

Radio Test Report

for

Widex A/S

on

D-FA

Document No: TRA-012510-W-US1

TRaC Wireless Test Report : TRA-012510-W-US1

Applicant: Widex A/S

Apparatus: D-FA

Specification(s): CFR 47, Part 15, June 2011

RSS-Gen Issue 3, December 2010

Purpose of Test : Certification

FCCID : TTY-DFA

IC ID : 5676B-DFA

Authorised by

Radio Product Manager

John Charters

Issue Date : 31st January 2013

Authorised Copy Number : PDF

Contents

1.1 1.2 1.3 1.4 1.5	n 1: Introduction General Tests Requested By Manufacturer Apparatus Assessed Test Result Summary Notes relating to the assessment Deviations from Test Standards	4 4 5 5 5 6 7 7
Section 2.1	2: Measurement Uncertainty Measurement Uncertainty Values	8 8
Section 3.1	n 3: Modifications Modifications Performed During Assessment	10 10
Append A1 A2 A3	dix A: Formal Emission Test Results Transmitter Intentional Emission Radiated Radiated Spurious Emissions Unintentional Radiated Emissions	11 12 13 15
Append	dix B: Supporting Graphical Data	17
Append C1 C2 C3 C4 C5	EUT operating mode during testing	22 23 24 25 26 27
Details	of Equipment Used Trac Hull Rx mode	27
Append	dix D: Additional Information	28
Append	dix E: Calculation of the duty cycle correction factor	29
Append	dix F: Photographs and Figures	30
Append	dix H: Cross Reference FCC Part 15c to IC RSS-Gen	34

Section 1: Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed at: TRaC Global

☑

Unit E

South Orbital Trading Park

Hedon Road Hull HU9 1NJ. United Kingdom

Telephone: +44 (0) 1482 801801 Fax: +44 (0) 1482 801806

TRaC Global

Unit 1 Pendle Place

Pimbo Industrial Estate Skelmersdale WN8 9PN

United Kingdom

Telephone: +44 (0) 1695 556666 Fax: +44 (0) 1695 577077

Email: test@tracglobal.com
Web site: http://www.tracglobal.com

Tests performed by: D Winstanley, Ken Anderson

Report author: S Hodgkinson

This report must not be reproduced except in full without prior written permission from TRaC Global.

1.2 Tests Requested By

This testing in this report was requested by:

Widex A/S Nymoellevej 6 DK-3540 Lynge Denmark

1.3 Manufacturer

Widex A/S Nymoellevej 6 DK-3540 Lynge Denmark

1.4 Apparatus Assessed

The following apparatus was assessed between 7th - 25th January 2013

D-FA

The above equipment is a hearing aid containing radio circuitry operating at 10.6 MHz

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation	Measurement standard	Result
Spurious Emissions Radiated <1000MHz	Title 47 of the CFR: Part 15 Subpart (c) 15.209	ANSI C63.10	Pass
Spurious Emissions Radiated >1000MHz	Title 47 of the CFR: Part 15 Subpart (c)	ANSI C63.10	N/A
AC Power conducted emissions	Title 47 of the CFR: Part 15 Subpart (c) 15.207	ANSI C63.10	N/A
Intentional Emission Frequency	Title 47 of the CFR: Part 15 Subpart (c) 15.209	ANSI C63.10	Pass
Intentional Emission Field Strength:	Title 47 of the CFR: Part 15 Subpart (c) 15. 209	ANSI C63.10	Pass
Intentional Emission Band Occupancy	Title 47 of the CFR: Part 15 Subpart (c) 15.215	ANSI C63.10	Pass
Intentional Emission ERP (mW)	Title 47 of the CFR: Part 15 Subpart (c)	ANSI C63.10	N/A
Unintentional Radiated Spurious Emissions	Title 47 of the CFR: Part 15 Subpart (b) 15.109	ANSI C63.10	Pass
Antenna Arrangements Integral:	Title 47 of the CFR: Part 15 Subpart (c) 15.203	-	Pass
Antenna Arrangements External Connector	Title 47 of the CFR: Part 15 Subpart (c) 15.204	-	-
Restricted Bands	Title 47 of the CFR: Part 15 Subpart (c) 15.205	•	-
Maximum Frequency Of Search	Title 47 of the CFR: Part 15 Subpart (c) 15.33	-	-
Extrapolation Factor	Title 47 of the CFR: Part 15 Subpart (c) 15.31(f)	-	-

Abbreviations used in the above table:

CFR : Code of Federal Regulations ANSI : American National Standards Institution REFE : Radiated Electric Field Emissions PLCE : Power Line Conducted Emissions

Radio Test Report: TRA-012510-W-US1

1.6 Notes relating to the assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature : 17 to 23 °C Humidity : 45 to 75 % Barometric Pressure : 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2: Measurement Uncertainty

2.1 Measurement Uncertainty Values

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Power Meter) = **1.08dB**Uncertainty in test result (Spectrum Analyser) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Power Meter) = **0.113ppm**Uncertainty in test result (Spectrum Analyser) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz - 18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

Uncertainty in test result – Up to 8.1GHz = **3.31dB**Uncertainty in test result – 8.1GHz – 15.3GHz = **4.43dB**Uncertainty in test result – 15.3GHz – 21GHz = **5.34dB**Uncertainty in test result – Up to 26GHz = **3.14dB**

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement - Oscilloscope

Uncertainty in overall test level = **2.1dB**, Uncertainty in time measurement = **0.59%**, Uncertainty in Amplitude measurement = **0.82%**

[12] Power Line Conduction

Uncertainty in test result = 3.4dB

[13] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

[14] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[15] Receiver Blocking - Listen Mode, Radiated

Uncertainty in test result = 3.42dB

[16] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = **3.36dB**

[17] Receiver Blocking - Talk Mode, Conducted

Uncertainty in test result = 1.24dB

[18] Receiver Threshold

Uncertainty in test result = 3.23dB

[19] Transmission Time Measurement

Uncertainty in test result = 7.98%

Section 3: Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Appendix A: Formal Emission Test Results

Abbreviations used in the tables in this appendix:

: Specification Spec ALSR : Absorber Lined Screened Room

Mod : Modification OATS : Open Area Test Site ATS : Alternative Test Site

EUT : Equipment Under Test SE : Support Equipment Ref : Reference

Freq : Frequency : Live Power Line : Neutral Power Line

N MD : Measurement Distance Е : Earth Power Line : Spec Distance SD

Pk : Peak Detector Pol : Polarisation : Horizontal Polarisation QP : Quasi-Peak Detector

: Vertical Polarisation Αv : Average Detector

CDN : Coupling & decoupling network

A1 Transmitter Intentional Emission Radiated

Test Details					
Regulation Title 47 of the CFR: Part15 Subpart (c) 15.209(b)(1)					
Measurement standard	ANSI C63.10:2009				
EUT sample number	S01				
Modification state 0					
SE in test environment None					
SE isolated from EUT	None				
EUT set up Refer to Appendix C					
Photographs (Appendix F)	Photograph 1				

Frequency (MHz)	Measurement Distance (m)	Measurement Rx Reading (dBµV/m) Extrapolation Factor (dB)		•	Field Strength (μV/m)
10.66	1	36.20	59.08		0.072
Limit value	@ frequency	30 μV/m			
		f _{lower} (MHz) f _{higher} (MI		_{er} (MHz)	
Band occupar	ncy @ -20 dBc	10.25641256 10.9474359).9474359
		BV	V = 691	.023 kHz	

Notes:

- 1 Results quoted are extrapolated as indicated
- 2 Receiver detector @ fc = Quasi Peak, 10 kHz bandwidth
- 3 When battery powered the EUT was powered with new batteries
- 4 Extrapolation 1 30 Meters 59.1 dB as per 15.31(f)
- 5 Band occupancy plot is provided in Annex B
- 6 Due to the low level of the signal, measurements at distances greater than 1 m could not be made

Test Method:

- 1 As per Radio Noise Emissions, ANSI C63.10
- 2 Measuring distance = 1m
- 3 EUT 0.8 m above ground plane
- 4 Emissions maximized by rotation of EUT, on an automatic turntable
- 5 Raising and lowering the receiver antenna between 1m & 4m
- 6 Horizontal and vertical polarizations, of the receive antenna
- 7 EUT orientation in three orthogonal planes
- 8 Maximum results recorded

A2 Radiated Spurious Emissions

Preliminary scans were performed using a peak detector with CISPR bandwidths. The radiated electric field emission test applies to all spurious emissions and harmonics emissions. The maximum permitted field strength is listed in Section 15.209. The EUT was set to transmit as required.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site : 3m alternative test site : X

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details					
Regulation Title 47 of the CFR, Part 15 Subpart (c) Clause 15.209					
Measurement standard	ANSI C63.10:2009				
Frequency range	9kHz – 1000MHz				
EUT sample number	S01				
Modification state	0				
SE in test environment	None				
SE isolated from EUT	None				
EUT set up	Refer to Appendix C				
Photographs (Appendix F)	Photographs 1 and 2				

Ref No.	Frequency (MHz)	Measured at Rx (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre- Amp Gain (dB)	Field Strength (dBµV/m)	Extrapolation Factor (dB)	Field Strength (µV/m)	Limit (µV/m)
	No Significant emissions within 20dB of the limit								

Note:

All emissions other than the fundamental are noise floor levels of the measurement equipment.

Notes:

- Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1. For emissions below 30MHz the cable losses are assumed to be negligible.
- In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- For Frequencies below 1 GHz, RBW= 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz Average RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:2011 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15.209 for all emissions:

Frequency of emission (MHz)	Field strength μV/m	Measurement Distance m	Field strength dBμV/m
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) =
$$20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels:

	See (i)	See (ii)	See (iii)	See (iv)	
Effect of EUT operating mode on emission levels		✓			
Effect of EUT internal configuration on emission levels		✓			
Effect of Position of EUT cables & samples on emission levels	✓				
(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D					

A3 Unintentional Radiated Emissions

Preliminary scans were performed using a peak detector with the RBW = 100 kHz. The radiated electric filed emission test applies to all spurious emissions on directly related to the transmitter. The maximum permitted field strength is listed in Section 15.109. The EUT was set to operate in transmit standby / receive mode.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site :	3m alternative test site:	X
--------------------------	---------------------------	---

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details					
Regulation Title 47 of the CFR, Part 15 Subpart (c) Clause 15.109					
Measurement standard	ANSI C63.10:2009				
Frequency range	30MHz – 1000MHz				
EUT sample number	S02				
Modification state	0				
SE in test environment	None				
SE isolated from EUT	None				
EUT set up	Refer to Appendix C				
Photographs (Appendix F)	Photographs 1 and 2				

Ref No.	Frequency (MHz)	Measured at Rx (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre- Amp Gain (dB)	Field Strength (dBµV/m)	Extrapolation Factor (dB)	Field Strength (µV/m)	Limit (µV/m)
	No Significant emissions within 20dB of the limit								

Notes:

- 1 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1. For emissions below 30MHz the cable losses are assumed to be negligible.
- 2 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 4 For Frequencies below 1 GHz, RBW = 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz Average RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:2011 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15.109 for all emissions:

Frequency of emission (MHz)	Field strength μV/m	Measurement Distance m	Field strength dBμV/m
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) =
$$20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

(b) The levels may have been rounded for display purposes.

(iv)

(c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels:

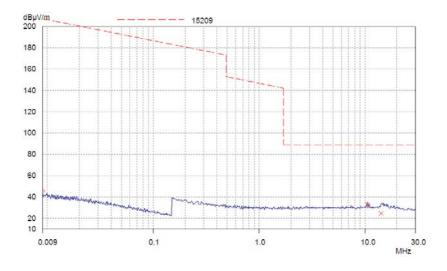
	1	1	i	
	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels		✓		
Effect of EUT internal configuration on emission levels		✓		
Effect of Position of EUT cables & samples on emission levels	✓			
(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D				

Worst case determined by initial measurement, refer to Appendix D

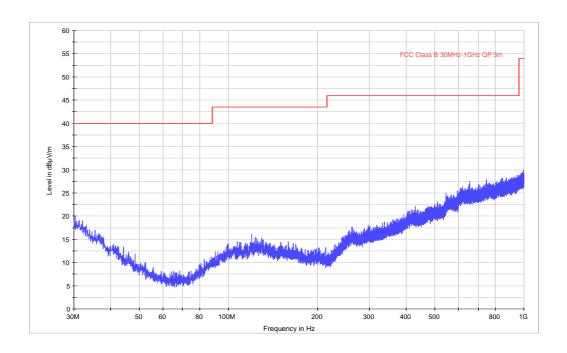
Appendix B: Supporting Graphical Data

This appendix contains graphical data obtained during testing.

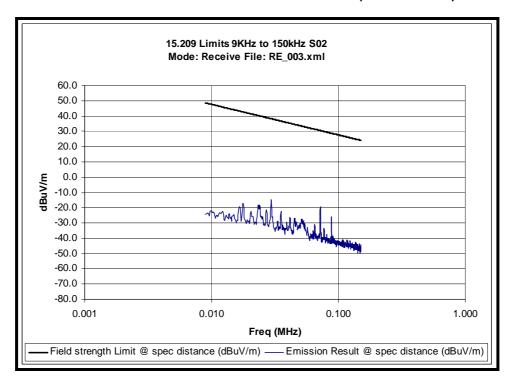
Notes:

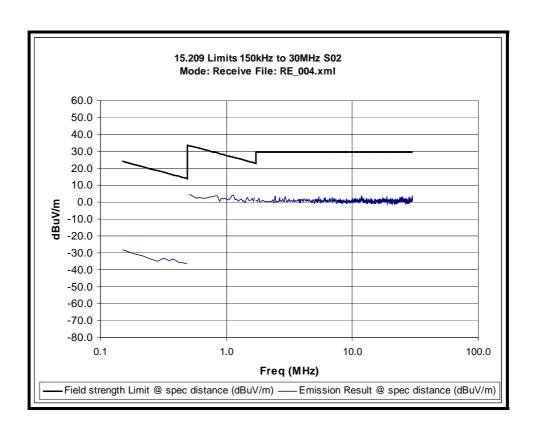

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer Appendix A and B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.

20dB Bandwidth

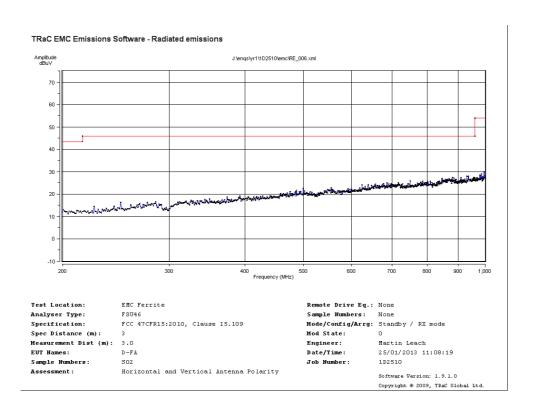


Date: 10.JAN.2013 11:39:58


Radiated Magnetic Field Emissions (Transmit Mode)




Radiated Electric Field Emissions (Transmit Mode)



Radiated Electric Field Emissions (Receive Mode)

Appendix C: Additional Test and Sample Details

This appendix contains details of:

- 1. The samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and its modification state:

Sample No: Sxx Mod w

Where:

xx = sample number eg. S01 w = modification number eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

C1 Test samples

The following samples of the apparatus were submitted by the client for testing:

Sample No	Description
S01	Hearing Aid (Constant transmit sample)
S02	Hearing Aid (Constant Receive sample)

C2 EUT operating mode during testing

During testing, the EUT was exercised as described in the following tables:

Test	Description of Operating Mode: Transmit
Radiated Field Strength (Transmitter carrier output levels)	
Radiated Spurious emissions (H-Field) at frequencies below 30MHz (15.209)	The EUT was transmitting continuously on
Radiated Spurious emissions (E-Field) at frequencies ≥ 30MHz (15.209)	maximum power using a new battery
20dB Bandwidth of Emissions	

Test Description of Operating Mode: Received	
(15.109) Unintentional Radiated Spurious emissions (E-Field) frequencies ≥ 30MHz	The EUT was placed in receive mode (non-transmitting) during the test, powered by a new battery

C3 EUT Configuration Information

The EUT was submitted for testing in one single possible configuration

C4 List of EUT Ports

The tables below describe the termination of EUT ports:

Port	Description of Cable Attached	Cable length	Equipment Connected	
None	N/A	N/A	N/A	

C5 Details of Equipment Used Trac Upholland Tx mode

TRaC Ref Number	Туре	Description	Manufacturer	Date Calibrated
UH03	ESHS10	Receiver	R&S	16/02//2012
UH403	ESCI 7	Receiver	R&S	27/06/2012
UH93	CBL6112B	Bilog	Chase	20/06/2011
TRL07	HFH2	Loop Antenna	R&S	04/11/2011
UH281	FSU46	Spectrum Analyser	R&S	09/02/2012
REF 939	3m N-Type	Cable	Rosenberger	21/11/2012
REF 937	10m N-Type	Cable	Rosenberger	21/11/2012

Details of Equipment Used Trac Hull Rx mode

RFG No	Туре	Description	Manufacturer	Date Calibrated
REF886	Lab 16	Large Anechoic Chamber	Rainford	27/07/12
095	3109	Bicon Antenna (30-200MHz)	Eaton	12/05/10
191	3146	Log Periodic Antenna (200- 100MHz)	EMCO	12/05/10
REF927	N10149	Pre-Amp	Sonoma	15/09/11
REF909	FSU46	Spectrum Analyser	R&S	02/12/11
RFG452		HF RF coaxial cable	UTIFLEX	02/07/12
REF881		HF RF coaxial cable	Teledyne Reynolds	02/07/12
REF882		HF RF coaxial cable	Teledyne Reynolds	02/07/12
REF884		HF RF coaxial cable	Teledyne Reynolds	02/07/12
REF885		HF RF coaxial cable	Teledyne Reynolds	02/07/12
RFG023	HFH-Z2	Magnetic Loop Antenna	R&S	24/05/11

Appendix D: Additional Information

No additional information is included within this test report

Appendix E: Calculation of the duty cycle correction factor

No average detector measurements were made during testing; therefore this calculation is not required.

Appendix F: Photographs and Figures

The following photographs were taken of the test samples:

- 1. Test setup E-field
- 2. Test setup E-field close up view
- 3. Test setup H-Field

Photograph 1

Photograph 2

Photograph 3

Appendix G: MPE Calculation

OET Bulletin No. 65, Supplement C 01-01

47 CFR §§1.1307 and 2.1091

2.1091 Radio frequency radiation exposure evaluation: mobile devices.

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm² power density limit, as required under FCC rules.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{EIRP}{4 \pi R^2}$$
 re - arranged $R = \sqrt{\frac{EIRP}{S 4 \pi}}$

Where:

S = power density R = distance to the centre of radiation of the antenna ERP = EUT Maximum power

Note:

The ERP value was determined using the peak H Field measurement

Result:

Prediction Frequency (MHz)	Maximum EIRP (mW)	Power density limit (S) (mW/cm ²)	Distance (R) from the body required for the power density to be less than 1.6 mW/cm ²
10.6	0.00000008	1.6	0.000063cm

Appendix H: Cross Reference FCC Part 15c to IC RSS-Gen


The testing was carried out to FCC 47CFR Part 15c and the results for this testing can be found in Appendix A of this report.

All measurements were carried out in accordance with ANSI C63.4, 'Methods of Measurements of RF Emissions from Low Voltage Electrical and Electronic Equipment' in the range 9 kHz to 1 GHz.

The table below shows the applicable RSS-Gen parts and the corresponding FCC 47CFR Part 15 rules:

RSS-Gen Issue 3	FCC 47CFR Part 15
6.1	Part 15.109
7.2.5	Part 15.209

In addition below is a plot of the 99% emissions bandwidth, as stipulated in Section 4.6.1 of RSS-Gen.

Date: 10.JAN.2013 11:07:34

FI =10.263461538MHz Fh= 10.93333333MHz OCBW = 669.871kHz

testing regulatory and compliance