

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R01-2200465

FCC EMC Test Report

Applicant: Savox Communications Oy Ab

Address of Applicant: Keilaranta 15B Espoo 02150 Finland

Equipment Under Test (EUT)

Product Name: TRICS Lite

Model No.: TRICS Lite

Trade Mark: Savox

FCC ID: TUFTRICSLITE

Applicable Standards: FCC CFR Title 47 Part 15B

Date of Sample Receipt: 25 Jul., 2022

Date of Test: 26 Jul., to 30 Aug., 2022

Date of report Issued: 31 Aug., 2022

Test Result: PASS

Tested by: January VV & Date: 31 Aug., 2022

Reviewed by: ______ Date: _____ 31 Aug., 2022

Approved by: ______ Date: ____ 31 Aug., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	31 Aug., 2022	Original

2 Contents

			Page
С	over Pa	nge	1
1	Vers	sion	2
2		ntents	
3	Gen	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode	4
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Description of Cable Used	
	3.6	Measurement Uncertainty	5
	3.7	Additions to, Deviations, or Exclusions from the Method	5
	3.8	Laboratory Facility	5
	3.9	Laboratory Location	5
	3.10	Test Instruments List	6
4	Mea	asurement Setup and Procedure	7
	4.1	Test Setup	7
	4.2	Test Procedure	
5	Test	t Results	9
	5.1	Summary	9
	5.1.		
	5.1.2		
	5.2	Radiated Emission	10

3 General Information

3.1 Client Information

Applicant:	Savox Communications Oy Ab
Address:	Keilaranta 15B Espoo 02150 Finland
Manufacturer:	Savox Communications Oy Ab
Address:	Keilaranta 15B Espoo 02150 Finland
Factory:	Savox Communications (Shenzhen) Co., Ltd.
Address:	7th Floor, Building #2, Hong Hui Industrial Park,Liu Xian 2nd Road, 68th Subdistrict, Baoan, Shenzhen, China

3.2 General Description of E.U.T.

Product Name:	TRICS Lite
Model No.:	TRICS Lite
Power Supply:	1*AAA DC 1.5V battery
Remark:	Headset model: SAVOX Noise-COM 100
	Headset length: 0.75m.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode

Operating Mode	Detail Description
Working mode	Keep the EUT in interconnected mode

The sample was placed 0.8m above the ground plane of 10m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No.: JYTSZ-R01-2200465

3.4 Description of Test Auxiliary Equipment

Manufacturer	Description	Model	S/N	FCC ID/DoC
Nanfu	Battery	LR03	N/A	DoC

3.5 Description of Cable Used

Cable Type Description		Length	From	То	
	Detached headset cable	Unshielded	0.75m	EUT	Headset

3.6 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.7 Additions to, Deviations, or Exclusions from the Method

No

3.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.9 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

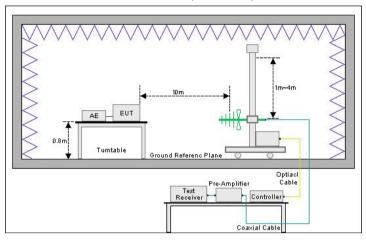
Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-147-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

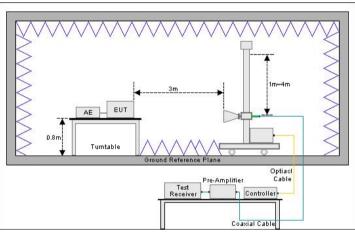
3.10 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Radiated Emission(10m SAC):							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	04-01-2022	03-31-2023		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-31-2022	03-30-2023		
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023		
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023		
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-20-2022	01-19-2023		
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-20-2022	01-19-2023		
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-20-2022	01-19-2023		
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-20-2022	01-19-2023		
Test Software	R&S	EMC32		Version: 10.50.4	0		



4 Measurement Setup and Procedure


4.1 Test Setup

1) Radiated emission measurement:

Below 1GHz (10m SAC)

Above 1GHz (3m SAC)

4.2 Test Procedure

F.Z Test i locedule				
Test method	Test step			
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. 			
	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. 			

5 Test Results

5.1 Summary

5.1.1 Clause and data summary

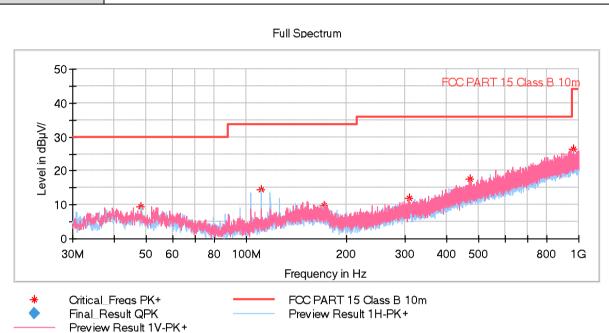
Test items	Standard clause	Test data	Result
Conducted Emission	Part 15.107	See Section 6.2	N/A
Radiated Emission	Part 15.109	See Section 6.3	Pass

Remark:

- 1. The EUT is a Class B digital device.
- 2. Pass: The EUT complies with the essential requirements in the standard.
- 3. N/A: Not Applicable.

Test Method: ANSI C63.4:2014

5.1.2 Test Limit

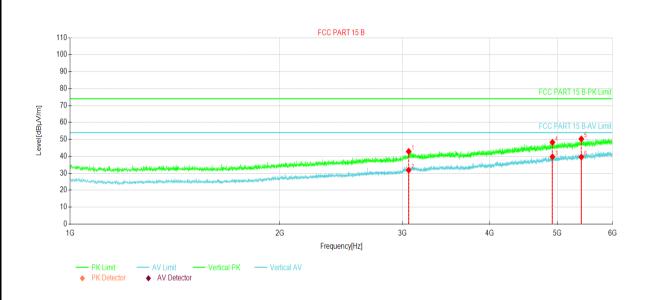

		Limit			
-	Class A Lir	nit (dBµV/m)	Class B Limit (dBµV/m)		
(MHz)	Quasi-Peak @ 3m	Quasi-Peak @ 10m	Quasi-Peak @ 3m	Quasi-Peak @ 10m	
30 – 88	49.0	39.0	40.0	30.0	
88 – 216	53.5	43.5	43.5	33.5	
216 – 960	56.0	46.0	46.0	36.0	
960 – 1000	60.0	50.0	54.0	44.0	
Note: The more stringent limit applies at transition frequencies.					
Eroguanav	Class A Limit	(dBµV/m) @ 3m	Class B Limit (dBµV/m) @ 3m		
Frequency	Average	Peake	Average	Peake	
Above 1 GHz	60.0	80.0	54.0	74.0	
	30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more strin	Class A Limit Company Class A Limit Company Class A Limit Company Compan	Class A Limit (dBμV/m) Quasi-Peak @ 3m @ 10m	Class A Limit (dBμV/m) Class B Limit (dBμ	

5.2 Radiated Emission

Below 1GHz:

Product Name:	TRICS Lite	Product Model:	TRICS Lite
Test By:	Janet	Test mode:	Working mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120V/60Hz		

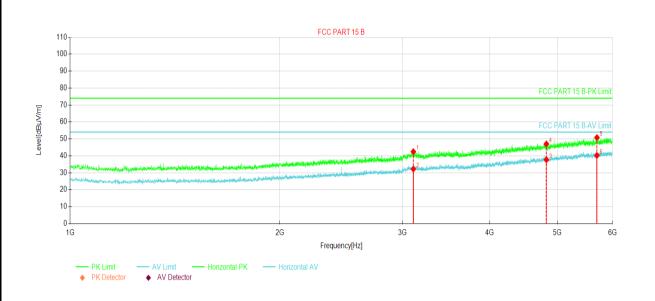
Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dB µ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)	(dB/m)
48.284500	9.43	30.00	20.57	100.0	Н	14.0	-16.3
110.558500	14.34	33.50	19.16	100.0	Н	0.0	-18.6
171.620000	9.83	33.50	23.67	100.0	V	53.0	-15.7
308.099000	11.92	36.00	24.08	100.0	V	146.0	-14.4
472.320000	17.70	36.00	18.30	100.0	V	250.0	-9.9
965.516500	26.40	44.00	17.60	100.0	V	358.0	-0.3


Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

Product Name:	TRICS Lite	Product Model:	TRICS Lite
Test By:	Janet	Test mode:	Working mode
Test Frequency:	1000 MHz ~ 6000 MHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		


Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	3060.00	58.98	-16.12	42.86	74.00	31.14	PK	Vertical
2	3060.00	48.00	-16.12	31.88	54.00	22.12	AV	Vertical
3	4920.00	48.01	-8.25	39.76	54.00	14.24	AV	Vertical
4	4920.00	56.51	-8.25	48.26	74.00	25.74	PK	Vertical
5	5413.12	56.24	-5.96	50.28	74.00	23.72	PK	Vertical
6	5413.12	45.54	-5.96	39.58	54.00	14.42	AV	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	TRICS Lite	Product Model:	TRICS Lite
Test By:	Janet	Test mode:	Working mode
Test Frequency:	1000 MHz ~ 6000 MHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	3107.50	58.21	-15.75	42.46	74.00	31.54	PK	Horizontal
2	3107.50	47.96	-15.75	32.21	54.00	21.79	AV	Horizontal
3	4823.12	46.32	-8.62	37.70	54.00	16.30	AV	Horizontal
4	4823.12	55.65	-8.62	47.03	74.00	26.97	PK	Horizontal
5	5699.37	55.81	-5.03	50.78	74.00	23.22	PK	Horizontal
6	5699.37	45.25	-5.03	40.22	54.00	13.78	AV	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

-----End of report-----