio					Termination	
1	AC Mains	3	None	None	AC Mains	

Support Equipment					
Description	Manufacturer	Model Number	Serial Number		
Keyboard	Dell	SK-8115	Not labeled		
PC	Lenovo	Thinkcenter	8SSS50S93851F1WH998001B		
Monitor	Dell	1907FPI	Not labeled		
Mouse	Lenovo	MOIUUO	Not labeled		

5.1 Method:

Configuration as required by ANSI C63.10:2013, ANSI C63.4:2014, and FCC Waver ET Docket No. 16-45.

5.2 EUT Block Diagram:

6 Fundamental Emissions

6.1 Method

Tests are performed in accordance with ANSI C63.10 and FCC Waver ET Docket No. 16-45.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	5.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.9 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.4 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.9 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.6 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.6 dB	N/A

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF	- AG
Where	FS = Field Strength in dBμV/m
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dBµV/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 $UF = 10^{(32 \ dB\mu V / 20)} = 39.8 \ \mu V / m$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV007'	Weather Station Vantage Vue	Davis	6250	MS191212 003	03/12/2020	03/12/2021
EMC04'	Antenna, 18-40 GHz	EMCO	3116	2090	12/10/2019	12/10/2020
CBLHF2012- 2M-1'	Cable, 2m 9kHz-40GHz - SET1	Huber & Suhner	SF102	252675001	02/17/2020	02/17/2021
CBLSHF205;	Cable, SMA-SMA, 9kHz-40GHz, (Cable Kit5)	Huber + Suhner	Sucoflex 102EA	234715001	09/06/2019	09/06/2020
ROS005-1'	Signal and Spectrum Analyzer	R&S	FSW43	100646	10/10/2019	10/10/2020

Software Utilized:

Name	Manufacturer	Version
Excel 2003	Microsoft	(11.8231.8221) SP3
EMI Boxborough.xls	Intertek	08/27/10

6.3 Results:

The sample tested was found to Comply.

Fundamental emissions Limits (FCC Part 15C, 15.209):

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)	Detector
0.009-0.490 ¹	2400/F(kHz)	300	Quasi-peak [see Note 1]
0.490-1.705	24000/F(kHz)	30	Quasi-peak
1.705-30.0	30	30	Quasi-peak
30-88	100	3	Quasi-peak
88-216	150	3	Quasi-peak
216-960	200	3	Quasi-peak
960-40,000 ²	500	3	Quasi-peak [see Note 2]

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Note 2: The emission limits for the frequencies above 1 GHz are based on measurements employing a linear average detector.

6.4 Setup Photographs:

Photos are available in a separate exhibit

6.5 Plots/Data:

Serial #: BOX2006091441-001 (Interlet Assigned) Cabble(s): MEG02_0019-2020.tt currenzest_construction underward Engineers: Valuana Ven Location: 10M Barometer: DAV007 Filter: NONE Project #: G104357499 Date(s): 07/22/20 TempHumidty/Pressure: 27 deg C 39% 1006 mB Receiver: ROS005-1_10-10-20 Limit Distance (m): 3 TempHumidty/Pressure: 27 deg C 39% 1006 mB PreAmp: PREB Data 2020.bt Test Distance (m): 3 Frequency Range: 18-40CHz 18-40CHz Net = Reading (Btw/m) + Anterna Factor (dB1/m) + Cable Loss (dB): Preamp Eactor (dB): Distance Eactor (dB) 18-40CHz 18-40CHz Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Edit/VBW Edit/VBW Edit/VBW Detector Pol. Frequency Range Ts/App at ALow CH, CW mode for peak and constant chirp for average measurements FRC ICC Module 1. Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements FRC 1/3 MHz RB RB PK H 20500.000 3.3.0 46.78 18.10 40.54 9.54 43.50 -5.57 1/3 MHz <th>Model #:</th> <th>ProVision 3</th> <th>ECURITY DE 3, SafeView I</th> <th>HD, PV2 to</th> <th>PV3 upgrad</th> <th></th> <th></th> <th>Antenna:</th> <th></th> <th>t_12-10-2020.txt</th> <th>EMC04_1M_H</th> <th>LF, HF, SHF or_12-10-2020.txt</th> <th></th> <th></th>	Model #:	ProVision 3	ECURITY DE 3, SafeView I	HD, PV2 to	PV3 upgrad			Antenna:		t_12-10-2020.txt	EMC04_1M_H	LF, HF, SHF or_12-10-2020.txt		
Project #: G104357499 Date(s): 07/22/20 Standard: FCC Part 15 Subject TS209 Temp1 Hunidity/Pressure: 27 dg C 39% 1006 mB Receive: RC0051_10-10-20 Limit Distance (m): 3 Fre4mp: PREB Data 2020.bt Temp1 blacd? (V or N): Y Voltage/Frequency: 120VAC 60Hz Frequency Range: 18-40GHz Net = Reading (GBU/Im) + Antenna Factor (GB/Im) + Cable Loss (GB) - Preamp Factor (GB) - Distance Factor (GB) Distance (m): 3 Peak: PK Quasi-Peak: QP Average: AVC RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Detector Pol, Frequency Reading Factor Loss Factor Factor Net Limit Margin Bandwidth V(H) MHz dB(UV) dB(UV) dB PCC IC Module 1, TXRRx pair at LWCH. QW mode for peak and constant chirp for average measurements PK H 20500.000 51.31 45.33 14.61 20.21 9.54 61.10 9.5.00 -32.51 173 MHz RB RB PK H 20500.000 33.90 46.78 18.10 40.54 9.54 61.10 0.2.08 173 MHz RB RB AVG H 20500.000 33.90 </td <td></td> <td></td> <td>`</td> <td>Intertek Ass</td> <td>igned)</td> <td></td> <td></td> <td>()</td> <td>_</td> <td>9-19-2020.txt</td> <td>-</td> <td></td> <td></td> <td></td>			`	Intertek Ass	igned)			()	_	9-19-2020.txt	-			
Standard: FCC Part 15 Subpart C 15.209 Temp/HumidityPressure: 27 deg C 39% 1006 mB Receiver: ROS005-1_0-10-20 Limit Distance (m): 3 Frequency Range: 18-40GHz PreAmp: PREB Data 2020 kit Test Distance (m): 1 Frequency Range: 18-40GHz Net = Reading (dBuV/m) + Antenna Factor (dB /m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Imit Margin Bandwidth Peak: PC Quasi-Peak: CQ P Average: AVG RMS: RMS; NF = Noise Floctor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Fcc r Detector Pol. Frequency Reading (Atternan Cable Loss (dB) - Preamp Factor (dB (uV/m) dB (uV/m) dB Bandwidth FCC V(H) MHz dB(UV/m) dB (dB (uV/m) dB Bandwidth Receiver RB Fcc r CC Module 1, Ts/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements FCC IC Fcc r PK H 20500.000 51.31 45.61 20.21 9.54 81.90 95.00 -5.70 173 MHz RB RB AVG H 20500.000 33.50 46.78 18.10 40.54 9.54 81.90 95.00 -5.70 173 MHz RB <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Location:</td><td>10M</td><td>Barometer:</td><td>DAV007</td><td></td><td>Filter:</td><td>NONE</td><td></td><td></td></td<>						Location:	10M	Barometer:	DAV007		Filter:	NONE		
Receiver: ROS005-1_10-10-20 Limit Distance (m): 3 PreAmp: PREB Data 2020.txt Test Distance (m): 1 PreAmp: PreAmp Used? (V rol): Y Voltage/Frequency: 120VAC 60Hz Frequency Range: 18-40GHz Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Distance Factor (dB). Description Bardwidth denoted as RBW/VBW Detector Ant. Frequency: Reading (Factor Cable Description Bardwidth denoted as RBW/VBW Module 1, Tx/Rx pair at Low CH, CW mode for peak add constant chirp for average measurements Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements FCC IC PK H 20500.000 51.31 45.33 14.61 20.21 9.54 81.50 95.00 -13.50 toolker1 Metere PK H 20500.000 51.31 45.33 14.61 20.21 9.54 81.50 95.00 -6.81 toolker1 Metere PK H 30000.000 73.39 46.78 18.10 40.54 9.54 48.19 95.00 -6.81				()	07/22/20									
PreAmp: PRE8D Data 2020.txt Test Distance (m): 1 PreAmp. PRE4p Used? (Y or N): Y Voltage/Frequency: 120VAC 60Hz Frequency Range: 18-40GHz Net Reading (Bul/m) + Antenna Factor (dE) Preamp Factor (dE) - Distance Factor (dE) Distance Factor (dE) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Detector Pol. Frequency Reading Frequency Reading Factor I Type (V/H) MHz dB(U) dB(1/m) dB dB dB dB dB(U/m) dB FCC IC Module 1, TXRx pair at Low CH, CW mode for peak and constant chirp for average measurements PK H 20500.000 13.1 45.33 14.61 20.21 9.54 51.49 54.00 -5.70 1/3 MHz RB RB AVG H 20500.000 33.50 46.77 18.10 40.54 9.54 61.72 95.00 -6.81 100Hz+tr MHz AVG H 39000.000 33.50 46.72 1			•	15.209				Temp/Humio	lity/Pressure:	27 deg C	39%	1006 mB		
PreAmp Used? (Y or N): Y Voltage/Frequency: 120/AC 60Hz Frequency Range: 18-40GHz Net = Reading (dBuX/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB): Distance Factor (dB) Distance Factor (dB) Peak: PK Quasi-Peak: CP Average: AVG RMS: RMS: NE = Noise Foro, RB = Restricted Band; Bandwidth denoted as RBW/VBW Antenna Cable Pre-amp Distance Net Limit Margin Bandwidth Detector Pol. Frequency Reading Factor Loss (AB dB dB (UV/m) dB (-	_			()								
Net = Reading (dBu//m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; INF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Detector Pol. Frequency Reading Factor Loss Pre-amp Distance Ant. Margin Bandwidth FCC IC V(VH) MHz AdB(1/m) 4B dB						. ,								
Peak: PK. Quasi-Peak: QP. Average: AVG. RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Detector Pol. Frequency Reading Factor Loss Factor Net Limit Margin Bandwidth Type MHz dB(uV) dB(uV) dB dB dB ubit Umit Margin Bandwidth FCC IC Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements FCC IC FCC IC PK H 20500.000 21.30 45.33 14.61 20.21 9.54 51.49 54.00 -2.51 1/3/1 MHz RB RB PK H 30000.000 73.39 46.78 18.10 40.54 9.54 48.19 95.00 -6.81 100Hz1 MHz PK H 30000.000 33.50 46.78 18.10 40.54 9.54 51.92 54.00 -2.28 100Hz1 MHz RB RB PK H 39500.000 54.62 2.69 38.00<	F		. ,		0	, ,						0GHz		
Ant. Pol. Type Frequency (V/H) Reading Back (B(1/m) Antenna Factor (B Cable Loss (B Pre-amp Back (B Distance Back (B Net (B Limit (B Margin (B Bandwidth (B FCC IC Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 6 8 4B 4B 4B 4B 4B 4B Cable (B FCC IC Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 0 -2.51 1/3 MHz RB RB PK H 20500.000 21.30 45.33 14.61 20.21 9.54 81.90 95.00 -2.51 1/3 MHz RB RB AVG H 30000.000 73.39 46.78 18.10 40.54 9.54 48.19 95.00 -6.81 100kHz/1 MHz RB RB Module 5, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements -2.08 1/3 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.0			0.	,	•	,		<i>,</i> ,	()		()			
Detector Type Pol. (V(H) Frequency MHz Reading dB(uV) Factor dB Factor dB Factor dB Net dB(uV/m) Limit dB(uV/m) Margin dB Bandwidth dB FCC IC Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 95.0 13.0 14.61 20.21 9.54 81.50 95.00 -2.51 1/3 MHz RB RB AVG H 20500.000 21.30 45.33 14.61 20.21 9.54 81.50 95.00 -2.51 1/3 MHz RB RB PK H 30000.000 33.9 46.78 18.10 40.54 9.54 48.30 54.00 -2.51 1/3 MHz PK H 30000.000 33.50 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 1004rbr/r Mrz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.38 54.00 -10.64 1004rbr/r Mrz RB <td>Peak: F</td> <td></td> <td>eak: QP Av</td> <td>erage: AVG</td> <td></td> <td>-</td> <td>se Floor, RE</td> <td></td> <td>d Band; Bar</td> <td>ndwidth den</td> <td>oted as RB</td> <td>W/VBW</td> <td>т.</td> <td></td>	Peak: F		eak: QP Av	erage: AVG		-	se Floor, RE		d Band; Bar	ndwidth den	oted as RB	W/VBW	т.	
Type (V/H) MHz dB(uV) dB(uV) dB dB dB dB(uV/m) dB(uV/m) dB FCC IC Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 95.00 -13.50 1004H21 MHz RB RB PK H 20500.000 51.31 45.33 14.61 20.21 9.54 81.49 54.00 -2.51 173.MHz RB RB Module 1, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements 95.00 -6.81 1004H21 MHz RB RB PK H 30000.000 33.50 46.78 18.10 40.54 9.54 48.19 95.00 -6.81 1004H21 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 1004H21 MHz RB RB AVG H 39500.000 54.28 45.22 14.61 20.21 9.54 84.36 95.00														
Module 1, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 95.00 -13.50 1000H211 MHz RB RB RB AVG H 20500.000 21.30 45.33 14.61 20.21 9.54 81.50 95.00 -13.50 1000H211 MHz RB RB RB AVG H 20500.000 21.30 45.73 14.61 20.21 9.54 51.49 54.00 -2.51 1/3 MHz RB RB RB Module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements 54.00 -5.70 1/3 MHz RB RB AVG H 30000.000 33.50 46.78 18.10 40.54 9.54 61.72 95.00 -33.28 1004Hz1 MHz RB RB RB RB NGolule 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 103 MHz RB RB RB RB RB RB RB NGolule 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 1/3 MHz RB RB <td></td> <td>-</td> <td>Bandwidth</td> <td></td> <td></td>											-	Bandwidth		
PK H 20500.000 51.31 45.33 14.61 20.21 9.54 81.50 95.00 -13.50 100kHz11 MHz RB RB AVG H 20500.000 21.30 45.33 14.61 20.21 9.54 51.49 54.00 -2.51 1/3 MHz RB RB Module 1, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements -6.81 100kHz1 MHz RB RB AVG H 30000.000 33.50 46.78 18.10 40.54 9.54 48.30 54.00 -5.70 1/3 MHz Module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements -2.08 1/3 MHz RB	Туре			· · · /	· · · /				(/	(/			FCC	IC
AVG H 20500.000 21.30 45.33 14.61 20.21 9.54 51.49 54.00 -2.51 1/3 MHz RB RB PK H 30000.000 73.39 46.78 18.10 40.54 9.54 88.19 95.00 -6.81 100kHz/1 MHz AVG H 30000.000 46.78 18.10 40.54 9.54 88.19 95.00 -6.81 100kHz/1 MHz AVG H 39500.000 40.30 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 100kHz/1 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB PK V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB AVG V 20500.000 21.30 45.22 14.61 20.21				<mark>Rx pair at Lo</mark>		mode for pe	eak and con	stant chirp f	or average i	neasureme	1		ļ	
Module 1, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK H 30000.000 73.39 46.78 18.10 40.54 9.54 88.19 95.00 -6.81 100kHz/1 MHz AVG H 30000.000 73.39 46.78 18.10 40.54 9.54 48.30 54.00 -5.70 1/3 MHz AVG H 30000.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB AVG H 39500.000 54.28 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB PK V 20500.000 27.01 46.69 18.10 40.54 9.54 84.72 95.00 -10.28 100kHz/1 MHz AVG	PK		20500.000	51.31	45.33	14.61	20.21	9.54	81.50	95.00	-13.50	100kHz/1 MHz	RB	RB
PK H 30000.000 73.39 46.78 18.10 40.54 9.54 88.19 95.00 -6.81 100kHz/1 MHz AVG H 30000.000 33.50 46.78 18.10 40.54 9.54 48.30 54.00 -5.70 1/3 MHz Module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements 95.00 -6.81 100kHz/1 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 61.72 95.00 -3.28 100kHz/1 MHz RB RB AVG H 39500.000 54.28 45.22 14.61 20.21 9.54 81.38 95.00 -10.64 100kHz/1 MHz RB RB AVG V 20500.000 21.30 45.22 14.61 20.21 9.54 81.72 95.00 -10.64 100kHz/1 MHz RB AVG V 30000.000 70.01 46.69 18.10 40.54 9.54 87.72	AVG	Н	20500.000	21.30	45.33	14.61	20.21	9.54	51.49	54.00	-2.51	1/3 MHz	RB	RB
AVG H 30000.000 33.50 46.78 18.10 40.54 9.54 48.30 54.00 -5.70 1/3 MHz Module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 40.30 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 100kHz/1 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB Module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB RB AVG V 20500.000 70.01 46.69 18.10 40.54 9.54 84.72 95.00 -10.28 100kHz/1 MHz RB RB AVG V 30000.000 32.70 46.69 18.10 40.54 9.5		M	odule 1, Tx/F	<mark>Rx pair at M</mark>	id CH, CW I	mode for pe	ak and cons	stant chirp fo	or average r	neasureme	nts		l	
Module 1, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 40.30 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 100kHz/1 MHz RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB RB Module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 95.00 -10.64 100kHz/1 MHz RB RB RB PK V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB	PK	Н	30000.000	73.39	46.78	18.10	40.54	9.54	88.19	95.00	-6.81	100kHz/1 MHz		
PK H 39500.000 40.30 46.28 22.69 38.00 9.54 61.72 95.00 -33.28 100kHz/1 MHz RB RB RB AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB RB Module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 95.00 -10.64 100kHz/1 MHz RB RB<	AVG	Н	30000.000	33.50	46.78	18.10	40.54	9.54	48.30	54.00	-5.70	1/3 MHz		
AVG H 39500.000 30.50 46.28 22.69 38.00 9.54 51.92 54.00 -2.08 1/3 MHz RB RB Module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.28 45.22 14.61 20.21 9.54 84.36 95.00 -10.64 100kHz/1 MHz RB RB AVG V 20500.000 54.28 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB RB <td></td> <td>Mo</td> <td>odule 1, Tx/F</td> <td>Rx pair at Hi</td> <td>gh CH, CW</td> <td>mode for pe</td> <td>eak and con</td> <td>stant chirp f</td> <td>or average</td> <td>measureme</td> <td>nts</td> <td></td> <td></td> <td></td>		Mo	odule 1, Tx/F	Rx pair at Hi	gh CH, CW	mode for pe	eak and con	stant chirp f	or average	measureme	nts			
Module 5, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.28 45.22 14.61 20.21 9.54 84.36 95.00 -10.64 100kHz/1 MHz RB RB AVG V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB RB RB Module 5, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements 95.00 -10.28 100kHz/1 MHz RB RB PK V 30000.000 70.01 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz AVG V 30000.000 52.85 46.42 22.69 38.00 9.54 74.41 95.00 -10.94 1/3 MHz AVG V 39500.000 52.85 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz AVG V 20500.000	PK	Н	39500.000	40.30	46.28	22.69	38.00	9.54	61.72	95.00	-33.28	100kHz/1 MHz	RB	RB
PK V 20500.000 54.28 45.22 14.61 20.21 9.54 84.36 95.00 -10.64 100kHz/1 MHz RB RB RB AVG V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB RB RB Module 5, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements 95.00 -10.28 100kHz/1 MHz RB RB RB PK V 30000.000 70.01 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz AVG V 30000.000 32.70 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz AVG V 39500.000 52.85 46.42 22.69 38.00 9.54 74.41 95.00 -10.85 100kHz/1 MHz AVG V 39500.000 54.02 45.22 14.61 20.21 <t< td=""><td>AVG</td><td>Н</td><td>39500.000</td><td>30.50</td><td>46.28</td><td>22.69</td><td>38.00</td><td>9.54</td><td>51.92</td><td>54.00</td><td>-2.08</td><td>1/3 MHz</td><td>RB</td><td>RB</td></t<>	AVG	Н	39500.000	30.50	46.28	22.69	38.00	9.54	51.92	54.00	-2.08	1/3 MHz	RB	RB
AVG V 20500.000 21.30 45.22 14.61 20.21 9.54 51.38 54.00 -2.62 1/3 MHz RB RB Module 5, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements 1/3 MHz 1/3		M	odule 5, Tx/F	Rx pair at Lo	W CH, CW	mode for pe	eak and con	stant chirp f	or average i	neasureme	nts			
Module 5, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK V 30000.000 70.01 46.69 18.10 40.54 9.54 84.72 95.00 -10.28 100kHz/1 MHz AVG V 30000.000 32.70 46.69 18.10 40.54 9.54 84.72 95.00 -10.28 100kHz/1 MHz AVG V 30000.000 32.70 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz Module 5, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz AVG V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 20.20 45.22 14.61 20.21 9.54 50.00	PK	V	20500.000	54.28	45.22	14.61	20.21	9.54	84.36	95.00	-10.64	100kHz/1 MHz	RB	RB
PK V 30000.000 70.01 46.69 18.10 40.54 9.54 84.72 95.00 -10.28 100kHz/1 MHz AVG V 30000.000 32.70 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz Module 5, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements	AVG	V	20500.000	21.30	45.22	14.61	20.21	9.54	51.38	54.00	-2.62	1/3 MHz	RB	RB
AVG V 30000.000 32.70 46.69 18.10 40.54 9.54 47.41 54.00 -6.59 1/3 MHz Module 5, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK V 39500.000 52.85 46.42 22.69 38.00 9.54 74.41 95.00 -20.59 100kHz/1 MHz AVG V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.07 45.22 14.61 20.21 9.54 50.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB AVG V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 <td< td=""><td></td><td>М</td><td>odule 5, Tx/F</td><td>Rx pair at M</td><td>id CH, CW I</td><td>mode for pe</td><td>ak and cons</td><td>stant chirp fo</td><td>o<mark>r average r</mark></td><td>neasureme</td><td>nts</td><td></td><td></td><td></td></td<>		М	odule 5, Tx/F	Rx pair at M	id CH, CW I	mode for pe	ak and cons	stant chirp fo	o <mark>r average r</mark>	neasureme	nts			
Module 5, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK V 39500.000 52.85 46.42 22.69 38.00 9.54 74.41 95.00 -20.59 100kHz/1 MHz AVG V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.07 45.22 14.61 20.21 9.54 50.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB AVG V 20500.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -3.72 1/3 MHz PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31	PK	V	30000.000	70.01	46.69	18.10	40.54	9.54	84.72	95.00	-10.28	100kHz/1 MHz		
PK V 39500.000 52.85 46.42 22.69 38.00 9.54 74.41 95.00 -20.59 100kHz/1 MHz AVG V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements 100kHz/1 MHz RB RB PK V 20500.000 54.07 45.22 14.61 20.21 9.54 50.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB AVG V 20500.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -3.72 1/3 MHz PK V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/	AVG	V	30000.000	32.70	46.69	18.10	40.54	9.54	47.41	54.00	-6.59	1/3 MHz]	
AVG V 39500.000 30.50 46.42 22.69 38.00 9.54 52.06 54.00 -1.94 1/3 MHz Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.07 45.22 14.61 20.21 9.54 84.15 95.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB		Mo	odule 5, Tx/F	Rx pair at Hi	gh CH, CW	mode for pe	eak and con	<mark>stant chirp f</mark>	or average	measureme	nts			
Module 9, Tx/Rx pair at Low CH, CW mode for peak and constant chirp for average measurements PK V 20500.000 54.07 45.22 14.61 20.21 9.54 84.15 95.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB RB Module 9, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -54.99 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz	PK	V	39500.000	52.85	46.42	22.69	38.00	9.54	74.41	95.00	-20.59	100kHz/1 MHz		
PK V 20500.000 54.07 45.22 14.61 20.21 9.54 84.15 95.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB RB Module 9, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz RB RB AVG V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54	AVG	V	39500.000	30.50	46.42	22.69	38.00	9.54	52.06	54.00	-1.94	1/3 MHz	1	
PK V 20500.000 54.07 45.22 14.61 20.21 9.54 84.15 95.00 -10.85 100kHz/1 MHz RB RB AVG V 20500.000 20.20 45.22 14.61 20.21 9.54 50.28 54.00 -3.72 1/3 MHz RB RB Module 9, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz RB RB AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 80.31 95.00 -54.91 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz		M	odule 9, Tx/F	Rx pair at Lo	W CH, CW	mode for pe	eak and con	stant chirp f	or average r	neasureme	nts		Í	
Module 9, Tx/Rx pair at Mid CH, CW mode for peak and constant chirp for average measurements PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz	PK											100kHz/1 MHz	RB	RB
PK V 30000.000 65.60 46.69 18.10 40.54 9.54 80.31 95.00 -14.69 100kHz/1 MHz AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz	AVG	V	20500.000	20.20	45.22	14.61	20.21	9.54	50.28	54.00	-3.72	1/3 MHz	RB	RB
AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz		М	odule 9, Tx/F	Rx pair at M	id CH, CW	mode for pe	ak and cons	stant chirp fo	or average r	neasureme	nts		Í	
AVG V 30000.000 33.80 46.69 18.10 40.54 9.54 48.51 54.00 -5.49 1/3 MHz Module 9, Tx/Rx pair at High CH, CW mode for peak and constant chirp for average measurements PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz	PK	V	30000.000	65.60	46.69	18.10	40.54	9.54	80.31	95.00	-14.69	100kHz/1 MHz	1	
PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz	AVG	V	30000.000	33.80	46.69	18.10	40.54	9.54	48.51	54.00	-5.49	1/3 MHz	1	
PK H 39500.000 50.17 46.28 22.69 38.00 9.54 71.59 95.00 -23.41 100kHz/1 MHz		Mo	odule 9, Tx/F	Rx pair at Hi	gh CH, CW	mode for pe	eak and con	stant chirp f	or average	measureme	nts		i	
	PK	· · · · · · · · · · · · · · · · · · ·					1			1	1	100kHz/1 MHz	1	
AVG T [39300.000] 30.70 40.26 22.09 38.00 9.54 52.12 54.00 -1.88 1/3 MHZ	AVG	Н	39500.000	30.70	46.28	22.69	38.00	9.54	52.12	54.00	-1.88	1/3 MHz	1	

Intertek

Occupied Bandwidth: 19.52 GHz

MultiView	Spectrum								
Ref Level 118 Att	8.03 dBµV Offs 0 dB = SWT	et 41.03 dB	 RBW 1 MHz VBW 3 MHz 	Mode Auto	Sween				
PA Frequency St		100 ms	- von singe	Mode Mato	oweep				= 1Pk Max
the space by the	1455							м1[1]	
110 dBµV							-		20/27600 64
100 dBj//			-						
90 dity//	H1 88.605 dBµV			_		_	and a state of the	-	war human
00 dbµ//				_		mour		100.00	
the color has the stand	and products and a strange	the Mape Tangan Salahana			mount	**	_	_	
60 dBµV							_	-	-
50 dBµ//				_		_	_		
40 dBL/V					_	_	_		
30 dBµ//				_	_		_	_	-
20 dBµV									
CF 20.12 GHz	T		1001	pts		200.0 MHz/	Measuring	. Communit	Span 2.0 GH:

MultiView	Spectrum							
Ref Level 96.0 Att		dB = RBW 1 MHz ms = VBW 3 MHz		2 0				58
PA			Mode Pato one	ep				
Frequency Sw	veep						MI[1]	 1Fic Max 61.05 dBp
90 dBµV							witt	39.80161 GH
80 dBµ//								
NO GRAN	and the second sec	manne	man	4				
60 dily.//		1.55						
50 dBµV					and a second as the state of	and the produced		man stran
40 dBµ//								a hour
AC OBDA								
30 dBµ//								
20 dBµ//					-			
10 мµи				_				
o alikiha.					_			
CF 39.8460565	97 GHz	10	01 pts		30.79 MHz/		Span 6.	307886806 GHz
	Л					Measuring	Contrast of Contra	05.08.2020 21:45:27

Report Number: 104357499BOX-001

Issued: 08/06/2020 Revised: 06/03/2021

Test Personnel:	Vathana Ven	Test Date:	07/22/2020
Supervising/Reviewing		_	
Engineer:	le ad		
(Where Applicable)	Kouma Sinn 495		
Product Standard:	FCC Part 15C, 15.209	Limit Applied:	Section 6.3
Input Voltage:	120VAC 60Hz		
Pretest Verification w/		 Ambient Temperature:	27 ºC
Ambient Signals or		•	
BB Source:	Yes	Relative Humidity:	39 %
		Atmospheric Pressure:	1006 mbars

Deviations, Additions, or Exclusions: None

7 Unwanted Emissions

7.1 Method

The procedure described in Subclauses 6.3-6.6 and 9.9 of ANSI C63.10-2013 and Subclause 5.5.4 (field strength method) of ANSI C63.26-2015 were utilized to determine unwanted emissions.

Radiated emission measurements are performed from 9 kHz to 231 GHz. Measurements for frequencies less than or equal to 1 GHz are made with an EMI receiver employing a CISPR quasi-peak detector. Measurements for frequencies above 1 GHz are made with an EMI receiver or a spectrum analyzer employing an average detector and a peak detector.

Quasi-peak measurements are performed for frequencies less than or equal to 1 GHz. The quasi-peak level of radiated emissions was measured with a resolution bandwidth (RBW) of 9 kHz for frequencies below 30 MHz and 120 kHz for frequencies between 30 MHz to 1 GHz.

Both Peak and Average measurements are performed for frequencies above 1 GHz. The peak level of radiated emissions was measured with a resolution bandwidth (RBW) of 1 MHz, a video bandwidth (VBW) of 3 MHz, and a peak detector. The average level of radiated emissions was measured with a resolution bandwidth (RBW) of 1 MHz, a video bandwidth (RBW) of 1 MHz, a video bandwidth (VBW) of 3 MHz, and an RMS detector with trace averaging.

Radiated emissions measurement is performed at 10 meters distance for frequencies below 1 GHz, 3 meters for frequency between 1 GHz and 18 GHz, and 1 meter for frequencies above 18 GHz. If the emission level is too low for measurement at that distance, a pre-amplifier is used and/or the test is performed at a closer distance.

The EUT is configured to transmit continuously at its maximum data rate. The EUT is placed 80 cm in height for frequencies below 1 GHz and 1.5 meters in height for frequency above 1 GHz. For portable or handheld devices, the EUT is manipulated through three orthogonal orientations.

For radiated emissions measurements Below 30 MHz, the measuring antenna is positioned with its plane perpendicular to the ground at the specified distance from the EUT. The lowest height of the measurement antenna is 1 m above the ground. During the test, the EUT is rotated 0° through 360° and the measuring antenna orientations are varied (parallel, perpendicular, and ground-parallel) during the search for maximum emission level. EMI receiver's resolution bandwidth is set at 9 kHz.

For radiated emissions measurements between 30 MHz to 18 GHz, measurements are performed with the EUT rotated from 0° to 360°, the measuring antenna height scanned between 1 to 4 meters, and the measuring antenna varied for both horizontal and vertical polarization, to determine the maximum emission level.

For radiated emissions measurements between 18 GHz to 200 GHz, handheld measurement is performed at a far field distance. As the surfaces of the EUT are scanned, the test antenna is kept pointed toward the EUT and the measuring antenna polarization is varied slowly to cover all possible polarizations and orientations of the emission(s).

Data included is representative of the worst-case configuration (the configuration which resulted in the highest emission levels). Plots below are corrected for distance, cables, preamp, filters, antenna factors, and conversion factors then compared to the limits.

Report Number: 104357499BOX-001

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	5.6 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.9 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.4 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.9 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.6 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.6 dB	N/A

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF	- AG
Where	FS = Field Strength in dBμV/m
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dBµV/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 $UF = 10^{(32 \ dB\mu V / 20)} = 39.8 \ \mu V / m$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
IW001'	Cable, 2 meter	Insulated Wire	2801-NPS	001	10/08/2019	10/08/2020
145-406'	Cable, 10m Track A In-floor Cable #1	Huber + Suhner	sucoflex 160- 19220mm	001	12/10/2019	12/10/2020
HS001'	Cable, DC-18GHz 1.5m long	Huber & Suhner	SucoFlex 106A	HS001	11/19/2019	11/19/2020
IW003'	Cable, 8.4 meter	Insulated Wire	2800-NPS	003	10/08/2019	10/08/2020
145145'	Antenna, 30 MHz - 3 GHz	sunAR	JB3	A122313	05/07/2020	05/07/2021
PRE11'	Preamplifier, 50 dB gain	Pasternack	PRE11	PRE11	08/30/2019	08/30/2020
ETS002'	Antenna, 1-18GHz	ETS Lindgren	3117	00143260	06/20/2019	06/20/2020
BONN001'	Preamplifier, 1-18GHz	Bonn	BLMA 0118- M	1811749	07/11/2019	07/11/2020
IW001'	Cable, 2 meter	Insulated Wire	2801-NPS	001	10/08/2019	10/08/2020
145-408'	Cable, 10m Chamber - 3m Track B In-floor	Huber + Suhner	sucoflex 106- 11000mm	001	12/10/2019	12/10/2020
HS002'	Cable, DC-18GHz 1.5m long	Huber & Suhner	SucoFlex 106A	HS002	11/19/2019	11/19/2020
IW006'	Cable, DC-18GHz 8.4m long	Insulated Wire	2800-NPS	IW006	11/19/2019	11/19/2020
EMC04'	Antenna, 18-40 GHz	EMCO	3116	2090	12/10/2019	12/10/2020
ROS005-1'	Signal and Spectrum Analyzer	R&S	FSW43	100646	10/10/2019	10/10/2020
CBLHF201 2-2M-1'	Cable, 2m 9kHz-40GHz - SET1	Huber & Suhner	SF102	252675001	02/17/2020	02/17/2021
CBLSHF20 5;	Cable, SMA-SMA, 9kHz- 40GHz, (Cable Kit5)	Huber + Suhner	Sucoflex 102EA	234715001	09/06/2019	09/06/2020
OML3'	Mixer / Antenna	Oleson Microwave Lab	M12HWD	E21011-1	06/18/2020	06/18/2021
OML4'	Mixer / Antenna	Oleson Microwave Lab	M19HWA	U21011-1	06/18/2020	06/18/2021
OML5'	mmWave Harmonic Generator	Oleson Microwave Lab	40200WGS	21011-1	06/18/2020	06/18/2021
OML6'	WR-04 Horn antenna 22- 24dBi, 170-260GHz	OML	M04RH	19042901	06/18/2020	06/18/2021
OML7'	WR-04 Harmonic Mixer, 170-260GHz	OML	M04HWD	190429-1	06/18/2020	06/18/2021
PRE8'	Preamplifier, 1- 40 GHz	MITEQ	NSP4000-NF	507145	11/01/2019	11/01/2020
DAV007'	Weather Station Vantage Vue	Davis	6250	MS1912120 03	03/12/2020	03/12/2021

Software Utilized:

Name	Manufacturer	Version		
BAT-EMC	Nexio	3.17.0.3		
Excel 2003	Microsoft	(11.8231.8221) SP3		
EMI Boxborough.xls	Intertek	08/27/10		

7.3 Results:

The sample tested was found to Comply.

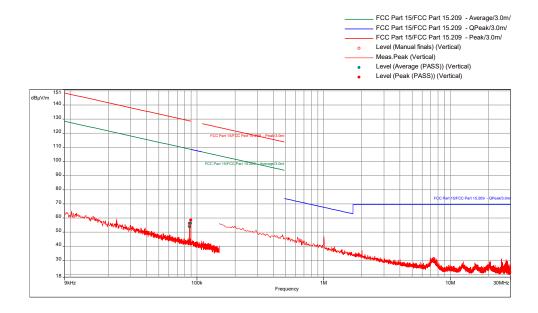
Unwanted emissions Limits (FCC Part 15C, 15.209):

Field strength (μV/m)	Measurement distance (m)	Detector
2400/F(kHz)	300	Quasi-peak [see Note 1]
24000/F(kHz)	30	Quasi-peak
30	30	Quasi-peak
100	3	Quasi-peak
150	3	Quasi-peak
200	3	Quasi-peak
500	3	Quasi-peak [see Note 2]
	(μV/m) 2400/F(kHz) 24000/F(kHz) 30 100 150 200	(μV/m) distance (m) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 3 150 3 200 3

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Note 2: The emission limits for the frequencies above 1 GHz are based on measurements employing a linear average detector.

7.4 Setup Photographs:


Photos are available in a separate exhibit

7.5 Plots/Data:

Powered from 120VAC 60Hz, 9kHz-30 MHz

Test Information:

Date and Time	7/22/2020 6:14:12 PM
Client and Project Number	L3 Communication
Engineer	Vathana Ven
Temperature	27 deg C
Humidity	39%
Atmospheric Pressure	1006mbar
Comments	RE 9kHz-30MHz_120VAC 60Hz_Loop antenna, Electric Field, 3M Location (FCC 15.209)

Results:

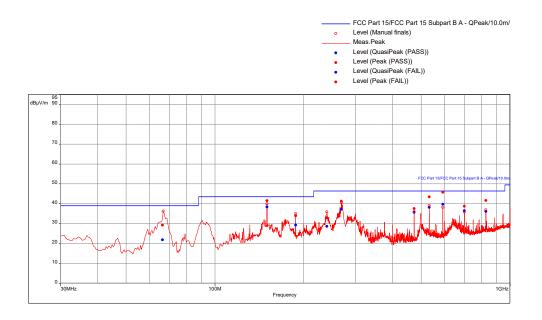
Peak (PASS) (2)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Atnena Pol.	RBW (Hz)	Correction (dB)
0.08715	56.34	128.79	-72.45	309.00	1.00	Vertical	200.00	11.71
0.08945	58.48	128.58	-70.10	311.00	1.00	Vertical	200.00	11.73

Average (PASS) (2)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Atnena Pol.	RBW (Hz)	Correction (dB)
0.08715	53.77	108.79	-55.02	309.00	1.00	Vertical	200.00	11.71
0.08945	56.28	108.58	-52.30	311.00	1.00	Vertical	200.00	11.73

Intertek


Report Number: 104357499BOX-001

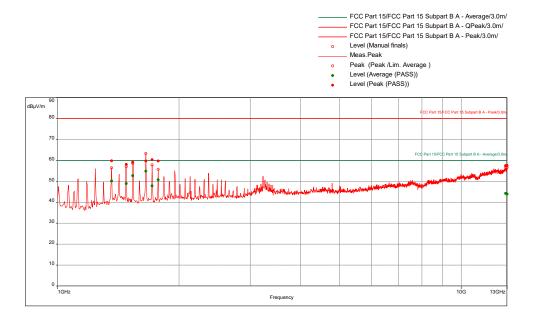
Issued: 08/06/2020 Revised: 06/03/2021

Powered from 120VAC 60Hz, 30 MHz - 1000MHz

Test Information:

Date and Time	6/10/2020 8:50:22 AM
Client and Project Number	L3 Communication
Engineer	Kouma Sinn
Temperature	22C
Humidity	45%
Atmospheric Pressure	1009mbar
Comments	Scan 1: 120VAC 60Hz, 30-1000MHz SA mode

Results:


QuasiPeak (Pass) (10)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Antenna Pol.	RBW (kHz)	Correction (dB)	
150	38.36	43.50	-5.14	359.00	3.87	Vertical	120	-19.66	
268.08	37.25	46.40	-9.15	226.00	2.84	Vertical	120	-18.35	
532.27	38.17	46.40	-8.23	336.00	1.00	Horizontal	120	-12.04	
591.44	39.72	46.40	-6.68	32.00	1.00	Horizontal	120	-11.69	
700	36.54	46.40	-9.86	261.00	1.88	Vertical	120	-9.04	
828.02	36.10	46.40	-10.30	239.00	1.00	Vertical	120	-6.75	
66.23	21.85	39.00	-17.15	359.00	2.41	Horizontal	120	-24.76	
187.51	29.31	43.50	-14.19	0.00	2.54	Vertical	120	-20.53	
239.57	28.63	46.40	-17.77	122.00 3.01		Horizontal	120	-20.02	
473.17	35.64	46.40	-10.76	306.00	1.00	Horizontal	120	-12.98	

Powered from 120VAC 60Hz, 1-40 GHz

Test Information:

Date and Time	6/17/2020 5:50:50 PM
Client and Project Number	L3 Communication
Engineer	Vathana Ven
Temperature	27 deg C
Humidity	31%
Atmospheric Pressure	1013mbar
Comments	RE 1 to 13 GHz_120VAC 60Hz_

Results:

Peak (PASS) (8)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Antenna Pol.	RBW (Hz)	Correction (dB)
1360	59.85	80.00	-20.15	292.00	2.80	Vertical	1000000.00	-20.91
1478.16	58.11	80.00	-21.89	275.00	2.40	Vertical	1000000.00	-21.56
1537.37	59.21	80.00	-20.79	114.00	1.55	Vertical	1000000.00	-21.55
1655.53	59.75	80.00	-20.25	247.00	1.00	Vertical	1000000.00	-21.01
1714.74	60.29	80.00	-19.71	268.00	1.10	Vertical	1000000.00	-20.47
1774.74	59.73	80.00	-20.27	298.00	1.20	Vertical	1000000.00	-19.59
12900.53	57.49	80.00	-22.51	84.00	3.44	Horizontal	1000000.00	4.15
12997.89	57.62	80.00	-22.38	319.00	2.05	Horizontal	1000000.00	4.42

Report Number: 104357499BOX-001

Average (PASS) (8)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) Height (m)		Antenna Pol.	RBW (Hz)	Correction (dB)
1360	50.11	60.00	-9.89	292.00	2.80	Vertical	1000000.00	-20.91
1478.16	48.96	60.00	-11.04	275.00	2.40	Vertical	1000000.00	-21.56
1537.37	52.70	60.00	-7.30	114.00	1.55	Vertical	100000.00	-21.55
1655.53	54.84	60.00	-5.16	247.00	1.00	Vertical	1000000.00	-21.01
1714.74	47.87	60.00	-12.13	268.00	1.10	Vertical	1000000.00	-20.47
1774.74	50.70	60.00	-9.30	298.00	1.20	Vertical	100000.00	-19.59
12900.53	44.26	60.00	-15.74	84.00	3.44	Horizontal	100000.00	4.15
12997.89	43.88	60.00	-16.12	319.00	2.05	Horizontal	100000.00	4.42

Radiated Spurious Emissions

	Company:	LEIDOS SE	ECURITY DE	TECTION 8	& AUTOMA	TION, INC.		Antenna	a & Cables:	SHF	Bands: N, I	F, HF, SHF		
	Model #:	ProVision 3	, SafeView H	HD, PV2 to I	PV3 upgrad	e kit		Antenna: ETS002 ETS002						
	Serial #:	BOX20060	91441-001 (Intertek Ass	igned)			Cable(s):	CBLSHF20	5	CBLHF201	2-2M-1		
	Engineers:	Vathana Ve	en			Location: 10M			DAV007		Filter:	NONE		
	Project #:	G10435749	99	Date(s):	06/10/20									
	Standard:	FCC Part 1	5 Subpart C	15.209				Temp/Humic	lity/Pressure:	22 deg C	45%	1009 mB		
Receiver: ROS005-1_10-10-20 Limit Distance (m): 3														
	PreAmp:	PRE8 Data	2020.txt		Test Di	stance (m):	1							
	P	reAmp Use	ed? (Y or N):	Y	Voltage/	Frequency:	120VA	C 60Hz	Freque	ncy Range:	13-4	0GHz		
		Net = Rea	ding (dBuV/r	n) + Antenn	a Factor (dl	B1/m) + Cal	ole Loss (dB	s) - Preamp	Factor (dB)	- Distance F	actor (dB)			
	Peak: F	PK Quasi-P	eak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RB	= Restricte	d Band; Bar	ndwidth den	oted as RB	N/VBW	_	
		Ant.			Antenna	Cable	Pre-amp	Distance						
	Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
	Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
			N	o emissions	were detec	ted above t	he measurir	na equipmer	nt noise floo	r.				

Manual scans were performed from 13-40GHz at < 1m from the EUT, no spurious emissions were detected above the measuring equipment noise floor.

Powered from 120VAC 60Hz, 40-200 GHz

Radiated Emissions

		ECURITY DE 3, SafeView Hi			kit Antenna: M19HWD, M12HWD, M08HWD						LF, HF, SHF			
Serial #:	BOX20060	91441-001(Ini	tertek Assig	ned)			Cable(s):	CBLSHF20	5					
Engineers:	Vathana V	en			Location:	10M	Barometer:	DAV007		Filter:	NONE			
Project #:	G10435749	99	Date(s):	08/05/20										
Standard:	FCC Part 1	5 Subpart C 1	5.209				Temp/Humi	dity/Pressure:	28deg C	40%	1006 mB			
Receiver:	ROS005-1	_10-10-20		Limit Di	istance (m):	3								
PreAmp:	PRE8 Data	a 2020.txt		Test Di	istance (m):	0.1								
	PreAmp Us	sed? (Y or N):	Ν	Voltage/	/Frequency:	120VA	C 60Hz	Freque	ncy Range:	40-20	00GHz			
		ading (dBuV/n	,		,		, ·	, ,		. ,				
Peak:	PK Quasi-	Peak: QP Ave	erage: AVG	RMS: RMS	; NF = Nois	e Floor, RB	= Restricte	d Band; Ban	dwidth deno	oted as RB	N/VBW			
	Ant.			Antenna	Cable	Pre-amp	Distance							
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	. ,	dB(uV/m)			FCC	IC	Harmonic?
	1	lodule 1, Tx/R			r .	1	1	-	-	1				
PK	Н	41000.000	31.09	38.44	1.64	0.00	11.16	60.01	74.00	-13.99	1/3 MHz			Noise Floor
AVG	Н	41000.000	20.30	38.44	1.64	0.00	11.16	49.22	54.00	-4.78	1/3 MHz			Noise Floor
PK	Н	61500.000	38.90	41.96	1.64	0.00	29.52	52.98	74.00	-21.02	1/3 MHz			Noise Floor
AVG	Н	61500.000	29.20	41.96	1.64	0.00	29.52	43.28	54.00	-10.72	1/3 MHz			Noise Floor
PK	Н	82000.000	38.70	41.96	1.64	0.00	29.52	52.78	74.00	-21.22	1/3 MHz			Noise Floor
AVG	Н	82000.000	29.00	41.96	1.64	0.00	29.52	43.08	54.00	-10.92	1/3 MHz			Noise Floor
514	1	<mark>lodule 1, Tx/R</mark>			<u>.</u>	1	<u> </u>	<u> </u>		1				
PK	Н	60000.000	30.60	41.75	1.64	0.00	11.16	62.83	74.00	-11.17	1/3 MHz	1		Noise Floor
AVG	Н	60000.000	21.00	41.75	1.64	0.00	11.16	53.23	54.00	-0.77	1/3 MHz	1		Noise Floor
PK	н	90000.000	39.19	41.75	1.64	0.00	29.52	53.06	74.00	-20.94	1/3 MHz	1		Noise Floor
AVG	Н	90000.000	28.90	41.75	1.64	0.00	29.52	42.77	54.00	-11.23	1/3 MHz			Noise Floor
DI	1	lodule 1, Tx/R				1	<u> </u>	<u> </u>		1	4/0 1411			
PK	Н	80000.000	39.52	44.25	1.64	0.00	29.52	55.89	74.00	-18.11	1/3 MHz	1		Noise Floor
AVG	Н	80000.000 lodule 5, Tx/R	29.20	44.25	1.64	0.00	29.54	45.55	54.00	-8.45	1/3 MHz			Noise Floor
PK	Н	41000.000	31.09	38.44	1.64	0.00	11.16	60.01	74.00	-13.99	1/3 MHz	ł		Noise Floor
AVG	Н	41000.000	20.30	38.44	1.64	0.00	11.16	49.22	54.00	-4.78	1/3 MHz	1		Noise Floor
PK	Н	61500.000	38.90	41.96	1.64	0.00	29.52	52.98	74.00	-21.02	1/3 MHz			Noise Floor
AVG	Н	61500.000	29.20	41.96	1.64	0.00	29.52	43.28	54.00	-10.72	1/3 MHz	1		Noise Floor
PK	Н	82000.000	38.70	41.96	1.64	0.00	29.52	52.78	74.00	-21.22	1/3 MHz	1		Noise Floor
AVG	H	82000.000	29.00	41.96	1.64	0.00	29.52	43.08	54.00	-10.92	1/3 MHz	1		Noise Floor
/		Iodule 5, Tx/R												110100111001
PK	Н	60000.000	30.60	41.75	1.64	0.00	11.16	62.83	74.00	-11.17	1/3 MHz	1		Noise Floor
AVG	Н	60000.000	21.00	41.75	1.64	0.00	11.16	53.23	54.00	-0.77	1/3 MHz	1		Noise Floor
PK	Н	90000.000	39.19	41.75	1.64	0.00	29.52	53.06	74.00	-20.94	1/3 MHz	1		Noise Floor
AVG	н	90000.000	28.90	41.75	1.64	0.00	29.52	42.77	54.00	-11.23	1/3 MHz	1		Noise Floor
	M	lodule 5, Tx/R	x pair at Hig	h CH, CW ı	mode for pe	ak and cons	stant chirp for	or average n	neasuremei	nts				
PK	Н	80000.000	39.52	44.25	1.64	0.00	29.52	55.89	74.00	-18.11	1/3 MHz	1		Noise Floor
AVG	Н	80000.000	29.20	44.25	1.64	0.00	29.54	45.55	54.00	-8.45	1/3 MHz	1		Noise Floor
	N	lodule 9, Tx/R	x pair at Lo	w CH, CW r	node for pe	ak and cons	stant chirp fo	or average m	neasuremer	nts				
PK	Н	41000.000	31.09	38.44	1.64	0.00	11.16	60.01	74.00	-13.99	1/3 MHz	1		Noise Floor
AVG	Н	41000.000	20.30	38.44	1.64	0.00	11.16	49.22	54.00	-4.78	1/3 MHz	1		Noise Floor
PK	Н	61500.000	38.90	41.96	1.64	0.00	29.52	52.98	74.00	-21.02	1/3 MHz			Noise Floor
AVG	Н	61500.000	29.20	41.96	1.64	0.00	29.52	43.28	54.00	-10.72	1/3 MHz			Noise Floor
PK	Н	82000.000	38.70	41.96	1.64	0.00	29.52	52.78	74.00	-21.22	1/3 MHz			Noise Floor
AVG	Н	82000.000	29.00	41.96	1.64	0.00	29.52	43.08	54.00	-10.92	1/3 MHz	1		Noise Floor
	Ν	lodule 9, Tx/R	x pair at Mi	d CH, CW n	node for pea	ak and cons	tant chirp fo	r average m	easuremer	nts				
PK	Н	60000.000	30.60	41.75	1.64	0.00	11.16	62.83	74.00	-11.17	1/3 MHz	1		Noise Floor
AVG	Н	60000.000	21.00	41.75	1.64	0.00	11.16	53.23	54.00	-0.77	1/3 MHz			Noise Floor
PK	Н	90000.000	39.19	41.75	1.64	0.00	29.52	53.06	74.00	-20.94	1/3 MHz	1		Noise Floor
AVG	Н	90000.000	28.90	41.75	1.64	0.00	29.52	42.77	54.00	-11.23	1/3 MHz			Noise Floor
	N	lodule 9, Tx/R				1	<u> </u>			1	-	1		
PK	Н	80000.000	39.52	44.25	1.64	0.00	29.52	55.89	74.00	-18.11	1/3 MHz	1		Noise Floor
AVG	Н	80000.000	29.20	44.25	1.64	0.00	29.54	45.55	54.00	-8.45	1/3 MHz	1		Noise Floor

Note: Exporatory seach for emissions were performed at <10cm distance to the EUT, no emissions were detected. Noise floor measurements of the some harmonics were taken and presented above.

Intertek

Lower Band Edge Compliant

Att .	108.53 dBμV OI 0 dB = SV	fset 31.53 dB = VT 100 ms =		Mode Auto Swee	ep.				
PA I Frequency	Sweep						-	= sPic h	/ax = 2Sa Avg
								M1[1]	61.90 dBp
100 dBpV		-				-		100	17,70000 GH
100 0014								M2[2]	48.66 dBµ
									17,70000 GH
90 dBµV		-				1	-	-	
80 dBµV	-	-			-	-	-	-	
CHE CANNEL THE	11 74 000 MMV								
70 dBµ//		-				-		-	
	M1.		h.	he he area burst	himmy	man		malin	is
m and marking	workerswork	manuala	harming	ad million we	14 M	mun have	Minghan	and the second	Marken Mark
	11111111111	Second Company				192	1228		
	H2 54:00	10 dBtV				-			
L. Allinot	eshall when the	Mahadeline praise	1 march Alexan	A and the As a	been have to	MANAMAN	a 1	MANANAN	beth le ma bolt the
d db.	de tras e		adding to a	Ad Alace As	But a sell a Address	1914AMANNANA	MALLAN ANA	head with	I to the lost
40 dBµ//	-	-							
30 dBµ//		+	-						
20 dBuV									
2202201					Î				
10 d8µV									
10 0841V	z					1.0 GHz/			

21:24:50 05.08.2020

			Up	per Band E	dge Compl	liant			
MultiView	Spectrum	٦							
Ref Level 96.0 Att		.00 dB = RB 56 ms = VB		de Auto Sweep					
TFrequency Sw	reep							= 1Pk M	ax - 2Rm Avg
90 dBµV								M1[1]	60.61 dBµV 40,0000 GHz
so obpy								M2[2]	49.31 dBµV 40.0000 GHz
80 dBj//									1010000 0112
	1 74.000 d8µV								
The Marting May	Mounda	munn	Marth Marth	thermony	and would be well	udur.websrow	Marin Lash	h. A. A.	eser vere A
60 dliµ//	"NAM"				teres 1		and Mahand	Correction .	Mular AP - and an
30 JBD/~~~~	H2 54.000 dBLM		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~		m	n	H
									a a construint ann an 17 marchailte
40 dBµ//									
30 dBµ//						-			
20 dBµ//									
10 dBµV									
D 1844						-			
26.0 GHz			1001 pt	5	1	.4 GHz/			40.0 GHz
	J						Measuring		05.08.2020 21:38:01

21:38:01 05.08.2020

Note: Antenna, cable, and pre-amp factors were compensated in the receiver.

Report Number: 104357499BOX-001

Issued: 08/06/2020 Revised: 06/03/2021

Test Personnel:	Vathana Ven Kouma Sin 495	Test Date:	06/10/2020 06/17/2020 08/05/2020
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
Product Standard:	FCC 15.209	Limit Applied:	Section 7.3
Input Voltage:	120VAC 60Hz		
Pretest Verification w/		Ambient Temperature:	23, 19, 28 ºC
Ambient Signals or			
BB Source:	Yes	Relative Humidity:	50, 34, 40 %
		Atmospheric Pressure:	1005, 1002, 1006 mbars

Deviations, Additions, or Exclusions: None

8 AC Mains Conducted Emissions

8.1 Method

Tests are performed in accordance with ANSI C63.10 and ANSI C63.4.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted Emissions	150 kHz - 30 MHz	1.2 dB	3.4 dB
Telco Port Emissions	150 kHz - 30 MHz	2.8 dB	5.0 dB

As shown in the table above our conducted emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

- Where $NF = Net Reading in dB\mu V$
 - RF = Reading from receiver in $dB\mu V$
 - LF = LISN or ISN Correction Factor in dB
 - CF = Cable Correction Factor in dB
 - AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

$$\label{eq:NF} \begin{split} \mathsf{NF} &= \mathsf{RF} + \mathsf{LF} + \mathsf{CF} + \mathsf{AF} = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V \\ \mathsf{UF} &= 10^{(49.1 \ dB\mu V \ / \ 20)} = 285.1 \ \mu V/m \end{split}$$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
NAR006'	EMI CISPR Receiver	NARDA	PMM 9010	696WW30303	02/27/2019	02/27/2020
CBL2012- 4'	Cable, 15 ft	Pomona	RG58	CBL044	05/11/2019	05/11/2020
DS23'	Attenuator, 20dB	Mini Circuits	20dB, 50 Ω	DS23	10/25/2019	10/25/2020
LISN30'	LISN - CISPR16 Compliant 9kHz-30MHz	Com-Power	LI-215A	191961	11/13/2019	11/13/2020
DAV005'	Weather Station	Davis	6250	MS191218083	02/05/2020	02/05/2021

Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	3.17.0.3

8.3 Results:

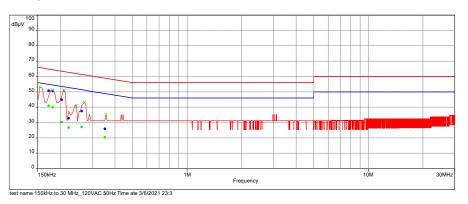
The sample tested was found to Comply.

8.4 Setup Photographs:

Photos are available in a separate exhibit

8.5 Plots/Data:

EUT Powered From 120VAC 60Hz, 15.207(a)


Test Information:

Date and Time	6/24/2020 5:19:15 PM
Client and Project Number	L3_G104357499
Engineer	Vathana Ven
Temperature	22 deg
Humidity	39%
Atmospheric Pressure	995 mB
Comments	150kHz to 30 MHz_120VAC 60Hz

Conducted Emissions Limit Lines/FCC Part 15 Subpart B CE Main Ports B - Average/

- Conducted Emissions Limit Lines/FCC Part 15 Subpart B CE Main Ports B QPeak/ Peak (Manual finals) (RF Output Measure) Peak (RF Output Measure)
- AVG Level (Average(Pass)) (RF Output Measure) QP Level (QuasiPeak(Pass)) (RF Output Measure) •

Sub-range 1 Frequencies: 150 kHz - 30 MHz (Mode: Lin - Step: 4.5 kHz) Settings: RBW: SkHz, VBW: Auto, Sweep time: 5 ms/Pts, Attenuation: Auto, Sweep count 1, Preamp: Off, LN Preamp: Off, Preselector: Off Line:RF Output Measure

Results:

QuasiPeak(Pass) (6)

Frequency (MHz)	SR	QP Level (dBµV)	QP Limit (dBuV)	QP Margin (dB)	Position	RBW (Hz)	Correction (dB)
0.1725	1	50.70	79.00	-28.30	Phase 1	9000.00	20.17
0.17943	1	50.46	79.00	-28.54	Phase 1	9000.00	20.17
0.2045	1	44.92	79.00	-34.08	Phase 1	9000.00	20.16
0.2215	1	32.72	79.00	-46.28	Neutral	9000.00	20.29
0.2615	1	37.42	79.00	-41.58	Neutral	9000.00	20.28
0.351	1	25.96	79.00	-53.04	Phase 1	9000.00	20.16

Frequency (MHz)	SR	AVG Level (dBµV)	AVG Limit (dBuV)	AVG Margin (dB)	Position	RBW (Hz)	Correction (dB)
0.1725	1	40.91	66.00	-25.09	Phase 1	9000.00	20.17
0.17943	1	39.96	66.00	-26.04	Phase 1	9000.00	20.17
0.2045	1	30.29	66.00	-35.71	Phase 1	9000.00	20.16
0.2215	1	26.70	66.00	-39.30	Neutral	9000.00	20.29
0.2615	1	27.13	66.00	-38.87	Neutral	9000.00	20.28
0.351	1	20.30	66.00	-45.70	Phase 1	9000.00	20.16

Average(Pass) (6)

EMC Report Shell Rev. July 2020 Leidos Security Detection & Automation, Inc., Model Number: ProVision 3, SafeView HD, PV2 to PV3 upgrade kit

Report Number: 104357499BOX-001

Issued: 08/06/2020 Revised: 06/03/2021

Test Personnel:	Vathana Ven	Test Date:	06/24/2020
Supervising/Reviewing			
Engineer:			
(Where Applicable)			
Product Standard:	FCC 15.207(a)	Limit Applied:	Class B
Input Voltage:	120VAC 60Hz		
Pretest Verification w/		Ambient Temperature:	22 ºC
Ambient Signals or			
BB Source:	BB Source	Relative Humidity:	53 %
		Atmospheric Pressure:	1017 mbars

Deviations, Additions, or Exclusions: None

9 Appendix A - FCC Waver ET Docket No. 16-45

Federal Comm	unications Commission	DA 16-1075
Federal Comm	Before the unications Commission gton, D.C. 20554	
In the Matter of)	
L-3 Communications Security and Detection Systems, Inc.))	
) ET Docket No. 16-45	

.

Request for Waiver of Sections 15.31(c), 15.35(b)and 15.205(a) of the Commission's Rules to Permitthe Deployment of Security Screening PortalDevices that Operate in the 20-40 GHz Range

ORDER

Adopted: November 22, 2016

Released: November 22, 2016

By the Chief, Office of Engineering and Technology:

I. INTRODUCTION

1. By this Order, we grant the request for waiver filed by L-3 Communications Security and Detection Systems, Inc. (L-3) on January 28, 2016 so it can obtain FCC certification to market a new generation of its ProVision screening device that is used at locations such as airports to identify metallic and non-metallic weapons or contraband on a person. L-3 seeks the same rule waivers, under the same conditions, that the Office of Engineering and Technology (OET) granted in 2006 for the first generation ProVision device, with one exception. The new scanning device would have a wider operating bandwidth, increasing the swept frequency signal range from 24.25-30 GHz to 20-40 GHz. For the reasons discussed below, we find that there is good cause to grant L-3's request for waiver.

II. BACKGROUND

2. The ProVision is a security portal that uses imaging technology to detect weapons or contraband carried on a person, including non-metallic objects or explosives, which might otherwise require intrusive manual searches or be missed entirely by existing metal detectors. A person is scanned by stepping briefly into a transparent, upright cylinder seven feet high by four feet in diameter. Two vertical antenna masts rotate around the person over a two-second interval. Each antenna element in turn sweeps from 24.25-30 GHz, operating for approximately six microseconds per sweep. The device measures reflections of the radio signals from the subject and produces an image that shows hidden objects, if any exist.

3. On August 3, 2006, OET adopted an Order that waived the provisions of Section 15.31(c) and Section 15.35(b) of the Commission's rules to permit the marketing and unlicensed operation of the SafeScout (now the ProVision 100) device.¹ Specifically, OET granted SafeView (now L-3) a waiver of

¹ SafeView, Inc. Request for Waiver of Section 15.31 and 15.35 of the Commission's Rules to Permit the Deployment of Security Screening Portal Devices that Operate in the 24.25-30 GHz Range, Order, 21 FCC Rcd 8814 (OET 2006) (2006 Waiver Order), aff'd, Memorandum Opinion and Order, FCC 10-13, 25 FCC Rcd 592 (2010).

Federal Communication	ons Commission	DA 16-1075

the rules to permit the measurement of the device's average radiated emissions with the frequency sweep active, rather than stopped as Section 15.31(c) of the rules requires. In addition, OET waived the requirement of Section 15.35(b) which specifies a limit on peak emissions from unlicensed devices of 20 dB above the corresponding maximum average emission limit specified in Section 15.209.² It placed specific operational and marketing conditions on the ProVision 100 device to ensure that licensed users operating in the 24.25-30.00 GHz and adjacent frequency bands are not subject to harmful interference.³

4. On January 28, 2016, L-3 filed a request for waiver of three Commission rules so it can obtain FCC certification to market a new generation of its ProVision screening device ("Next Gen ProVision device").⁴ It seeks the same rule waivers, under the same conditions, that OET granted for the first generation ProVision device, with one exception. Specifically, the new scanning device would have a wider operating bandwidth, increasing the swept frequency signal range from 24.25-30 GHz to 20-40 GHz. L-3 requests that OET once again waive Section 15.31(c) of the rules as it did in 2006 to allow radiated measurements to be performed with the device's frequency sweep active, and that it waive Section 15.35(b) to allow the peak level of radiated emissions to exceed the average emission limit by 41 dB.⁵ L-3 also requests a waiver of Section 15.205(a) to allow transmissions in five "restricted bands" where only spurious emissions are permitted: 22.01-23.12 GHz, 23.6-24 GHz, 31.2-31.8 GHz, 36.43-36.5 GHz, and 38.6-40 GHz.⁶

5. L-3 argues that a waiver of the rules is necessary to allow marketing of an improved version of the ProVision device that is better able to detect threats.⁷ It states that increasing the bandwidth over which the device sweeps from 5.75 GHz to 20 GHz will increase its resolution and improve its depth resolution by a factor of more than three.⁸ L-3 argues that the frequency band of 20-40 GHz is ideal for this device's operation, because frequencies above the 20-40 GHz band produce a stronger clothing signature that distorts the data, while lower frequency bands with longer wavelengths will have poorer resolution.⁹ Because operation in the 20-40 GHz band would result in transmissions within five restricted bands, a waiver of Section 15.205(a) would be necessary to allow this operation.¹⁰

⁵ 47 C.F.R. § 15.31(c) and 47 C.F.R. § 15.35(b). Section 15.31(c) requires that when average radiated emissions limits are specified for a device, the peak radiated emission level may not exceed the average emission limit by more than 20 dB. Section 15.35(b) requires that swept frequency devices be tested with the frequency sweep stopped at the frequencies chosen for measurement.

⁶ 47 C.F.R. § 15.205(a). Spurious emissions are emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. 47 C.F.R. § 2.1.

⁸ Id. at 6-7.

⁹ Id. at 4.

¹⁰ Id. at 9-10.

2

² 47 C.F.R. § 15.209.

³ OET initially placed a time limit on the waiver and limited the number of units that could be installed, but subsequently removed these restrictions. *See SafeView, Inc. Request for Waiver of Section 15.31 and 15.35 of the Commission's Rules to Permit the Deployment of Security Screening Portal Devices that Operate in the 24.25-30 GHz Range*, Letter Order, 26 FCC Rcd 10250 (OET 2011).

⁴ Request by L-3 Communications Security and Detection Systems, Inc. for Waiver of Sections 15.31, 15.35, and 15.205 of the Commission's Rules (filed Jan. 28, 2016) (L-3 Waiver Request).

⁷ L-3 Waiver Request at 6.

Federal Communications Commission D

DA 16-1075

6. L-3 argues that waivers of Sections 15.31(c) and 15.35(b) continue to be necessary because measuring emissions with the frequency sweep stopped overstates the interference potential of the device.¹¹ L-3 further argues that the maximum power of the device cannot be reduced without impairing its functionality, so a waiver of the peak power limit is necessary.¹²

 On February 19, 2016, OET issued a public notice seeking comment on L-3's request for a waiver.¹³ No parties filed comments in response to this notice.

III. DISCUSSION

8. We are authorized to grant a waiver under Section 1.3 of the Commission's rules if the petitioner demonstrates good cause for such action.¹⁴ Good cause, in turn, may be found and a waiver granted "where particular facts would make strict compliance inconsistent with the public interest."¹⁵ To make this public interest determination, the waiver cannot undermine the purposes of the rule, and there must be a stronger public interest benefit in granting the waiver than in applying the rule.¹⁶

9. We find that the requested waiver of 47 C.F.R. §§ 15.31(c), 15.35(b) and 15.205(a) is consistent with these principles. The Next Gen ProVision device will serve the public interest because its enhanced resolution and scanning depth will help improve security procedures at entry checkpoints by facilitating the identification of concealed dangerous objects, thereby promoting national security objectives. We also conclude that, with appropriate operational and technical restrictions to prevent harmful interference to authorized services, granting L-3's request for waiver does not undermine the policy underlying our rules, *i.e.*, to prevent harmful interference to authorized services. Weighing the strong public interest benefits associated with promoting improved security against the limited utility of the application of the rule to this case, we find the criteria has been met for granting a waiver of our rules to L-3 for its Next Gen ProVision device.

10. Based on the information submitted with the waiver request, and the lack of any reported interference from the current generation of ProVision equipment, we conclude that the Next Gen ProVision device poses very little potential for causing harmful interference to authorized operations. We find that the L-3 device when operated in fixed indoor locations would pose very little, if any, potential for harmful interference to licensed operations that are located either outdoors or indoors. Many of the

¹⁵ Northeast Cellular, 897 F.2d at 1166; see also ICO Global Communications, 428 F.3d at 269 (quoting Northeast Cellular); WAIT Radio, 418 F.2d at 1157-59.

¹⁶ See, e.g., WAIT Radio, 418 F.2d at 1157 (stating that even though the overall objectives of a general rule have been adjudged to be in the public interest, it is possible that application of the rule to a specific case may not serve the public interest if an applicant's proposal does not undermine the public interest policy served by the rule); *Northeast Cellular*, 897 F.2d at 1166 (stating that in granting a waiver, an agency must explain why deviation from the general rule better serves the public interest than would strict adherence to the rule).

¹¹ Id. at 8.

¹² Id. at 9.

¹³ Office of Engineering and Technology Declares L-3 Communications Security and Detection Systems, Inc. Request for Waiver of Part 15 Measurement and Restricted Band Rules to be a "Permit-but-Disclose" Proceeding for Ex Parte Purposes and Requests Comment, Public Notice, 31 FCC Rcd 1167 (2016).

¹⁴ 47 C.F.R. § 1.3. See also ICO Global Communications (Holdings) Limited v. FCC, 428 F.3d 264 (D.C. Cir. 2005); Northeast Cellular Telephone Co. v. FCC, 897 F.2d 1164 (D.C. Cir. 1990); WAIT Radio v. FCC, 418 F.2d 1153 (D.C. Cir. 1969).

Federal Communications Commission

DA 16-1075

factors that supported our prior waiver for L-3's first-generation device continue to be relevant and favor L-3's present application. At frequencies in the ProVision's operating range, free space loss is significant. We concur with L-3 that this factor, added to building attenuation, can prevent harmful interference to licensed devices operating outdoors.¹⁷ Also, the L-3 device's very low duty cycle signals and fast sweep speeds would further mitigate any potential interference to licensed receivers that operate at much longer transmission time periods in the affected frequency bands. Moreover, the Next Gen ProVision device would have a faster sweep than the current device. This characteristic will reduce the time that a signal occupies any given frequency band, and will further reduce the likelihood of harmful interference.¹⁸

11. The wider sweep range of the Next Gen ProVision device will cause it to transmit in additional frequency bands where the current device does not. The services potentially impacted by the increased sweep range include the Amateur Radio Service at 24 GHz¹⁹, as well as those in five restricted bands: 22.01-23.12 GHz, 23.6-24 GHz, 31.2-31.8 GHz, 36.43-36.5 GHz, and 38.6-40 GHz.²⁰ The first four bands are restricted to protect radio astronomy and satellite services, while the fifth is part of a blanket restriction on operations at frequencies above 38.6 GHz.²¹ We find that the factors described above (high path loss, building attenuation, low duty cycle and sweep speeds that are faster than those of the existing ProVision device) will make interference to services in those bands, as well as other services in the 20-40 GHz band, highly unlikely. However, we will take additional measures to protect radio astronomy operations in the 20-40 GHz band.

12. With regard to radio astronomy, L-3 states that it will agree as a condition of the waiver to coordinate installations for any location closer than 50 kilometers to a radio astronomy facility that observes in the 20-40 GHz frequency range, and to coordinate any installation which is line-of-sight to the observatory at Kitt Peak.²² L-3 argues that the limited number of radio astronomy sites observing at these frequencies, the non-consumer nature of the L-3 device, and L-3's commitment to maintain a list of locations where the devices are installed make distance separation a reliable means of preventing harmful interference.²³ We agree, and will therefore condition the waiver accordingly.

13. Consistent with L-3's request, we will impose the same operational and marketing conditions on operation of the Next Gen ProVision device as we imposed on the ProVision 100 device in the 2006

¹⁸ Id. at 14.

²⁰ 47 CFR § 15.205(a).

²¹ The increased sweep range of the NexGen ProVision device will encompass frequency bands (37-38.6 GHz and 38.6-40 GHz) for which the Commission recently adopted new and modified wireless service rules. *Use of Spectrum Bands Above 24 GHz For Mobile Radio Services*, Report and Order and Further Notice of Proposed Rulemaking, 81 FCC Rcd 58269 (2016). Under the general conditions of operation for unlicensed devices, in the event the NextGen ProVision causes harmful interference to authorized services in these bands, it must cease operation until the harmful interference has been corrected. 47 CFR § 15.5.

²² L-3 Waiver Request at 10-11.

²³ Id. at 10.

4

¹⁷ L-3 Waiver Request at 13-14.

¹⁹ The band 24.0-24.05 GHz is allocated on a primary basis for the Amateur Radio Service, and the Amateur Radio Service may use the 24.05-25 GHz on a secondary basis to Federal radiolocation operations. As previously noted, L-3's first generation device has successfully operated in the 24.25-30 GHz band without reports of harmful interference.

Federal Communications Commission

DA 16-1075

Waiver Order, except that we are specifying that operation will be permitted over the wider frequency range of 20-40 GHz.²⁴ These conditions will significantly limit the potential for harmful interference from the Next Gen ProVision imaging device, while allowing deployments in airports, prisons and other similar locations, and providing transportation, law enforcement and security entities with a reliable and innovative means of protecting the American public. Specifically, we will require L-3 to install its equipment indoors only, thereby ensuring that building attenuation and free space loss will prevent any measurable power from the L-3 device reaching licensed receivers in the vicinity. We are also limiting the allowable radiated peak power levels to no more than 41 dB above the average emissions limit in Section 15.209(a).²⁵

14. We will require compliance with certain notification and recordkeeping requirements as we did previously. Specifically, we will require L-3 to create and maintain a record of installations of all devices operating under this waiver, including the identity of the customer, the type of installation, and street address and/or geographical coordinates. The information will assist L-3, the Commission and NTIA in determining whether an L-3 device is operating within close proximity to an authorized operation should harmful interference occur, thus facilitating investigation of an interference complaint. We are also requiring L-3 to inform purchasers that Next Gen ProVision imaging devices may not be resold to third parties for use at another installation in the United States unless appropriate arrangements are made to meet all of the conditions of this waiver. This condition will ensure that equipment will continue to be listed in the L-3 database even if it is resold. Finally, we will require L-3 to obligate parties who purchase this device to operate them consistent with the terms of this Order.²⁶

15. Accordingly, pursuant to the delegated authority in Sections 0.31 and 0.241 of the Commission's rules, we waive the requirements of Sections 15.31(c), 15.35(b) and Section 15.205(a) of our rules to permit the certification and marketing of the Next Gen ProVision device. This waiver is subject to the following conditions:

1) The Next Gen ProVision imaging device shall be certified by the Commission and must comply with the technical specifications applicable to operation under Part 15 of 47 C.F.R.²⁷ However, for this particular swept frequency device, compliance with the average power level need not be demonstrated under the requirement of 47 C.F.R. § 15.31(c) and the requirement of §15.35(b) is relaxed to allow a total radiated peak power level up to 41 dB above the maximum permitted average power in Section 15.209(a) when measured as specified herein.

2) The intentional emissions generated by the Next Gen ProVision imaging device must be completely contained within the 20 to 40 GHz frequency range.

3) All installations of the Next Gen ProVision imaging devices operated under this waiver shall be restricted to indoor use.

²⁴ 2006 Waiver Order, 21 FCC Rcd at 8823, para. 29.

²⁵ For frequencies above 960 MHz, the limit in this section is 500 microvolts per meter, measured at a distance of three meters.

²⁶ The provisions of 47 CFR §2.939(a) allow the Commission to revoke the certification grant if L-3 or any operator of these devices fails to comply with the obligations placed on them in accordance with the equipment authorization program.

²⁷ L-3 shall include a copy of this waiver order with its application for certification of the Next Gen ProVision imaging device.

Federal Communications	Commission	DA 16-1075
r cuciai communications	Commission	DA 10-10/5

4) L-3 shall create and maintain a record of installations of all devices operating under this waiver, including the identity of the customer, type of location (*e.g.*, airport or government building), and street address and/or coordinates. This list shall be made available to the Commission and to NTIA upon request.

5) L-3 shall inform purchasers that Next Gen ProVision imaging devices may not be resold to third parties for use at another installation in the United States unless appropriate arrangements are made to meet all of the conditions of this waiver.

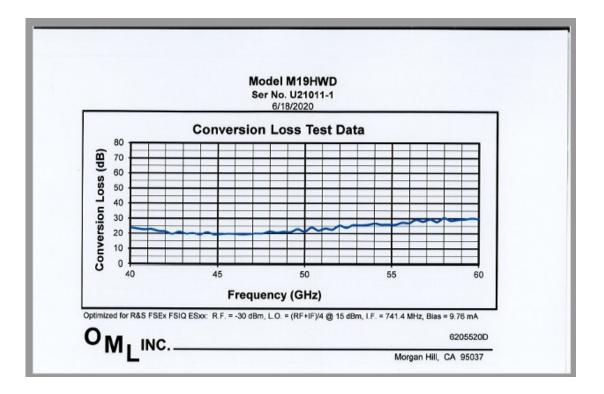
6) This waiver shall apply to the Next Gen ProVision imaging device produced by L-3 as described herein and provided no major changes are made to the transmitter circuitry or to the housing and position of the antenna masts that would increase the devices radiated power or bandwidth.

7) L-3 shall follow the same measurement procedures for determining the average radiated power and the peak radiated power as specified in the initial waiver grant.²⁸ These measurement procedures are specific to the Next Gen ProVision imaging device and are not generally applicable to all swept-frequency transmitting systems.

8) L-3 shall coordinate operation of its Next Gen Provision imaging system with any radio astronomy facilities within 50 kilometers that receive signals in the 20-40 GHz band, and shall coordinate any installation which is within line of sight of the observatory at Kitt Peak.

IV. ORDERING CLAUSE

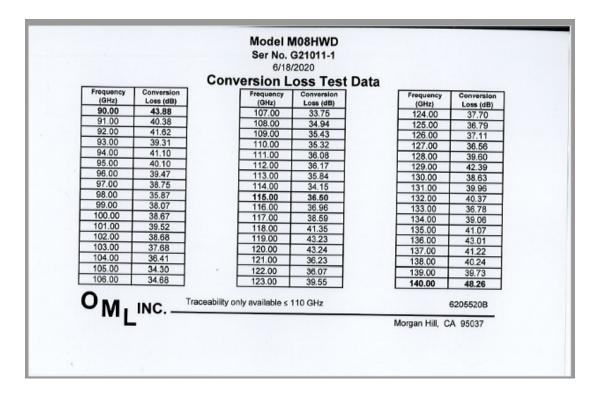
16. Accordingly, pursuant to authority delegated in sections 0.31 and 0.241 of the Commission's rules, 47 C.F.R. sections 0.31, 0.241, and section 1.3 of the Commission's rules, 47 C.F.R. section 1.3, IT IS ORDERED that the Request for Waiver filed by L-3 Communications Security and Detection Systems, Inc. on January 28, 2016 IS GRANTED consistent with the terms of this Order. This action is taken pursuant to Sections 4(i), 302, 303(e), and 303(r) of the Communications Act of 1934, as amended, 47 U.S.C. Sections 154(i), 302, 303(e), and 303(r). This action is effective upon release of this Order.

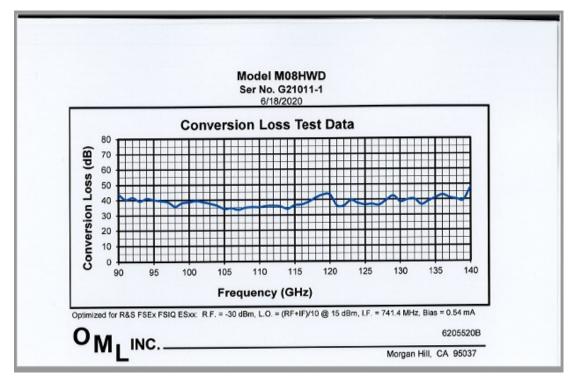

17. IT IS FURTHER ORDERED that, if no applications for review are timely filed, this proceeding SHALL BE TERMINATED and the docket CLOSED.

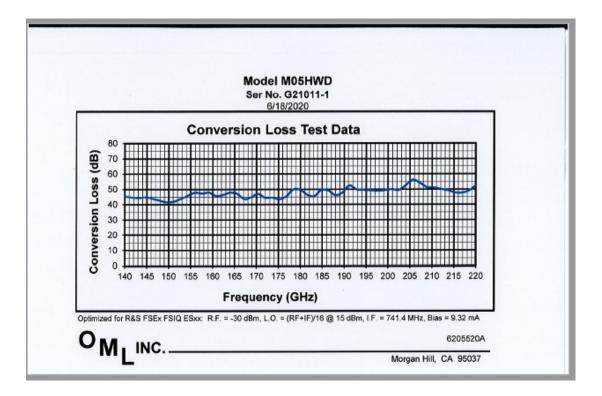
FEDERAL COMMUNICATIONS COMMISSION


Julius P. Knapp Chief, Office of Engineering and Technology

²⁸ 2006 Waiver Order, 21 FCC Rcd at 8823, para. 29.


10 Appendix B - Mixer/Horn Calibration Certificates




F		Con	version L		t Data	-	
Frequency (GHz)	Conversion Loss (dB)		Frequency (GHz)	Conversion Loss (dB)		Frequency (GHz)	Conversion Loss (dB)
40.00	24.11		46.80	19.58		53.60	25.93
40.40	23.32		47.20	20.12	1	54.00	26.88
40.80	22.81		47.60	20.09	1	54.40	26.20
41.20	23.01		48.00	21.44	1	54.80	26.21
41.60	21.80		48.40	20.68	1	55.20	26.13
42.00	21.51		48.80	21.38	1	55.60	27.43
42.40	19.79		49.20	21.07	1	56.00	27.16
42.80	21.25		49.60	23.03	1	56.40	29.34
43.20	19.97		50.00	21.48	1	56.80	28.16
43.60	20.33		50.40	24.13	1	57.20	29.62
44.00	19.38		50.80	22.14	1	57.60	27.95
44.40	20.87		51.20	23.53]	58.00	30.53
44.80	19.39		51.60	22.82	1	58.40	28.68
45.20	19.59		52.00	25.38		58.80	29.41
45.60	19.92		52.40	24.03		59.20	29.68
46.00	19.74		52.80	25.72		59.60	30.20
46.40	19.39		53.20	25.65		60.00	29.78
OM,		aceability o	only available s	110 GHz		Morgan Hill, C	6205520D

		Com	version L	2020	t Data		
Frequency (GHz)	Conversion Loss (dB)	Com	Frequency (GHz)	Conversion Loss (dB)		Frequency (GHz)	Conversion Loss (dB)
60.00	32.71		70.20	33.21	1	80.40	33.77
60.60	31.82		70.80	33.27		81.00	33.09
61.20	31.77		71.40	32.19	1	81.60	32.55
61.80	31.97		72.00	32.25	1	82.20	31.66
62.40	32.59		72.60	31.64	1	82.80	31.25
63.00	32.48		73.20	31.57	1	83.40	30.57
63.60	32.41		73.80	31.31]	84.00	30.64
64.20	32.61		74.40	31.87	1	84.60	31.02
64.80	33.82		75.00	32.94	1	85.20	30.87
65.40	34.42		75.60	33.17	1	85.80	30.76
66.00	34.73		76.20	32.34		86.40	30.88
66.60	34.86		76.80	33.15		87.00	31.20
67.20	35.03		77.40	32.70		87.60	32.04
67.80	33.85		78.00	32.23		88.20	32.89
68.40	34.31		78.60	32.97		88.80	33.14
69.00	34.43		79.20	33.76		89.40	32.49
69.60	33.96		79.80	33.83		90.00	31.49
о _{мі}	INC.	raceability c	only available ≤	110 GHz			6205520C

				G21011-1 /2020			
		Conv	version L		t Data		
Frequency (GHz)	Conversion Loss (dB)		Frequency (GHz)	Conversion Loss (dB)]	Frequency (GHz)	Conversion Loss (dB)
140.00	45.47		167.20	43.60	1	194.40	49.67
141.60	44.68		168.80	44.83	1	196.00	49.35
143.20	44.28		170.40	47.09	1	197.60	48.98
144.80	44.80		172.00	44.36	1	199.20	49.44
146.40	43.72		173.60	44.54	1	200.80	50.15
148.00	42.56		175.20	43.51	1	202.40	49.61
149.60	41.46		176.80	45.33	1	204.00	52.63
151.20	41.93		178.40	50.00	1	205.60	56.16
152.80	43.82		180.00	49.68	1	207.20	54.30
154.40	45.92		181.60	46.51	1	208.80	51.43
156.00	47.90		183.20	45.57]	210.40	51.12
157.60	47.33		184.80	49.60]	212.00	50.18
159.20	47.95		186.40	49.23	1	213.60	49.44
160.80	45.72		188.00	46.22		215.20	47.95
162.40	46.43		189.60	47.95		216.80	47.79
164.00	47.90		191.20	52.44		218.40	49.24
165.60	47.11		192.80	49.96]	220.00	52.41
		menability	only available s		,		6205520A

200

Certifica	te of Compliance
Certificate No: 6205520D-U21011	-1
Manufacturer: OML, Inc.	
Model/Part No: M19HWD	Serial/ID No: U21011-1
Description: WR-19 Harmonic Mixe	r
Date of Test: June 18, 2020	
Temperature: (23 +/- 5) deg C Procedure:	Humidity: 20 to 65% RH
This certifies that the above product was applicable OML's procedures.	s tested in compliance with OML specifications using
As Received : Physical Condition: Go Within Tolerance: Yes	od
As Shipped: At the completion of the t	est, the product COMPLIED with the performance capabilit
Remarks: Functional Verification	Service
Canada, Euromet members (NPL, PTB, measurements are traceable to natural pl	is to national standards administered by U.S. NIST, NRC BNM, etc.) or other recognized standards laboratories. Son hysical constants, consensus standards or ratio type on relative to traceability is available for review by
appointment. In the absence of power standards above	110 GHz, power measurements and conversion loss
appointment. In the absence of power standards above measurements above 110 GHz are to co	nfirm operation functionality and traceable only to OML.
appointment. In the absence of power standards above measurements above 110 GHz are to co	
appointment. In the absence of power standards above measurements above 110 GHz are to co	nfirm operation functionality and traceable only to OML.

		Ce	rtific	cate o	of Con	npliand	се	
Certificate N	io:	62055	20C-E210	011-1				
Manufactur	er: O	ML, Inc						
Model/Part	No:	M12H	WD			Serial/ID	No:	E21011-1
Description:	W	R-12 Ha	rmonic M	lixer				
Date of Test Temperatury Procedure:					Humid	ity: 20 to 65	% RH	
This certifies applicable O)				was tested	l in complia	unce with OM	fL spec	cifications using
As Received			ndition: (rance: Y					
As Shipped:	At th	e compl	ction of th	he test, the	product C	OMPLIED w	ith the	performance capabili
Remarks:	Fur	octional '	Verificati	on Service	1			
Canada, Euror measurements measurements appointment. In the absence	are to Sup	embers raceable oporting ower star	(NPL, PT to natura documen idards ab	B, BNM, l physical tation relat	etc.) or oth constants, i tive to trac Hz, power	er recognized consensus sta cability is ava measurement	d stand indards ailable ts and (
This certificat	e shal	I not be	reproduce	ed, except	in full, wit	hout the writt		roval of OML 24/2020

Certificate of Compliance

Certificate No: 6205520B-F21011-1 Manufacturer: OML, Inc. Model/Part No: M08HWD Description: WR-08 Harmonic Mixer

Serial/ID No: F21011-1

Date of Test: June 18, 2020 Temperature: (23 +/- 5) deg C Procedure:

Humidity: 20 to 65% RH

This certifies that the above product was tested in compliance with OML specifications using applicable OML's procedures.

As Received : Physical Condition: Fair Within Tolerance: Yes

As Shipped: At the completion of the test, the product COMPLIED with the performance capability.

Remarks: Functional Verification Service

Traceability Information: Traceability is to national standards administered by U.S. NIST, NRC Canada, Euromet members (NPL, PTB, BNM, etc.) or other recognized standards laboratories. Some measurements are traceable to natural physical constants, consensus standards or ratio type measurements. Supporting documentation relative to traceability is available for review by appointment.

In the absence of power standards above 110 GHz, power measurements and conversion loss measurements above 110 GHz are to confirm operation functionality and traceable only to OML.

This certificate shall not be reproduced, except in full, without the written approval of OML.

	Charle_	06/24/2020
O _{MI Inc.}	Mitzi Chow, Material Manager	Date
- IVIL Inc	300 Digital Drive, Morgan Hill, CA 95037 USA	Tel. (408) 779 2698 Fax (408) 778 0491

	Certifical	te of Compliance
Certificate No:	6205520A-G21011-	-1
Manufacturer: O	ML, Inc.	
Model/Part No:	M05HWD	Serial/ID No: G21011-1
Description: WI	R-05 Harmonic Mixer	r
Date of Test: Jur Temperature: (23 Procedure:		Humidity: 20 to 65% RH
This certifies that that the applicable OML's p		tested in compliance with OML specifications using
	vsical Condition: Fair thin Tolerance: Yes	
As Shipped: At th	e completion of the te	est, the product COMPLIED with the performance capabi
Remarks: Fun	actional Verification S	iervice
Canada, Euromet m measurements are to measurements. Sup appointment. In the absence of po	nembers (NPL, PTB, E raceable to natural phy oporting documentatio ower standards above	is to national standards administered by U.S. NIST, NRC BNM, etc.) or other recognized standards laboratories. So ysical constants, consensus standards or ratio type on relative to traceability is available for review by 110 GHz, power measurements and conversion loss firm operation functionality and traceable only to OML.
		except in full, without the written approval of OML.
	I not be reproduced, e	
	I not be reproduced, e	06/24/2020

11 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	08/06/2020	104357499BOX-001	VFV	KPS 4PS	Original Issue
0	06/03/2021	104357499BOX-001	VFV ^{V5V}	KPS LPS	Added line-conducted emissions data for 15.207