

Applicant: Eastern Times Technology Co.,Ltd

Product: 3-MODE WIRELESS HOT-SWAP MECHANICAL

KEYBOARD

Model No.: K556RGB-PRO, ET-8855

Trademark: REDRAGON

Test Standards: FCC Part 15.249

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10 &FCC Part 15 Subpart C, Paragraph 15.249 regulations for the evaluation of

electromagnetic compatibility

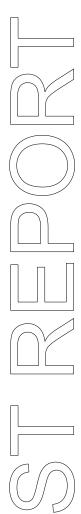
Approved By

Terry Tang

Term lang

Manager

Dated: July 06, 2023


Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: TW2305232-02E Page 2 of 34

Date: 2023-07-06

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number:5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

CAB identifier: CN0033

Date: 2023-07-06

Test Report Conclusion

ent

1.0	General Details	4
1.1	Test Lab Details.	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample	4
1.5	Test Duration.	5
1.6	Test Uncertainty	5
1.7	Test By	5
2.0	List of Measurement Equipment	6
3.0	Technical Details	7
3.1	Summary of Test Results	7
3.2	Test Standards.	7
4.0	EUT Modification.	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test.	8
5.2	Test Method and Test Procedure.	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition.	9
5.5	Conducted Emission Limit.	9
5.6	Test Result.	9
6.0	Radiated Emission test.	12
6.1	Test Method and Test Procedure.	12
6.2	Configuration of the EUT.	13
6.3	EUT Operation Condition.	13
6.4	Radiated Emission Limit.	14
6.5	Test Result.	15
7.0	Band Edge	23
7.1	Test Method and Test Procedure	23
7.2	Radiated Test Setup	23
7.3	Configuration of the EUT	23
7.4	EUT Operating Condition	23
7.5	Band Edge Limit.	23
7.6	Band Edge Test Result.	24
8.0	Antenna Requirement	28
9.0	20dB bandwidth measurement	29
10.0	FCC ID Label	32
11 0	Photo of Test Setup and EUT View.	33

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2023-07-06

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: Eastern Times Technology Co.,Ltd

Address: Building D, Nan An Industrial Area, Youganpu Village, Fenggang Town, Dongguan City,

Guangdong, China.

Telephone: --Fax: --

1.3 Description of EUT

Product: 3-MODE WIRELESS HOT-SWAP MECHANICAL KEYBOARD

Manufacturer: Eastern Times Technology Co.,Ltd

Address: Building D, Nan An Industrial Area, Youganpu Village, Fenggang Town,

Dongguan City, Guangdong, China.

Trademark: REDRAGON

Additional Trademark: N/A

Model Number: K556RGB-PRO

Additional Model Name ET-8855 Hardware Version: 4A16 Software Version: 8855-A V1

Serial No.: RDK556RGB-PRO23042500950
Rating: DC5V, 500mA or DC3.7V, 250mA
Battery: DC3.7V, 1600mAh Li-ion battery

Modulation Type: GFSK

Operation Frequency: 2402-2480MHz

Channel Separate: 1MHz
Channel Number: 79

Antenna Designation PCB antenna with gain 2.34dBi Max (Get from the antenna specification)

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2305232-02E Page 5 of 34

Date: 2023-07-06

1.4 Submitted Sample: 2 Samples

1.5 Test Duration 2023-05-22 to 2023-07-06

1.6 Test Uncertainty

Conducted Emissions Uncertainty =3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty = 6.0dB

Occupied Channel Bandwidth Uncertainty = 5%

Conducted Emissions Uncertainty = 3.6dB

Note: The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

The sample tested by

Print Name: Terry Tang

Page 6 of 34

Report No.: TW2305232-02E

Date: 2023-07-06

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2022-07-15	2023-07-14
LISN	R&S	EZH3-Z5	100294	2022-07-18	2023-07-17
LISN	R&S	EZH3-Z5	100253	2022-07-18	2023-07-17
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2022-07-18	2023-07-17
Loop Antenna	EMCO	6507	00078608	2022-07-18	2025-07-17
Spectrum	R&S	FSIQ26	100292	2022-07-15	2023-07-14
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2022-07-18	2025-07-17
Horn Antenna	R&S	BBHA 9120D	9120D-631	2022-07-18	2024-07-17
Power meter	Anritsu	ML2487A	6K00003613	2022-07-18	2023-07-17
Power sensor	Anritsu	MA2491A	32263	2022-07-18	2023-07-17
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2022-07-18	2025-07-17
9*6*6 Anechoic			N/A	2022-07-26	2025-07-25
EMI Test Receiver	RS	ESVB	826156/011	2022-07-15	2023-07-14
EMI Test Receiver	RS	ESCS 30	834115/006	2022-07-15	2023-07-14
Spectrum	HP/Agilent	E4407B	MY50441392	2022-07-15	2023-07-14
Spectrum	RS	FSP	1164.4391.38	2022-07-15	2023-07-14
RF Cable	Zhengdi	ZT26-NJ-NJ-8M/FA		2022-07-15	2023-07-14
RF Cable	Zhengdi	7m		2022-07-15	2023-07-14
Pre-Amplifier	Schwarebeck	BBV9743	#218	2022-07-15	2023-07-14
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2022-07-15	2023-07-14
LISN	SCHAFFNER	NNB42	00012	2022-08-18	2023-07-17
ESPI Test Receiver	R&S	ESPI 3	100379	2022-07-15	2023-07-14
LISN	R&S	EZH3-Z5	100294	2022-07-18	2023-07-17

2.2 Automation Test Software

For Conducted Emission Test

Name	Version
EZ-EMC	Ver.EMC-CON 3A1.1

For Radiated Emissions

Name	Version
EMI Test Software BL410-EV18.91	V18.905
EMI Test Software BL410-EV18.806 High Frequency	V18.06

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 7 of 34

Report No.: TW2305232-02E

Date: 2023-07-06

3.0 Technical Details

3.1 Summary of test results

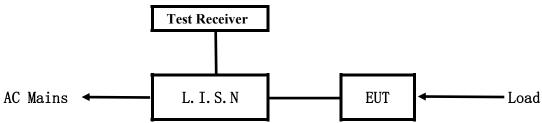
The EUT has	been tested	l according to	o the foll	owing s	specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.203	Antenna Requirement	Pass	Complies
FCC Part 15, Paragraph 15.207	Conducted Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	Pass	Complies
FCC Part 15, Paragraph 15.209	Radiated Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	Pass	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

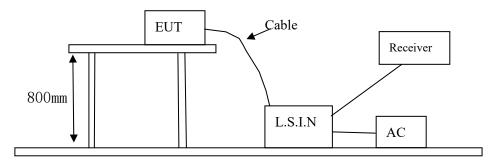
4.0 EUT Modification


No modification by SHENZHEN TIMEWAY TESTING LABORATORIES

Date: 2023-07-06

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2013. The Frequency spectrum from 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10-2013.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

5.3 Configuration of the EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

79 channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID
3-MODE WIRELESS	Eastern Times		
HOT-SWAP MECHANICAL		K556RGB-PRO, ET-8855	TUVET-8855A
KEYBOARD	Technology Co.,Ltd		

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2305232-02E Page 9 of 34

Date: 2023-07-06

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	Rating
Power Supply	KEYU	KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;
			Output: DC5V, 2A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10-2013

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

6 6 1				
Frequency	Limits (dB µ V)			
(MHz)	Quasi-peak Level	Average Level		
$0.15 \sim 0.50$	66.0~56.0*	56.0~46.0*		
$0.50 \sim 5.00$	56.0	46.0		
5.00 ~ 30.00	60.0	50.0		

Notes:

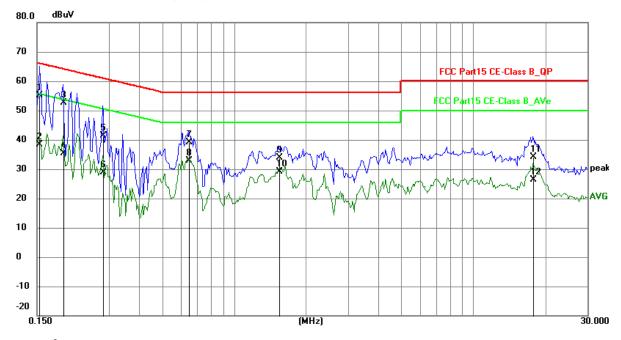
- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results:

Pass

Date: 2023-07-06

A: Conducted Emission on Live Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by BT

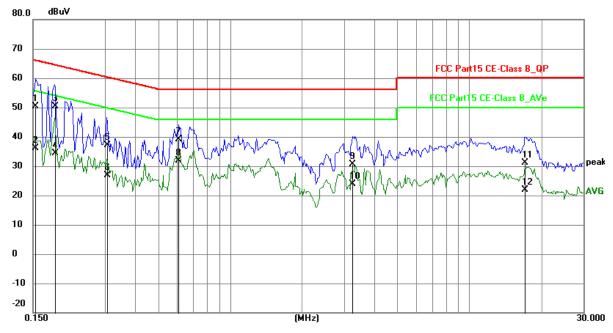
Results: Pass

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1539	45.47	9.78	55.25	65.79	-10.54	QP	Р
2	0.1539	28.70	9.78	38.48	55.79	-17.31	AVG	Р
3	0.1929	42.89	9.75	52.64	63.91	-11.27	QP	Р
4	0.1929	25.51	9.75	35.26	53.91	-18.65	AVG	Р
5	0.2826	31.72	9.76	41.48	60.74	-19.26	QP	Р
6	0.2826	19.00	9.76	28.76	50.74	-21.98	AVG	Р
7	0.6453	29.45	9.78	39.23	56.00	-16.77	QP	Р
8	0.6453	23.20	9.78	32.98	46.00	-13.02	AVG	Р
9	1.5423	24.04	9.80	33.84	56.00	-22.16	QP	Р
10	1.5423	19.28	9.80	29.08	46.00	-16.92	AVG	Р
11	17.7810	23.53	10.55	34.08	60.00	-25.92	QP	Р
12	17.7810	15.95	10.55	26.50	50.00	-23.50	AVG	Р

Date: 2023-07-06

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by BT

Results: Pass

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1539	40.58	9.78	50.36	65.79	-15.43	QP	Р
2	0.1539	26.27	9.78	36.05	55.79	-19.74	AVG	Р
3	0.1850	40.60	9.76	50.36	64.26	-13.90	QP	Р
4	0.1850	24.71	9.76	34.47	54.26	-19.79	AVG	Р
5	0.3060	27.38	9.76	37.14	60.08	-22.94	QP	Р
6	0.3060	17.04	9.76	26.80	50.08	-23.28	AVG	Р
7	0.6102	29.31	9.78	39.09	56.00	-16.91	QP	Р
8	0.6102	22.08	9.78	31.86	46.00	-14.14	AVG	Р
9	3.2573	20.85	9.85	30.70	56.00	-25.30	QP	Р
10	3.2573	13.92	9.85	23.77	46.00	-22.23	AVG	Р
11	17.1024	20.54	10.51	31.05	60.00	-28.95	QP	Р
12	17.1024	11.47	10.51	21.98	50.00	-28.02	AVG	Р

Report No.: TW2305232-02E Page 12 of 34

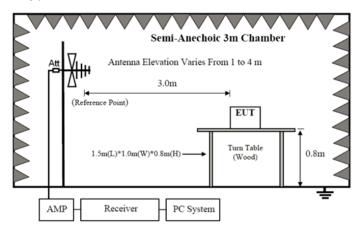
Date: 2023-07-06

6 Radiated Emission Test

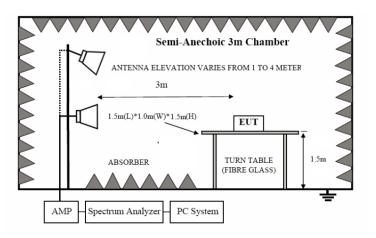
- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

For radiated emissions from 9kHz to 30MHz


Page 13 of 34

Report No.: TW2305232-02E


Date: 2023-07-06

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

- 6.2 Configuration of The EUT

 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No.: TW2305232-02E Page 14 of 34

Date: 2023-07-06

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Stre	ength of Fundame	ental (3m)	Field S	nics (3m)	
(MHz)	mV/m	dBu	V/m	uV/m	dBu	V/m
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

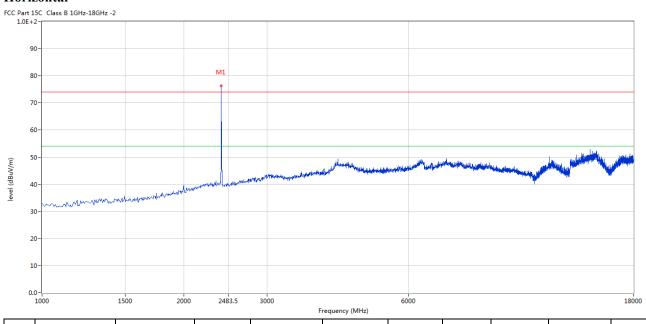
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
0.009-0.490	3	20log(2400/F(kHz)) +40log (300/3)
0.490-1.705	3	20log(24000/F(kHz)) +40log (30/3)
1.705-30	3	69.5
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 5. For radiated emissions from 9kHz to 30MHz, the emission level is much less than the limit for more than 20dB. No necessary to take down the record.
- 6. Battery full charged during tests.

Report No.: TW2305232-02E Page 15 of 34

Date: 2023-07-06

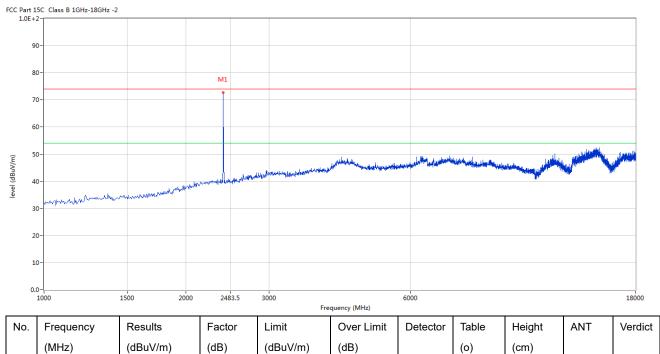


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

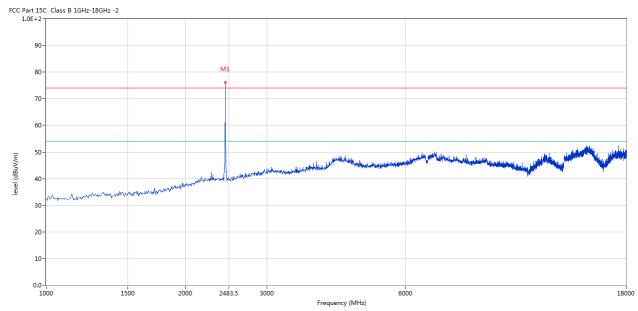

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2402	76.38	-3.57	114.0	-37.62	Peak	89.00	100	Horizontal	Pass

Report No.: TW2305232-02E Page 16 of 34

Date: 2023-07-06

Vertical

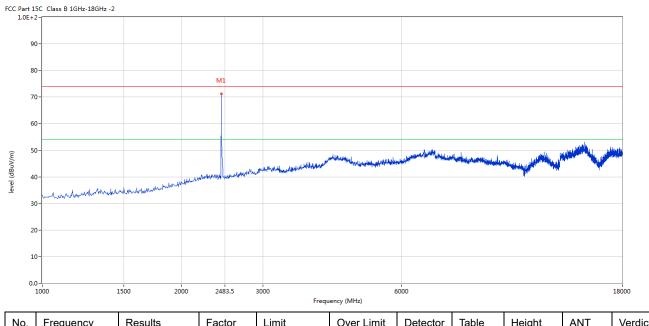
	No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
Ī	1	2402	72.73	-3.57	114.0	-41.27	Peak	359.00	100	Vertical	Pass


Report No.: TW2305232-02E Page 17 of 34

Date: 2023-07-06

Please refer to the following test plots for details: Middle Channel-2441MHz

Horizontal

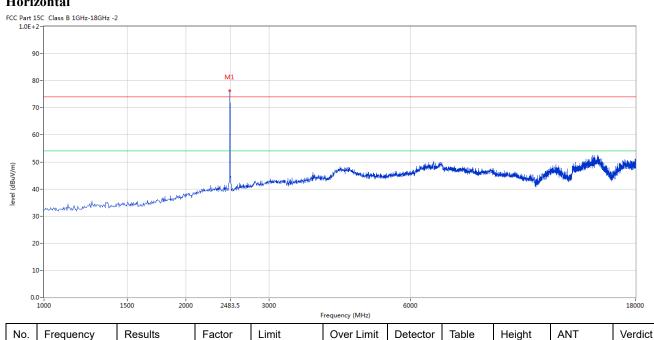

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2441	75.05	-3.57	114.0	-38.95	Peak	243.00	100	Horizontal	Pass

Report No.: TW2305232-02E Page 18 of 34

Date: 2023-07-06

Vertical

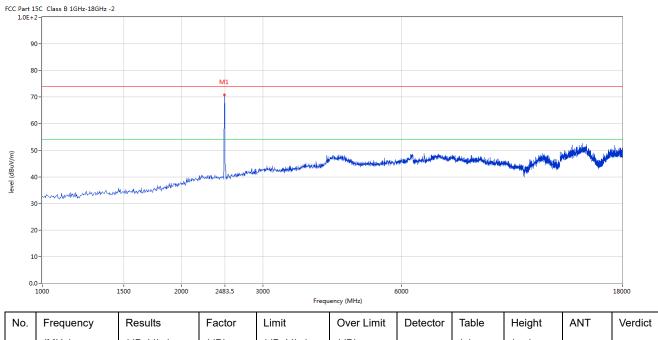
	No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
Ī	1	2441	70.11	-3.57	114.0	-43.89	Peak	269.00	100	Vertical	Pass


Page 19 of 34 Report No.: TW2305232-02E

Date: 2023-07-06

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal


Ī	No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
	1	2480	76.37	-3.57	114.0	-37.63	Peak	214.00	100	Horizontal	Pass

Report No.: TW2305232-02E Page 20 of 34

Date: 2023-07-06

Vertical

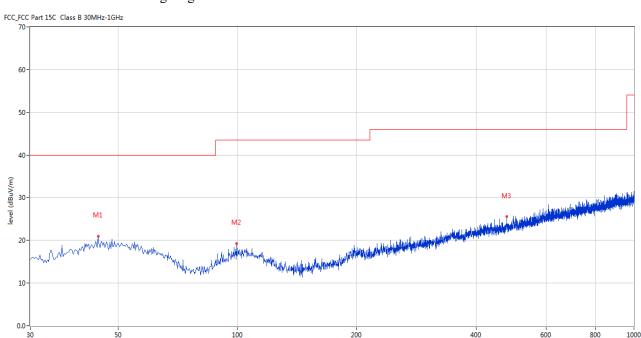
No). F	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	1)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2	2480	70.93	-3.57	114.0	-43.07	Peak	360.00	100	Vertical	Pass

Note: (2) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (3) Margin=Emission-Limits
- (4) According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise. No necessary to take down.
- (6) the measured PK value less than the AV limit.

Report No.: TW2305232-02E Page 21 of 34

Date: 2023-07-06



B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

Results: Pass

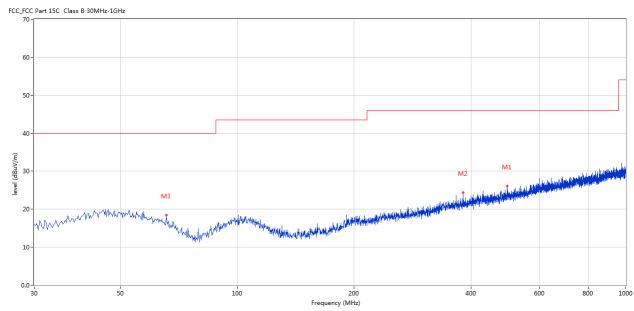
Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	44.546	21.01	-11.44	40.0	-18.99	Peak	215.00	100	Horizontal	Pass
2	99.338	19.29	-13.64	43.5	-24.21	Peak	7.00	100	Horizontal	Pass
3	477.301	25.51	-7.44	46.0	-20.49	Peak	86.00	100	Horizontal	Pass

Frequency (MHz)

Report No.: TW2305232-02E Page 22 of 34

Date: 2023-07-06



Radiated Emission In Vertical (30MHz----1000MHz)

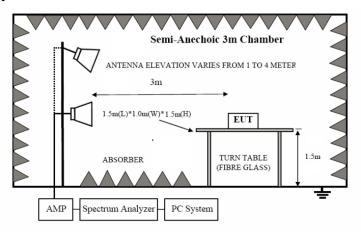
EUT set Condition: Keep Tx transmitting

Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	495.726	26.06	-7.13	46.0	-19.94	Peak	137.00	100	Vertical	Pass
2	381.295	24.39	-9.18	46.0	-21.61	Peak	305.00	100	Vertical	Pass
3	65.639	18.44	-13.79	40.0	-21.56	Peak	199.00	100	Vertical	Pass

Date: 2023-07-06



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of the EUT

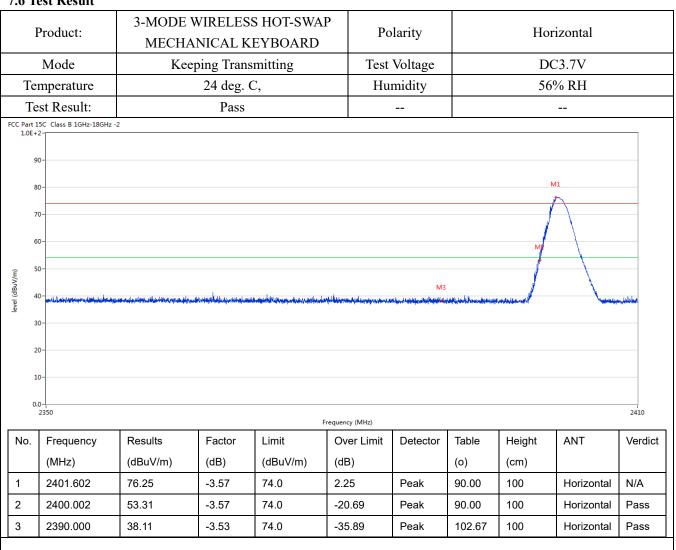
Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

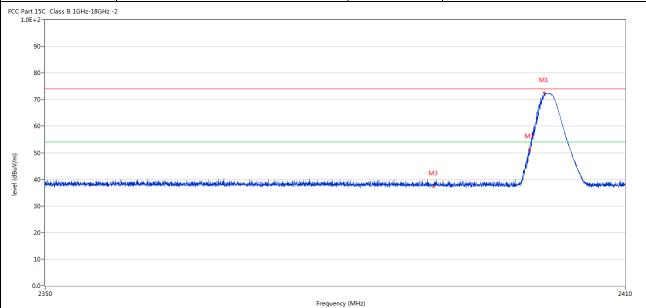
7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


The report refers only to the sample tested and does not apply to the bulk.

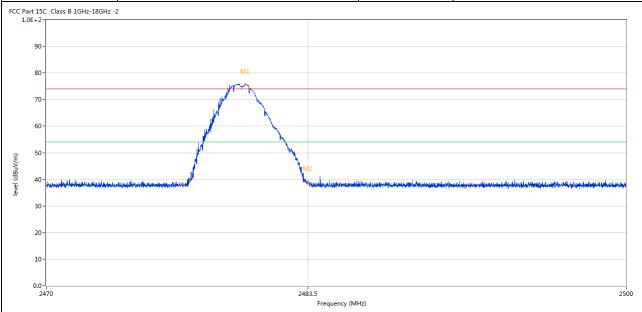
Report No.: TW2305232-02E Page 24 of 34

Date: 2023-07-06


7.6 Test Result

Report No.: TW2305232-02E Page 25 of 34

Product:	3-MODE WIRELESS HOT-SWAP MECHANICAL KEYBOARD	Detector	Vertical
Mode	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		



No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2401.542	72.43	-3.57	74.0	-1.57	Peak	359.00	100	Vertical	Pass
2	2400.000	51.10	-3.57	74.0	-22.90	Peak	355.57	100	Vertical	Pass
3	2390.000	37.49	-3.53	74.0	-36.51	Peak	208.00	100	Vertical	Pass

Report No.: TW2305232-02E Page 26 of 34

Product:	3-MODE WIRELESS HOT-SWAP MECHANICAL KEYBOARD	Polarity	Horizontal
Mode	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		

No.	Frequency	Results	Factor	Limit	Over	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)		(o)	(cm)		
1	2480.265	75.79	-3.57	74.0	1.79	Peak	208.00	100	Horizontal	N/A
2	2483.500	39.00	-3.57	74.0	-35.00	Peak	156.14	100	Horizontal	Pass

Page 27 of 34

Report No.: TW2305232-02E

Date: 2023-07-06

	Product:			SS HOT-SWA KEYBOARD	D	Detector Vertical					
	Mode	Ke	eping Tran	nsmitting	Test	t Voltage	DC3.7V				
T	emperature		24 deg.	C,	Нι	ımidity		56%	6 RH		
Т	est Result:		Pass								
FCC Part	: 15C Class B 1GHz-18GHz -	2									
	90-										
	80-		M1								
	70-		Lybra ha								
	60-		Mark Mark								
(/w)	50-										
level (dBuV/m)	40-	the traffic of profits to the second of the	<i>Y</i>	M2	rained. A highly and produce and a security of the security of	فياطع فينطيك ينجك فيهمونك	Majdas Africanski da	later transfer of the best of the state of t	ndanarahkan dalah dalah dan sebes	operatelytic steel.	
	30-										
	20-										
	10-										
	0.0-										
				2483.5	equency (MHz)					2500	
	2470			Fr	equency (IIII 12)						
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict	
	2470	Results (dBuV/m)	Factor (dB)		1	Detector	Table (o)	Height (cm)	ANT	Verdict	
	Frequency			Limit	Over Limit	Detector Peak		_	ANT Vertical	Verdict Pass	

Note: The PK emission level less than the AV limit. No necessary to record the AV emission level.

Date: 2023-07-06

Page 28 of 34

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB antenna with gain 2.34dBi maximum. It fulfills the requirement of this section.

Test Result: Pass

Page 29 of 34

Report No.: TW2305232-02E

FSK Modulation						
Product:		WIRELESS HOT-S NICAL KEYBOA		Test Mode	e: Keep	transmitting
Mode	Kee	ping Transmitting		Test Voltag	ge	DC3.7V
Temperature 24 deg. C,					7	56% RH
Test Result:		Pass		Detector		PK
20dB Bandwidth		1.118MHz		-		
Ref Lvl 10 dBm	ndB	1 [T1 ndB] 20.00 dB 1.11823647 MH:	RBW VBW Z SWT	30 kH 100 kH 8.5 ms	Iz	20 dB dBm
0			~~~~~	v1 ndB BW	1.118	
-20 1MAX			h	M	[T1] 2.401 [T1] 2.402	-23.80 dBm 146192 GHz -22.81 dBm 258016 GHz
-30						
-50						
-70						
-80						
-90 Center 2.4	0.2 GII-	3.04	0 kHz/			Span 3 MHz

Page 30 of 34

Report No.: TW2305232-02E

GFSK Modula	tion						
Product:		ELESS HOT-SWAP AL KEYBOARD		Test Mode:	Keep transmitting		
Mode	Keeping	Transmitting	,	Test Voltage	D	C3.7V	
Temperature	24	deg. C,		Humidity	56	5% RH	
Test Result:]	Pass		Detector		PK	
20dB Bandwidth	1.02	28MHz					
Ref Lvl	ndB	[T1 ndB] 20.00 dB 02805611 MHz	RBW VBW SWT	100 kH:		20 dB	
10 0 -10 -20 1MAX -30 -40 -50 -60 -70		3		ndB BW ▼ _T	T1] - 2.4410	20.00 dB 05611 MHz 23.17 dBm 01603 GHz 23.38 dBm	
Center 2 Date: 1.	.441 GHz JUL.2023 16:4	300 }	KHz/		Sp	oan 3 MHz	

Page 31 of 34

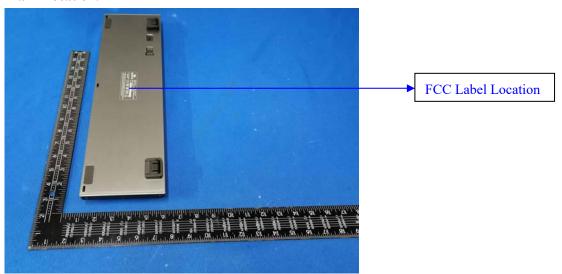
Report No.: TW2305232-02E

Product:		3-MODE WIRELESS HOT-SWAP MECHANICAL KEYBOARD				Test Mode:			Keep transmitting		
Mode		Keepin	g Transmi	tting		Te	est Voltage	;	DC	23.7V	
Temperature		2	4 deg. C,			I	Humidity		569	% RH	
Test Result:			Pass]	Detector]	PK	
dB Bandwidth		0.	986MHz								
Ref Lvl	n	.dB	1 [T1 r 20.	00 dB	V	BW BW WT	30 k 100 k 8.5 m	Hz	F Att	20 dB	ı
10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				▼ 1	[T1]	-1	3.84 dBm	A
0									2.48000	902 GHz	
				\sim			ndB BW	9	20 85.97194	0.00 dB 1389 kHz	
-10					\	_	$ abla_{\mathrm{T}1}$	L [T1]	-23	.91 dBm	
				7		h	۸ <u> </u>		2.47952	806 GHz	
-20			M				V _T	2 [T1]	-23	.86 dBm	
1MAX							4 T2 Y		2.48051	1403 GHz	1M
-30			1					J. W. W.			
-50	~~~							V	M		
-60											
- 50											
-70											
-80											
-90 Center 2.	48 CH2			300	kHz/				Spa	an 3 MHz	

Report No.: TW2305232-02E Page 32 of 34

Date: 2023-07-06

10.0 FCC ID Label


FCC ID: TUVET-8855A

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

Report No.: TW2305232-02E Page 33 of 34

Date: 2023-07-06

11.0 Photo of testing

11.1 Conducted test View--

Date: 2023-07-06

Radiated emission test view

Photographs – EUT

Please refer test report TW2305232-01E

-- End of the report--

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.