RF Exposure evaluation

According to 447498 D04 Interim General RF Exposure Guidance v01

 $20 \text{ cm} < d \leq 40 \text{ cm}$

 $(ERP_{20 \text{ cm}}(d/20 \text{ cm})^{\chi} d \le 20 \text{ cm})$ $P_{th} (mW) =$ ERP20 cm

(B.2)

where

 $x = -\log_{10}\left(\frac{\epsilon o}{\epsilon R^{\rho_{\text{tot}}} cm/f}\right)$

and f is in GHz, d is the separation distance (cm)₃ and ERP_{20em} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B.1)

Table B.2-Example Power Thresholds (mW)

	Distance						(mm)				
		5	10	15	20	25	30	35	40	45	50
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217
	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	- 90	116	145	175	207	240
	1900	3	12	26	44	66	92	122	157	195	236
	2450	3	10	22	38	- 59	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	2.5	40	58	80	106	136	169

```
eirp = pt x gt = (EXd)^2/30
where:
pt = transmitter output power in watts,
gt = numeric gain of the transmitting antenna (unitless),
E = electric field strength in V/m, --- 10^{((dBuV/m)/20)}/10^6
d = measurement distance in meters (m) - -3m
Sopt = (EXd)^2/30 \times gt
```

Ant gain =1.55dBi so Ant numeric gain= 1.429

Field strength =93.96dB μ V/m @3m@2402MHz

So $Pt=\{ [10^{(93.96/20)}/10^6 x3]^2/(30x1.429)\} \times 1000 \text{ mW} = 0.52 \text{mW}$ <2.72 mW

Then SAR evaluation is not required