SW TECHNOLOGY Ltd.

Purpose: to prove the proposed 2.4G antenna has better performance

JACKY HU/2015-11-23

Antenna specification/requirement

➤ return loss: S11 <= -6dB</p>

> antenna gain: high and flat in entire BT band

antenna efficiency: >=60% (-2.2dB)

radiation pattern flatness: <= 1.5dB, uniform radiation pattern in horizontal (XZ) plane

Traditional & proposed 2.4G Antennas

Traditional type 2.4G antenna: IFA (inverted-F) and monopole antennas
Proposed antenna: V-type antenna

Comparison of different antennas in S11

Similar antenna performance in S11 is obtained

Comparison of different antennas in antenna radiation efficiency

◆ In the entire 2.4G band (2.4-2.48GHz), the antenna efficiency of the proposed antenna is better than that of IFA antenna

♦ In particular, the antenna radiation efficiency of the proposed antenna is more flat or uniform than that of the monopole antenna, which leads to a better overall antenna performance

Comparison of different antennas in antenna gain

◆ In the entire 2.4G band (2.4-2.48GHz), the antenna gain of the proposed antenna is better than that of IFA and monopole antennas

Comparison of different antennas in 3D radiation pattern at 2.44GHz

IFA: Worse radiation pattern

Monopole: Good radiation pattern

Proposed: Better radiation pattern

Comparison of different antennas in XZ-plane radiation pattern at 2.44GHz

♦ XZ or horizontal plane is the plane that we should care about. The good radiation pattern in this plane means that the antenna will have better performance.

Comparison of different antennas in XZ, YZ, and XY-plane radiation pattern at 2.44GHz

------ farfield (f=2.44)_proposed

Total Antenna Efficiency of Proposed antenna

Parameter study of proposed antenna

In the size of V-type antenna or to tune the antenna resonance frequency; and to fine tune the impedance matching of the antenna

Conclusions

◆ the proposed V-type antenna has better performance than IFA and monopole antennas because:

➢ it has better antenna gain and radiation efficiency

 \succ in the entire band the gain of proposed antenna has better flatness than that of monopole antenna

 \succ in the horizontal plane, the radiation pattern of the proposed antenna is better than that of IFA antenna

THE END