Leidos Security Detection & Automation, Inc.

TEST REPORT FOR

Pro:Vision® 3, SafeView HD, PV1 to PV3, PV2 to PV3 Upgrade Kit Model: 1600-30872-01

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.209

Report No.: 107144-12

Date of issue: January 5, 2023

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 76 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	10
15.215(c) Occupied Bandwidth (10dB BW)	10
15.209 Field Strength of Fundamental	21
15.209 Radiated Emissions	46
15.207 AC Conducted Emissions	68
Supplemental Information	75
Measurement Uncertainty	75
Emissions Test Details	75

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Leidos Security Detection & Automation, Inc.

One Radcliff Road

CKC Laboratories, Inc.

Tewksbury, MA 01876

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Uresh Patel Project Number: 107144

Customer Reference Number: P010276349

DATE OF EQUIPMENT RECEIPT: December 1, 2022

DATE(S) OF TESTING: December 1, 6-9, 12-16, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew 7 Be

Page 3 of 76 Report No.: 107144-12

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 76 Report No.: 107144-12

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.209

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.209	Field Strength of Fundamental	NA	Pass
15.209	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

_		^	• • •
Summary	/ AT I		ITIONE
Sullilla v	/ UI \		

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

Page 5 of 76 Report No.: 107144-12

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Pro:Vision® 3, SafeView HD, PV1 to PV3, PV2 to PV3 Upgrade Kit	Leidos Security Detection & Automation, Inc.	1600-30872-01	001

Support Equipment:

Device	Manufacturer	Model #	S/N
Power supply	Cosel	GHA500F-24	NA
Power supply	Cosel	GHA500F-24	NA
Laptop	Dell	Latitude 5480	3347123943B

General Product Information:

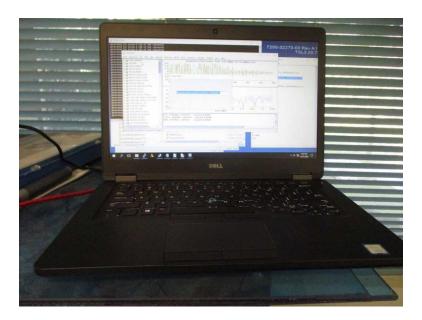
Product Information	Manufacturer-Provided Details			
Equipment Type:	Radio Module			
Modulation Type(s):	FMCW			
Maximum Duty Cycle:	98%			
Antenna Type(s) and Gain:	Spiral circular polarized, Gain: see table below			
Antenna Connection Type:	Integral			
Nominal Input Voltage:	48V DC			
Firmware / Software used for Test:	Test firmware V2.2.7, V 2.2.8*			
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer				
assumes full responsibility.				

^{*} V2.2.8 same transmit parameter as V2.2.7 with improved receiver gain. Spot check perform to verify transmitter parameter.

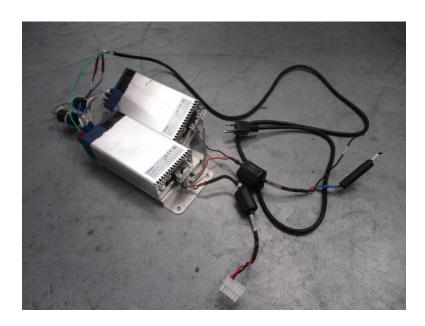
Manufacturer provided antenna gain information

	Gain @Boresight (dBi)								
Freq (GHz)	20.0	22.5	25.0	27.5	30.0	32.5	35.0	37.5	40.0
LHCP	-1.66	-1.73	1.17	0.59	-0.13	0.30	-0.89	1.46	2.64

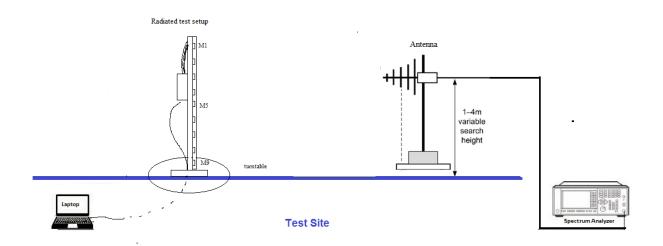
Page 6 of 76 Report No.: 107144-12



EUT and Accessory Photo(s)



Support Equipment Photo(s)


Laptop

Power Supply

Block Diagram of Test Setup(s)

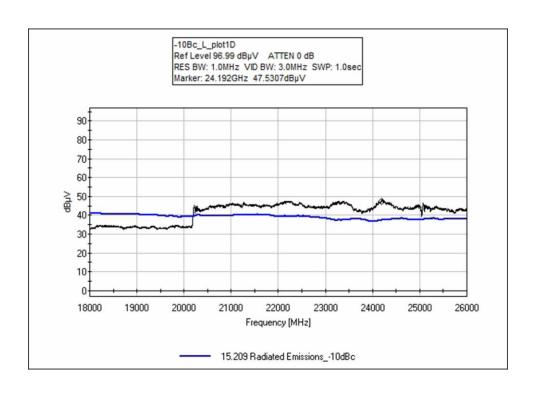
Page 9 of 76 Report No.: 107144-12

FCC Part 15 Subpart C

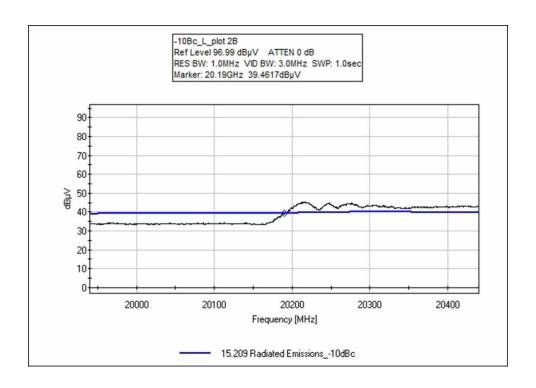
15.215(c) Occupied Bandwidth (10dB BW)

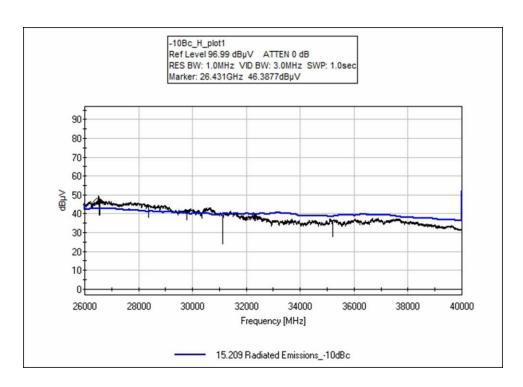
	Test Setup/Conditions							
Test Location:	Brea Lab D	Test Engineer:	E. Wong					
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/13/2022					
Configuration:	1							
Test Setup:	The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation. The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power. Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit							
	The EUT is operating as intended in sweeping mode per FCC waiver. Note, due to the low amplitude to the intended signal at higher frequency spectrum and the wide span of sweep, please refer to data sheet for corrected data. Measurement made with two antenna covering different frequency range of measurement. The intended emission signature was verified with additional antenna, ETS, model 3116C-PA covering the entire 20 – 40GH band.							

Environmental Conditions				
Temperature (°C)	11.9-15.2	Relative Humidity (%):	47 - 56	

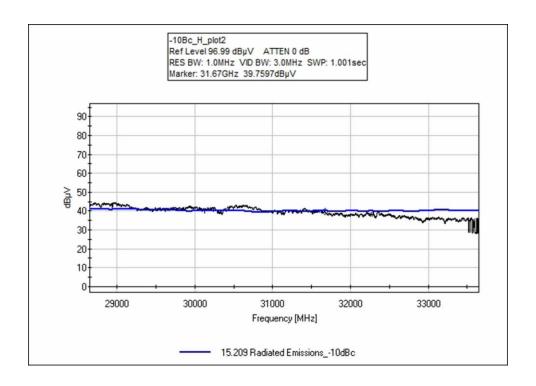

	Test Equipment								
Asset#	Description	Manufacture r	Model	Cal Date	Cal Due				
02672	Spectrum Analyzer	Agilent	E4446A	5/9/2022	5/9/2024				
01413	Horn Antenna	HP	84125-80008	10/3/2022	10/3/2024				
07657	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
00787	Preamp	HP	83017A	6/23/2021	6/23/2023				
07659	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07660	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07656	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07655	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
03158	Horn Antenna	Dorado	GH-28-25	8/10/2021	8/10/202				
R00219	Horn Antenna	ETS Lindgren	3116C-PA	9/16/2021	9/16/2023				

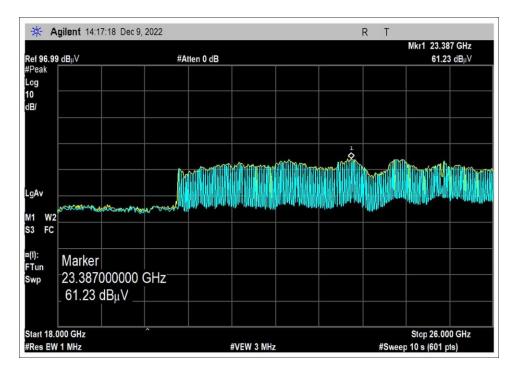
Page 10 of 76 Report No.: 107144-12

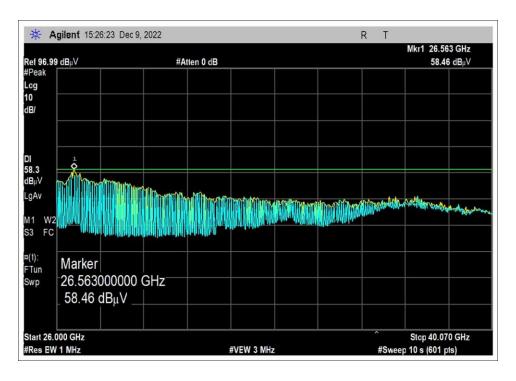


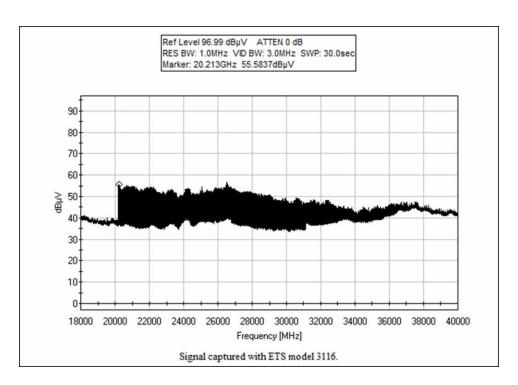

	Test Data Summary								
Frequency (GHz)	Antenna Port	Modulation	Measured (GHz)	Limit -10dB within band GHz	Results				
FL-20.190528 FH-31.669500	NA	FMCW	11.478972	20 – 40	Pass				

Plot(s)









Low Frequency Range 18-26GHz

Higher Frequency Range 26-40GHz

18-40GHz

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 107144 Date: 12/16/2022
Test Type: Radiated Scan Time: 10:22:54
Tested By: E. Wong Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active and reactive (CW) per FCC waiver. In CW mode, recorded frequency is adjusted to compensate for frequency drift

TX freq Range : 20- 40GHz TX freq =20.08 - 39.80GHz

Modulation : FMCW

Firmware: V2.2.7, V2.2.8 (with improved receiver gain)

Transmitter: M5

Frequency range of measurement = Fundamental, in band

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector = RMS,

RBW=1MHz,VBW=3MHz

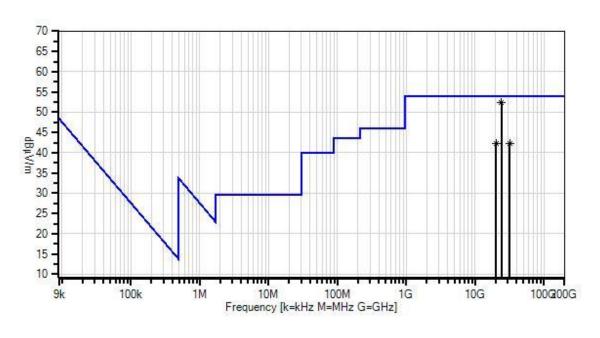
sweep =1 sec

Test environment conditions: Temperature 11.9 - 15.2 Deg° C Relative Humidity: 47-56%

Pressure: 99kPa

Site D

ANSI C63.10-2013


Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.

FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

Page 16 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 3 Date: 12/16/2022 15:209 Radiated Emissions Test Distance: 1 Meter Vert

○ Peak Readings
 ▼ Ambient

× QP Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T2	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т3	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T5	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T6	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023
	ANR00219	Active Horn	SAS -200/512	9/16/2021	9/16/2023
		Antenna			

Page 17 of 76 Report No.: 107144-12

Meast	urement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 1 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	20190.528	39.4	+0.0	+1.4	+1.4	+1.3	-9.5	42.3	42.4	-0.1	Vert
	M		+1.5	+0.0							
	Ave								-10dB poir	nt L	
2	2 31669.500	39.8	+0.0	+1.8	+1.6	+1.5	-9.5	42.2	42.4	-0.2	Vert
	M		+1.8	+5.2							
	Ave								-10dB poir	nt H	
3	3 24197.046	47.5	+0.0	+1.5	+1.8	+1.5	-9.5	52.4	54.0	-1.6	Vert
	M		+1.7	+0.0							
	Ave								121222 ma	ıx	

Test Setup Photo(s)

In band 3116

In Band M5, View #1

In band M5, View #2

15.209 Field Strength of Fundamental

	Test Setup	/Conditions					
Test Location:	Brea Lab D	Test Engineer:	E. Wong				
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/13/2022				
Configuration:	1						
Test Setup	The EUT seeking limited modular the Mast elevated from the groun The USB ports of the Mast are confor data, control command and D The EUT contains 9 transmitter m Two 24 V DC power supplies conf Unit The EUT is operating as intended TX freq Range: 20-40GHz, TX free Modulation: FMCW Firmware: V2.2.7 Transmitter: M1, M5, M9 (for M In band measurement per FCC Warrensmitter)	nd plan like normal inso nnected to RF controll C power. odules. igured in series provid in sweeping mode per eq =20.08 - 39.80GHz	ing device, Image Sampling Unit les 48V to the Image Sampling r FCC waiver.				
	Ave Mode = sweep enabled, detector	=RMS,					
	RBW=1MHz,VBW=3MHz sweep =1 sec						

Environmental Conditions						
Temperature (ºC)	11.9-15.2	Relative Humidity (%):	47 - 56			

	Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
07164	Multimeter	Fluke	8845A/G	8/13/2021	8/13/2023				
01438	DC Power Supply	Topward	6306D	1/27/2021	1/27/2023				
02672	Spectrum Analyzer	Agilent	E4446A	5/9/2022	5/9/2024				
01413	Horn Antenna	HP	84125-80008	10/3/2022	10/3/2024				
07657	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
00787	Preamp	HP	83017A	6/23/2021	6/23/2023				
07659	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07660	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07656	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
07655	Cable	Astrolab, Inc.	32022-29094K-29094K-24TC	6/22/2022	6/22/2024				
03158	Horn Antenna	Dorado	GH-28-25	8/10/2021	8/10/202				

Page 21 of 76 Report No.: 107144-12

Test Data Summary - Voltage Variations								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m)	V _{Nominal} (dBuV/m)	V _{Maximum} (dBuV/m)	Max Deviation from V _{Nominal} (dB)			
24 197046 V	FMCW	52.4	52.4	52.4	0			

Test performed using operational mode with the highest output power, representing worst case. Module M5

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	48,0 vdc
V _{Minimum} :	40,8 vdc
V _{Maximum} :	55.2 vdc

	Test Data Sum	mary – Radiate	ed Field Strength N	/leasurement				
Average								
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 3m)	Limit (dBuV/m @ 3m)	Results			
M1								
20 080.000 V	FMCW	Integral	35.0	≤54	Pass			
20 225.000 V	FMCW	Integral	37.5	≤54	Pass			
24 293.333 V	FMCW	Integral	50.3	≤54	Pass			
30 000.000 H	FMCW	Integral	45.4	≤54	Pass			
39 750.000 H	FMCW	Integral	37.2	≤54	Pass			
39 800.000 V	FMCW	Integral	37.3	≤54	Pass			
M5								
20 080.000 H	FMCW	Integral	34.8	≤54	Pass			
20 225.000 V	FMCW	Integral	39.5	≤54	Pass			
24 197.046 V	FMCW	Integral	52.4	≤54	Pass			
30 000.000 V	FMCW	Integral	44.0	≤54	Pass			
39 750.000 H	FMCW	Integral	37.0	≤54	Pass			
39 800.000 V	FMCW	Integral	37.3	≤54	Pass			
M9								
20 080.000 V	FMCW	Integral	34.0	≤54	Pass			
20 225.000 V	FMCW	Integral	42.7	≤54	Pass			
22 120.000 V	FMCW	Integral	50.3	≤54	Pass			
30 000.000 V	FMCW	Integral	32.0	≤54	Pass			
39 750.000 V	FMCW	Integral	37.2	≤54	Pass			
39 800.000 V	FMCW	Integral	37.3	≤54	Pass			

Page 22 of 76 Report No.: 107144-12

Peak					
Frequency (MHz)	Modulation	Ant. Type	Measured (dBuV/m @ 3m)	Limit (dBuV/m @ 3m)	Results
M1					
20 800.000 V	CW	Integral	85.6	≤95	Pass
20 225.000 V	CW	Integral	83.4	≤95	Pass
24 293.333 V	CW	Integral	88.6	≤95	Pass
30 000.000 H	CW	Integral	73.4	≤95	Pass
39 750.000 V	CW	Integral	60.8	≤95	Pass
39 800.000 V	CW	Integral	65.1	≤95	Pass
M5					
20 080.000 V	CW	Integral	84.9	≤95	Pass
20 225.000 V	CW	Integral	85.3	≤95	Pass
24 197.046 V	CW	Integral	88.5	≤95	Pass
30 000.000 V	CW	Integral	81.4	≤95	Pass
39 750.000 V	CW	Integral	70.8	≤95	Pass
39 800.000 V	CW	Integral	71.9	≤95	Pass
M9					
20 080.000V	CW	Integral	88.1	≤95	Pass
20 225.000V	CW	Integral	87.2	≤95	Pass
22 120.000V	CW	Integral	91.4	≤95	Pass
30 000.000 H	CW	Integral	83.5	≤95	Pass
39 750.000V	CW	Integral	71.6	≤95	Pass
39 800.000V	CW	Integral	72.1	≤95	Pass

Worse case of receiving antenna polarity presented. See data sheet for additional data.

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Leidos Security Detection & Automation, Inc. Customer:

15.209 Radiated Emissions peak Specification:

Work Order #: 107144 Date: 12/15/2022 **Radiated Scan** Test Type: Time: 09:42:24 Tested By: E. Wong Sequence#: 4

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active (FMCW) and deactivated (CW) per FCC waiver. In CW mode, recorded frequency is adjusted to compensate for frequency drift

TX freq Range: 20-40GHz TX freq = 20.08 - 39.80 GHz

Modulation : FMCW Firmware: V2.2.7 Transmitter: M1

Frequency range of measurement = Fundamental, in band

In band measurement per FCC Waiver

Mode = sweep enabled, detector = RMS,

RBW=1MHz,VBW=3MHz

sweep = 1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

Test environment conditions:

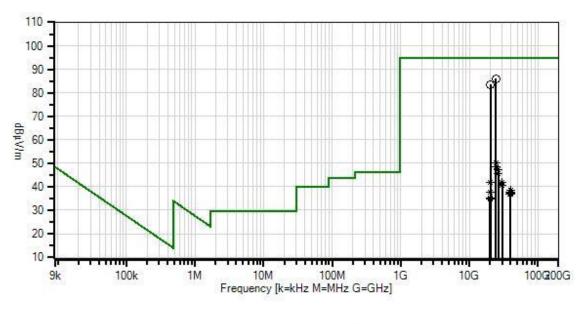
Report No.: 107144-12

Page 24 of 76

Temperature 11.9 - 15.2 Deg° C Relative Humidity: 47- 56%

Pressure: 99kPa

Site D


ANSI C63.10-2013

Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.

FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 4 Date: 12/15/2022 15:209 Radiated Emissions_peak Test Distance: 1 Meter Vert

Readings
 QP Readings
 Ambient
 1 - 15.209 Radiated Emissions_peak

O Peak Readings * Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
T3	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т6	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T7	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т8	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т9	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023

Page 26 of 76 Report No.: 107144-12

Measurement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distanc	e: 1 Meter		
# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9								
MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1 24293.333	45.5	+0.0	+0.0	+0.0	+0.0	-9.5	50.3	54.0	-3.7	Vert
M		+1.5	+1.8	+1.5	+1.7					
Ave		+0.0						FMCW		
^ 24293.333	83.8	+0.0	+40.3	+1.6	-34.1	-9.5	88.6	95.0	-6.4	Vert
M		+1.5	+1.8	+1.5	+1.7					
		+0.0						CW		
3 24240.000	43.8	+0.0	+40.3	+1.5	-34.0	-9.5	48.6	54.0	-5.4	Horiz
M		+1.5	+1.8	+1.5	+1.7					
Ave		+0.0						FMCW		
4 26550.000	47.6	+0.0	+0.0	+0.0	+0.0	-9.5	47.3	54.0	-6.7	Vert
M		+1.6	+1.7	+1.6	+1.8					
Ave		+2.5						FMCW		
5 26550.000	45.7	+0.0	+0.0	+0.0	+0.0	-9.5	45.4	54.0	-8.6	Horiz
M		+1.6	+1.7	+1.6	+1.8					
Ave		+2.5						FMCW		
6 24241.667	81.3	+0.0	+40.3	+1.5	-34.0	-9.5	86.1	95.0	-8.9	Horiz
M		+1.5	+1.8	+1.5	+1.7					
		+0.0						CW		
7 20224.533	80.8	+0.0	+40.5	+1.4	-35.2	-9.5	83.4	95.0	-11.6	Vert
M		+1.4	+1.3	+1.3	+1.4					
		+0.0						CW		
8 30000.000	39.7	+0.0	+0.0	+0.0	+0.0	-9.5	42.0	54.0	-12.0	Horiz
M		+1.7	+1.7	+1.7	+1.8					
Ave		+4.9						FMCW		
^ 30000.000	71.1	+0.0	+0.0	+0.0	+0.0	-9.5	73.4	95.0	-21.6	Horiz
M		+1.7	+1.7	+1.7	+1.8			~~~		
10. 20270 000		+4.9						CW		
10 20250.000	39.4	+0.0	+40.4	+1.4	-35.2	-9.5	41.9	54.0	-12.1	Vert
M		+1.4	+1.3	+1.3	+1.4			ED COUL		
Ave		+0.0						FMCW		
11 30000.000	38.2	+0.0	+0.0	+0.0	+0.0	-9.5	40.5	54.0	-13.5	Vert
M		+1.7	+1.7	+1.7	+1.8			EN COM		
Ave	70.0	+4.9	.0.0	. 0. 0	.0.0	0.5		FMCW	22.7	X7 .
^ 30000.000	70.0	+0.0	+0.0	+0.0	+0.0	-9.5	72.3	95.0	-22.7	Vert
M		+1.7	+1.7	+1.7	+1.8			CW		
12 20500 000	22.0	+4.9	.00		. 0. 0	0.7	20.4	CW	15.6	X7
13 39500.000	32.8	+0.0	+0.0	+0.0	+0.0	-9.5	38.4	54.0	-15.6	Vert
M Ava		+2.0	+2.2	+2.0	+2.2			EMCW		
Ave	22.1	+6.7	ΙΟ Ο	ι Ο Ο	100	0.5		FMCW	16.2	Hori-
14 39500.000	32.1	+0.0	+0.0	+0.0	+0.0	-9.5	37.7	54.0	-16.3	Horiz
M Ava		+2.0	+2.2	+2.0	+2.2			EMCW		
Ave	21.0	+6.7	ΙΟ Ο	ι Ο Ο	100	0.5		FMCW	16.4	M _c t
15 39250.000	31.9	+0.0	+0.0	+0.0	+0.0	-9.5	37.6	54.0	-16.4	Vert
M Avo		+2.0	+2.3	+2.0	+2.3			EMCW		
Ave		+6.6						FMCW		

16 20225.000	34.9	+0.0	+40.5	+1.4	-35.2	-9.5	37.5	54.0	-16.5	Horiz
M		+1.4	+1.3	+1.3	+1.4					
Ave		+0.0						FMCW		
^ 20225.000	76.0	+0.0	+40.5	+1.4	-35.2	-9.5	78.6	95.0	-16.4	Horiz
M		+1.4	+1.3	+1.3	+1.4					
		+0.0						CW		
18 39800.000	31.5	+0.0	+0.0	+0.0	+0.0	-9.5	37.3	54.0	-16.7	Vert
M		+2.0	+2.1	+2.0	+2.4					
Ave		+6.8						FMCW		
^ 39800.000	59.3	+0.0	+0.0	+0.0	+0.0	-9.5	65.1	95.0	-29.9	Vert
M		+2.0	+2.1	+2.0	+2.4			~~~		
		+6.8						CW		
^ 39800.000	56.3	+0.0	+0.0	+0.0	+0.0	-9.5	62.1	95.0	-32.9	Vert
M		+2.0	+2.1	+2.0	+2.4			CW		
21 20750 000	21 5	+6.8	.00	.00	+0.0	0.5	27.2	54.0	-16.8	Vert
21 39750.000	31.5	+0.0	+0.0	+0.0		-9.5	37.2	54.0	-16.8	vert
M		+2.0	+2.1	+2.0	+2.3			EMCW		
Ave ^ 39750.000	57.5	+6.8	+0.0	+0.0	+0.0	-9.5	62.2	95.0	-31.8	Vert
M	37.3	+2.0	+0.0	+0.0	+2.3	-9.3	03.2	93.0	-31.8	vert
IVI		+6.8	+∠.1	+2.0	+2.3			CW		
23 39750.000	31.5	+0.0	+0.0	+0.0	+0.0	-9.5	37.2	54.0	-16.8	Horiz
M	31.3	+2.0	+2.1	+2.0	+2.3	7.5	37.2	31.0	10.0	HOHE
Ave		+6.8	. 2.1	12.0	12.3			FMCW		
^ 39750.000	55.1	+0.0	+0.0	+0.0	+0.0	-9.5	60.8	95.0	-34.2	Horiz
M		+2.0	+2.1	+2.0	+2.3			, , , ,		
		+6.8						CW		
25 39800.000	31.2	+0.0	+0.0	+0.0	+0.0	-9.5	37.0	54.0	-17.0	Horiz
M		+2.0	+2.1	+2.0	+2.4					
Ave		+6.8						FMCW		
26 39250.000	31.1	+0.0	+0.0	+0.0	+0.0	-9.5	36.8	54.0	-17.2	Horiz
M		+2.0	+2.3	+2.0	+2.3					
Ave		+6.6						FMCW		
27 20000.000	32.1	+0.0	+0.0	+0.0	+0.0	-9.5	35.3	54.0	-18.7	Vert
M		+1.5	+1.4	+1.4	+1.4					
Ave		+0.0						FMCW		
28 20025.000	32.2	+0.0	+40.4	+1.4		-9.5	35.2	54.0	-18.8	Vert
M			+1.4	+1.3	+1.5			EN CONT		
Ave	21.0	+0.0	40.4		210	0.7	27.1	FMCW	10.0	** .
29 20000.000	31.9	+0.0	+40.4	+1.5	-34.9	-9.5	35.1	54.0	-18.9	Horiz
M		+1.5	+1.4	+1.4	+1.4			EMCW		
Ave	22.0	+0.0	140.5	+1.4	-35.0	0.5	25.0	FMCW	10.0	Vont
30 20080.000 M	32.0	+0.0	+40.5	+1.4		-9.5	35.0	54.0	-19.0	Vert
M Ave		$+1.4 \\ +0.0$	+1.4	+1.3	+1.5			FMCW		
Ave		+0.0						1.IAIC AA		

Page 28 of 76 Report No.: 107144-12

^ 20080.000	81.6	+0.0	+40.5	+1.4	-35.0	-9.5	84.6	95.0	-10.4	Vert
M		+1.4	+1.4	+1.3	+1.5					
		+0.0						CW		
32 20080.000	31.6	+0.0	+40.5	+1.4	-35.0	-9.5	34.6	54.0	-19.4	Horiz
M		+1.4	+1.4	+1.3	+1.5					
Ave		+0.0						FMCW		
^ 20080.000	75.5	+0.0	+40.5	+1.4	-35.0	-9.5	78.5	95.0	-16.5	Horiz
M		+1.4	+1.4	+1.3	+1.5					
		+0.0						CW		

Page 29 of 76 Report No.: 107144-12

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 107144 Date: 12/16/2022
Test Type: Radiated Scan Time: 10:22:54
Tested By: E. Wong Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active (FMCW) and deactivated (CW) per FCC waiver. In CW mode, recorded frequency is adjusted to compensate for frequency drift

TX freq Range: 20-40GHz TX freq =20.08 - 39.80GHz

Modulation : FMCW

Firmware: V2.2.7, V2.2.8 (with improved receiver gain)

Transmitter: M5

Frequency range of measurement = Fundamental, in band

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector =RMS,

RBW=1MHz,VBW=3MHz

sweep =1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

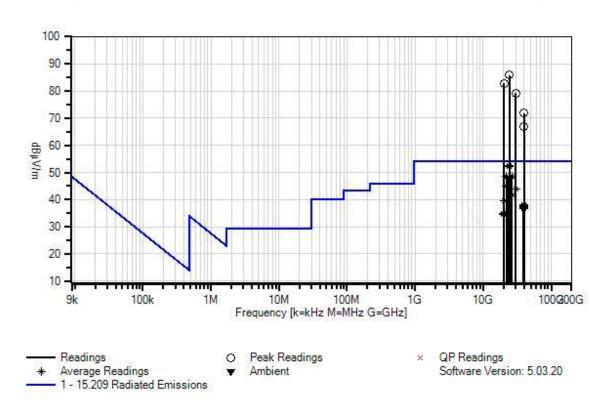
Test environment conditions: Temperature 11.9 - 15.2 Deg° C Relative Humidity: 47- 56%

> Page 30 of 76 Report No.: 107144-12

Pressure: 99kPa

Site D

ANSI C63.10-2013


Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.

FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

Page 31 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 3 Date: 12/16/2022 15.209 Radiated Emissions Test Distance: 1 Meter Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
T3	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T6	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T7	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T8	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т9	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023
T10	ANR00219	Active Horn	SAS -200/512	9/16/2021	9/16/2023
		Antenna			

Page 32 of 76 Report No.: 107144-12

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 1 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5	T6	T7	T8			_	_	
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	24197.046	47.5	+0.0	+0.0	+0.0	+0.0	-9.5	52.4	54.0	-1.6	Vert
	M		+1.5	+1.8	+1.5	+1.7					
	Ave		+0.0	+0.0					FMCW_M	lax	
2	24197.045	47.2	+0.0	+0.0	+0.0	+0.0	-9.5	52.1	54.0	-1.9	Vert
	M		+1.5	+1.8	+1.5	+1.7					
	Ave		+0.0	+0.0					FMCW V2	2.2.8	
									verification	1	
٨	24197.046	83.6	+0.0	+40.3	+1.5	-33.9	-9.5	88.5	95.0	-6.5	Vert
	M		+1.5	+1.8	+1.5	+1.7					
			+0.0	+0.0					CW		
4	22179.303	45.6	+0.0	+40.4	+1.6	-35.4	-9.5	48.7	54.0	-5.3	Vert
	M		+1.5	+1.6	+1.4	+1.5					
	Ave		+0.0	+0.0					FMCW		
5	26525.000	48.8	+0.0	+0.0	+0.0	+0.0	-9.5	48.5	54.0	-5.5	Vert
	M		+1.6	+1.7	+1.6	+1.8					
	Ave		+2.5	+0.0					FMCW		
6	24133.333	42.5	+0.0	+40.3	+1.6	-33.6	-9.5	47.8	54.0	-6.2	Horiz
	M		+1.5	+1.8	+1.5	+1.7					
	Ave		+0.0	+0.0					FMCW		
7	22179.000	41.8	+0.0	+40.4	+1.6	-35.4	-9.5	44.9	54.0	-9.1	Horiz
	M		+1.5	+1.6	+1.4	+1.5					
	Ave		+0.0	+0.0					FMCW		
8	24197.046	80.9	+0.0	+40.3	+1.5	-33.9	-9.5	85.8	95.0	-9.2	Horiz
	M		+1.5	+1.8	+1.5	+1.7					
			+0.0	+0.0					CW		
9	30000.000	41.7	+0.0	+0.0	+0.0	+0.0	-9.5	44.0	54.0	-10.0	Horiz
	M		+1.7	+1.7	+1.7	+1.8					
	Ave		+4.9	+0.0					FMCW		
10	30000.000	41.7	+0.0	+0.0	+0.0	+0.0	-9.5	44.0	54.0	-10.0	Vert
	M		+1.7	+1.7	+1.7	+1.8					
	Ave		+4.9	+0.0					FMCW		
11	30000.000	41.6	+0.0	+0.0	+0.0	+0.0	-9.5	43.9	54.0	-10.1	Vert
	M		+1.7	+1.7	+1.7	+1.8					
	Ave		+4.9	+0.0					FMCW		
٨	30000.000	79.1	+0.0	+0.0	+0.0	+0.0	-9.5	81.4	95.0	-13.6	Vert
	M		+1.7	+1.7	+1.7	+1.8					
			+4.9	+0.0					CW		
13	20225.000	80.3	+0.0	+40.5	+1.4	-35.2	-9.5	82.9	95.0	-12.1	Horiz
	M		+1.4	+1.3	+1.3	+1.4					
			+0.0	+0.0					CW		
14	26550.000	42.1	+0.0	+0.0	+0.0	+0.0	-9.5	41.8	54.0	-12.2	Horiz
	M		+1.6	+1.7	+1.6	+1.8					
	Ave		+2.5	+0.0					FMCW		
15	20225.000	36.9	+0.0	+40.5	+1.4	-35.2	-9.5	39.5	54.0	-14.5	Vert
	M		+1.4	+1.3	+1.3	+1.4					
	Ave		+0.0	+0.0					FMCW		

^ 20225.000	82.7	+0.0	+40.5	+1.4	-35.2	-9.5	85.3	95.0	-9.7	Vert
M	02.7	+0.0 +1.4	+40.3	+1.4	-33.2 +1.4	-9.3	65.5	93.0	-9.7	vert
IVI		+0.0	+0.0	⊤1.5	⊤1. 4			CW		
17 39250.000	32.6	+0.0	+0.0	+0.0	+0.0	-9.5	38.3		-15.7	Vert
M	32.0	+2.0	+2.3	+2.0	+2.3	7.5	30.3	51.0	13.7	VOIT
Ave		+6.6	+0.0					FMCW		
18 30000.150	76.9	+0.0	+0.0	+0.0	+0.0	-9.5	79.2		-15.8	Horiz
M	,	+1.7	+1.7	+1.7	+1.8	,		, , ,		
		+4.9	+0.0					CW		
19 39550.000	32.8	+0.0	+0.0	+0.0	+0.0	-9.5	38.2	54.0	-15.8	Vert
M		+2.0	+2.1	+2.0	+2.2					
Ave		+6.6	+0.0					FMCW		
20 39500.000	32.0	+0.0	+0.0	+0.0	+0.0	-9.5	37.6	54.0	-16.4	Horiz
M		+2.0	+2.2	+2.0	+2.2					
Ave		+6.7	+0.0					FMCW		
21 39800.000	31.5	+0.0	+0.0	+0.0	+0.0	-9.5	37.3	54.0	-16.7	Vert
M		+2.0	+2.1	+2.0	+2.4					
Ave		+6.8	+0.0					FMCW		
22 39750.000	31.3	+0.0	+0.0	+0.0	+0.0	-9.5	37.0	54.0	-17.0	Horiz
M		+2.0	+2.1	+2.0	+2.3					
Ave		+6.8	+0.0					FMCW		
^ 39750.000	60.6	+0.0	+0.0	+0.0	+0.0	-9.5	78.2	95.0	-16.8	Horiz
M		+2.0	+2.1	+2.0	+2.3					
		+0.0	+18.7					CW		
24 39800.000	31.2	+0.0	+0.0	+0.0	+0.0	-9.5	37.0	54.0	-17.0	Horiz
M		+2.0	+2.1	+2.0	+2.4					
Ave		+6.8	+0.0					FMCW		
25 39750.000	31.2	+0.0	+0.0	+0.0	+0.0	-9.5	36.9	54.0	-17.1	Vert
M		+2.0	+2.1	+2.0	+2.3			EMONI		
Ave		+6.8	+0.0	0.0	0.0	0.5	70.0	FMCW	212	X 7 .
^ 39750.017	65.1	+0.0	+0.0	+0.0	+0.0	-9.5	70.8	95.0	-24.2	Vert
M		+2.0	+2.1	+2.0	+2.3			CW		
27, 20250 000	20.0	+6.8	+0.0	. 0. 0	. 0. 0	-9.5	26.6	CW	-17.4	TT'
27 39250.000	30.9	+0.0 +2.0	+0.0 +2.3	+0.0 +2.0	+0.0 +2.3	-9.5	36.6	54.0	-1/.4	Horiz
M Ave		+2.0 +6.6	+2.3 +0.0	+2.0	+2.3			FMCW		
28 20000.000	31.8	+0.0	+40.4	+1.5	24.0	0.5	35.0		-19.0	Horiz
M		+1.5	+40.4			-9.3	33.0	34.0	-19.0	HOHZ
Ave		+0.0	+0.0	⊤1. 4	⊤1. 4			FMCW		
29 20000.000	31.7	+0.0	+40.4	+1.5	-34.9	-9.5	34.9	54.0	-19.1	Vert
M	31./	+1.5	+40.4	+1.3 +1.4	-34.9 +1.4	-9.5	34.7	34.0	-17.1	v CI t
Ave		+0.0	+0.0	11.7	11.7			FMCW		
30 20080.000	31.8	+0.0	+40.5	+1.4	-35.0	-9.5	34.8	54.0	-19.2	Horiz
M	21.0	+1.4	+1.4	+1.3	+1.5	7.5	5 1.0	5 1.0	17.2	110112
Ave		+0.0	+0.0	. 1.0	11.5			FMCW		
^ 20080.000	80.1	+0.0	+40.5	+1.4	-35.0	-9.5	83.1	95.0	-11.9	Horiz
M	00.1	+1.4	+1.4	+1.3	+1.5	7.5	05.1	75.0	11.7	110112
1,1		+0.0	+0.0	. 1.0	. 1.0			CW		
32 20080.000	31.6	+0.0	+40.5	+1.4	-35.0	-9.5	34.6	54.0	-19.4	Vert
M	21.0	+1.4	+1.4	+1.3	+1.5	·	2 1.0	2 1.0	-/	. 011
Ave		+0.0	+0.0		10			FMCW		
			. 0.0					, ,		

^ 20080.000	81.9	+0.0	+40.5	+1.4	-35.0	-9.5	84.9	95.0	-10.1	Vert	
M		+1.4	+1.4	+1.3	+1.5						
		+0.0	+0.0			CW					
34 39800.383	66.1	+0.0	+0.0	+0.0	+0.0	-9.5	71.9	95.0	-23.1	Vert	
M		+2.0	+2.1	+2.0	+2.4						
		+6.8	+0.0			CW					
35 39800.383	61.0	+0.0	+0.0	+0.0	+0.0	-9.5	66.8	95.0	-28.2	Horiz	
M		+2.0	+2.1	+2.0	+2.4						
		+6.8	+0.0			CW					

Page 36 of 76 Report No.: 107144-12

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 107144 Date: 12/14/2022
Test Type: Radiated Scan Time: 16:14:36
Tested By: E. Wong Sequence#: 5

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

Mast is elevated with M9 is 0.6 m from the ground plane

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active (FMCW) and deactivated (CW) per FCC waiver. In CW mode, recorded frequency is adjusted to compensate for frequency drift

TX freq Range: 20-. 40GHz TX freq =20.08 - 39.80GHz Modulation: FMCW Firmware: V2.2.7

Transmitter: M9

Frequency range of measurement = Fundamental, in band

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector = RMS,

RBW=1MHz,VBW=3MHz

sweep = 1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

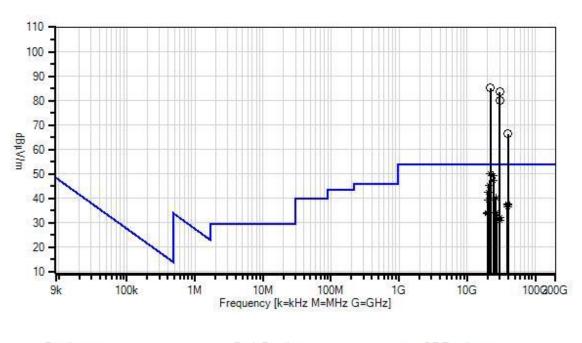
Test environment conditions: Temperature 11.9 - 15.2 Deg° C Relative Humidity: 47- 56%

> Page 37 of 76 Report No.: 107144-12

Pressure: 99kPa

Site D

ANSI C63.10-2013


Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.

FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

Page 38 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 5 Date: 12/14/2022 15:209 Radiated Emissions Test Distance: 1 Meter Vert

Readings

* Average Readings

1 - 15.209 Radiated Emissions

○ Peak Readings▼ Ambient

× QP Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
Т3	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T6	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T7	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т8	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т9	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023

Page 39 of 76 Report No.: 107144-12

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 1 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	-	•	T5	T6	T7	T8			•		
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	22120.000	47.4	+0.0	+40.4	+1.6	-35.3	-9.5	50.3	54.0	-3.7	Vert
	M		+1.4	+1.5	+1.3	+1.5					
	Ave		+0.0						FMCW		
٨	22120.000	88.5	+0.0	+40.4	+1.6	-35.3	-9.5	91.4	95.0	-3.6	Vert
	M		+1.4	+1.5	+1.3	+1.5					
			+0.0						CW		
3	22103.333	47.1	+0.0	+40.4	+1.6	-35.3	-9.5	50.0	54.0	-4.0	Horiz
	M		+1.4	+1.5	+1.3	+1.5					
	Ave		+0.0						FMCW		
4	24195.000	44.4	+0.0	+40.3	+1.5	-33.9	-9.5	49.3	54.0	-4.7	Vert
	M		+1.5	+1.8	+1.5	+1.7					
	Ave		+0.0						FMCW		
^	24195.000	87.0	+0.0	+40.3	+1.5	-33.9	-9.5	91.9	95.0	-3.1	Vert
	M		+1.5	+1.8	+1.5	+1.7					
			+0.0						CW		
6	24238.333	42.4	+0.0	+40.3	+1.5	-34.0	-9.5	47.2	54.0	-6.8	Horiz
	M		+1.5	+1.8	+1.5	+1.7					
	Ave		+0.0						FMCW		
7	21080.000	43.0	+0.0	+40.2	+1.5	-35.6	-9.5	45.4	54.0	-8.6	Horiz
	M		+1.5	+1.4	+1.4	+1.5					
	Ave		+0.0						FMCW		
8	22103.000	82.3	+0.0	+40.4	+1.6	-35.3	-9.5	85.2	95.0	-9.8	Horiz
	M		+1.4	+1.5	+1.3	+1.5					
			+0.0						CW		
9	20225.000	40.1	+0.0	+40.5	+1.4	-35.2	-9.5	42.7	54.0	-11.3	Vert
	M		+1.4	+1.3	+1.3	+1.4					
	Ave		+0.0						FMCW		
^	20225.000	84.6	+0.0	+40.5	+1.4	-35.2	-9.5	87.2	95.0	-7.8	Vert
	M		+1.4	+1.3	+1.3	+1.4					
			+0.0						CW		
11	30000.967	81.2	+0.0	+0.0	+0.0	+0.0	-9.5	83.5	95.0	-11.5	Horiz
	M		+1.7	+1.7	+1.7	+1.8					
<u> </u>			+4.9						CW		
12	26575.000	40.4	+0.0	+0.0	+0.0	+0.0	-9.5	40.1	54.0	-13.9	Vert
	M		+1.6	+1.7	+1.6	+1.8					
	Ave		+2.5						FMCW		
^	26575.000	88.2	+0.0	+0.0	+0.0	+0.0	-9.5	87.9	95.0	-7.1	Vert
	M		+1.6	+1.7	+1.6	+1.8			CVV		
			+2.5						CW		
	20225.000	36.9	+0.0	+40.5	+1.4	-35.2	-9.5	39.5	54.0	-14.5	Horiz
	M		+1.4	+1.3	+1.3	+1.4					
	Ave		+0.0						FMCW		
_ ^	20225.000	79.1	+0.0	+40.5			-9.5	81.7	95.0	-13.3	Horiz
	M		+1.4	+1.3	+1.3	+1.4			CVV.		
			+0.0						CW		

16 30000.400	77.9	+0.0	+0.0	+0.0	+0.0	-9.5	80.2	95.0	-14.8	Vert
M		+1.7	+1.7	+1.7	+1.8					
		+4.9						CW		
17 39250.000	32.1	+0.0	+0.0	+0.0	+0.0	-9.5	37.8	54.0	-16.2	Horiz
M		+2.0	+2.3	+2.0	+2.3			EN CONT		
Ave		+6.6					25.5	FMCW	1.50	** .
18 39500.000	32.1	+0.0	+0.0	+0.0	+0.0	-9.5	37.7	54.0	-16.3	Horiz
M		+2.0	+2.2	+2.0	+2.2			EMCW		
Ave	21.5	+6.7	.00	.00	+0.0	-9.5	27.2	FMCW	167	Vt
19 39800.000 M	31.5	+0.0 +2.0	$+0.0 \\ +2.1$	$+0.0 \\ +2.0$	+0.0 +2.4	-9.5	37.3	54.0	-16.7	Vert
Ave		+6.8	±2.1	+2.0	±2.4			FMCW		
^ 39800.000	66.3	+0.0	+0.0	+0.0	+0.0	-9.5	72.1	95.0	-22.9	Vert
M	00.5	+2.0	+2.1	+2.0	+2.4	-7.5	72.1	75.0	-22.)	VCIT
		+6.8	. 2.1	12.0	. 2			CW		
21 39750.000	31.5	+0.0	+0.0	+0.0	+0.0	-9.5	37.2	54.0	-16.8	Vert
M		+2.0	+2.1	+2.0	+2.3					
Ave		+6.8						FMCW		
^ 39750.000	65.9	+0.0	+0.0	+0.0	+0.0	-9.5	71.6	95.0	-23.4	Vert
M		+2.0	+2.1	+2.0	+2.3					
		+6.8						CW		
23 39750.000	31.5	+0.0	+0.0	+0.0	+0.0	-9.5	37.2	54.0	-16.8	Horiz
M		+2.0	+2.1	+2.0	+2.3					
Ave		+6.8						FMCW		
24 39800.000	31.4	+0.0	+0.0	+0.0	+0.0	-9.5	37.2	54.0	-16.8	Horiz
M		+2.0	+2.1	+2.0	+2.4			EMOW		
Ave	(2.0	+6.8	. 0. 0	. 0. 0	. 0. 0	0.5		FMCW	26.4	TT
^ 39800.000 M	62.8	+0.0 +2.0	$+0.0 \\ +2.1$	$+0.0 \\ +2.0$	+0.0 +2.4	-9.5	08.6	95.0	-26.4	Horiz
IVI		+2.0 +6.8	+2.1	+2.0	+2.4			CW		
26 39550.000	31.8	+0.0	+0.0	+0.0	+0.0	-9.5	37.2	54.0	-16.8	Vert
M	31.0	+2.0	+2.1	+2.0	+2.2	-9.5	31.2	34.0	-10.0	VCIT
Ave		+6.6	. 2.1	12.0	, 2.2			FMCW		
27 39250.000	30.9	+0.0	+0.0	+0.0	+0.0	-9.5	36.6		-17.4	Vert
M	20.5	+2.0	+2.3	+2.0	+2.3	,	20.0	5	1,,,	, 616
Ave		+6.6						FMCW		
28 26825.000	34.8	+0.0	+0.0	+0.0	+0.0	-9.5	34.3	54.0	-19.7	Horiz
M		+1.6	+1.6	+1.5	+1.8					
Ave		+2.5						FMCW		
^ 26825.000	83.5	+0.0	+0.0	+0.0	+0.0	-9.5	83.0	95.0	-12.0	Horiz
M		+1.6	+1.6	+1.5	+1.8					
		+2.5						CW		
30 20080.000	31.0	+0.0	+40.5	+1.4	-35.0	-9.5	34.0	54.0	-20.0	Vert
M		+1.4	+1.4	+1.3	+1.5			EMOW		
Ave	0 <i>F</i> 1	+0.0	. 40.5	, 1 4	25.0	0.5	00.1	FMCW	<i>C</i> 0	17 4
^ 20080.000	85.1	+0.0	+40.5	+1.4	-35.0	-9.5	88.1	95.0	-6.9	Vert
M		$+1.4 \\ +0.0$	+1.4	+1.3	+1.5			CW		
32 20080.000	30.7	+0.0	+40.5	+1.4	-35.0	-9.5	33.7	54.0	-20.3	Horiz
M	30.7	+1.4	+40.3	+1.4	+1.5	-9.3	33.1	54.0	-20.3	110112
Ave		+0.0	11.4	11.3	11.3			FMCW		
1110		1 0.0						1 1/10 11		

^ 20080.000	82.6	+0.0	+40.5	+1.4	-35.0	-9.5	85.6	95.0	-9.4	Horiz
M		+1.4	+1.4	+1.3	+1.5					
		+0.0						CW		
34 30000.000	29.7	+0.0	+0.0	+0.0	+0.0	-9.5	32.0	54.0	-22.0	Vert
M		+1.7	+1.7	+1.7	+1.8					
Ave		+4.9						FMCW		
35 30000.000	28.5	+0.0	+0.0	+0.0	+0.0	-9.5	30.8	54.0	-23.2	Horiz
M		+1.7	+1.7	+1.7	+1.8					
Ave		+4.9						FMCW		
36 39751.983	60.7	+0.0	+0.0	+0.0	+0.0	-9.5	66.4	95.0	-28.6	Horiz
M		+2.0	+2.1	+2.0	+2.3					
		+6.8						CW		

Test Setup Photo(s)

In Band M1

In Band M5, View #1

In Band M5, View #2

In Band M9

Voltage Variation

15.209 Radiated Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 107144 Date: 12/19/2022
Test Type: Radiated Scan Time: 15:22:42
Tested By: E. Wong Sequence#: 6

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode FMCW per FCC waiver.

TX freq Range: 20-40GHz TX freq =20.08 - 39.80GHz Modulation: FMCW Firmware: V1.2.7 V2.2.8 Transmitter: M1, M5, M9

Frequency range of measurement = 9 kHz- 20 GHz.

9 kH -150 kHz;RBW=200 Hz,VBW=600 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz, 1000 MHz-200000 MHz;RBW=1MHz,VBW=3 MHz.

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector = RMS,

Page 46 of 76 Report No.: 107144-12

RBW=1MHz,VBW=3MHz

sweep =1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

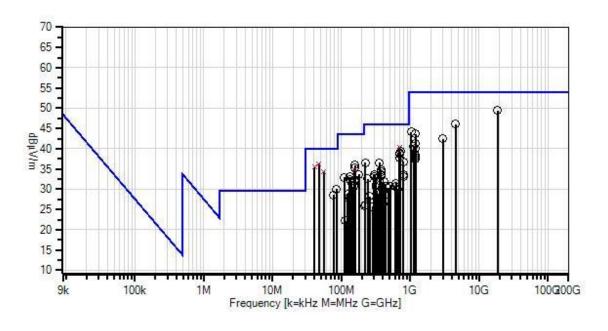
Test environment conditions: Temperature: 24 Deg°C Relative Humidity: 29%

Pressure: 99kPa

Site D

ANSI C63.10-2013

Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.


FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

No emission detected below 30MHz

Page 47 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 6 Date: 12/19/2022 15.209 Radiated Emissions Test Distance: 3 Meters Horiz

Readings

* Average Readings

1 - 15.209 Radiated Emissions

○ Peak Readings
 ▼ Ambient

× QP Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
T3	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T6	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T7	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T8	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023
Т9	AN01646	Horn Antenna	3115	3/21/2022	3/21/2024
	AN03367	Horn Antenna	62-GH-62-25.	8/3/2021	8/3/2023
T10	AN01994	Biconilog Antenna	CBL6111C	6/1/2022	6/1/2024
T11	ANP01911	Cable-Amplitude	RG214/U	1/5/2022	1/5/2024
		+15C to +45C (dB)			
T12	AN00010	Preamp	8447D	1/3/2022	1/3/2024
T13	ANP04382	Cable	LDF-50	5/18/2022	5/18/2024
T14	ANP06978	Cable	Sucoflex 104A	3/4/2022	3/4/2024
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024
T15	ANP07138	Cable	ANDL1-	3/30/2021	3/30/2023
			PNMNM-60		

Page 49 of 76 Report No.: 107144-12

Measi	urement Data:	Re	eading lis	ted by ma	d by margin. Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	•	•	T5	T6	T7	T8			-		
			T9	T10	T11	T12					
			T13	T14	T15						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	46.883M	45.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.3	40.0	-3.7	Vert
	QP		+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+15.9	+0.6	-27.1					
			+0.9	+0.1	+0.0						
^	46.883M	48.6	+0.0	+0.0	+0.0	+0.0	+0.0	39.0	40.0	-1.0	Vert
			+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+15.9	+0.6	-27.1					
			+0.9	+0.1	+0.0						
3		42.0	+0.0	+0.0	+0.0	+0.0	+0.0	35.5	40.0	-4.5	Vert
	QP		+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+19.1	+0.6	-27.1					
			+0.8	+0.1	+0.0						
^	40.800M	44.2	+0.0	+0.0	+0.0	+0.0	+0.0	37.7	40.0	-2.3	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+19.1	+0.6	-27.1					
			+0.8	+0.1	+0.0						
5		38.3	+0.0	+40.2	+1.3	-36.0	+0.0	49.4	54.0	-4.6	Horiz
	M		+1.5	+1.4	+1.4	+1.3					
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+0.0	+0.0						
6		47.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	40.0	-5.6	Vert
	QP		+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+12.7	+0.7	-27.1					
			+1.0	+0.1	+0.0						
^	55.800M	49.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	40.0	-3.3	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+12.7	+0.7	-27.1					
	700.00614	25.6	+1.0	+0.1	+0.0	0.0	0.0	40.4	46.0		X7 .
8		35.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	46.0	-5.6	Vert
	QP		+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+26.6	+2.8	-27.9					
^	700 000	26.2	+3.0	+0.3	+0.0	10.0	.00	A1 1	46.0	4.0	V
	700.006M	36.3	+0.0	+0.0	+0.0	+0.0	+0.0	41.1	46.0	-4.9	Vert
			+0.0 +0.0	+0.0	+0.0	+0.0 -27.9			M5		
			+0.0	+26.6 +0.3	+2.8	-41.9					
٨	700.000M	32.8	+0.0	+0.5	+0.0	+0.0	+0.0	37.6	46.0	-8.4	Vert
	/00.000IVI	32.0	+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0	+0.0	37.0	46.0 M9	-0.4	vert
			+0.0 +0.0	+26.6	+0.0	-27.9			1717		
			+3.0	+20.0	+2.8 +0.0	-41.9					
11	719.996M	33.8	+0.0	+0.3	+0.0	+0.0	+0.0	39.3	46.0	-6.7	Horiz
11	/ 17.77UW	33.0	+0.0 +0.0	+0.0 +0.0	+0.0	+0.0	+0.0	37.3	40.0 M1	-0./	110112
			+0.0	+27.2	+2.8	-27.9			1411		
			+3.1	+27.2	+2.8	-41.7					
			⊤3.1	±0.5	+0.0						

10 700 000	24.1	0.0	0.0	. 0. 0	0.0	.0.0	20.0	460	7.1	77 '
12 700.026M	34.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.9	46.0	-7.1	Horiz
		+0.0	+0.0	+0.0	+0.0			M1		
		+0.0	+26.6	+2.8	-27.9					
13 700.025M	33.9	+3.0	+0.3	+0.0	ι Ο Ο	100	207	46.0	-7.3	Horiz
13 700.025M	33.9	+0.0	+0.0	+0.0	+0.0	+0.0	38.7		-1.3	нопи
		$+0.0 \\ +0.0$	+0.0 $+26.6$	+0.0 +2.8	+0.0 -27.9			M9		
		+3.0	+20.0	+0.0	-21.9					
14 158.200M	43.6	+0.0	+0.0	+0.0	+0.0	+0.0	35.9	43.5	-7.6	Horiz
14 130.200W	45.0	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	M5	-7.0	110112
		+0.0	+16.4	+1.2	-26.9			WIS		
		+1.4	+0.2	+0.0	20.7					
15 4537.000M	50.3	+0.0	+0.0	+0.6	-39.4	+0.0	46.1	54.0	-7.9	Horiz
13 1337.00011	50.5	+0.6	+0.6	+0.6	+0.6	10.0	10.1	M5	7.5	HOHE
		+32.2	+0.0	+0.0	+0.0			1110		
		+0.0	+0.0	+0.0	10.0					
16 699.949M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.8	46.0	-8.2	Horiz
3,7,7,7,7,7	22.0	+0.0	+0.0	+0.0	+0.0	. 0.0	20	M5	J.2	
		+0.0	+26.6	+2.8	-27.9					
		+3.0	+0.3	+0.0	_,,,					
17 154.850M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	35.2	43.5	-8.3	Horiz
		+0.0	+0.0	+0.0	+0.0			M1		
		+0.0	+16.5	+1.2	-26.9					
		+1.4	+0.2	+0.0						
18 157.275M	42.4	+0.0	+0.0	+0.0	+0.0	+0.0	34.7	43.5	-8.8	Horiz
QP		+0.0	+0.0	+0.0	+0.0			M9		
		+0.0	+16.4	+1.2	-26.9					
		+1.4	+0.2	+0.0						
^ 157.280M	45.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	43.5	-5.4	Horiz
		+0.0	+0.0	+0.0	+0.0			M9		
		+0.0	+16.4	+1.2	-26.9					
		+1.4	+0.2	+0.0						
20 800.003M	29.8	+0.0	+0.0	+0.0	+0.0	+0.0	36.8	46.0	-9.2	Vert
		+0.0	+0.0	+0.0	+0.0			M9		
		+0.0	+28.1	+3.0	-27.8					
		+3.3	+0.4	+0.0						
21 223.008M	44.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.5	46.0	-9.5	Horiz
		+0.0	+0.0	+0.0	+0.0			M9		
		+0.0	+15.4	+1.5	-26.6					
22 250 1223 5	20.0	+1.7	+0.2	+0.0	. 0. 0	. 0. 0	25.5	450	0.5	77 '
22 358.123M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	36.5	46.0	-9.5	Horiz
		+0.0	+0.0	+0.0	+0.0			M1		
		+0.0	+20.5	+1.9	-27.0					
22 100 400 4	12.0	+2.1	+0.2	+0.0	ι Ο Ο	ι Ο Ο	22.7	12.5	0.0	Vont
23 180.400M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	33.7	43.5 M5	-9.8	Vert
		$+0.0 \\ +0.0$	$+0.0 \\ +14.7$	+0.0 +1.3	+0.0 -26.8			IVI		
		+0.0	+14.7	+1.5 +0.0	-20.8					
24 1040.033M	58.9	+0.0	+0.2	+0.0	-40.9	+0.0	44.1	54.0	-9.9	Vert
27 1070.033141	50.9	+0.0	+0.0	+0.3	+0.3	10.0		M5	-2.2	v CI t
		+24.8	+0.2	+0.0	+0.0			171.0		
		+24.8 $+0.0$	+0.0	+0.0 +0.0	10.0					
		10.0	10.0	10.0						

25	84.277M	41.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.0	40.0	-10.0	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+14.0	+0.8	-27.1					
			+1.2	+0.1	+0.0						<u> </u>
26	1199.900M	51.6	+0.0	+0.0	+0.3	-40.1	+0.0	43.7	54.0	-10.3	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+25.4	+0.0	+0.0	+0.0					
			+3.9	+0.0	+2.6						
27	131.264M	40.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	43.5	-10.4	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+17.5	+1.1	-27.0					
			+1.3	+0.1	+0.0						
28	109.779M	40.9	+0.0	+0.0	+0.0	+0.0	+0.0	32.9	43.5	-10.6	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+16.7	+1.0	-27.0					
			+1.2	+0.1	+0.0						
29	131.258M	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	32.5	43.5	-11.0	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+17.5	+1.1	-27.0					
			+1.3	+0.1	+0.0						
30	374.965M	36.7	+0.0	+0.0	+0.0	+0.0	+0.0	34.9	46.0	-11.1	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+20.8	+2.0	-27.1					
			+2.2	+0.3	+0.0						
31	157.910M	40.0	+0.0	+0.0	+0.0	+0.0	+0.0	32.3	43.5	-11.2	Vert
			+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+16.4	+1.2	-26.9					
		40.7	+1.4	+0.2	+0.0		0.0	•			**
32	77.343M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	28.6	40.0	-11.4	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+13.1	+0.8	-27.1					
2.0	100 6003 5	20.0	+1.2	+0.1	+0.0	0.0	0.0	21.0	40.7		** .
33	138.600M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	31.9	43.5	-11.6	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+17.3	+1.2	-26.9					
2:	2000 0703 5	40.4	+1.3	+0.2	+0.0	20.1	0.0	42.4	F 1 0		** .
34	2999.850M	40.4	+0.0	+0.0	+0.5	-39.4	+0.0	42.4	54.0	-11.6	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+30.1	+0.0	+0.0	+0.0					
25	150.0463.5	20.7	+6.4	+0.0	+4.4	.00	.0.0	21.0	40.5	117	X 7 ·
35	158.046M	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.8	43.5	-11.7	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+16.4	+1.2	-26.9					
26	274 0073 4	26.1	+1.4	+0.2	+0.0	. 0. 0	.00	242	460	117	T7
36	374.987M	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	46.0	-11.7	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+20.8	+2.0	-27.1					
27	274.0003.4	25.5	+2.2	+0.3	+0.0		.0.0	22.7	460	10.0	TT. *
37	374.990M	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	33.7	46.0	-12.3	Horiz
			+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+20.8	+2.0	-27.1					
			+2.2	+0.3	+0.0						

Page 52 of 76 Report No.: 107144-12

<u> </u>											<u> </u>
38	300.033M	37.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	46.0	-12.4	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+19.1	+1.7	-26.5					
20	204 1 423 5	260	+2.0	+0.2	+0.0	.00	.0.0	22.5	460	10.5	3.7 ·
39	304.143M	36.9	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	46.0	-12.5	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+19.2	+1.7	-26.5					
40	700 00214	26.5	+2.0	+0.2	+0.0	. 0. 0	. 0. 0	22.5	46.0	10.5	TT
40	799.993M	26.5	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	46.0	-12.5	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0 +3.3	+28.1	+3.0	-27.8					
41	1200.000M	40.2	+0.0	+0.4	+0.0	-40.1	+0.0	41.4	54.0	-12.6	Vert
41	1200.000M	49.3	+0.0	$+0.0 \\ +0.0$	+0.3 +0.0	-40.1 +0.0	+0.0	41.4	34.0 M1	-12.0	vert
			+25.4	+0.0	+0.0	+0.0 +0.0			IVI I		
			+23.4	+0.0 +0.0	+0.6	+0.0					
42	375.067M	35.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	46.0	-12.7	Horiz
42	3/3.00/101	33.1	+0.0	+0.0	+0.0 +0.0	+0.0 +0.0	+0.0	33.3	46.0 M5	-12./	HOHZ
			+0.0 +0.0	+20.8	+2.0	-27.1			IVIS		
			+2.2	+20.8	+2.0 $+0.0$	-2/.1					
43	800.072M	26.1	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	46.0	-12.9	Vert
73	000.072IVI	20.1	+0.0	+0.0	+0.0	+0.0	10.0	33.1	M5	-12.7	VCIT
			+0.0	+28.1	+3.0	-27.8			1113		
			+3.3	+0.4	+0.0	27.0					
44	299.915M	36.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	46.0	-12.9	Vert
	2,,,,1,1,1,1	20.0	+0.0	+0.0	+0.0	+0.0	10.0	33.1	M9	12.9	, 611
			+0.0	+19.1	+1.7	-26.5					
			+2.0	+0.2	+0.0						
45	149.375M	37.9	+0.0	+0.0	+0.0	+0.0	+0.0	30.6	43.5	-12.9	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+16.9	+1.2	-26.9					
			+1.3	+0.2	+0.0						
46	239.910M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	46.0	-13.4	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+17.1	+1.5	-26.5					
			+1.8	+0.2	+0.0						
47	319.994M	35.9	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	46.0	-13.4	Horiz
			+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+19.4	+1.8	-26.7					
			+2.0	+0.2	+0.0						
48	1120.017M	54.3	+0.0	+0.0	+0.3	-40.4	+0.0	40.6	54.0	-13.4	Horiz
			+0.3	+0.3	+0.3	+0.3			M5		
			+25.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
49	358.131M	34.5	+0.0	+0.0	+0.0	+0.0	+0.0	32.2	46.0	-13.8	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+20.5	+1.9	-27.0					
	1100 6 5=3 5	40.0	+2.1	+0.2	+0.0	40.1	0.0	40.1	F		**
50	1199.967M	48.0	+0.0	+0.0	+0.3	-40.1	+0.0	40.1	54.0	-13.9	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+25.4	+0.0	+0.0	+0.0					
			+3.9	+0.0	+2.6						

Page 53 of 76 Report No.: 107144-12

~ -	410 7053 5		0.0	0.0	0.0	0.0	0.0	21.2	1		
51	412.521M	32.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.8	46.0	-14.2	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
1			+0.0	+22.5	+2.0	-27.4					
	C10 7 CON #	27.5	+2.3	+0.3	+0.0	.00	.0.0	21.5	460	1 4 7	TT. *
52	618.760M	27.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	46.0	-14.5	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+26.3	+2.5	-28.0					
52	123.680M	26.0	+2.9	+0.3	+0.0	ΙΟ Ο	+0.0	20.0	12 5	147	Lloria
53	123.08UNI	36.0	+0.0	+0.0	+0.0	+0.0	+0.0	28.8	43.5 M9	-14.7	Horiz
			$+0.0 \\ +0.0$	$+0.0 \\ +17.4$	$+0.0 \\ +1.1$	+0.0 -27.0			IVI9		
			+1.2	+17.4	+1.1 +0.0	-27.0					
54	318.785M	34.6	+0.0	+0.1	+0.0	+0.0	+0.0	31.3	46.0	-14.7	Vert
34	J10./0JIVI	54.0	+0.0 +0.0	+0.0	+0.0	+0.0 +0.0	+0.0	51.5	M5	-14./	v CI t
			+0.0 +0.0	+19.4	+0.0	+0.0 -26.7			1713		
			+2.0	+0.2	+0.0	20.7					
55	439.498M	31.1	+0.0	+0.0	+0.0	+0.0	+0.0	30.8	46.0	-15.2	Horiz
	137.170141	J1.1	+0.0	+0.0	+0.0	+0.0	10.0	50.0	M5	13.2	110112
			+0.0	+22.5	+2.1	-27.6			1,10		
			+2.4	+0.3	+0.0	27.0					
56	508.806M	29.6	+0.0	+0.0	+0.0	+0.0	+0.0	30.7	46.0	-15.3	Vert
	3 0 3 . 0 0 0 1 . 1		+0.0	+0.0	+0.0	+0.0	. 0.0	20.7	M5	10.0	. 510
			+0.0	+23.8	+2.3	-27.9					
			+2.6	+0.3	+0.0						
57	139.508M	35.1	+0.0	+0.0	+0.0	+0.0	+0.0	28.2	43.5	-15.3	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+17.3	+1.2	-26.9					
			+1.3	+0.2	+0.0						
58	613.672M	26.6	+0.0	+0.0	+0.0	+0.0	+0.0	30.6	46.0	-15.4	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+26.3	+2.5	-28.0					
			+2.9	+0.3	+0.0						
59	319.985M	33.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	46.0	-15.5	Vert
1			+0.0	+0.0	+0.0	+0.0			M9		
1			+0.0	+19.4	+1.8	-26.7					
<u> </u>			+2.0	+0.2	+0.0						
60	386.300M	32.1	+0.0	+0.0	+0.0	+0.0	+0.0	30.5	46.0	-15.5	Horiz
1			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+21.1	+2.0	-27.2					
	1100 0003 5	4 < 4	+2.2	+0.3	+0.0	40.4	0.0	20.7	F 1 0		** .
61	1199.800M	46.4	+0.0	+0.0	+0.3	-40.1	+0.0	38.5	54.0	-15.5	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
1			+25.4	+0.0	+0.0	+0.0					
	400.0203.4	20.4	+3.9	+0.0	+2.6	.00	.0.0	20.2	460	1.7.7	17
62	480.039M	29.4	+0.0	+0.0	+0.0	+0.0	+0.0	30.3	46.0	-15.7	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
1			+0.0	+23.7	+2.2	-27.8					
62	122.967M	24.0	+2.5	+0.3	+0.0	ΙΟ Ο	+0.0	27.7	12 5	150	Horiz
63	122.90/IVI	34.9	+0.0	+0.0	+0.0	+0.0	+0.0	27.7	43.5 M5	-15.8	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+17.4	+1.1	-27.0					
			+1.2	+0.1	+0.0						

Page 54 of 76 Report No.: 107144-12

<i></i>	124 0003 4	24.0	.00	.00	. 0. 0		.0.0	27.7	40.5	150	11. '
64	134.008M	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	27.7	43.5	-15.8	Horiz
			+0.0	$+0.0 \\ +17.4$	+0.0	+0.0			M5		
			+0.0		+1.1	-27.0					
65	656.156M	25.8	+1.3	+0.1	+0.0	+0.0	+0.0	30.0	46.0	-16.0	Vert
0.5	030.130101	23.8	+0.0	+0.0 +0.0	+0.0 +0.0	+0.0	+0.0	30.0	46.0 M5	-10.0	v ert
			+0.0 +0.0	+26.3	+0.0	-28.0			1713		
			+3.0	+0.3	+0.0	-20.0					
66	1200.000M	45.9	+0.0	+0.0	+0.3	-40.1	+0.0	38.0	54.0	-16.0	Horiz
00	1200.00011	13.7	+0.0	+0.0	+0.0	+0.0	10.0	30.0	M1	10.0	HOHE
			+25.4	+0.0	+0.0	+0.0			1.11		
			+3.9	+0.0	+2.6						
67	400.015M	30.3	+0.0	+0.0	+0.0	+0.0	+0.0	29.4	46.0	-16.6	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+21.8	+2.0	-27.3					
			+2.3	+0.3	+0.0						
68	1199.917M	45.3	+0.0	+0.0	+0.3	-40.1	+0.0	37.4	54.0	-16.6	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+25.4	+0.0	+0.0	+0.0					
			+3.9	+0.0	+2.6						
69	377.460M	31.0	+0.0	+0.0	+0.0	+0.0	+0.0	29.2	46.0	-16.8	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+20.8	+2.0	-27.1					
			+2.2	+0.3	+0.0						
70	337.465M	31.7	+0.0	+0.0	+0.0	+0.0	+0.0	29.0	46.0	-17.0	Vert
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+19.9	+1.9	-26.8					
71	055 7003 5	21.0	+2.1	+0.2	+0.0	.00	.0.0	20.2	46.0	17.0	TT. *
71	255.780M	31.9	+0.0	+0.0	+0.0	+0.0	+0.0	28.2	46.0	-17.8	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0 +1.9	$+19.2 \\ +0.2$	+1.5 +0.0	-26.5					
72	431.331M	27.5	+0.0	+0.2	+0.0	+0.0	+0.0	27.2	46.0	-18.8	Horiz
12	+31.331101	41.3	+0.0	+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0	41.4	46.0 M5	-10.0	HOHZ
			+0.0 +0.0	+22.5	+2.1	-27.6			171.5		
			+2.4	+0.3	+0.0	27.0					
73	399.870M	27.2	+0.0	+0.0	+0.0	+0.0	+0.0	26.3	46.0	-19.7	Horiz
, ,	277.070111	27.2	+0.0	+0.0	+0.0	+0.0	. 0.0	20.5	M5	17.1	110112
			+0.0	+21.8	+2.0	-27.3			-		
			+2.3	+0.3	+0.0						
74	222.846M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	26.2	46.0	-19.8	Vert
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+15.4	+1.5	-26.6					
			+1.7	+0.2	+0.0						
75	218.730M	34.1	+0.0	+0.0	+0.0	+0.0	+0.0	25.9	46.0	-20.1	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+15.0	+1.5	-26.6					
			+1.7	+0.2	+0.0						
76	282.440M	29.7	+0.0	+0.0	+0.0	+0.0	+0.0	25.7	46.0	-20.3	Horiz
			+0.0	+0.0	+0.0	+0.0			M9		
			+0.0	+18.7	+1.6	-26.5					
			+2.0	+0.2	+0.0						

Page 55 of 76 Report No.: 107144-12

77	337.600M	28.3	+0.0	+0.0	+0.0	+0.0	+0.0	25.6	46.0	-20.4	Horiz
			+0.0	+0.0	+0.0	+0.0			M1		
			+0.0	+19.9	+1.9	-26.8					
			+2.1	+0.2	+0.0						
78	113.650M	29.9	+0.0	+0.0	+0.0	+0.0	+0.0	22.2	43.5	-21.3	Horiz
			+0.0	+0.0	+0.0	+0.0			M5		
			+0.0	+17.0	+1.0	-27.0					
			+1.2	+0.1	+0.0						

Page 56 of 76 Report No.: 107144-12

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions peak

Work Order #: 107144 Date: 12/20/2022
Test Type: Radiated Scan Time: 11:00:12
Tested By: E. Wong Sequence#: 4

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active (FMCW) and deactivated (CW) per FCC waiver.

TX freq Range : 20- 40GHz TX freq =20.08 - 39.80GHz

Modulation : FMCW

Firmware: V2.2.7, V2.2.8 (with improved receiver gain)

Transmitter: M1, M5, M9

Frequency range of measurement = 40- 200 GHz.

1000 MHz-200000 MHz;RBW=1MHz,VBW=3 MHz.

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector = RMS,

RBW=1MHz,VBW=3MHz

sweep = 1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

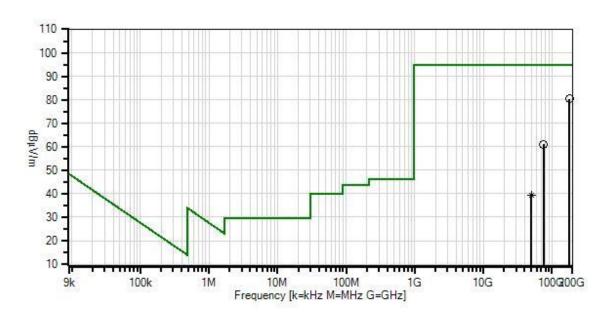
Test environment conditions: Temperature: 24 Deg°C Relative Humidity: 29%

Pressure: 99kPa

Site D

ANSI C63.10-2013

Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.


FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

Measurement made with reduced RBW; the receiving antennas were placed at closer distance to the transmitting antennas to detect emission. No emission found, recorded data represent the noise floor at reduced RBW.

Page 58 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 4 Date: 12/20/2022 15:209 Radiated Emissions_peak Test Distance: 0.5 Meter Vert

Readings

× QP Readings

▼ Ambient

1 - 15.209 Radiated Emissions_peak

O Peak Readings

* Average Readings
Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN02072 AN02347	Horn Antenna	M19HWA	3/9/2021	3/9/2023
T3	ANP07655-A	Cable	32022-29094K-	6/22/2022	6/22/2024
15	ANPU/055-A	Cable	29094K-24TC	0/22/2022	6/22/2024
T4	ANP07656-A	Cable	32022-29094K-	6/22/2022	6/22/2024
14	ANPU/030-A	Cable	29094K-24TC	0/22/2022	0/22/2024
T5	ANP07659-A	Cable	32022-29094K-	6/22/2022	6/22/2024
15	ANPU/059-A	Cable	29094K-24TC	0/22/2022	6/22/2024
Т6	ANP07660-A	Cable	32022-29094K-	6/22/2022	6/22/2024
10	ANPU/00U-A	Cable	29094K-24TC	0/22/2022	0/22/2024
T7	AN02348	Horn Antenna	M12HWA	3/9/2021	3/9/2023
T8	ANP07655-B	Cable	32022-29094K-	6/22/2022	6/22/2024
18	AINPU/055-B	Cable	29094K-24TC	0/22/2022	0/22/2024
T9	ANP07656-B	Cable	32022-29094K-	6/22/2022	6/22/2024
19	ANPU/050-B	Cable	29094K-24TC	0/22/2022	6/22/2024
T10	ANP07659-B	Cable	32022-29094K-	6/22/2022	6/22/2024
110	ANPU/059-B	Cable	29094K-24TC	0/22/2022	0/22/2024
T11	ANP07660-B	Cable	32022-29094K-	6/22/2022	6/22/2024
111	ANPU/00U-B	Cable	29094K-24TC	0/22/2022	0/22/2024
	AN02349	Horn Antenna	M08HWA	3/9/2021	3/9/2023
	ANP07655-C	Cable	32022-29094K-	6/22/2022	6/22/2024
	ANPU/055-C	Cable	29094K-24TC	0/22/2022	0/22/2024
	ANP07656-C	Cable	32022-29094K-	6/22/2022	6/22/2024
	ANPU/030-C	Cable	29094K-24TC	0/22/2022	0/22/2024
	ANP07659-C	Cable	32022-29094K-	6/22/2022	6/22/2024
	ANP0/039-C	Cable	29094K-24TC	0/22/2022	0/22/2024
	ANP07660-C	Cable	32022-29094K-	6/22/2022	6/22/2024
	ANF 07 000-C	Cable	29094K-24TC	0/22/2022	0/22/2024
T12	AN02350	Horn Antenna	M05HWA	3/9/2021	3/9/2023
T13	ANP07655-D	Cable	32022-29094K-	6/22/2022	6/22/2024
113	WINE 01022-D	Cable	29094K-24TC	0/ 22/ 2022	0/22/2024
T14	ANP07656-D	Cable	32022-29094K-	6/22/2022	6/22/2024
1 14	WINE 01020-D	Cable	29094K-24TC	0/ 22/ 2022	0/22/2024
T15	ANP07659-D	Cable	32022-29094K-	6/22/2022	6/22/2024
113	MINEO/035-D	Cable	29094K-24TC	0/22/2022	0/ 22/ 2024
T16	ANP07660-D	Cable	32022-29094K-	6/22/2022	6/22/2024
110	AINT 07 000-D	Cable	29094K-24TC	0/ 22/ 2022	0/22/2024
			23034N-241C		

Page 60 of 76 Report No.: 107144-12

Measi	irement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 0.5 Mete	er	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	50000.000	-19.2	+0.0	+71.3	+0.7	+0.8	-15.6	39.4	54.0	-14.6	Vert
	M		+0.7	+0.7	+0.0	+0.0					
	Ave		+0.0	+0.0	+0.0	+0.0			M9 FMCV	V	
			+0.0	+0.0	+0.0	+0.0					
2	80000.000	-15.6	+0.0	+0.0	+0.0	+0.0	-15.6	80.4	95.0	-14.6	Vert
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+108.9			M5 200800	0MHz	
			+0.7	+0.7	+0.6	+0.7					
3	75000.000	-11.1	+0.0	+0.0	+0.0	+0.0	-15.6	61.0	95.0	-34.0	Vert
	M		+0.0	+0.0	+84.9	+0.6					
			+0.7	+0.7	+0.8	+0.0			M1 300000	0MHz	
			+0.0	+0.0	+0.0	+0.0					

Bandedge Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.209 Radiated Emissions

Work Order #: 107144 Date: 12/16/2022
Test Type: Radiated Scan Time: 10:22:54
Tested By: E. Wong Sequence#: 3

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active (FMCW) and deactivated (CW) per FCC waiver. In CW mode, recorded frequency is adjusted to compensate for frequency drift

TX freq Range: 20-40GHz TX freq =20.08 - 39.80GHz Modulation: FMCW

Firmware: V2.2.7, V2.2.8 with improved receiver gain)

Transmitter: M5

Frequency range of measurement = Fundamental, in band

In band measurement per FCC Waiver

Ave

Mode = sweep enabled, detector =RMS,

RBW=1MHz,VBW=3MHz

sweep = 1 sec

Peak

Mode=sweep disabled, detector =Peak

RBW=100kHz, VBW1MHz

Test environment conditions: Temperature: 24 Deg°C Relative Humidity: 29%

> Page 62 of 76 Report No.: 107144-12

Pressure: 99kPa

Site D

ANSI C63.10-2013

Peak limit above 1 GHz is 41dB above 15.209 (a) limit IAW FCC waiver.

FCC waiver DA06-1589 Aug 04th, 2006 FCC waiver DA16-1075 Nov 22nd, 2016

> Page 63 of 76 Report No.: 107144-12

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	AN01413	Horn Antenna	84125-80008	10/3/2022	10/3/2024
T3	ANP07657	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP07659	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т6	ANP07660	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T7	ANP07656	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т8	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
Т9	AN03158A	Horn Antenna	GH-28-25	8/10/2021	8/10/2023
	ANR00219	Active Horn	SAS -200/512	9/16/2021	9/16/2023
		Antenna			

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 1 Meter		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 40000.000	31.0	+0.0	+0.0	+0.0	+0.0	-9.5	37.1	54.0	-16.9	Vert
	M		+2.0	+2.2	+2.0	+2.4					
	Ave		+7.0						bandedge l	Н	
'	^ 39999.999	31.3	+0.0	+0.0	+0.0	+0.0	-9.5	37.4	95.0	-57.6	Vert
	M		+2.0	+2.2	+2.0	+2.4					
			+7.0						CW TX o	n	
									39800MH	Z	
									Bandedge	H	
(3 20000.000	32.6	+0.0	+40.4	+1.5	-34.9	-9.5	35.8	54.0	-18.2	Vert
	M		+1.5	+1.4	+1.4	+1.4					
	Ave		+0.0						Bandedge_	L	
4	4 20000.000	32.0	+0.0	+40.4	+1.5	-34.9	-9.5	35.2	95.0	-59.8	Horiz
	M		+1.5	+1.4	+1.4	+1.4					
			+0.0						CW TX or	20080 a	
									MHz Band	ledge L	

Page 64 of 76 Report No.: 107144-12

Test Setup Photo(s)

Below 1GHz, View #1

Below 1GHz, View #2

Above 1GHz, View #1

Above 1GHz, View #2

MM Wave, View #1

MM Wave, View #2

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Leidos Security Detection & Automation, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 107144 Date: 12/16/2022
Test Type: Conducted Emissions Time: 16:35:37
Tested By: E. Wong Sequence#: 30

Software: EMITest 5.03.20 120/60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active

TX freq Range: 20-40GHz/TX freq = 20.08 - 39.80GHz

Modulation : FMCW

Firmware: V2.2.7, V2.2.8 with improved receiver gain)

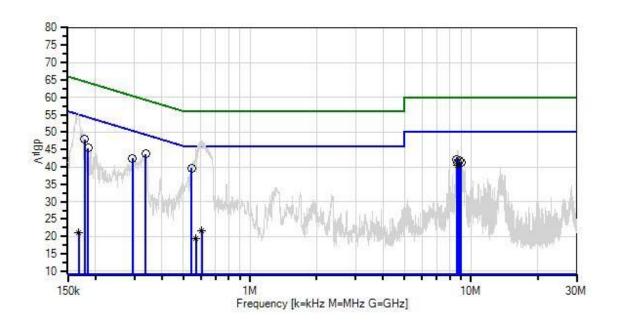
Transmitter: M5

Frequency range of measurement = 150kHz- 30MHz. 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz

Test environment conditions: Temperature: 18 Deg°C Relative Humidity: 27%

Pressure: 99kPa

Site D


ANSI C63.10-2013

AC conducted emission performed at AC mains of support power supply

Page 68 of 76 Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 30 Date: 12/16/2022 15.207 AC Mains - Average Test Lead: 120/60Hz L1-Line

× QP Readings Software Version: 5.03.20 Readings

* Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06085	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
T2	ANP01910	Cable	RG-142	9/8/2021	9/8/2023
Т3	AN02610	High Pass Filter	HE9615-150K- 50-720B	9/8/2021	9/8/2023
T4	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/18/2022	3/18/2023
	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/18/2022	3/18/2023

Page 69 of 76 Report No.: 107144-12

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: L1-Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	336.890k	37.7	+5.8	+0.1	+0.1	+0.0	+0.0	43.7	49.3	-5.6	L1-Li
2	543.417k	33.4	+5.8	+0.1	+0.3	+0.0	+0.0	39.6	46.0	-6.4	L1-Li
3	179.087k	41.8	+5.8	+0.1	+0.3	+0.0	+0.0	48.0	54.5	-6.5	L1-Li
4	8.598M	36.0	+5.8	+0.2	+0.1	+0.1	+0.0	42.2	50.0	-7.8	L1-Li
5	294.712k	36.4	+5.8	+0.1	+0.1	+0.0	+0.0	42.4	50.4	-8.0	L1-Li
6	8.824M	35.7	+5.8	+0.2	+0.1	+0.1	+0.0	41.9	50.0	-8.1	L1-Li
7	8.995M	35.2	+5.8	+0.2	+0.1	+0.1	+0.0	41.4	50.0	-8.6	L1-Li
8	9.031M	35.2	+5.8	+0.2	+0.1	+0.1	+0.0	41.4	50.0	-8.6	L1-Li
9	8.661M	35.1	+5.8	+0.2	+0.1	+0.1	+0.0	41.3	50.0	-8.7	L1-Li
10	185.632k	39.3	+5.8	+0.1	+0.2	+0.0	+0.0	45.4	54.2	-8.8	L1-Li
11	8.716M Ave	34.3	+5.8	+0.2	+0.1	+0.1	+0.0	40.5	50.0	-9.5	L1-Li
٨	8.716M	38.5	+5.8	+0.2	+0.1	+0.1	+0.0	44.7	50.0	-5.3	L1-Li
13	606.684k Ave	15.5	+5.8	+0.1	+0.3	+0.0	+0.0	21.7	46.0	-24.3	L1-Li
^	606.684k	41.5	+5.8	+0.1	+0.3	+0.0	+0.0	47.7	46.0	+1.7	L1-Li
15	571.051k Ave	13.3	+5.8	+0.1	+0.3	+0.0	+0.0	19.5	46.0	-26.5	L1-Li
٨	571.051k	39.2	+5.8	+0.1	+0.3	+0.0	+0.0	45.4	46.0	-0.6	L1-Li
٨	573.232k	38.7	+5.8	+0.1	+0.3	+0.0	+0.0	44.9	46.0	-1.1	L1-Li
18	168.179k Ave	14.8	+5.8	+0.1	+0.3	+0.0	+0.0	21.0	55.0	-34.0	L1-Li
٨	168.179k	49.4	+5.8	+0.1	+0.3	+0.0	+0.0	55.6	55.0	+0.6	L1-Li

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA • 714 993 6112

Leidos Security Detection & Automation, Inc. Customer:

Specification: 15.207 AC Mains - Average

Work Order #: 107144 Date: 12/16/2022 Test Type: **Conducted Emissions** Time: 16:42:15 Tested By: E. Wong Sequence#: 31

Software: EMITest 5.03.20 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT seeking limited modular approval is place on the turntable with the bottom of the Mast elevated from the ground plan like normal installation.

The USB ports of the Mast are connected to RF controlling device, Image Sampling Unit for data, control command and DC power.

The EUT contains 9 transmitter modules.

Two 24 V DC power supplies configured in series provides 48V to the Image Sampling Unit

The EUT is operating as intended in sweeping mode active

TX freq Range: 20-40GHz TX freq = 20.08 - 39.80 GHz

Modulation : FMCW

Firmware: V2.2.7, V2.2.8 with improved receiver gain)

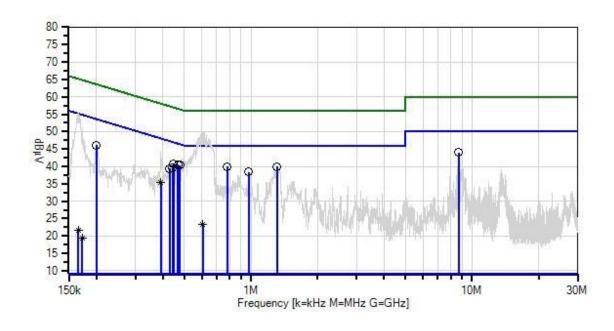
Transmitter: M5

Frequency range of measurement = 150kHz- 30MHz. 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz

Test environment conditions: Temperature: 18 Deg°C Relative Humidity: 27%

Pressure: 99kPa

Site D


ANSI C63.10-2013

AC conducted emission performed at AC mains of support power supply

Report No.: 107144-12

Leidos Security Detection & Automation, Inc. WO#: 107144 Sequence#: 31 Date: 12/16/2022 15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral

Sweep Data
 QP Readings
 Software Version: 5.03.20

Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient
2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06085	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
T2	ANP01910	Cable	RG-142	9/8/2021	9/8/2023
T3	AN02610	High Pass Filter	HE9615-150K-	9/8/2021	9/8/2023
			50-720B		
	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/18/2022	3/18/2023
		1			
T4	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/18/2022	3/18/2023
		2			

Page 72 of 76 Report No.: 107144-12

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: L2-Neut	tral	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1.311M	33.9	+5.8	+0.1	+0.2	+0.0	+0.0	40.0	46.0	-6.0	L2-Ne
2	8.716M	37.8	+5.8	+0.2	+0.1	+0.1	+0.0	44.0	50.0	-6.0	L2-Ne
3	467.789k	34.3	+5.8	+0.1	+0.3	+0.0	+0.0	40.5	46.6	-6.1	L2-Ne
4	477.242k	34.1	+5.8	+0.1	+0.3	+0.0	+0.0	40.3	46.4	-6.1	L2-Ne
5	779.760k	33.7	+5.8	+0.1	+0.3	+0.0	+0.0	39.9	46.0	-6.1	L2-Ne
6	447.427k	34.5	+5.8	+0.1	+0.3	+0.0	+0.0	40.7	46.9	-6.2	L2-Ne
7	440.882k	33.6	+5.8	+0.1	+0.2	+0.0	+0.0	39.7	47.0	-7.3	L2-Ne
8	200.177k	40.0	+5.8	+0.1	+0.2	+0.0	+0.0	46.1	53.6	-7.5	L2-Ne
9	975.017k	32.3	+5.8	+0.1	+0.2	+0.0	+0.0	38.4	46.0	-7.6	L2-Ne
10	429.247k	33.3	+5.8	+0.1	+0.2	+0.0	+0.0	39.4	47.3	-7.9	L2-Ne
11	391.432k Ave	29.3	+5.8	+0.1	+0.2	+0.0	+0.0	35.4	48.0	-12.6	L2-Ne
٨	391.432k	38.0	+5.8	+0.1	+0.2	+0.0	+0.0	44.1	48.0	-3.9	L2-Ne
13	605.958k Ave	17.0	+5.8	+0.1	+0.3	+0.0	+0.0	23.2	46.0	-22.8	L2-Ne
٨	605.958k	43.7	+5.8	+0.1	+0.3	+0.0	+0.0	49.9	46.0	+3.9	L2-Ne
15	165.999k Ave	15.3	+5.8	+0.1	+0.4	+0.0	+0.0	21.6	55.2	-33.6	L2-Ne
٨	165.998k	49.4	+5.8	+0.1	+0.4	+0.0	+0.0	55.7	55.2	+0.5	L2-Ne
17	172.543k Ave	13.3	+5.8	+0.1	+0.3	+0.0	+0.0	19.5	54.8	-35.3	L2-Ne
٨	172.543k	45.1	+5.8	+0.1	+0.3	+0.0	+0.0	51.3	54.8	-3.5	L2-Ne
٨	175.452k	41.7	+5.8	+0.1	+0.3	+0.0	+0.0	47.9	54.7	-6.8	L2-Ne

Test Setup Photo(s)

AC Mains View #1

AC Mains View #2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
	Meter reading (dBμV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 75 of 76

Report No.: 107144-12

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 76 of 76 Report No.: 107144-12