FCC CERTIFICATION On Behalf of Eastern Times Technology Co., Ltd.

2.4G Wireless Keyboard Model No.: ET-3788

FCC ID: TUVET-3788

Prepared for Address	:	Eastern Times Technology Co., Ltd. Building D, Nan An Industry Park, Youganpu Village, Fenggang Town, Dongguan City, Guangdong, China
Prepared by Address	:	ACCURATE TECHNOLOGY CO. LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20130898
Date of Test	:	May 7-17, 2013
Date of Report	:	May 17, 2013

TABLE OF CONTENTS

Description

Page

1.	GE	NERAL INFORMATION	4
	1.1.	Description of Device (EUT)	4
	1.2.	Description of Test Facility	
	1.3.	Measurement Uncertainty	
2.	ME	ASURING DEVICE AND TEST EQUIPMENT	6
3.	SUI	MMARY OF TEST RESULTS	7
4.	FU	NDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A	.) 8
	4.1.	Block Diagram of Test Setup	8
	4.2.	The Emission Limit	
	4.3.	Configuration of EUT on Measurement	9
	4.4.	Operating Condition of EUT	9
	4.5.	Test Procedure	
	4.6.	The Field Strength of Radiation Emission Measurement Results	.11
5.	SPU	JRIOUS RADIATED EMISSION FOR SECTION 15.249(D)	.14
	5.1.	Block Diagram of Test Setup	.14
	5.2.	The Emission Limit For Section 15.249(d)	.14
	5.3.	EUT Configuration on Measurement	.15
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	.16
	5.6.	The Emission Measurement Result	.17
6.	BA	ND EDGES	.20
	6.1.	The Requirement	.20
	6.2.	EUT Configuration on Measurement	.20
	6.3.	Operating Condition of EUT	.20
	6.4.	Test Procedure	
	6.5.	The Measurement Result	.21
7.	AN	FENNA REQUIREMENT	.23
	7.1.	The Requirement	.23
	7.2.	Antenna Construction	.23

APPENDIX I (TEST CURVES) (28 pages)

Test Report Certification

Applicant	:	Eastern Times Technology Co., Ltd.
Manufacturer	:	Eastern Times Technology Co., Ltd.
EUT Description	:	2.4G Wireless Keyboard
		(A) MODEL NO.: ET-3788
		(B) POWER SUPPLY: 3V DC ("AAA" batteries $2 \times$)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :

Prepared by :

Keny Cheng

May 7-17, 2013

(Kelly Cheng, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	2.4G Wireless Keyboard
Model Number	:	ET-3788
Power Supply	:	3V DC ("AAA" batteries $2\times$)
Operate Frequency	:	2408.000-2474.000MHz
Applicant Address	:	Eastern Times Technology Co., Ltd. Building D, Nan An Industry Park, Youganpu Village, Fenggang Town, Dongguan City, Guangdong, China
Manufacturer Address	:	Eastern Times Technology Co., Ltd. Building D, Nan An Industry Park, Youganpu Village, Fenggang Town, Dongguan City, Guangdong, China
Date of sample received	:	May 7, 2013
Date of Test	:	May 7-17, 2013

1.2.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC
		The Registration Number is 752051
		Listed by Industry Canada
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories
		The Certificate Registration Number is L3193
Name of Firm	:	ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.
		Science & Industry Park, Nanshan, Shenzhen, Guangdong
		P.R. China

1.3.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 11, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 11, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 11, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 11, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Feb. 06, 2013	Feb. 05, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Feb. 06, 2013	Feb. 05, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Feb. 06, 2013	Feb. 05, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 11, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 11, 2014

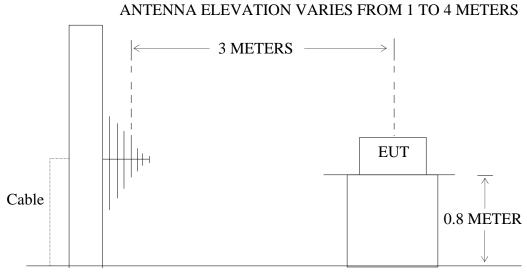
Table 1: List of Test and Measurement Equipment

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.249(a)	Fundamental and Harmonics Radiated Emission	Compliant
Section 15.249(d)	Spurious Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. FUNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A)


4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: 2.4G Wireless Keyboard)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

GROUND PLANE

(EUT: 2.4G Wireless Keyboard)

4.2. The Emission Limit

4.2.1.For intentional radiators, According to section 15.249(a), Operation within the frequency band of 2.4 to 2.4835GHz, The fundamental field strength shall not exceed 94 dB μ V/m and the harmonics shall not exceed 54 dB μ V/m.

Fundamental	Field Strength of Fundamental	Field Strength of harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

4.2.2.According to section 15.249(e), as shown in section 15.35(b), the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. 2.4G Wireless Keyboard (EUT)

Model Number	:	ET-3788
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

4.4.Operating Condition of EUT

4.4.1.Setup the EUT and simulator as shown as Section 4.1.

4.4.2.Turn on the power of all equipment.

4.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408.000
- 2474.000 MHz MHz. We are select 2408.000MHz, 2440.000MHz, 2474.000MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

4.6.The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2408.000MHz	Test Engineer:	Star

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(c	lBµV/m)	Limit(d	BµV/m)	Marg	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2408.000	91.21	97.94	-7.44	83.77	90.50	94.00	114.00	-10.23	-23.50	Vertical
2408.000	94.16	100.22	-7.44	86.72	92.78	94.00	114.00	-7.28	-21.22	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB) Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
7224.000	42.94	48.18	-3.01	45.95	51.19	54.00	74.00	-8.05	-22.81	Vertical
4816.000	40.11	45.56	-0.23	39.88	45.33	54.00	74.00	-14.12	-28.67	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

 $Where \ Corrected \ Factor = Antenna \ Factor + Cable \ Loss + High \ Pass \ Filter \ Loss - Amplifier \ Gain$

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2440.000MHz	Test Engineer:	Star

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB)	Factor(dB) Result(dBµV/m) Corr.		Limit(dBµV/m)		Margin(dB)		Polarization
(11112)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
2440.000	88.68	94.92	-7.36	81.32	87.56	94.00	114.00	-12.68	-26.44	Vertical
2440.000	91.42	97.88	-7.36	84.06	90.52	94.00	114.00	-9.94	-23.48	Horizontal

Harmonics Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(141112)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
7320.000	41.76	46.28	-3.24	45.00	49.52	94.00	114.00	-9.00	-24.48	Vertical
4880.000	39.76	45.15	-0.13	39.89	45.28	94.00	114.00	-14.11	-28.72	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2474.000MHz	Test Engineer:	Star

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.) Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(11112)	AV	PEAK	con.	AV	PEAK	AV	PEAK	AV	PEAK	
2474.000	87.67	94.28	-7.37	80.30	86.91	94.00	114.00	-13.70	-27.09	Vertical
2474.000	88.47	94.95	-7.37	81.10	87.58	94.00	114.00	-12.9	-26.42	Horizontal

Harmonics Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.	dB) Result(dB μ V/m)		Limit(dBµV/m)		Margin(dB)		Polarization
	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
7422.000	42.17	47.20	-3.57	45.74	50.77	94.00	114.00	-8.26	-23.23	Vertical
4948.000	38.10	42.36	-0.46	38.56	42.82	94.00	114.00	-15.44	-31.18	Horizontal

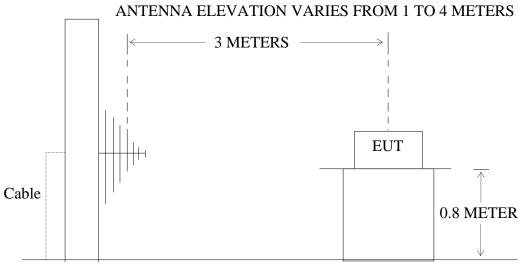
Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. SPURIOUS RADIATED EMISSION FOR SECTION 15.249(D)


5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

EUT

(EUT: 2.4G Wireless Keyboard)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

GROUND PLANE

(EUT: 2.4G Wireless Keyboard)

5.2. The Emission Limit For Section 15.249(d)

5.2.1.Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209.

|--|

	Limit							
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is					
0.009 - 0.490	2400/F(kHz)	300	performed with Average detector.					

0.490 – 1.705	24000/F(kHz)	30	Except those frequency bands mention above, the
1.705 - 30.0	30	30	final measurement for frequencies below
30 - 88	100	3	1000MHz is performed with Quasi Peak detector.
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. 2.4G Wireless Keyboard (EUT)

Model Number	:	ET-3788
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2.Turn on the power of all equipment.
- 5.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408.000
 2474.000 MHz. We are select 2408.000MHz, 2440.000MHz, 2474.000MHz
 TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

5.6. The Emission Measurement Result

PASS.

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2408.000MHz	Test Engineer:	Star
Below 30MHz			

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Х
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

30MHz-25GHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	_	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2440.000MHz	Test Engineer:	Star

Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	X
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

30MHz-25GH

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	_	-	-	-	Vertical
_	_	_	_	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2474.000MHz	Test Engineer:	Star

Below 30MHz

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Х
-	-	-	-	-	-	Y
-	-	-	-	-	-	Z

30MHz-25GH

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	_	-	-	-	-	Vertical
_	-	-	-	-	-	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

6. BAND EDGES

6.1.The Requirement

6.1.1.Band Edge from 2400MHz to 2483.5MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1. 2.4G Wireless Keyboard (EUT)

Model Number	:	ET-3788
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

6.3. Operating Condition of EUT

6.3.1.Setup the EUT and simulator as shown as Section 4.1.

- 6.3.2.Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408.000-2474.000MHz MHz. We are select 2408.000MHz, 2474.000MHz TX frequency to transmit.

6.4.Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz

6.5. The Measurement Result

Pass.

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No .:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2408.000MHz	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dl	BμV/m)	Margi	Polarization	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	37.39	43.31	-7.81	29.58	35.50	54.00	74.00	-24.42	-38.50	Vertical
2385.575	48.98	53.83	-7.56	41.42	46.27	54.00	74.00	-12.58	-27.73	Vertical
2390.000	39.83	44.85	-7.53	32.30	37.32	54.00	74.00	-21.70	-36.68	Vertical
2310.000	38.93	43.35	-7.81	31.12	35.54	54.00	74.00	-22.88	-38.46	Horizontal
2382.469	48.60	48.60	-7.58	41.02	41.02	54.00	74.00	-12.98	-27.63	Horizontal
2390.000	40.36	45.70	-7.53	32.83	38.17	54.00	74.00	-21.17	-35.83	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	May 13, 2013	Temperature:	25°C
EUT:	2.4G Wireless Keyboard	Humidity:	50%
Model No.:	ET-3788	Power Supply:	DC 3V
Test Mode:	TX 2474.000MHz	Test Engineer:	Star

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dI	BμV/m)	Margi	Polarization	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	41.32	46.50	-7.37	33.95	39.13	54.00	74.00	-20.05	-34.87	Vertical
2488.141	42.57	47.53	-7.38	35.19	40.15	54.00	74.00	-18.81	-33.85	Vertical
2500.000	37.46	42.55	-7.40	30.06	35.15	54.00	74.00	-23.94	-38.85	Vertical
2483.500	43.14	47.37	-7.37	35.77	40.00	54.00	74.00	-18.23	-34.00	Horizontal
2488.457	43.76	48.51	-7.38	36.38	41.13	54.00	74.00	-17.62	-32.87	Horizontal
2500.000	38.63	43.33	-7.40	31.23	35.93	54.00	74.00	-22.77	-38.07	Horizontal

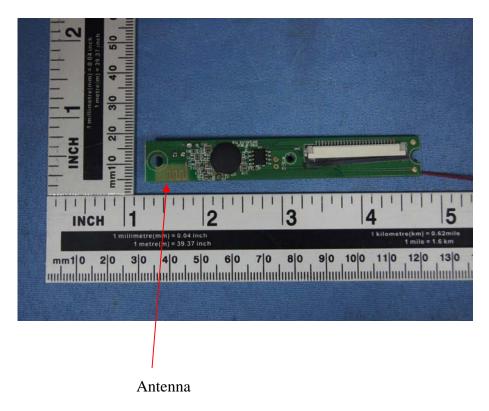
Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

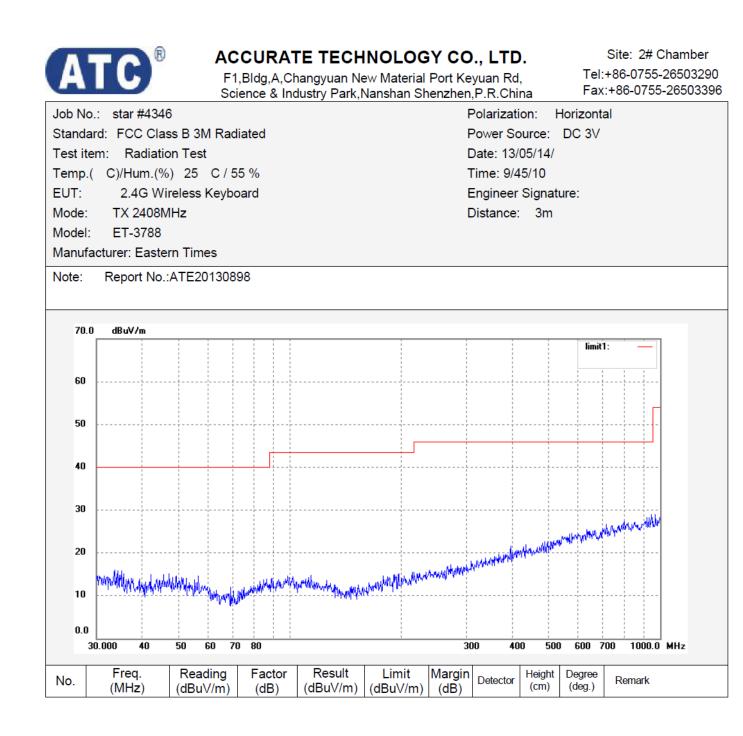
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

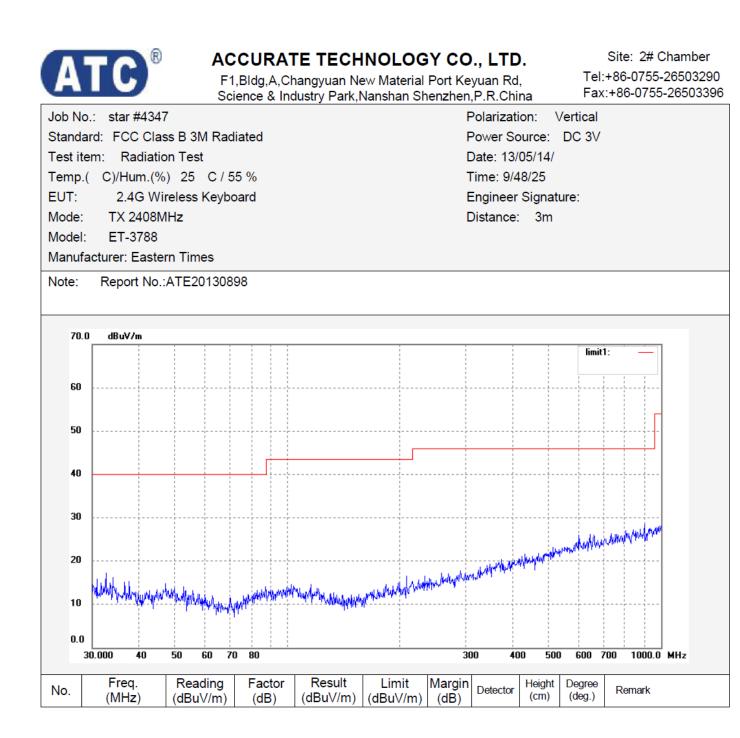
Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain


7. ANTENNA REQUIREMENT

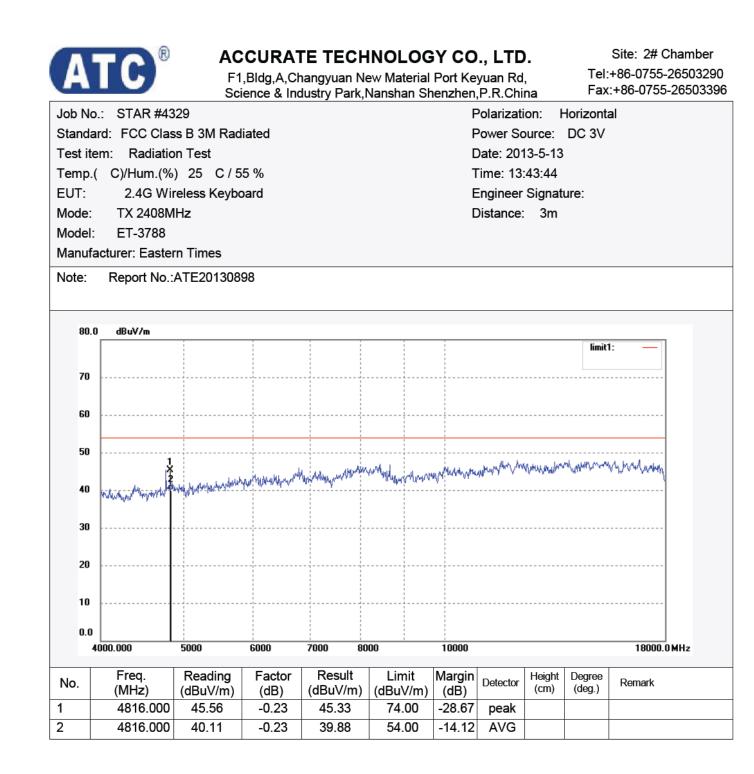
7.1.The Requirement

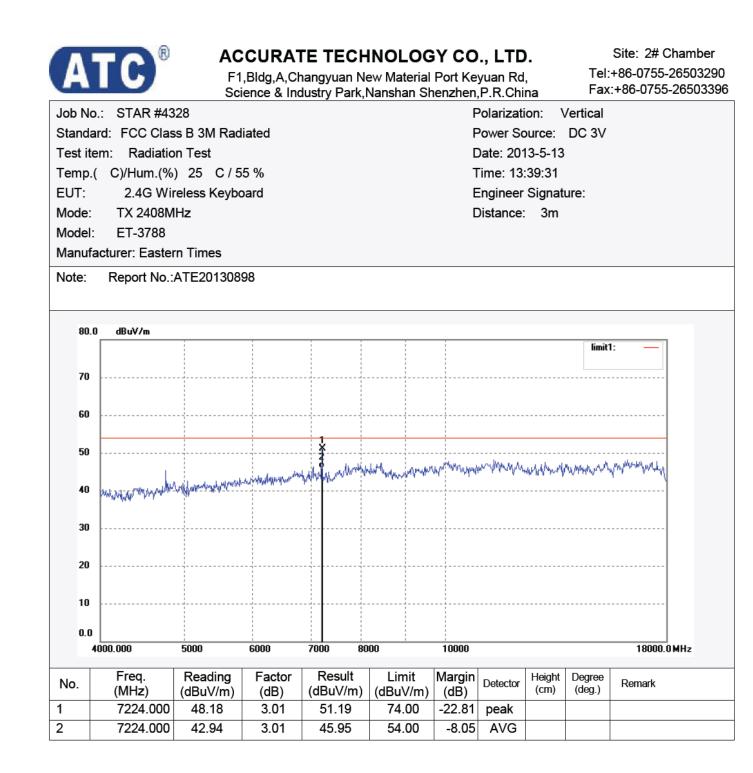

7.1.1.According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

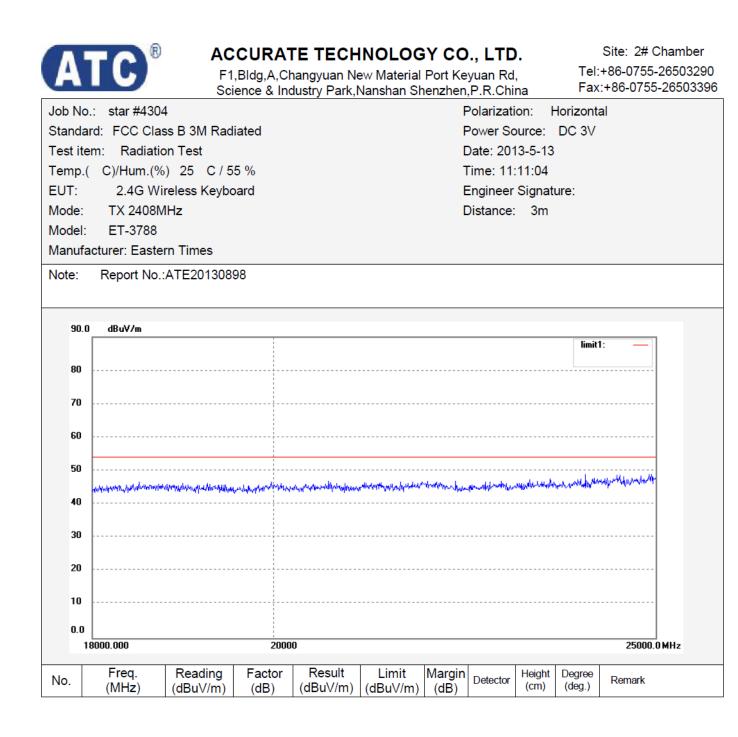

7.2. Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement.

APPENDIX I (Test Curves)

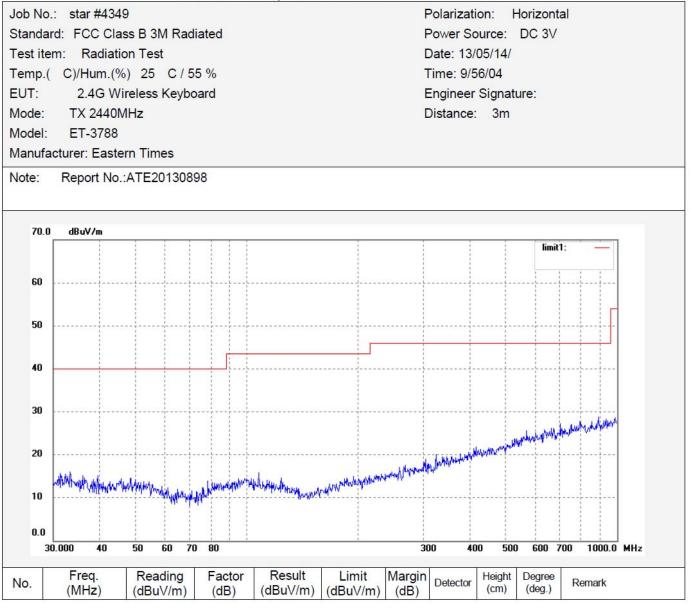

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


Job N	o.: STAR #43	322				F	Polarizati	ion: H	Horizont	al	
Stand	ard: FCC Clas	s B 3M Rad	iated			F	Power So	ource:	DC 3V		
Test it	em: Radiatio	on ⊺est				[Date: 201	13-5-13			
Temp	.(C)/Hum.(%) 25 C/5	5 %			٦	Time: 13	:19:22			
EUT:	2.4G Wi	reless Keybo	bard			E	Engineer	Signat	ure:		
Mode:	TX 2408M	lHz				[Distance:	3m			
Model	: ET-3788										
Manut	facturer: Easter	rn Times									
Note:	Report No.:	ATE201308	98								
10	0.0 dBuV/m								limit	I:	
90						×					
						Î					
80											
70											
60											
50											
40					He are well and the work of	which when	Manpalauritant	whiteh	Handred m	annin and a	
30	Whitewalanterstanter	n a declassa declassa pa nad	hippinghianyah	provided and strategy and the	all subly see						
20											
10											
0.0	1										
	1000.000				1			3000)	4000.0	MHz
	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree		
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark	
1	2408.000	100.22	-7.44	92.78	114.00	21.22	peak				
2	2408.000	94.16	-7.44	86.72	94.00	7.28	AVG				

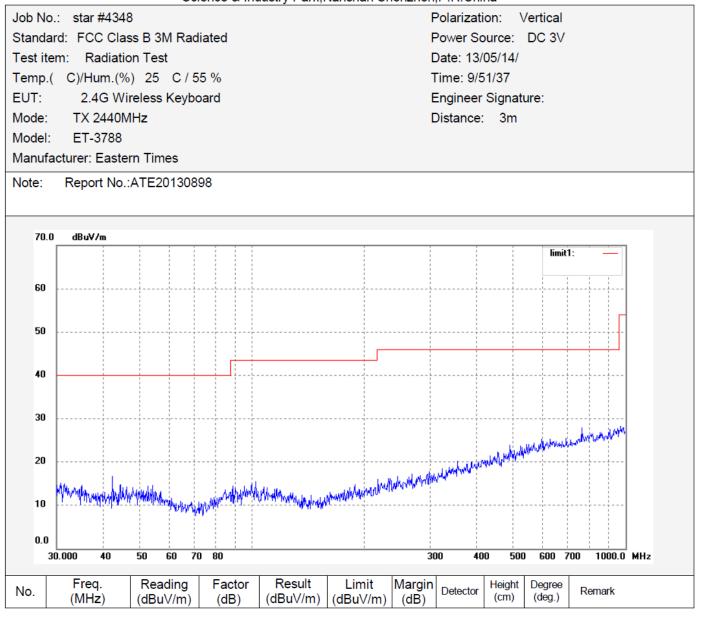


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sci	ence & Inc	dustry Park,I	Nanshan Sh	enzhen	,P.R.Chi	na	гах	+00-0700-200033			
b No	.: STAR #43	23				F	Polarizati	ion: \	/ertical				
anda	rd: FCC Clas	s B 3M Rad	iated			F	Power Source: DC 3V						
st ite	m: Radiatio	n Test				0	Date: 201	13-5-13					
mp.(C)/Hum.(%) 25 C/5	5 %			г	Time: 13	:23:37					
JT:	2.4G Wi	eless Keybo	bard			E	Engineer	Signat	ure:				
ode:	TX 2408M	Hz				0	Distance:	3m					
odel:	ET-3788												
anufa	cturer: Easter	n Times											
ote:	Report No.:	ATE201308	98										
	-												
100.	0 dBuV/m								limit	:]			
90						1 X							
						2							
80													
70													
60													
50													
40				a ta kita atakawa	unsductorenteral	multi house	Here water	mymun	milleration	http://www.hyatath			
30	manantentrolitere	runduhuhuhuhuhuhuh	Workersteinsteinet	ANIMATAN ANIMATAN ANIMATAN ANIMATAN ANI	ndoende 4								
20													
10													
0.0													
1	000.000							3000)	4000.0 MHz			
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark			
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)				
o .	. ,	· /											
0.	2408.000	97.94 91.21	-7.44 -7.44	90.50 83.77	114.00 94.00	23.50 10.23	peak AVG						

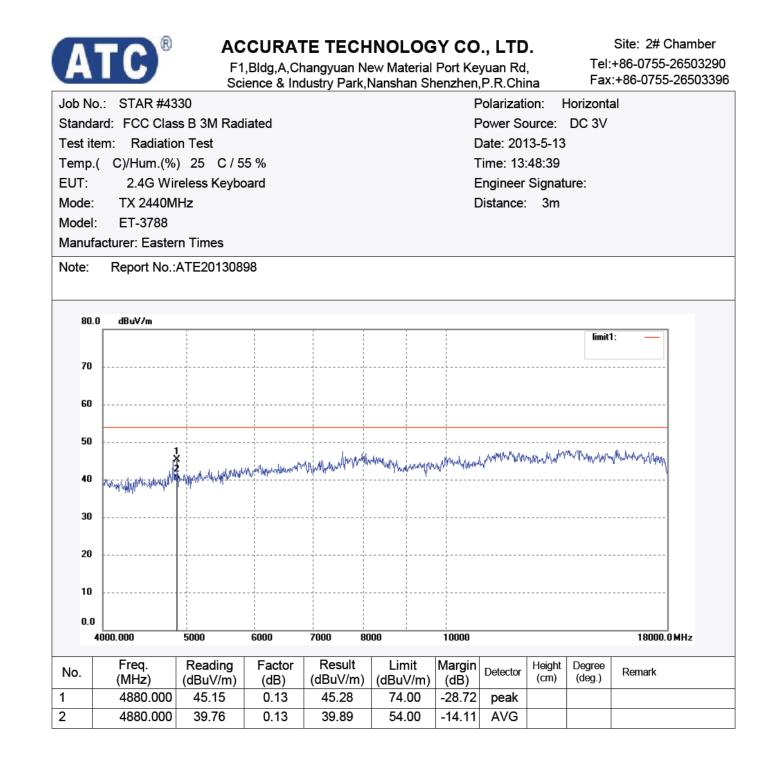


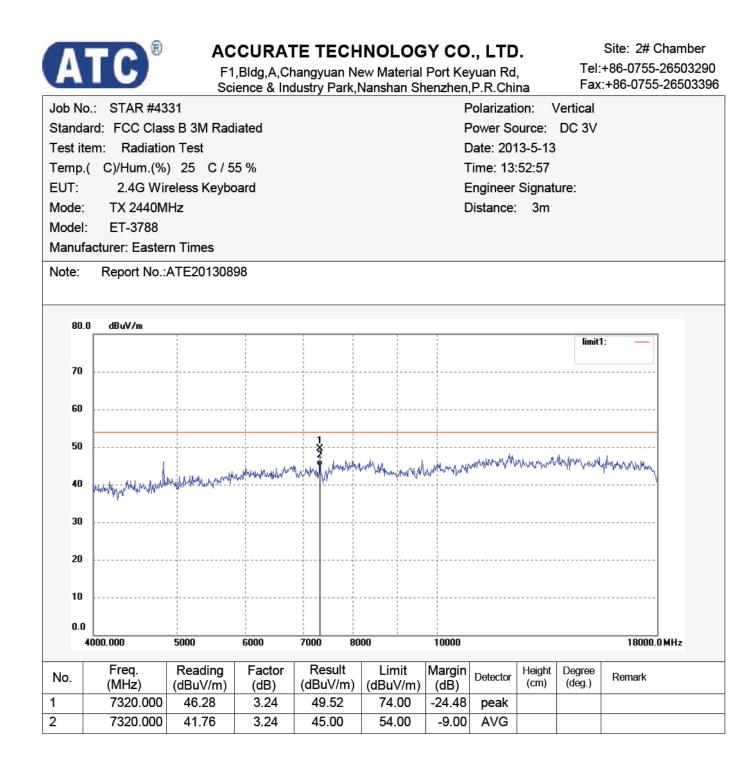
A	TC®	F1,	,Bldg,A,Ch	TE TECH nangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		Site: 2# Chamber :+86-0755-26503290 ::+86-0755-26503396
Job No	o.: star #430	5		-		F	Polarizati	on: ∖	/ertical	
Standa	ard: FCC Clas	ss B 3M Radi	iated			F	Power So	urce:	DC 3V	
Test ite	em: Radiatio	on Test)ate: 201	3-5-13		
Temp.	(C)/Hum.(%) 25 C/5	5 %			г	ime: 11:	14:33		
EUT:		, reless Keybo				E	Engineer	Signati	ure:	
Mode:	TX 2408M	-)istance:	-		
Model:	ET-3788									
	acturer: Easte	rn Times								
Note:	Report No.:	ATE2013089	98							
90.0	0 dBuV/m									
80									limit	1:
70										
60										
50		have many many	nonanomilian	en All Armon marked and the	ullingerary officiary officiary	Universities	kunphphone	angewandeten	the work way to	the lysing and south with the
40										
30										
20										
10										
0.0 1	18000.000		2000	0						25000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

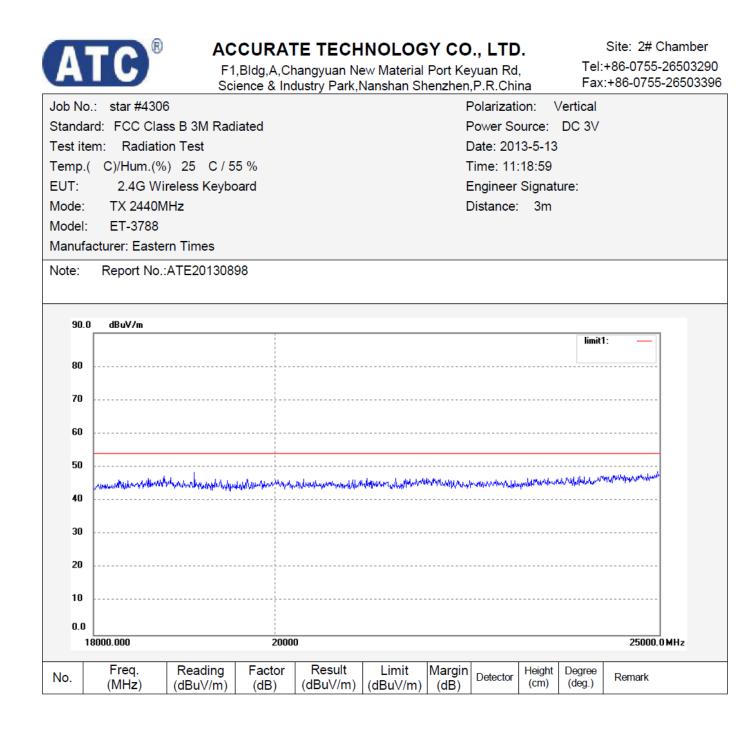
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

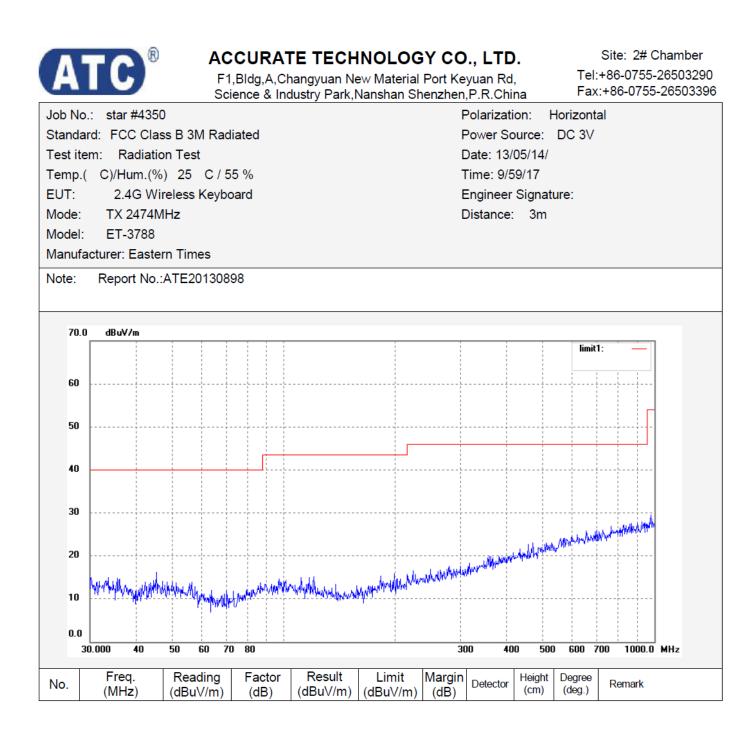

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

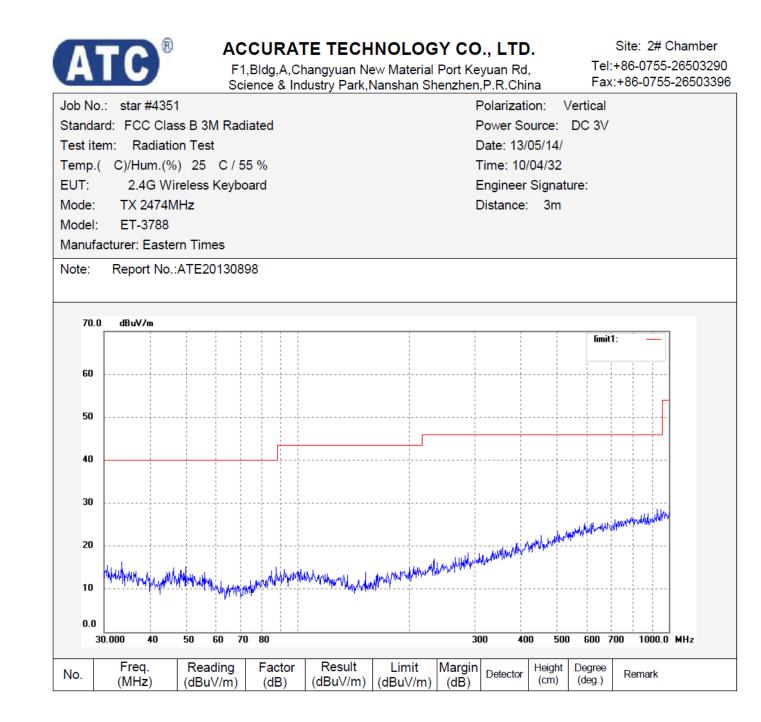

		Sc	ience & Ind	dustry Park,I	Nanshan Sh	enzhen	,P.R.Chi	na	Fax	:+86-0755-26503
b No	o.: STAR #43	25				F	Polarizati	ion: H	Horizonta	al
anda	ard: FCC Clas	s B 3M Rad	liated			F	Power So	ource:	DC 3V	
est ite	em: Radiatio	n Test				[Date: 201	13-5-13		
emp.	(C)/Hum.(%) 25 C/5	5 %			٦	Time: 13	:29:08		
JT:	2.4G Wii	reless Keybo	bard			E	Engineer	Signat	ure:	
ode:	TX 2440M	Hz				0	Distance:	3m		
odel:	ET-3788									
anufa	acturer: Easter	rn Times								
ote:	Report No.:	ATE201308	98							
100).0 dBuV/m									
100	J.U QBQY7M								limit	I:
90						1 X				
						á				
80										
70										
60										
50										
40										
	manapatritikikikikikiki	Manhamahahamatan	Amount	when the hope the Merid of the	mannewlengen	twel Ww	warman and a second	many	wather	manapatana
30	A STREET AND A STREET	watered an index adapted	here but we will a							
20										
10										
0.0	1000.000							3000		4000.0 MHz
	1000.000							3000	,	4000.0 MHZ
			Fastar	Result	Limit	Margin	Detector	Height	Degree	Remark
o .	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	
							peak	(cm)	(deg.)	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		50	ence & inc	dustry Park,	vansnan Sr	enznen	P.R.Chi	na	1 47	
Job No	o.: STAR #43	24				F	Polarizati	ion: \	/ertical	
Standa	ard: FCC Clas	s B 3M Rad	iated	F	Power So	ource:	DC 3V			
Test ite	tem: Radiation Test							13-5-13		
Temp.	(C)/Hum.(%) 25 C/5	5 %			г	Time: 13	:26:48		
EUT:	2.4G Wi	reless Keybo	bard			E	Engineer	Signat	ure:	
Mode:	TX 2440M	Hz				0	Distance:	3m		
Model:	ET-3788									
Manufa	acturer: Easter	rn Times								
Note:	Report No.:	ATE201308	98							
100	.0 dBuV/m									
									limit	l: —
90						1 ¥				
80										
70						· · · · · · · · · · · ·				
60										
50										
20						1				
40							ad damanta	NHW	he washing	hole and a start and a start and
30	mananalinama	whitepurvershampurver	Art Month Aller	www.alithographitectul	white the second particulation and the second se	waliffethan laree	allower a c		In Wester	
20										
20										
10										
0.0										
1	000.000				1			3000)	4000.0 MHz
	Freq.	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
No.	(MHz)	(aba v/m)	()							
No. 1	2440.000	94.92	-7.36	87.56	114.00	26.44	peak			







F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	.: star #4307	7				P	olarization:	Horizont	al
Standa	rd: FCC Clas	s B 3M Rad	iated			P	ower Source	: DC 3V	
Test ite	m: Radiatio	on Test				D	ate: 2013-5-	13	
Temp.(C)/Hum.(%) 25 C/5	5 %			Ti	ime: 11:22:2	0	
EUT:	2.4G Wi	reless Keybo	ard			E	ngineer Sigr	nature:	
Mode:	TX 2440N	IHz				D	istance: 3	m	
Model:	ET-3788								
Manufa	cturer: Easte	rn Times							
Note:	Report No.:	ATE201308	98						
1									
90.0	dBu∀/m								
30.0								limit	1:]
80									
70									
60									
50									
50	Latar con					aland k		المعلم الحرار	And Mar March And
40	WARMAN (10 MAN 10 M MANAGANA MANANA	**************************************	.Happelderstade "I and "	halmantehnemanna	Man Man and Man	A CONTRACTOR OF A CONTRACTOR A	ant the construction of	of the desired and the second second	
30									
20									
10									
0.0	8000.000		2000	nn					25000.0 MHz
			2000	 -					2000.0 MH2
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector Heig		Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Ch	i) (deg.)	

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd,

Site: 2# Chamber Tel:+86-0755-26503290

				dustry Park,			Fax	Fax:+86-0755-2650339						
b No.	: STAR #43	26				Polarization: Horizontal								
andaı	rd: FCC Clas	s B 3M Rad	iated			F	Power Source: DC 3V							
st ite	m: Radiatio	n Test				0								
mp.(C)/Hum.(%) 25 C/5	5 %			Т	Time: 13	:32:38						
JT:	2.4G Wir	eless Keybo	bard			E	Engineer	Signat	ure:					
ode:	TX 2474M	Hz				0	Distance:	3m						
odel:	ET-3788													
anufa	cturer: Easter	n Times												
ote:	Report No.:	ATE201308	98											
ic.	Report No		00											
100.	0 dBu∀/m													
									limit	I: —				
90						1 X								
80						2								
00														
70														
60														
00														
50														
40														
40	www.	han dama and hakk	tak and Present	and the state of the	minimum	my will be	or monthly man	r dhumbered	en werden wer	den affarind action				
30	nnovalthanadanaard	Nation Ann Ann Ann Ann Ann Ann Ann Ann Ann A	As to Manual a											
20														
20														
10														
0.0														
1	000.000							3000)	4000.0 MHz				
	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree					
o.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark				
	2474.000	94.95	-7.37	87.58	114.00	26.42	peak							

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

b No	.: STAR #43	27				F	Polarizati	on: \	/ertical				
tanda	rd: FCC Clas	s B 3M Rad	iated			F	Power Sc	ource:	DC 3V				
est ite	em: Radiatio	n Test				Date: 2013-5-13							
emp.((C)/Hum.(%) 25 C/5	5 %			1	Time: 13:	35:57					
UT:	2.4G Wir	reless Keybo	ard			E	Engineer	Signat	ure:				
ode:	TX 2474M	Hz				[Distance:	3m					
odel:	ET-3788												
anufa	acturer: Easter	n Times											
ote:	Report No.:	ATE201308	98										
	852												
	and High and State												
100.	.0 dBuV/m								limit	·			
90									miller				
30						X							
80						·····							
70													
60									********				
50													
40	ntrakywikiawynatrytawatratu			and she for the history	-	white h	41. Appletyte Maria	whenthe	numberships	and shall an alter Janites			
30	nindepresentations and the second second	en landar ready have by which have	nelegilitienen unelerenti	Manda Man Man and I									
20													
20													
10													
0.0													
1	000.000							3000)	4000.0 MHz			
o.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
							neal		i ()				
	2474.000	94.28	-7.37	86.91	114.00	27.09	peak						

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ob No	D.: STAR #43	33				F	Polarizati	on: H	lorizonta	al
standa	ard: FCC Clas	s B 3M Rad	iated			F	Power So	ource:	DC 3V	
est ite	em: Radiatio	n Test				[Date: 201	13-5-13		
emp.	(C)/Hum.(%))25 C/5	5 %			٦	Time: 13	:59:33		
UT:	2.4G Wir	eless Keybo	bard			E	Engineer	Signat	ure:	
lode:	TX 2474M	Hz				[Distance:	3m		
lodel:	ET-3788									
lanuf	acturer: Easter	n Times								
lote:	Report No.:	ATE201308	98							
80.	0 dBuV/m									
00.									limit1	I: —
70										
70										
60										
50										
			have the second for	1 march when	+M waterman	Waternam	man	white where	Malanan	an support have been the
40	an juin kan an a	and the second	W.K. and Adda	Autor dat.						
30										
20										
20										
10										
0.0	4000.000	5000	6000	7000 80	100	10000				18000.0 MHz
	4000.000	5000	6000	7000 80						10000.0 MH2
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	Remark
	(MHz) 4948.000	(dBuV/m) 42.36	(dB) 0.46	(dBuV/m) 42.82	(dBuV/m) 74.00	(dB) -31.18	peak	(cm)	(ucy.)	
	4948.000	38.10	0.46	38.56	54.00	-31.18	AVG			
	4340.000	50.10	0.40	50.50	54.00	-13.44	7.0			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sc	ience & Ind	dustry Park,	Nanshan Sh	enzhen,	P.R.Chi	na	гах	.+00-0700-2000008
b No	o.: STAR #43	32				F	Polarizati	on: \	/ertical	
tanda	ard: FCC Clas	s B 3M Rad	liated			P	ower Sc	ource:	DC 3V	
est ite	em: Radiatio	n Test				C	0ate: 201	3-5-13		
emp.((C)/Hum.(%))25 C/5	5 %			Т	ime: 13:	:56:15		
UT:	2.4G Wir	eless Keybo	bard			E	Engineer	Signat	ure:	
ode:	TX 2474M	Hz				C)istance:	3m		
odel:	ET-3788									
anufa	acturer: Easter	n Times								
ote:	Report No.:	ATE201308	98							
	•									
80.0	0 dBuV/m								1. 14	
									limit	
70										
60						· ¹ / ₁				
				1						
50				2	L		marks he	L		ent of en
	takinginterreturnet	. west word	water water and an	Wayneshing with any	here "Millely drightly my "h	man man	Musley a. And	atan a a a a a a a a a a a a a a a a a a	www.www.ww	hurranisary
40	hat due to want out	Arfeldhaundfwllacuur.								
30										
30										
20			, , , ,							
10										
0.0	1000.000	5000		7000 00	00	10000				10000 0 MU
4	4000.000	5000	6000	7000 80)00	10000				18000.0 MHz
lo.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	7400.000	47 00	2 5 5 7							
	7422.000 7422.000	47.20	3.57 3.57	50.77 45.74	74.00 54.00	-23.23 -8.26	peak AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.	: star #4307				P	olarizatio	n: H	orizonta	al
Standar	d: FCC Class B 3M	Radiated			P	ower Sou	rce:	DC 3V	
Test iter	m: Radiation Test				D	ate: 2013)	-5-13		
Temp.(C)/Hum.(%) 25	C / 55 %			т	ime: 11:2	2:20		
EUT:	2.4G Wireless K	eyboard			E	ngineer S	Signatu	ire:	
Mode:	TX 2440MHz				D	istance:	3m		
Model:	ET-3788								
Manufa	cturer: Eastern Time	s							
Note:	Report No.:ATE201	130898							
90.0	dBu∀/m								
30.0	abuv/m							limit1	:
80									
80									
70									
60									
50									
	and the contract the second	He has no ble an hill march	a lana tikakin kawa adi	whenter in worth	Van June of	when have not the stand and the second standing of the	wilt when	Hudden Andrew	and Maken Syral Analy
40	Asthered Strategies and a state of the second	Lead the second designed and and a	ender alle en						
30									
20									
10									
0.0									
	3000.000	2000	0						25000.0 MHz
No.	Freq. Readi	ng Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
NU.	(MHz) (dBuV	/m) (dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	I NOTHOLIN

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job N	o.: star #4308	3				F	Polarizati	on: H	lorizonta	al
Stand	ard: FCC Clas	s B 3M Rad	iated			F	Power Sc	urce:	DC 3V	
Test it	em: Radiatio	on Test				0	Date: 201	3-5-13		
Temp	(C)/Hum.(%) 25 C/5	5 %			г	ime: 11:	25:39		
EUT:	2.4G Wi	reless Keybo	bard			E	Engineer	Signati	ure:	
Mode:		-					Distance:	-		
Model	: ET-3788									
Manuf	acturer: Easte	rn Times								
Note:			09							
note.	Report No	ATE201308	90							
90.	0 dBuV/m									
									limit	: —
80										
70										
60										
50										
50	when and the man	ana ing katalang sa	a attanta	Miradiddau ar Le	and the second second second	What has a second to	ال المراجع المراجع ال	u.n. materia	March March	with mander that
40	which was the second of	elinearither from the	APTEN - MANAMANANA	e. Menules construction of a second	L.V. uAutoWaddAMAAu		and the second second beau			
30										
20										
10										
10										
0.0										
	18000.000		2000	0						25000.0 MHz
No	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Domork
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	Remark

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job Ni	a)		, ,		r) Delevizeti	anı l	levizent	al
	o.: star #4310)					Polarizati		Horizont	al
	ard: FCC PK						Power So			
	em: Radiatio						Date: 201			
	.(C)/Hum.(%	·					Fime: 11:			
EUT:	2.4G Wir	-	bard				Engineer		ure:	
Mode:		IHz				[Distance:	3m		
Model	: ET-3788									
Manuf	acturer: Easter	rn Times								
Note:	Report No.:	ATE201308	98							
100	0.0 dBu∀/m									
90								A	limit limit	
								11		
80										
70							<u>,</u>	++		
10							1	TA	٨	
60								<u>∤</u> Υ*		
							AU	(
50						3	-+++		-{	
40						An an	J V -		MA	
40	hudennessander	w Am Malumm	martheterstation	have whether hand all the	Mary Huntry	1	A		k - M	www.
30						P				
20						·				
10.	n									
	2300.000									2440.0 MHz
	Free	Deedline	Fastan	Deput	Lingth	Manualia			5	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.35	-7.81	35.54	74.00	-38.46	-			
2	2310.000	38.93	-7.81	31.12	54.00	-22.88				
3	2382.469	53.95	-7.58	46.37	74.00	-27.63	-			
4	2382.469	48.60	-7.58	41.02	54.00	-12.98				
5	2390.000	45.70	-7.53	38.17	74.00	-35.83	-			
6	2390.000	40.36	-7.53	32.83	54.00	-21.17	AVG			
		I		1	1	1				1

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

	o.: star #4311						Polarizati						
	ard: FCC PK						Power Sc						
	tem: Radiatio					Date: 2013-5-13							
	.(C)/Hum.(%	-					ime: 11:						
UT:	2.4G Wir	reless Keybo	bard			E	Engineer	Signat	ure:				
ode:	TX 2408M	Hz				0	Distance:	3m					
odel													
anuf	facturer: Easter	rn Times											
ote:	Report No.:	ATE201308	98										
10	0.0 dBuV/m												
									limit1 limit2				
90								^-					
80													
70							·····						
60								<u> </u>	1				
							MA		1				
50						3	11		-+				
40	hopen the destate any and the	a kautahananan	a a sullike Mension and a state	man was been also had	manufacture	MA VEN	y			have so white			
30	1 2		North Contraction			····							
20													
10.													
	2300.000									2440.0 MHz			
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
	2310.000	43.31	-7.81	35.50	74.00	-38.50	peak						
	2310.000	37.39	-7.81	29.58	54.00	-24.42	AVG						
	2385.575	53.83	-7.56	46.27	74.00	-27.73	peak						
				44.40	E4.00	-12.58	AVG						
	2385.575	48.98	-7.56	41.42	54.00	-12.56	AvG						
	2385.575 2390.000	48.98 44.85	-7.56 -7.53	41.42 37.32	74.00	-36.68							

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

	lo.: star #4313	3		,			Polarizati		lorizonta	al	
	lard: FCC PK	_					Power Sc				
	tem: Radiatio						Date: 201				
	o.(C)/Hum.(%	·					Time: 12:				
EUT:		•	oard				Engineer	-	ure:		
Mode	: TX 2474M	Hz				0	Distance:	3m			
Mode	l: ET-3788										
Manu	facturer: Easter	n Times									
Note:	Report No.:	ATE201308	98								
10)0.0dBu∀/m										
90									limit limitž		
		M									
80)										
70)										
60		{}-V	M								
50		ſ_] [₩]									
40	when the want	Υ		Mannahart	munuhuhuh	Mundhamha	montenederates	www.	handration	wettinghown hellow a	
30)										
20	1										
10	2440.000									2600.0	MHz
			1	Desult	Limit	Margin		Height	Degree		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)			Detector	(cm)	(deg.)	Remark	
	Freq. (MHz) 2483.500	Reading (dBuV/m) 47.37	Factor (dB) -7.37		(dBuV/m) 74.00	(dB)	Detector peak	(cm)		Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	peak	(cm)		Remark	
2	(MHz) 2483.500	(dBuV/m) 47.37	(dB) -7.37	(dBuV/m) 40.00	(dBuV/m) 74.00	(dB) -34.00	peak AVG	(cm)		Remark	
No. 1 2 3	(MHz) 2483.500 2483.500	(dBuV/m) 47.37 43.14	(dB) -7.37 -7.37	(dBuV/m) 40.00 35.77	(dBuV/m) 74.00 54.00	(dB) -34.00 -18.23	peak AVG peak	(cm)			
1 2 3	(MHz) 2483.500 2483.500 2488.457	(dBuV/m) 47.37 43.14 48.51	(dB) -7.37 -7.37 -7.38	(dBuV/m) 40.00 35.77 41.13	(dBuV/m) 74.00 54.00 74.00	(dB) -34.00 -18.23 -32.87	peak AVG peak	(cm)			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

b No	o.: star #4312						Polarizati		/ertical		
anda	ard: FCC PK					F	ower So	ource:	DC 3V		
est it	em: Radiatio	n Test				0	Date: 201	1 <mark>3-5-1</mark> 3			
emp.	(C)/Hum.(%) 25 C/5	5 %			Т	Time: 12	:02:24			
JT:		eless Keybo				E	Engineer	Signat	ure:		
ode:		-					Distance:	-			
odel	: ET-3788										
anuf	acturer: Easter	n Times									
ote:	Report No.:	ATE201308	98								
100).0 dBu∀/m										
90									limit1 limit2		
		n									
80		·····									
70											
70											
60			M								
50		n-1V									
40	markentythermond	W	1 3	month when the week	and want the	Hatel Annin .	Market eren	a marsh	na wata wata wata wata wata wata wata wa	handman and a fun	
30			•	e e e	en al calderna o Ary 16.						
20											
10.	o										
	2440.000									2600.0 MH	z
	Freq.	Reading	Factor	Result	Limit	Margin	Detecto	Height	Degree	Demode	
0.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark	
	2483.500	46.50	-7.37	39.13	74.00	-34.87	peak				
	2483.500	41.32	-7.37	33.95	54.00	-20.05	AVG				
	2488.141	47.53	-7 <mark>.3</mark> 8	40.15	74.00	-33.85	peak				
	2488.141	42.57	-7.38	35.19	54.00	- <mark>18.81</mark>	AVG				
	2500.000	42.55	-7.40	35.15	74.00	-38.85	peak				
	2500.000	37.46	-7.40	30.06	54.00	-23.94	AVG				