FCC CERTIFICATION On Behalf of Eastern Times Technology Co., Ltd.

2.4G Wireless Laser Mouse Model No.: DS-2316L

FCC ID: TUV2316L

Prepared for Address	:	Eastern Times Technology Co., Ltd. Building 5, Penghua Industry Park, Heping Rd.(W), Longhua, Shenzhen, Guangdong, China
Prepared by Address	:	ACCURATE TECHNOLOGY CO. LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20101492
Date of Test	:	July 14, 2010
Date of Report	:	July 15, 2010

TABLE OF CONTENTS

Description

Page

1.	GE	NERAL INFORMATION	4
	1.1.	Description of Device (EUT)	4
	1.2.	Description of Test Facility	
	1.3.	Measurement Uncertainty	
2.	ME	CASURING DEVICE AND TEST EQUIPMENT	
3.	SU	MMARY OF TEST RESULTS	7
4.	FU	NDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249	(A) 8
	4.1.	Block Diagram of Test Setup	8
	4.2.	The Emission Limit	9
	4.3.	Configuration of EUT on Measurement	9
	4.4.	Operating Condition of EUT	9
	4.5.	Test Procedure	
	4.6.	The Field Strength of Radiation Emission Measurement Results	11
5.	SP	URIOUS RADIATED EMISSION FOR SECTION 15.249(D)	14
	5.1.	Block Diagram of Test Setup	14
	5.2.	The Emission Limit For Section 15.249(d)	15
	5.3.	EUT Configuration on Measurement	15
	5.4.	Operating Condition of EUT	15
	5.5.	Test Procedure	16
	5.6.	The Emission Measurement Result	17
6.	BA	ND EDGES	20
	6.1.	The Requirement	20
	6.2.	EUT Configuration on Measurement	20
	6.3.	Operating Condition of EUT	20
	6.4.	Test Procedure	20
	6.5.	The Measurement Result	21
7.	AN	TENNA REQUIREMENT	23
	7.1.	The Requirement	23
	7.2.	Antenna Construction	23

APPENDIX I (TEST CURVES) (22 pages)

Test Report Certification

Applicant	:	Eastern Times Technology Co., Ltd.
Manufacturer	:	Eastern Times Technology Co., Ltd.
EUT Description	:	2.4G Wireless Laser Mouse
		(A) MODEL NO.: DS-2331L
		(B) SERIAL NO.: N/A
		(C) POWER SUPPLY: 3V DC ("AAA" batteries $2 \times$)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.249 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :

Prepared by :

July 14, 2010

(Engineer)

Approved & Authorized Signer :

(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	2.4G Wireless Laser Mouse
Model Number	:	DS-2316L
Power Supply	:	3V DC ("AAA" batteries $2 \times$)
Operate Frequency	:	2408-2474MHz
Applicant Address	:	Eastern Times Technology Co., Ltd. Building 5, Penghua Industry Park, Heping Rd.(W), Longhua, Shenzhen, Guangdong, China
Manufacturer Address	:	Eastern Times Technology Co., Ltd. Building 5, Penghua Industry Park, Heping Rd.(W), Longhua, Shenzhen, Guangdong, China
Date of sample received	:	July 10, 2010
Date of Test	:	July 14, 2010

1.2.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC
		The Registration Number is 752051
		Listed by Industry Canada
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories
		The Certificate Registration Number is L3193
Name of Firm	:	ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.
		Science & Industry Park, Nanshan, Shenzhen, Guangdong
		P.R. China

1.3.Measurement	Uncertainty
-----------------	-------------

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2011
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2011
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2011
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2011
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 9, 2011
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 9, 2011
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2011
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2011

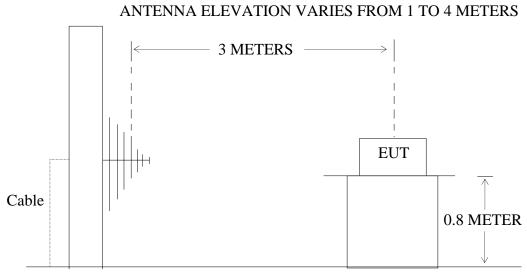
Table 1: List of Test and Measurement Equipment

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.249(a)	Fundamental and Harmonics Radiated Emission	Compliant
Section 15.249(d)	Spurious Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant

Remark: "N/A" means "Not applicable".

4. FUNDAMENTAL AND HARMONICS RADIATED EMISSION FOR SECTION 15.249(A)


4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: 2.4G Wireless Laser Mouse)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

GROUND PLANE

(EUT: 2.4G Wireless Laser Mouse)

4.2. The Emission Limit

4.2.1.For intentional radiators, According to section 15.249(a), Operation within the frequency band of 2.4 to 2.4835GHz, The fundamental field strength shall not exceed 94 dB μ V/m and the harmonics shall not exceed 54 dB μ V/m.

Fundamental	Field Strength of Fundamental	Field Strength of harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

4.2.2.According to section 15.249(e), as shown in section 15.35(b), the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. 2.4G Wireless Laser Mouse (EUT)

Model Number	:	DS-2316L
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

4.4.Operating Condition of EUT

4.4.1.Setup the EUT and simulator as shown as Section 4.1.

4.4.2.Turn on the power of all equipment.

4.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408-2474MHz. We are select 2408MHz, 2440MHz, 2474MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 1MHz.

4.6.The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2408MHz	Test Engineer:	Joe

Fundamental Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(c	lBµV/m)	Limit(dl	BμV/m)	Marg	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2408.278	87.39	92.92	-7.44	79.95	85.48	94	114	-14.05	-28.52	Vertical
2408.278	91.90	97.46	-7.44	84.46	90.02	94	114	-9.54	-23.98	Horizontal

Harmonics Radiated Emissions

Frequency	Reading(dBµV/m)	Factor(dB)	Result(c	lBµV/m)	Limit(d	BμV/m)	Marg	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
4816.552	44.49	49.96	-0.23	44.26	49.73	54	74	-9.74	-24.27	Vertical
4816.552	46.17	551.70	-0.23	45.94	51.47	54	74	-8.06	-22.53	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

 $Where \ Corrected \ Factor = Antenna \ Factor + Cable \ Loss + High \ Pass \ Filter \ Loss - Amplifier \ Gain$

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2440MHz	Test Engineer:	Joe

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(11112)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
2440.278	87.23	92.78	-7.36	79.87	85.42	94	114	-14.13	-28.58	Vertical
2440.278	91.08	97.37	-7.36	84.44	90.01	94	114	-9.56	-23.99	Horizontal

Harmonics Radiated Emissions

Frequency (MHz)	Reading(o	dBµV/m	Factor(dB) Corr.	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(WHIZ)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
4880.550	43.14	48.63	0.13	43.27	48.76	54	74	-10.73	-25.24	Vertical
4880.550	45.34	50.85	0.13	45.47	50.98	54	74	-8.53	-23.02	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2474MHz	Test Engineer:	Joe

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(11112)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
2474.276	87.17	92.64	-7.37	79.80	85.27	94	114	-14.20	-28.73	Vertical
2474.276	91.85	97.37	-7.37	84.48	90.00	94	114	-9.52	-24.00	Horizontal

Harmonics Radiated Emissions

Frequency (MHz)	Reading(dBµV/m	Factor(dB) Corr.	Result(d	BμV/m)	Limit(d	BμV/m)	Margi	in(dB)	Polarization
(11112)	AV	PEAK	Con.	AV	PEAK	AV	PEAK	AV	PEAK	
4948.546	42.09	47.55	0.47	42.56	48.02	54	74	-11.44	-25.98	Vertical
4948.546	46.38	51.91	0.47	46.85	52.38	54	74	-7.15	-21.62	Horizontal

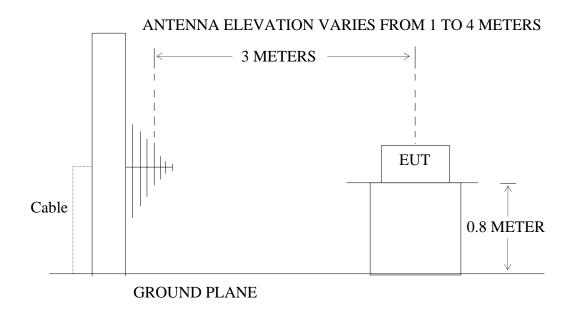
Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

5. SPURIOUS RADIATED EMISSION FOR SECTION 15.249(D)


5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

(EUT: 2.4G Wireless Laser Mouse)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: 2.4G Wireless Laser Mouse)

5.2. The Emission Limit For Section 15.249(d)

5.2.1.Emission radiated outside of the specified frequency bands, except for harmonics, shall be comply with the general radiated emission limits in Section 15.209.

		0		
		Limit		
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is	
30 - 88	100	40	performed with Average detector.	
88 - 216	150	43.5	Except those frequency bands mention above, the	
216 - 960	200	46	final measurement for frequencies below	
Above 960	500	54	1000MHz is performed with Quasi Peak detector.	

Radiation Emission Measurement Limits According to Section 15.209

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1. 2.4G Wireless Laser Mouse (EUT)

Model Number	:	DS-2316L
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

5.4. Operating Condition of EUT

- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408-2474MHz. We are select 2408MHz, 2440MHz, 2474MHz TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

5.6. The Emission Measurement Result

PASS.

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2408MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 $Result = Reading + Corrected \ Factor$

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2440MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m) (dBµV/m		(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2474MHz	Test Engineer:	Joe

Frequency	Reading	Factor(dB)	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m) (dBµV/m		(dB)	
	QP		QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

6. BAND EDGES

6.1.The Requirement

6.1.1.Band Edge from 2400MHz to 2483.5MHz. Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1. 2.4G Wireless Laser Mouse (EUT)

Model Number	:	DS-2316L
Serial Number	:	N/A
Manufacturer	:	Eastern Times Technology Co., Ltd.

6.3. Operating Condition of EUT

6.3.1.Setup the EUT and simulator as shown as Section 4.1.

- 6.3.2.Turn on the power of all equipment.
- 6.3.3. Let the EUT work in TX modes measure it. The transmit frequency are 2408-2474MHz. We are select 2408MHz, 2474MHz TX frequency to transmit.

6.4. Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz

6.5. The Measurement Result

Pass.

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2408MHz	Test Engineer:	Joe

Frequency	Reading(c	lBμV/m)	Factor(dB)	Result(c	lBµV/m)	Limit(dl	BμV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	-	-	-	-	-	Vertical
_	-	_	-	-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:	July 14, 2010	Temperature:	25°C
EUT:	2.4G Wireless Laser Mouse	Humidity:	50%
Model No.:	DS-2316L	Power Supply:	3V DC ("AAA" batteries $2 \times$)
Test Mode:	TX 2474MHz	Test Engineer:	Joe

Frequency	Reading(c	lBμV/m)	Factor(dB)	Result(c	lBµV/m)	Limit(dl	BμV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
_	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	_	_	-	Horizontal

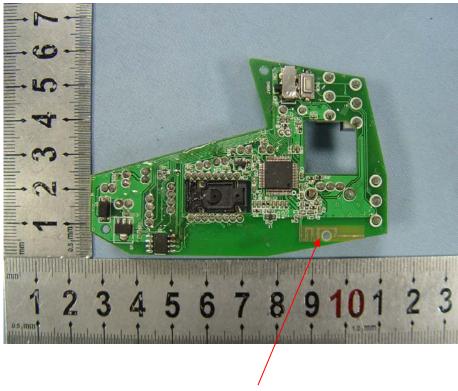
Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain


7. ANTENNA REQUIREMENT

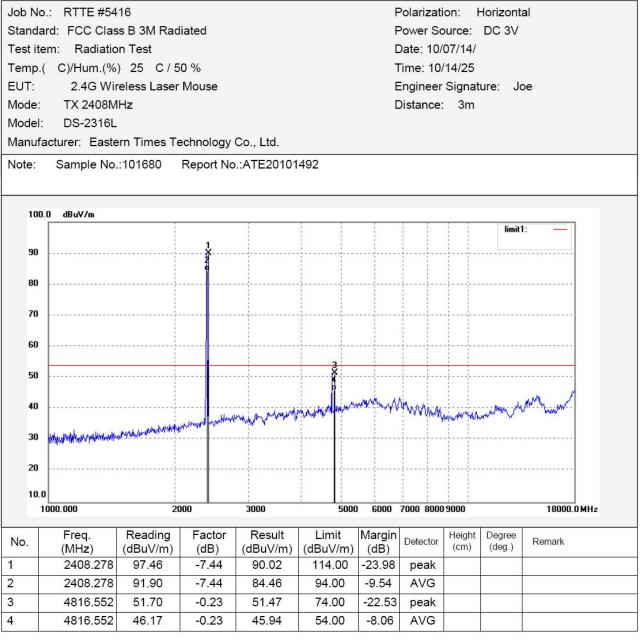
7.1.The Requirement

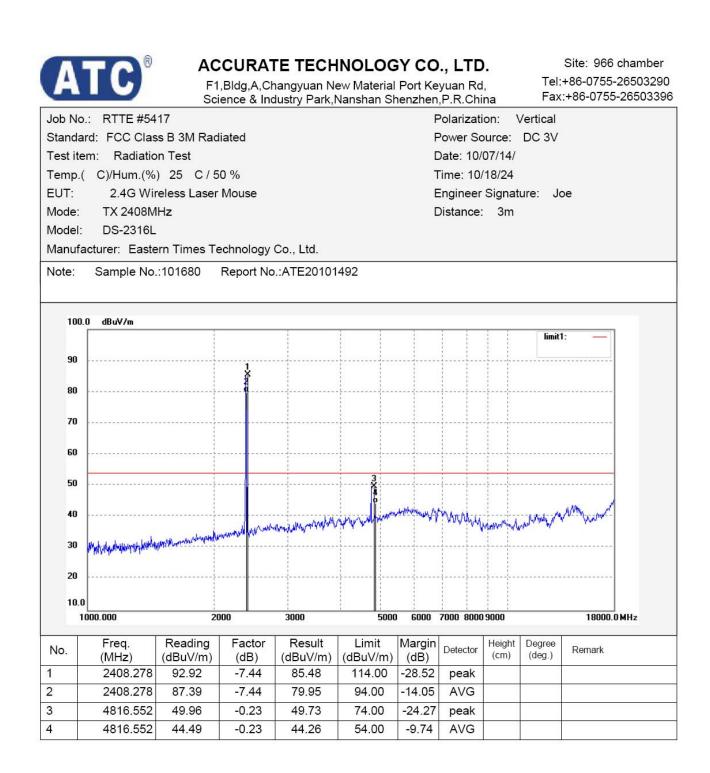
7.1.1.According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

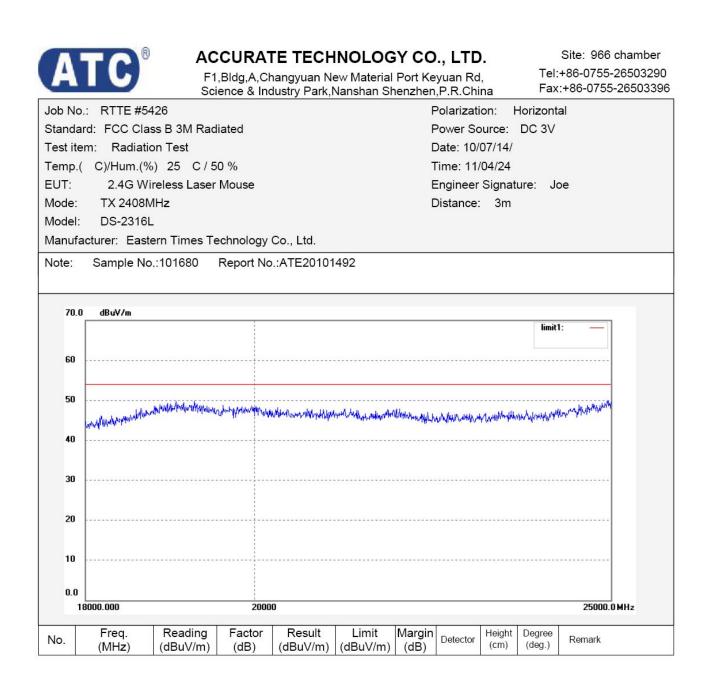
7.2. Antenna Construction

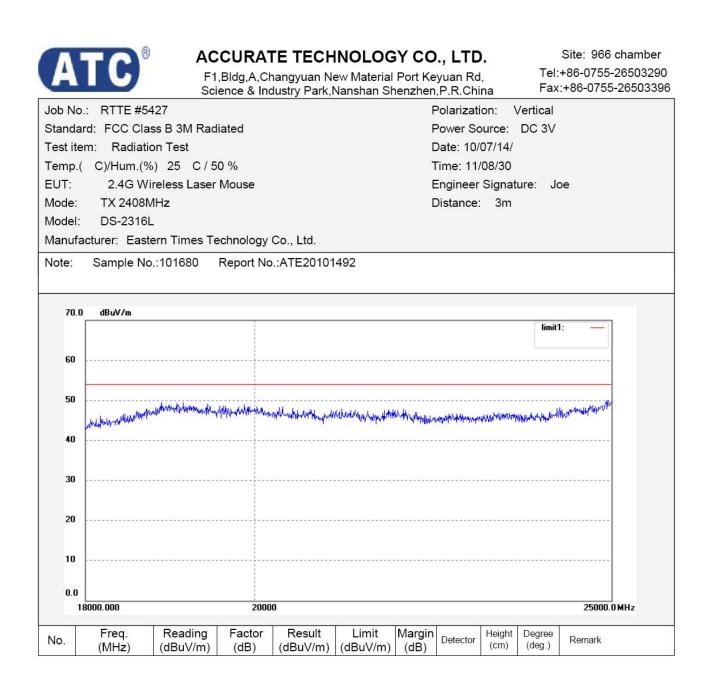

The antenna is PCB Layout antenna, no consideration of replacement.

Antenna

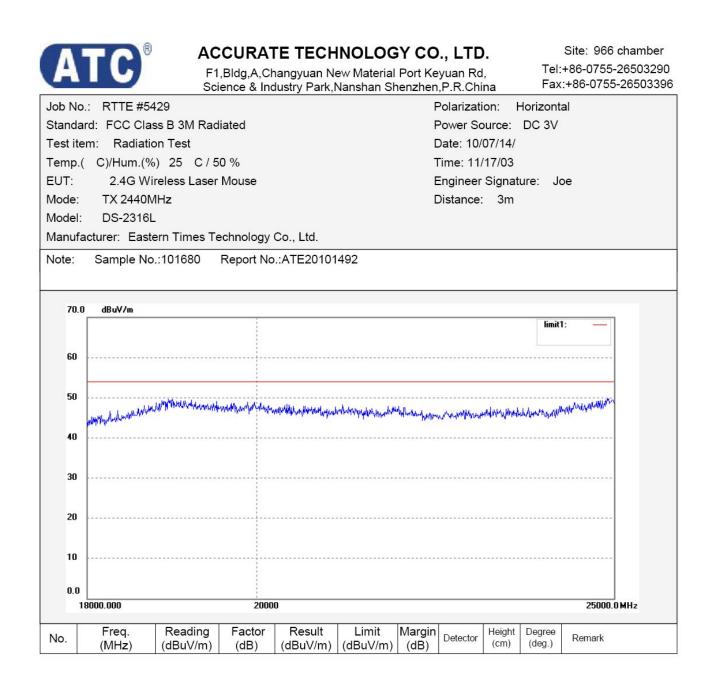

APPENDIX I (Test Curves)

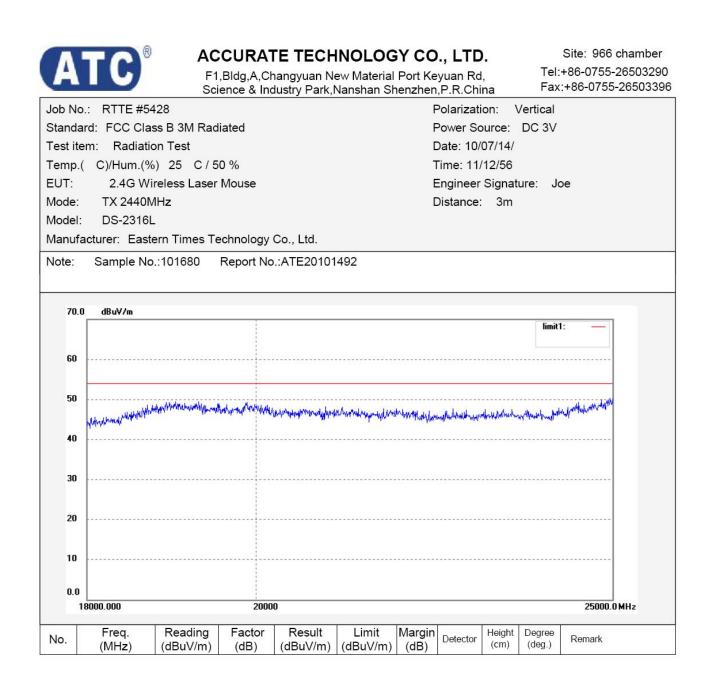


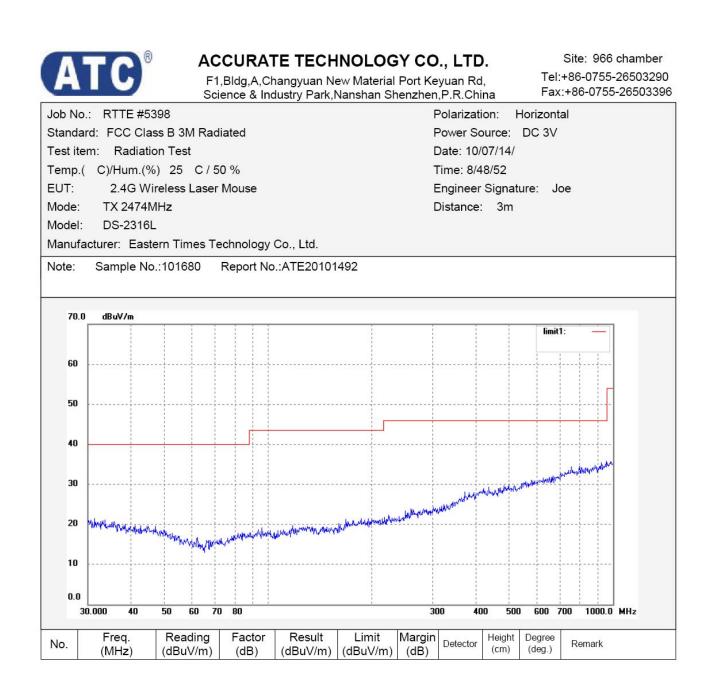


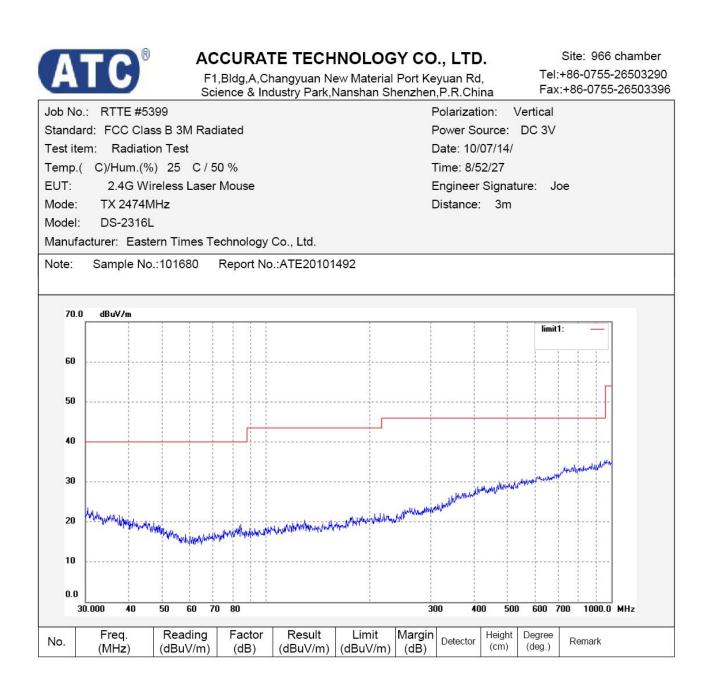


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

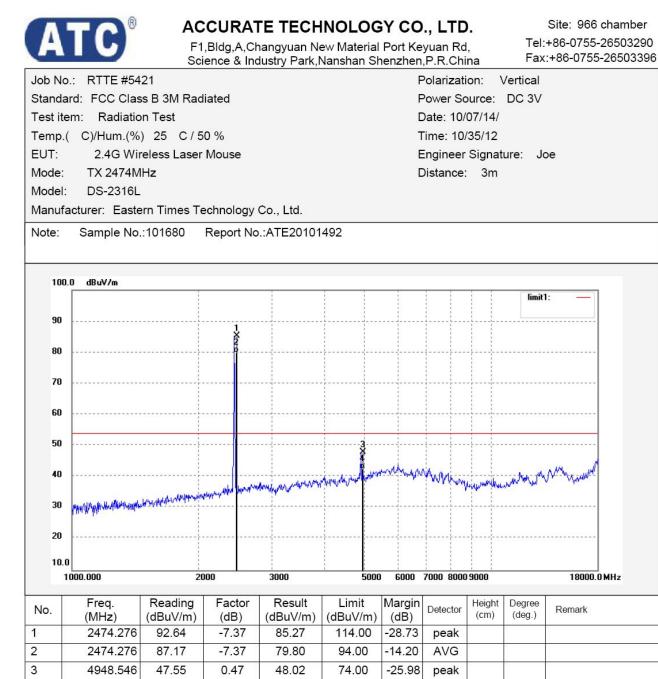

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


Job N	o.: RTTE #54			austry r ant,r			Polarizati		Horizont	al
Stand	ard: FCC Clas	s B 3M Ra	diated		Power Sc		DC 3V			
Test it	est item: Radiation Test									
Temp.(C)/Hum.(%) 25 C / 50 % EUT: 2.4G Wireless Laser Mouse							Time: 10/	26/56		
							Engineer	Signat	ure: Jo	be
Mode	TX 2440M	Hz					Distance:	- To		
Model	: DS-2316L									
Manut	facturer: Easte	ern Times T	echnology	Co., Ltd.						
Note:	Sample No.	:101680	Report No	.:ATE20101	492					
10	0.0 dBuV/m				: :			: :	limit	
			1			1			umici	. —
90			ž.							
80			i							
00										
70										
60						····-				
50					3					
					4					
40					A A DE MAN	homestic	MANTHING		- ANN MA	Man with
	mallalaturationsta		have many	wantinter	Aure a	1	- A KINAN	Muhaming	pursue and the	
30	rondificitionships	MARY WARNESS IN								
20										
20										
10	.0		2000	3000		000	7000 8000	0000		10000 0 MU
	1000.000	2	:000	3000	5000	6000	7000 8000	9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
ĺ.	2440.278	97.37	-7.36	90.01	114.00	-23.99	peak			
2	2440.278	91.80	-7.36	84.44	94.00	-9.56	AVG			
3	4880.550	50.85	0.13	50.98	74.00	-23.02	peak			
	4880.550	45.34	0.13	45.47	54.00	-8.53	AVG			




F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job N	lo.: RTTE #54			uusuy Faik,i	Number of		Polarizati		/ertical			
Standard: FCC Class B 3M Radiated							Power Sc	ource:	DC 3V			
Test item: Radiation Test							Date: 10/	07/14/				
Temp.(C)/Hum.(%) 25 C / 50 %							- ime: 10/	22/55				
EUT:		, reless Laser				E	Engineer	Signat	ure: Jo	be		
Mode	: TX 2440M	IHz					Engineer Signature: Joe Distance: 3m					
Mode	l: DS-2316L											
Manu	facturer: Easte	ern Times Te	echnology	Co., Ltd.								
Note:	Sample No.	:101680	Report No	.:ATE20101	492							
1(00.0 dBuV/m											
				1		1	1 1	1	limit	I:		
90						-						
51	·	1	1	1		1						
80	,		<mark>2</mark> 9		· · · · · · · · · · · · · · · · · · ·							
70)						+	- 				
60	.		1. C									
50)											
					4							
40				all as developed	MANNON	marine 1	MAMM	in Mahun	Mary Mary Mary	1 March Winnell		
30	and the state of t	un man man and internation	VINN MARKEN CARDON	ana manana kata sa				and a second				
30	which we have a set of the set of									00555676666		
20	,											
, n).0 1000.000	20	000	3000	5000	6000	7000 8000	9000		18000.0 MHz		
		199										
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
1	2440.278	92.78	-7.36	85.42	114.00	-28.58	peak					
2	2440.278	87.23	-7.36	79.87	94.00	-14.13	AVG					
3	4880.550	48.63	0.13	48.76	74.00	-25.24	peak					
	1		0.13	43.27	54.00	-10.73	AVG					



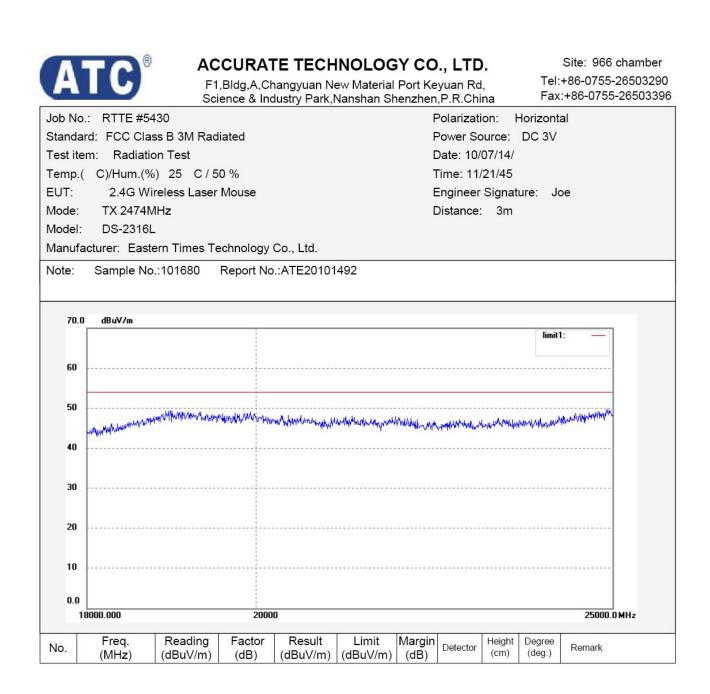
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job N	lo.: RTTE #54	100000		austry Fark,i			Polarizati		Horizonta	al		
Standard: FCC Class B 3M Radiated							Power So	ource:	DC 3V			
Test item: Radiation Test							Date: 10/	07/14/				
Temp.(C)/Hum.(%) 25 C / 50 %							Time: 10/31/08					
EUT:	2.4G Wir	eless Laser	Mouse			E	Engineer	Signat	ure: Jo	be		
Mode: TX 2474MHz								3m				
Mode	I: DS-2316L											
Manu	facturer: Easte	ern Times Te	echnology	Co., Ltd.								
Note:	Sample No.	:101680	Report No	.:ATE20101	492							
10	10.0 dBuV/m			1				: :	limit1			
			1			-				. —		
90			Ř									
80			2			1						
						1						
70												
		1				1						
60							+			55266556666		
50					3							
50						1				J.		
40					M. M. MUM MAN	1000 many	manning		- Mar My	Manuntak		
	an-hallingtachardalansia	1 inder Aberrywith	nothing any any	Here and when the second of the				Apparent When	And the			
30	and the production of the second	ANALY STATE										
20												
10	1000.000	20)00	3000	5000	6000	7000 8000			18000.0 MHz		
	1000.000									10000.0 M112		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
	2474.276	97.37	-7.37	90.00	114.00	-24.00	peak					
	2474.276	91.85	-7.37	84.48	94.00	-9.52	AVG					
2												
2	4948.546	51.91	0.47	52.38	74.00	-21.62	peak					

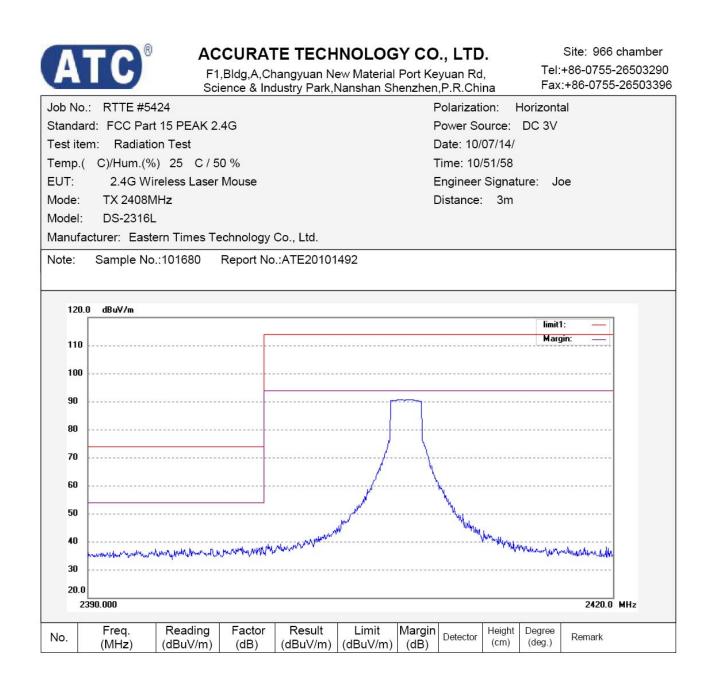
4

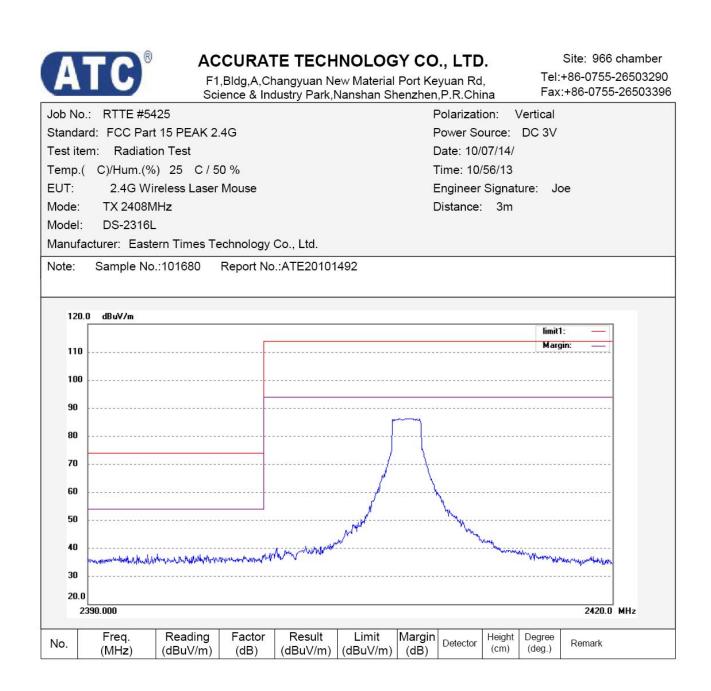
4948.546

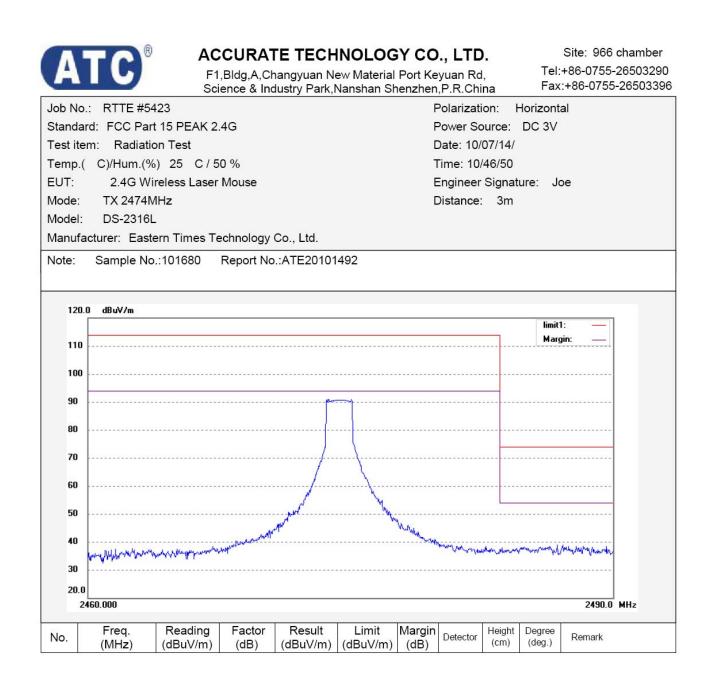
42.09


0.47


42.56


54.00


-11.44


AVG

