



# FCC RADIO TEST REPORT

| FCC ID       | : | TTUBEOPLAYEXR                                |
|--------------|---|----------------------------------------------|
| Equipment    | : | Bluetooth Earphone                           |
| Brand Name   | : | Bang & Olufsen                               |
| Model Name   | : | EX Earbud R                                  |
| Applicant    | : | Bang & Olufsen A/S                           |
|              |   | Bang og Olufsen Allé 1, 7600 Struer, Denmark |
| Manufacturer | : | Bang & Olufsen A/S                           |
|              |   | Bang og Olufsen Allé 1, 7600 Struer, Denmark |
| Standard     | : | FCC Part 15 Subpart C §15.247                |

The product was received on Aug. 02, 2021 and testing was started from Aug. 11, 2021 and completed on Aug. 26, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)



# **Table of Contents**

| His | tory o | f this test report                                    | 3  |
|-----|--------|-------------------------------------------------------|----|
| Sur | nmar   | y of Test Result                                      | 4  |
| 1   | Gene   | eral Description                                      | 5  |
|     | 1.1    | Product Feature of Equipment Under Test               | 5  |
|     | 1.2    | Modification of EUT                                   | 5  |
|     | 1.3    | Testing Location                                      | 6  |
|     | 1.4    | Applicable Standards                                  | 6  |
| 2   | Test   | Configuration of Equipment Under Test                 | 7  |
|     | 2.1    | Carrier Frequency Channel                             | 7  |
|     | 2.2    | Test Mode                                             | 8  |
|     | 2.3    | Connection Diagram of Test System                     | 9  |
|     | 2.4    | EUT Operation Test Setup                              | 9  |
|     | 2.5    | Measurement Results Explanation Example               | 9  |
| 3   | Test   | Result                                                | 10 |
|     | 3.1    | Number of Channel Measurement                         | 10 |
|     | 3.2    | Hopping Channel Separation Measurement                | 12 |
|     | 3.3    | Dwell Time Measurement                                | 16 |
|     | 3.4    | 20dB and 99% Bandwidth Measurement                    | 18 |
|     | 3.5    | Output Power Measurement                              | 25 |
|     | 3.6    | Conducted Band Edges Measurement                      | 26 |
|     | 3.7    | Conducted Spurious Emission Measurement               | 31 |
|     | 3.8    | Radiated Band Edges and Spurious Emission Measurement | 38 |
|     | 3.9    | Antenna Requirements                                  | 42 |
| 4   | List o | of Measuring Equipment                                | 43 |
| 5   | Unce   | rtainty of Evaluation                                 | 44 |
| Арр | bendi  | x A. Conducted Test Results                           |    |
| Арр | bendi  | x B. Radiated Spurious Emission                       |    |
| Арр | bendi  | x C. Radiated Spurious Emission Plots                 |    |
| Арр | bendi  | x D. Duty Cycle Plots                                 |    |

Appendix E. Setup Photographs



# History of this test report

| Report No.   | Version | Description             | Issued Date   |
|--------------|---------|-------------------------|---------------|
| FR180215-01A | 01      | Initial issue of report | Feb. 21, 2022 |
| FR180215-01A | 02      | Revise appendix B and D | Mar. 01, 2022 |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |



# Summary of Test Result

| Report<br>Clause | Ref Std.<br>Clause    | Test Items                                            | Result<br>(PASS/FAIL) | Remark                                  |
|------------------|-----------------------|-------------------------------------------------------|-----------------------|-----------------------------------------|
| 3.1              | 15.247(a)(1)          | Number of Channels                                    | Pass                  | -                                       |
| 3.2              | 15.247(a)(1)          | Hopping Channel Separation                            | Pass                  | -                                       |
| 3.3              | 15.247(a)(1)          | Dwell Time of Each Channel                            | Pass                  | -                                       |
| 3.4              | 15.247(a)(1)          | 20dB Bandwidth                                        | Pass                  | -                                       |
| 3.4              | 2.1049                | 99% Occupied Bandwidth                                | Reporting only        | -                                       |
| 3.5              | 15.247(b)(1)          | Peak Output Power                                     | Pass                  | -                                       |
| 3.6              | 15.247(d)             | Conducted Band Edges                                  | Pass                  | -                                       |
| 3.7              | 15.247(d)             | Conducted Spurious Emission                           | Pass                  | -                                       |
| 3.8              | 15.247(d)             | Radiated Band Edges and Radiated Spurious<br>Emission | Pass                  | Under limit<br>9.18 dB at<br>30.000 MHz |
| -                | 15.207                | AC Conducted Emission                                 | Not Required          | -                                       |
| 3.9              | 15.203 &<br>15.247(b) | Antenna Requirement                                   | Pass                  | -                                       |

Note: Not required means after assessing, test items are not necessary to carry out.

#### **Declaration of Conformity:**

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

#### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

#### Reviewed by: Lewis Ho Report Producer: Vivian Hsu

# **1** General Description

# **1.1 Product Feature of Equipment Under Test**

#### Bluetooth

| P            | Product Specification subjective to this standard |
|--------------|---------------------------------------------------|
| Sample 1     | TI Sensor (DRV5032AJDMRR)                         |
| Sample 2     | ABLIC Sensor (S-5716ANSL3-I4T1U)                  |
| Sample 3     | ABLIC Sensor (S-5716ACDL3-I4T1U)                  |
| Sample 4     | Rohm Sensor (BU52095GWZ-E2)                       |
| Antenna Type | monopole Antenna                                  |
|              | Antenna information                               |

Antenna information2400 MHz ~ 2483.5 MHzPeak Gain (dBi)-2.2

**Remark:** The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

|                           | Specifi      | cation of Accessory |
|---------------------------|--------------|---------------------|
| Bottom 1                  | Brand Name   | Varta               |
| Battery 1                 | Model Name   | CP1254 A4           |
| Dettem: 0                 | Brand Name   | VDL                 |
| Battery 2                 | Model Name   | ZJ1254H             |
|                           | Brand Name   | Bang & Olufsen      |
| USB Cable 1               | Model Name   | BHC568              |
|                           | Manufacturer | Mingji              |
|                           | Brand Name   | Bang & Olufsen      |
| USB Cable 2               | Model Name   | BHC568              |
|                           | Manufacturer | Perfect Cable       |
| Divete eth Fernheine (I.) | Brand Name   | Bang & Olufsen      |
| Bluetooth Earphone (L)    | Model Name   | EX Earbud L         |
| Charging Case             | Brand Name   | Bang & Olufsen      |
| Charging Case             | Model Name   | EX Charging case    |

# **1.2 Modification of EUT**

No modifications are made to the EUT during all test items.



# **1.3 Testing Location**

| Test Site          | Sporton International Inc. EMC & Wireless Communications Laboratory                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Test Site Location | No.52, Huaya 1st Rd., Guishan Dist.,<br>Taoyuan City 333, Taiwan (R.O.C.)<br>TEL: +886-3-327-3456<br>FAX: +886-3-328-4978 |
| Test Site No.      | Sporton Site No.<br>TH02-HY, 03CH07-HY                                                                                    |

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

# 1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

#### Remark:

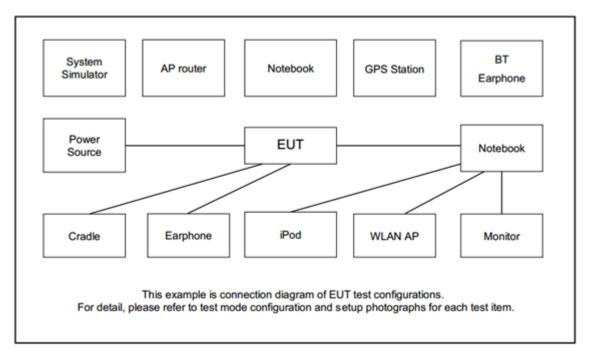
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

#### **Test Configuration of Equipment Under Test** 2

# 2.1 Carrier Frequency Channel

| Frequency Band  | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) |
|-----------------|---------|----------------|---------|----------------|---------|----------------|
|                 | 0       | 2402           | 27      | 2429           | 54      | 2456           |
|                 | 1       | 2403           | 28      | 2430           | 55      | 2457           |
|                 | 2       | 2404           | 29      | 2431           | 56      | 2458           |
|                 | 3       | 2405           | 30      | 2432           | 57      | 2459           |
|                 | 4       | 2406           | 31      | 2433           | 58      | 2460           |
|                 | 5       | 2407           | 32      | 2434           | 59      | 2461           |
|                 | 6       | 2408           | 33      | 2435           | 60      | 2462           |
|                 | 7       | 2409           | 34      | 2436           | 61      | 2463           |
|                 | 8       | 2410           | 35      | 2437           | 62      | 2464           |
|                 | 9       | 2411           | 36      | 2438           | 63      | 2465           |
|                 | 10      | 2412           | 37      | 2439           | 64      | 2466           |
|                 | 11      | 2413           | 38      | 2440           | 65      | 2467           |
|                 | 12      | 2414           | 39      | 2441           | 66      | 2468           |
| 2400-2483.5 MHz | 13      | 2415           | 40      | 2442           | 67      | 2469           |
|                 | 14      | 2416           | 41      | 2443           | 68      | 2470           |
|                 | 15      | 2417           | 42      | 2444           | 69      | 2471           |
|                 | 16      | 2418           | 43      | 2445           | 70      | 2472           |
|                 | 17      | 2419           | 44      | 2446           | 71      | 2473           |
|                 | 18      | 2420           | 45      | 2447           | 72      | 2474           |
|                 | 19      | 2421           | 46      | 2448           | 73      | 2475           |
|                 | 20      | 2422           | 47      | 2449           | 74      | 2476           |
|                 | 21      | 2423           | 48      | 2450           | 75      | 2477           |
|                 | 22      | 2424           | 49      | 2451           | 76      | 2478           |
|                 | 23      | 2425           | 50      | 2452           | 77      | 2479           |
|                 | 24      | 2426           | 51      | 2453           | 78      | 2480           |
|                 | 25      | 2427           | 52      | 2454           | -       | -              |
|                 | 26      | 2428           | 53      | 2455           | -       | -              |

# 2.2 Test Mode


a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

| The following summary table is showing all test modes to demonstrate in compliance with the standard | ١. |
|------------------------------------------------------------------------------------------------------|----|
|                                                                                                      |    |

|                   | Su                                                                                                                        | nmary table of Test Cases                                 | 5                                                  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|--|--|
| Test Item         |                                                                                                                           | Data Rate / Modulation                                    |                                                    |  |  |
|                   | Bluetooth BR 1Mbps<br>GFSK                                                                                                | Bluetooth EDR 2Mbps $\pi$ /4-DQPSK                        | Bluetooth EDR 3Mbps<br>8-DPSK                      |  |  |
| Conducted         | Mode 1: CH00_2402 MHz                                                                                                     | Mode 4: CH00_2402 MHz                                     | Mode 7: CH00_2402 MHz                              |  |  |
| Test Cases        | Mode 2: CH39_2441 MHz                                                                                                     | Mode 5: CH39_2441 MHz                                     | Mode 8: CH39_2441 MHz                              |  |  |
|                   | Mode 3: CH78_2480 MHz                                                                                                     | Mode 6: CH78_2480 MHz                                     | Mode 9: CH78_2480 MHz                              |  |  |
|                   | BI                                                                                                                        | uetooth EDR 3Mbps 8-DP                                    | SK                                                 |  |  |
|                   | <sample 1="" battery="" with=""></sample>                                                                                 |                                                           |                                                    |  |  |
| Radiated          | Mode 1: CH00_2402 MHz                                                                                                     |                                                           |                                                    |  |  |
| Test Cases        | Mode 2: CH39_2441 MHz                                                                                                     |                                                           |                                                    |  |  |
| Test Cases        | Mode 3: CH78_2480 MHz                                                                                                     |                                                           |                                                    |  |  |
|                   | <sample 1="" 2<="" battery="" th="" with=""><th>&gt;</th><th></th></sample>                                               | >                                                         |                                                    |  |  |
|                   | Mode 1: CH78_2480 MHz                                                                                                     |                                                           |                                                    |  |  |
| highest<br>conduc | diated Test Cases, the worst<br>RF output power in the prel<br>ted band edge measuremer<br>r significantly frequencies fo | iminary tests. The conductent for other data rates were r | d spurious emissions and not worse than 3Mbps, and |  |  |



# 2.3 Connection Diagram of Test System



# 2.4 EUT Operation Test Setup

The RF test items, utility "Blue Test V\_3.3.2" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

# 2.5 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)



# 3 Test Result

# 3.1 Number of Channel Measurement

### 3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

### 3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

### 3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
   RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

### 3.1.4 Test Setup



Spectrum Analyzer

EUT



# 3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

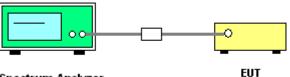




# **3.2 Hopping Channel Separation Measurement**

### 3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


#### **3.2.2 Measuring Instruments**

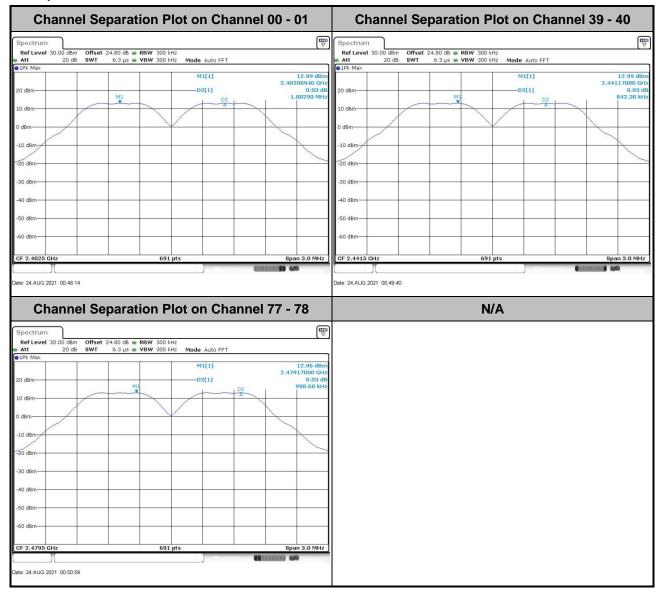
See list of measuring equipment of this test report.

#### 3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
   Span = wide enough to capture the peaks of two adjacent channels;
   RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

#### 3.2.4 Test Setup




Spectrum Analyzer

# 3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.



#### <1Mbps>





#### <2Mbps>

| Channel S                               | Separation Plot on C                                              | hannel 00 - 01            | Channel S                                  | eparation Plot o                   | on Channe   | l 39 - 40                 |
|-----------------------------------------|-------------------------------------------------------------------|---------------------------|--------------------------------------------|------------------------------------|-------------|---------------------------|
| Spectrum                                |                                                                   |                           | Spectrum                                   |                                    |             | E                         |
| RefLevel 30.00 dBm Off<br>Att 20 dB SW  | set 24.80 dB 👄 RBW 300 kHz<br>/T 6.3 µs 👄 VBW 300 kHz Mode Auto F | × 4                       | Ref Level 30.00 dBm Offse<br>Att 20 dB SWT | t 24.80 dB  RBW 300 kHz 6.3 µs Mot | le Auto FFT |                           |
| ●1Pk Max                                | M1[1]                                                             | 10.09 dBm                 | ● 1Pk Max                                  |                                    | M1[1]       | 10.08 dBm                 |
| 20 dBm-                                 | D2[1]                                                             | 2.40212660 GHz<br>0.04 dB | 20 dBm                                     |                                    | -D2[1]      | 2.44112660 GHz<br>0.02 dB |
| Constant P (19204-0)                    | MI                                                                | 1.00290 MHz               |                                            | M1                                 | l be        | 1.00290 MHz               |
| 10 dBm                                  |                                                                   |                           | 10 dBm                                     |                                    |             |                           |
| 0 dBm                                   |                                                                   |                           | 0 dBm                                      |                                    |             |                           |
| -10 dBm-                                |                                                                   |                           | -10 dBm                                    |                                    |             |                           |
| -20 dBm-                                |                                                                   |                           | -20 dBm-                                   |                                    |             |                           |
|                                         |                                                                   |                           |                                            |                                    |             |                           |
| -30 dBm-                                |                                                                   |                           | -30 dBm                                    |                                    |             |                           |
| -40 dBm                                 |                                                                   |                           | -40 dBm                                    |                                    | _           | -                         |
| -50 dBm                                 |                                                                   |                           | -50 dBm                                    |                                    |             |                           |
|                                         |                                                                   |                           |                                            |                                    |             |                           |
| -60 dBm                                 |                                                                   |                           | -60 dBm                                    |                                    |             |                           |
| CF 2.4025 GHz                           | 691 pts                                                           | Span 3.0 MHz              | CF 2.4415 GHz                              | 691 pts                            |             | Span 3.0 MHz              |
| Channel S                               | Separation Plot on C                                              | hannel 77 - 78            |                                            | N/A                                |             |                           |
| Spectrum                                |                                                                   |                           |                                            |                                    |             |                           |
| Ref Level 30.00 dBm Off<br>Att 20 dB SW | set 24.80 dB 👄 RBW 300 kHz<br>/T 6.3 µs 👄 VBW 300 kHz Mode Auto F | FT                        |                                            |                                    |             |                           |
| ●1Pk Max                                | M1[1]                                                             | 10.03 dBm                 |                                            |                                    |             |                           |
| 20 dBm                                  | D2[1]                                                             | 2.47912660 GHz<br>0.02 dB |                                            |                                    |             |                           |
| Constraint State C                      | M1                                                                | 998.60 kHz                |                                            |                                    |             |                           |
| 10 dBm                                  |                                                                   |                           |                                            |                                    |             |                           |
| 0 dBm                                   |                                                                   |                           |                                            |                                    |             |                           |
| -10 dBm                                 |                                                                   |                           |                                            |                                    |             |                           |
| -20 dBm-                                |                                                                   |                           |                                            |                                    |             |                           |
|                                         |                                                                   |                           |                                            |                                    |             |                           |
| -30 dBm                                 |                                                                   |                           |                                            |                                    |             |                           |
| -40 dBm                                 |                                                                   |                           |                                            |                                    |             |                           |
| -50 dBm                                 |                                                                   |                           |                                            |                                    |             |                           |
|                                         |                                                                   |                           |                                            |                                    |             |                           |
| -60 dBm                                 |                                                                   |                           |                                            |                                    |             |                           |
| CF 2.4795 GHz                           | 691 pts                                                           | Span 3.0 MHz              |                                            |                                    |             |                           |
|                                         |                                                                   | (111111) 4/A              |                                            |                                    |             |                           |
| Date: 24.AUG.2021 00:55:22              |                                                                   |                           |                                            |                                    |             |                           |
|                                         |                                                                   |                           |                                            |                                    |             |                           |



#### <3Mbps>

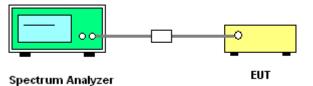
| Channel Se                                                            | paration Plot on                                       | Channel 00 - 01 | Channel Separation Plot on Channel 39 - 40                                                                                                                                                               |
|-----------------------------------------------------------------------|--------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectrum                                                              |                                                        |                 |                                                                                                                                                                                                          |
| Att 20 dB SWT                                                         | 24.80 dB e RBW 300 kHz<br>6.3 μs e VBW 300 kHz Mode Au | to FFT          | Ref Level         30.00 dBm         Offset         24.80 dB         RBW         300 kHz           Att         20 dB         SWT         6.3 µs         VBW         300 kHz         Mode         Auto FFT |
| ●1Pk Max                                                              | M1[1                                                   | 2.40200940 GHz  | ● 1Pk Max M1[1] 10.06<br>2.44100940                                                                                                                                                                      |
| 20 dBm-                                                               | D2[1]                                                  | 864.00 kHz      | 20 dBm D2[1] 0.0<br>1.00290                                                                                                                                                                              |
| 10 dBm                                                                |                                                        |                 |                                                                                                                                                                                                          |
| 0 dBm                                                                 |                                                        |                 | 0 dBm                                                                                                                                                                                                    |
| 10 dBm                                                                |                                                        |                 | -10 /Bm                                                                                                                                                                                                  |
| -20 dBm                                                               |                                                        |                 | -20 dBm-                                                                                                                                                                                                 |
| 30 dBm                                                                |                                                        |                 | -30 dBm                                                                                                                                                                                                  |
| 40 dBm                                                                |                                                        |                 | -40 dBm                                                                                                                                                                                                  |
| 50 dBm                                                                |                                                        |                 | -50 dBm                                                                                                                                                                                                  |
| 60 dBm                                                                |                                                        |                 | -60 dBm-                                                                                                                                                                                                 |
|                                                                       |                                                        |                 |                                                                                                                                                                                                          |
| CF 2.4025 GHz                                                         | 691 pts                                                | Span 3.0 MHz    |                                                                                                                                                                                                          |
|                                                                       |                                                        | ( <b>1</b>      | СГ 2.4415 GHz 691 pts Span 3.0 /<br>СГ 2.4415 GHz 691 pts ФФ<br>Date: 24 AUG 2021 00.58 23                                                                                                               |
| Channel Se                                                            | paration Plot on                                       | Channel 77 - 78 | Nexories (Internet) 44                                                                                                                                                                                   |
| Spectrum<br>Ref Level 30.00 dBm Offset                                | paration Plot on                                       | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se<br>Spectrum<br>Ref Level 30.00 dBm Offset<br>Att 20 dB SWT | 24.80 dB • RBW 300 kHz<br>6.3 µ5 • VBW 300 kHz Mode Au | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se<br>Spectrum<br>Ref Level 30.00 dBm Offset<br>Att 20 dB SWT | paration Plot on                                       | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB • RBW 300 kHz<br>6.3 µs • VBW 300 kHz Mode Au | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |
| Channel Se                                                            | 24.80 dB RBW 300 kHz<br>6.3 µs VBW 300 kHz<br>Mode Au  | Channel 77 - 78 | Date: 24 AUG 2021 00 58 23                                                                                                                                                                               |



# 3.3 Dwell Time Measurement

#### 3.3.1 Limit of Dwell Time

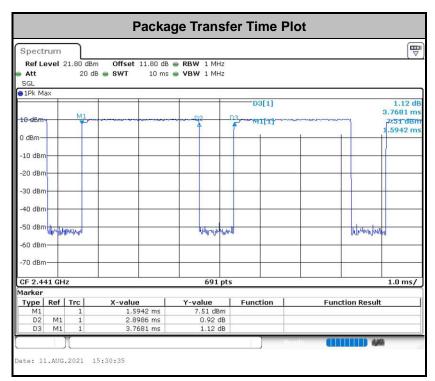
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


#### 3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


#### 3.3.4 Test Setup



#### 3.3.5 Test Result of Dwell Time

Please refer to Appendix A.





#### Remark:

**1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s),Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.

**2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit  $(0.4 \times 20)$  (s), Hops Over Occupancy Time comes to  $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$  hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



# 3.4 20dB and 99% Bandwidth Measurement

#### 3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

#### 3.4.2 Measuring Instruments

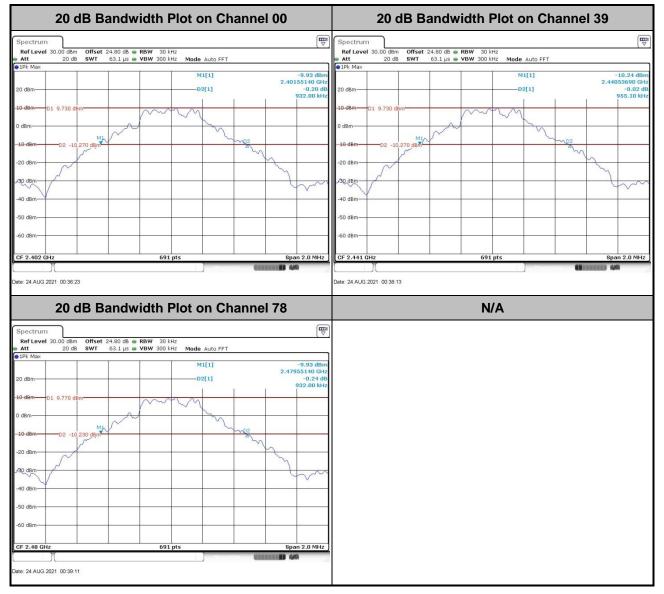
See list of measuring equipment of this test report.

#### 3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
  Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
  RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
  Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
   Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
   RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 \* RBW; Sweep = auto; Detector function = peak;
   Trace = max hold.
- 6. Measure and record the results in the test report.

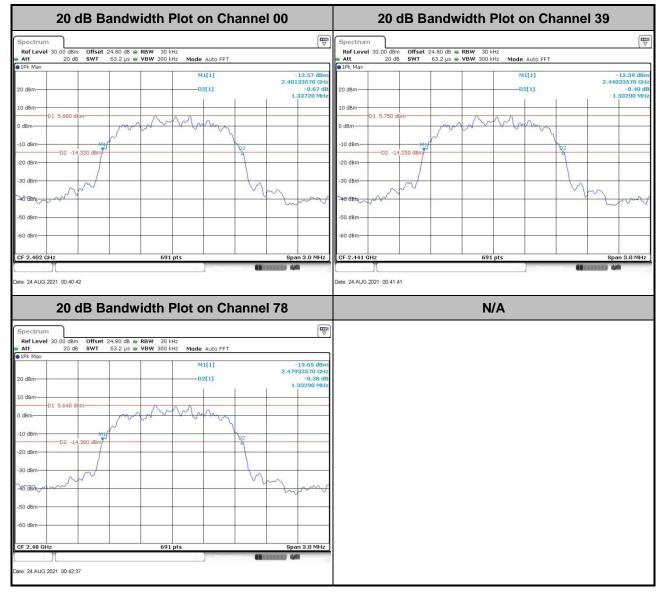
#### 3.4.4 Test Setup




Spectrum Analyzer

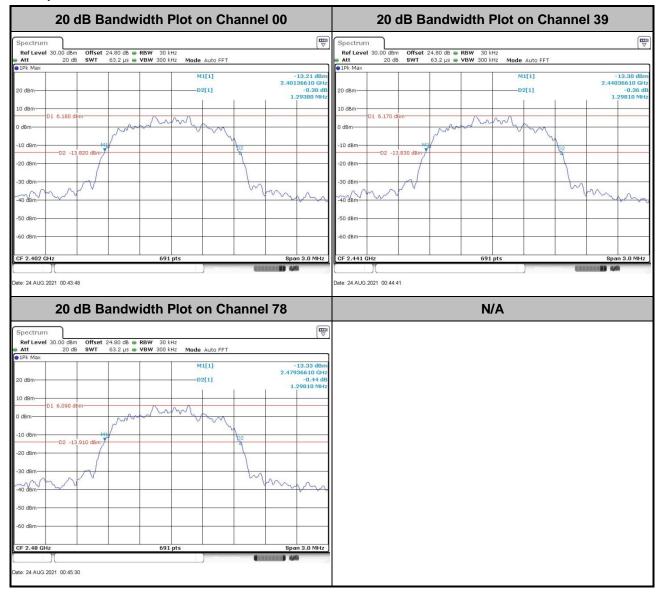
### 3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.




#### <1Mbps>



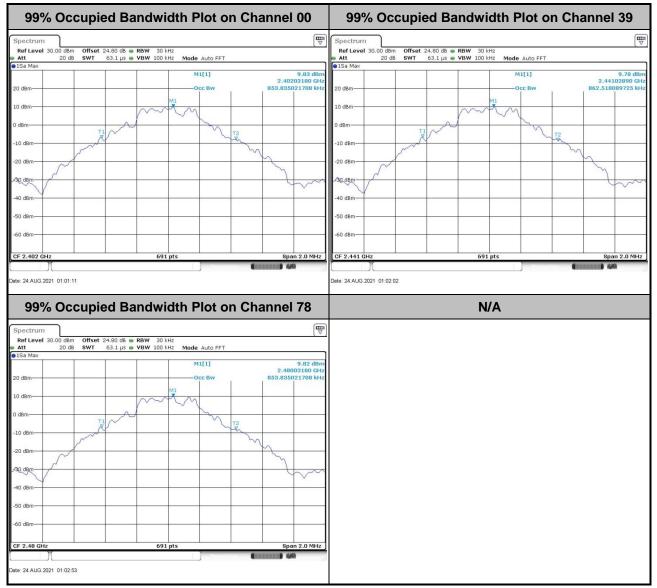



#### <2Mbps>





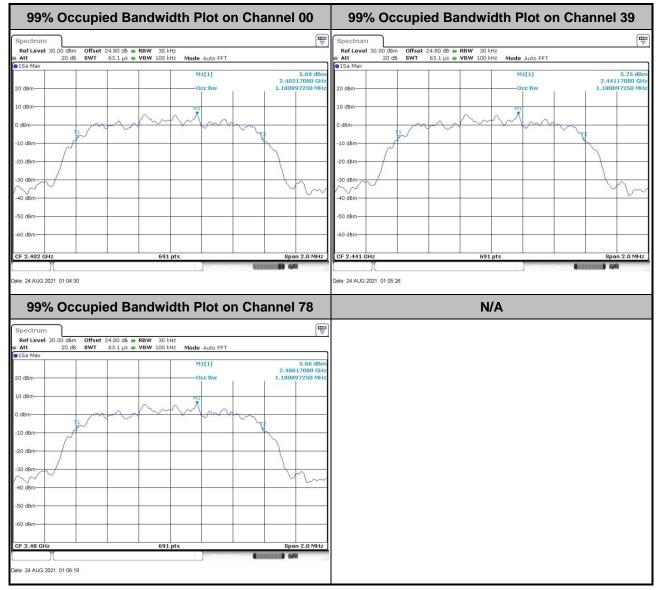
#### <3Mbps>






### 3.4.6 Test Result of 99% Occupied Bandwidth

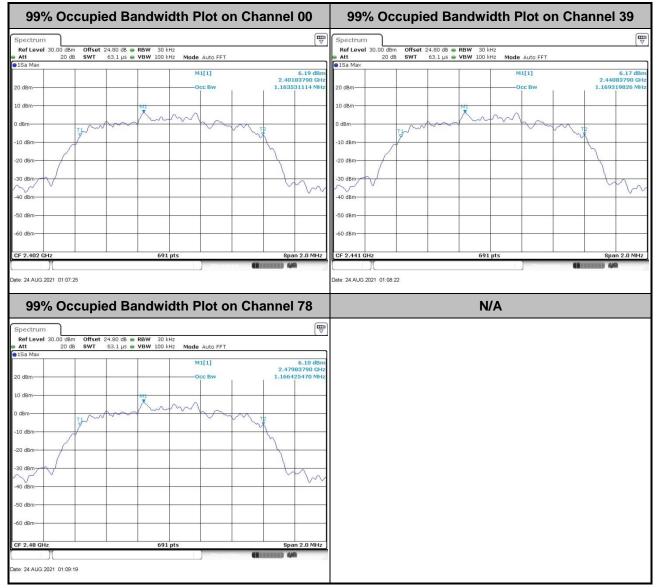
Please refer to Appendix A.


#### <1Mbps>



Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.




#### <2Mbps>



Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



#### <3Mbps>



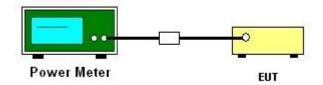
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



### 3.5 Output Power Measurement

#### 3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


#### 3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

#### 3.5.4 Test Setup



#### 3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

### 3.5.6 Test Result of Average Output Power (Reporting Only)

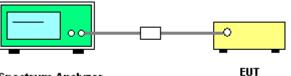
Please refer to Appendix A.



# 3.6 Conducted Band Edges Measurement

### 3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

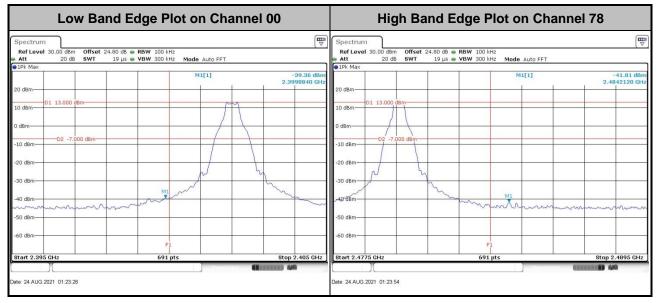

#### 3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

#### 3.6.4 Test Setup




Spectrum Analyzer



# 3.6.5 Test Result of Conducted Band Edges

#### <1Mbps>



#### <2Mbps>

| Low Band Edg                                                                                                                                                                                  | ge Plot on Channe                          | el 00          | High Ba                                                             | and Edge Plot on Cha                                        | annel 78                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|
| Spectrum           Ref Level 30.00 dBm         Offset 24.80 dB           Att         20 dB         SWT         19 µs         VB           IPk Max         VB         VB         VB         VB | W 300 kHz Mode Auto FFT                    |                | Spectrum<br>Ref Level 30.00 dBm Offset<br>Att 20 dB SWT<br>P1Pk Max | 24.80 dB • RBW 100 kHz<br>19 µs • VBW 300 kHz Mode Auto FFT | ( <del>m</del><br> ⊽        |
| 20 dBm 01 9,960 dBm 01 9,960 dBm 01 9,960 dBm 02 -10.040 dBm 02 -10.040 dBm 02 -20 dBm 04 - 04 - 04 - 04 - 04 - 04 - 04 - 04                                                                  |                                            |                | 20 dBm 01 9.920 dBm 0 8 9.920 dBm                                   |                                                             | -43.01 dBm<br>2.4837950 GHz |
| -40 dBm                                                                                                                                                                                       | M1         Fi           F1         691 pts | Stop 2.405 GHz | -40.d8m<br>-50 d8m<br>-60 d8m<br>-60 d8m                            | FI<br>691 pts                                               | Stop 2.4895 GHz             |



#### <3Mbps>

| Low Band Edge P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low Band Edge Plot on Channel 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                                    |           | dge Plot o                     | on Channe                                     | el 78                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|-----------|--------------------------------|-----------------------------------------------|-----------------------------|
| Spectrum           Ref Level 30.00 dBm         Offset 24.80 dB         RBW 100 kF           Att         20 dB         SWT         19 µs         VBW 300 kF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Spectrum<br>Ref Level 30.00 dB<br>Att 20 d                         |           | RBW 100 kHz<br>VBW 300 kHz Mod | e Auto FFT                                    |                             |
| 1Pk Max     20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -40.73 dBm<br>2.3995660 GHz | ● 1Pk Max<br>20 dBm                                                |           |                                | M1[1]                                         | -43.27 dBm<br>2.4854280 GHz |
| -10 dBm 01 10.060 dBm 01 0 dBm 01 0 dBm 02 -9.940 dBm 02 -9.940 dBm 02 -9.940 dBm 02 -9.940 dBm 030 dBm 04 -20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | -10 dBm 01 10.050<br>0 dBm 02 -5<br>-20 dBm 02 -5<br>-30 dBm 02 -5 | 2 dBm<br> |                                |                                               |                             |
| -40 dBm M1<br>-50 dBm50 dBm50 dBm50 dBm50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hann                        | -40.486                                                            |           | F1                             | Mi<br>mananananananananananananananananananan |                             |
| Start 2.395 GHz 691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second se | Stop 2.405 GHz              | Start 2.4775 GHz                                                   | -24       | 691 pts                        | Meximine                                      | Stop 2.4895 GHz             |
| Date: 24.AUG.2021 01:25:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Date: 24.AUG.2021 01:26                                            | .24       |                                |                                               |                             |



### 3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

| Hopping Mode Low Band Edge Plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hopping Mode High Band Edge Plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Spectrum         Image: Spectrum           Ref Level 30.00 dBm         Offset 24.80 dB @ RBW 100 kHz         Mode Auto FFT           Image: Spectrum         Image: Spectrum         Image: Spectrum           Image: Spectrum         Image: Spectrum         Image: Spectrum           Image: Spectrum         20 dB m         Image: Spectrum         Image: Spectrum           Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum           Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum           Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         Image: Spectrum         I | Image: Spectrum         Image: Spe |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50 dBm<br>-60 dBm<br>F1<br>Start 2.4775 GHz 691 pts Stop 2.4895 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 2.395 GHz         691 pts         Stop 2.405 GHz           Date: 24 AUG 2021 01-27:56         Date: 24 AUG 2021 01-27:56         Date: 24 AUG 2021 01-27:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stort 2.47/5 GHz         691 pts         Stop 2.4895 GHz           Date: 24 AUG 2021 01:28:16         MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### <2Mbps>

| Hopping Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ode Low Band Edge Plot    |                                                                  | Hopping Mod     | le High Band E                                    | dge Plot          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------|-----------------|---------------------------------------------------|-------------------|
| Spectrum<br>Ref Level 30.00 dBm Offset 24.80 dB<br>Att 20 dB SWT 19 µs of<br>PIPK Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VBW 300 kHz Mode Auto FFT | Spectrum<br>Ref Level 3<br>• Att<br>• 1Pk Max                    |                 | RBW 100 kHz<br>VBW 300 kHz Mode Auto FFT<br>M1[1] | (₩)<br>-43.20 dBm |
| 20 dBm<br>-10 dBm 01 9.970 dBm<br>0 dBm<br>-10 dBm 02 -10.030 dBm<br>-20 dBm<br>-30 dBm<br>40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 52100 GHz 20 dBm 19 dBm 0 40 dBm -10 dBm -30 dBm -30 dBm -40 dBm | -D2 -10.030 dBm |                                                   | 2.4836040 GHz     |
| -50 dBm<br>-60 dBm<br>-50 | F1<br>691 pts Stop        | -50 dBm<br>-60 dBm<br>2:405 GHz<br>Date: 24 AUG 20               |                 | F1<br>691 pts                                     | Stop 2.4895 GHz   |



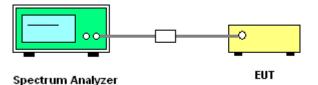
#### <3Mbps>

| Hopping Mode L                                                                                                                                       | Hopping Mode Low Band Edge Plot |                             |                                          |                     | de High Ba                            | and Edge I  | Plot                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|------------------------------------------|---------------------|---------------------------------------|-------------|-----------------------------|
| Spectrum           Ref Level 30.00 dBm         Offset 24.80 dB         RBW 100           Att         20 dB         SWT         19 us         YBW 300 | ) kHz<br>) kHz Mode Auto FFT    |                             | Spectrum<br>Ref Level 30.00 df<br>Att 20 |                     | RBW 100 kHz<br>VBW 300 kHz Mode       | 6.000 FFT   |                             |
| Alt 20 db SW1 19 Js VSW 300     PPk Max     20 dbm                                                                                                   | M1[1]                           | -43.11 dBm<br>2.3999570 GHz | 20 dBm                                   | 20 <b>2MI</b> 13 hz |                                       | 1[1]        | -43.49 dBm<br>2.4851670 GHz |
| -10-d8m 01 10.080 d8m                                                                                                                                | mm                              | mmm                         | 19.40m D1 10.08                          | D dem               |                                       |             |                             |
| -10-d8m D2 -9.920 d8m                                                                                                                                |                                 |                             | -10 dBmD2 -                              | 9.920 dBm           |                                       |             |                             |
| -30 dBm                                                                                                                                              | m                               |                             | -30 dBm                                  | hing                |                                       |             |                             |
| -40 dBm<br>                                                                                                                                          |                                 |                             | -40 dBm                                  |                     | · · · · · · · · · · · · · · · · · · · | MI more     |                             |
| -60 dBm                                                                                                                                              | F1 D1 pts                       | Stop 2.405 GHz              | -60 dBm                                  |                     | F1<br>691 pts                         |             | Stop 2.4895 GHz             |
| Date: 24 AUG 2021 01:30:04                                                                                                                           | Nearning                        |                             | Date: 24.AUG.2021 01:30                  | ):26                |                                       | Nex ration. | ann 199                     |

# 3.7 Conducted Spurious Emission Measurement

### 3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


### 3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

### 3.7.4 Test Setup





# 3.7.5 Test Result of Conducted Spurious Emission

#### <1Mbps>

| Att 20 dB SWT 29<br>1Pk View | .80 dB <b>- RBW</b> 100 kHz<br>9.7 ms <b>- VBW</b> 300 kHz <b>Mode</b> Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Spectrum                                    |                                                                  |                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------------------------------|-------------------------------|
| Att 20 dB SWT 29<br>1Pk View |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2                                           |                                                                  |                               |
| 1Pk View                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Ref Level 30.00 dBm Offset<br>Att 20 dB SWT | 24.80 dB 🖷 RBW 100 kHz<br>230 ms 🖷 VBW 300 kHz 🛛 Mode Auto Sweep |                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                       | PlPk View                                   |                                                                  |                               |
|                              | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.82 dBm<br>2.40040 GHz                |                                             | M1[1]                                                            | 12.57 dBn<br>2.4160 GH        |
| 0 dBm                        | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -42.26 dBm<br>M1 2.12100 GHz            | 20 dBm                                      |                                                                  | -35.20 dBn<br>17.9270 GH:     |
| 0 dBm 01 12.820 dBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 2.12100 GH2                          | D1 12.570 dBm-                              |                                                                  | 17.9270 GH.                   |
| Jasm                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | TD OBM                                      |                                                                  |                               |
| dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0 dBm                                       |                                                                  |                               |
| D2 -7.180 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | D2 -7.430 dBm                               |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -10 dBm                                     |                                                                  |                               |
| 20 dBm                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -20 dBm                                     |                                                                  |                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -30 dBm-                                    | M2                                                               |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | - 40 dBm                                    | an and a second proper second and                                | more down that when we        |
|                              | Marcan depresence and a second and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | about all an an a second and the second |                                             |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -50 dBm                                     |                                                                  |                               |
| 0 dBm-                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -60 dBm-                                    |                                                                  |                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |                                                                  |                               |
| art 30.0 MHz                 | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 3.0 GHz                            | Start 2.0 GHz                               | 691 pts                                                          | Stop 25.0 GHz                 |
|                              | 2tearuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (IIIIII) 4/9                            |                                             | - Meanuring                                                      | 440 HI 100 H                  |
|                              | 80 dB 🖷 RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                             | 24.80 dB 🖷 RBW 100 kHz                                           |                               |
| Att 20 dB SWT 29<br>1Pk View | 9.7 ms 🖶 VBW 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | Att 20 dB SWT     1Pk View                  | 230 ms 🖷 VBW 300 kHz Mode Auto Sweep                             |                               |
|                              | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.87 dBm<br>2.43910 GHz                |                                             | M1[1]                                                            | 12.67 dBn<br>2.4490 GH:       |
| D dBm                        | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -41.41 dBm                              | 20 dBm                                      | -M2[1]                                                           | -34.20 dBn                    |
| 01 12.870 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 1.21840 GHz                          | D1 12.670 dBm                               |                                                                  | 15.8630 GH:                   |
| dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 10 dBm                                      |                                                                  |                               |
| dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0 dBm                                       |                                                                  |                               |
| D2 -7.130 dBm                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | D2 -7.330 dBm                               |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -10 dBm                                     |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -20 dBm                                     |                                                                  |                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -30 dBm                                     | M2                                                               |                               |
| 0 dBm                        | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | - 40 dBm                                    | menerate manufactor and all the many allowed                     | which down the who we will as |
|                              | whether the manus and the second and the second second and the second se | unanteer mayar and market               |                                             |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -50 dBm                                     |                                                                  |                               |
| 0 dBm                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -60 dBm                                     |                                                                  |                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                             |                                                                  |                               |
|                              | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 3.0 GHz                            | Start 2.0 GHz                               | 691 pts                                                          | Stop 25.0 GHz                 |
| tart 30.0 MHz                | uar hes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atop ato anz                            |                                             | 091 pts                                                          | atop 20.0 GHz                 |
| tart 30.0 MHz                | . Nexroting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                             | Dat pt3                                                          | (111111) 4/A                  |



| Spectrum                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Spectrum                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E C                                              |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Ref Level         30.00 dBm         Offset         24.80 dB           Att         20 dB         SWT         29.7 ms              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Att 20 dB SWT                                                                                                                                                  | 24.80 dB 👜 RBW 100 kHz<br>230 ms 🖶 VBW 300 kHz 🛛 Mode Auto Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | veep                                             |
| 1Pk View           20 dBm           10 dBm           0 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm | M1[1]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.53 dBm<br>2.48210 GHz<br>-41.37 dBm<br>M1 1.23990 GHz | 10 <sup>4</sup> DPk View     20 dBm     10 dBm     01 11.830 dBm     0 dBm     -10 dBm     -20 dBm     -20 dBm     -20 dBm     -20 dBm     -20 dBm     -20 dBm | MI[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2[1]<br>M2 | 11.83 dB<br>2.4830 dF<br>-34.48 dB<br>17.8600 GF |
| 40 dBm<br>alulphonations all low on the shares have<br>-50 dBm<br>-60 dBm-                                                       | has been and the second of the | un migral a subscription of the                          | -40 dBm                                                                                                                                                        | - Analy and the same - a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| Start 30.0 MHz                                                                                                                   | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 3.0 GHz                                             | Start 2.0 GHz                                                                                                                                                  | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 25.0 GH:                                    |



#### <2Mbps>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H 00 between 30 M                                                                                                 | Hz ~ 3 GHz                                         | CSE Plot on CH 00 between 2 GHz ~ 25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|--|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                    | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| Ref Level 30.00 dBm Offset 24.80 d<br>Att 20 dB SWT 29.7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dB 🖷 RBW 100 kHz<br>ns 🖷 VBW 300 kHz 🛛 Mode Auto Sweep                                                            | ()                                                 | RefLevel 30.00 dBm Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fset 24.80 dB   RBW 100 kHz  230 ms   VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Node that Success        | ( .                                                             |  |
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                    | 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 230 IIIS - YBW 300 KH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                                                                                                             | 9.63 dBm<br>2.40040 GHz                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1[1]                    | 9.38 dBm<br>2.4160 GHz                                          |  |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M2[1]                                                                                                             | -42.27 dBm<br>2.99360 GHz                          | 20 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M2[1]                    | -35.30 dBm<br>15.7630 GHz                                       |  |
| 10 dBm D1 9.630 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | MI                                                 | M1<br>10 dBm D1 9.380 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                    | 0 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| 10 dBm D2 -10.370 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                    | -10.620 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                    | -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                    | -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M2                       |                                                                 |  |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   | м                                                  | do dama du ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | menor municher way       | a burnhammellage                                                |  |
| neght drawan work has no on the within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and alour any have man build market and                                                                           | man du bernon was madered                          | -40 dBm high war linde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | www.washedbertalucations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                 |  |
| 50 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                    | -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| 60 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                    | -60 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| Start 30.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 691 pts                                                                                                           | Stop 3.0 GHz                                       | Start 2.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 691 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                        | Stop 25.0 GHz                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ]Stearutine                                                                                                       | () () () () () () () () () () () () () (           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Messories III            | 449                                                             |  |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                                                    | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                 |  |
| Ref Level 30.00 dBm Offset 24.80 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB 🖷 RBW 100 kHz                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fset 24.80 dB 🖷 RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mada Alta Cara           | ( •                                                             |  |
| Att 20 dB SWT 29.7 m<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns 🖷 VBW 300 kHz Mode Auto Sweep                                                                                  |                                                    | Att 20 dB SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mode Auto Sweep          | [ •                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   | 9.83 dBm<br>2.43910 GHz                            | Att 20 dB SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mode Auto Sweep<br>M1[1] | 9.58 dBm<br>2.4490 GHz                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns 🖷 VBW 300 kHz Mode Auto Sweep                                                                                  | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1[1]                                                                                                             | 2.43910 GHz                                        | Att 20 dB SW     IPk View 20 dBm M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1[1]                    | 9.58 dBm<br>2.4490 GHz                                          |  |
| 19k View<br>10 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     1Pk View     20 dBm     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 19k View<br>10 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     IPk View 20 dBm M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 0 dBm 0-48m 01 9.830 dBm 048m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     1Pk View     20 dBm     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | // 230 ms • VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                    | 9,58 dBn<br>2.4490 GH:<br>-34.41 dBn                            |  |
| 104 View<br>10-dBm<br>01 9.830 dBm<br>10-dBm<br>-02 -10,170 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     DPk View     D dBm     D1 9.580 dBm     D dBm     D1 9.580 dBm     D dBm     D2 -10.420 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | // 230 ms • VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 10 dBm 01 9.630 dBm 01 9.630 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     PIPk View     20 dBm     M1     M1     J37 dBm     01 9.580 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | // 230 ms • VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 10k View 20 dBm 01 9.830 dBm 0 dBm 02 -10,170 dBm 20 dBm 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                                                                                                             | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     DPk View     D dBm     D1 9.580 dBm     D dBm     D1 9.580 dBm     D dBm     D2 -10.420 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | // 230 ms • VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 104 Kiew<br>10 dBm<br>10 d | M1[1]                                                                                                             | 2,49910 GHz<br>-42,12 dBm<br>2,95920 GHz<br>M1<br> | Att 20 dB SW     DPL View 20 dBm     D1 9.580 dBm     D1 9.580 dBm     D dBm     D2 -10.420 d     -20 dBm     -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1[1]                    | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm                            |  |
| 1Pk View 0 dBm 01 9.830 dBm 08m 01 9.830 dBm 09 dBm 02 -10,170 dBm 00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Node         Auto Sweep           M1[1]         -M2[1]                                                            | 2.43910 GHz<br>-42.12 dBm                          | Att 20 dB SW     DPk View     D dBm     D1 9.580 dBm     D dBm     D2 -10.420 d     dBm     -30 dBm     -30 dBm     -30 dBm     -40 d | // 230 ms • VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1[1]<br>M2[1]           | 9.58 dBn<br>2.4490 GH<br>-34.41 dBn<br>17.8600 GH               |  |
| 19/k View 20 dBm 01 9.830 dBm 0 dBm 0 dBm 0 dBm 02 -10,170 dBm 0 dBm 40 dBm 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vBW 300 kHz         Mode Auto Sweep           M1[1]         -M2[1]                                                | 2,49910 GHz<br>-42,12 dBm<br>2,95920 GHz<br>M1<br> | Att 20 dB SW     DI PI- View     DI dBm D1 9.580 dBm     DI dBm D2 -10.420 d     -20 dBm     -0 dBm dBm dBm dBm dBm     -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1[1]<br>M2[1]           | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm<br>17.8600 GHz             |  |
| 10k View<br>20 dBm<br>01 9.830 dBm<br>0 dBm<br>10 dBm<br>20 dBm<br>20 dBm<br>20 dBm<br>30 dBm<br>50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vBW 300 kHz         Mode Auto Sweep           M1[1]         -M2[1]                                                | 2,49910 GHz<br>-42,12 dBm<br>2,95920 GHz<br>M1<br> | Att 20 dB SW     DPk View     D dBm     D1 9.580 dBm     D dBm     D2 -10.420 d     dBm     -30 dBm     -30 dBm     -30 dBm     -40 d | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1[1]<br>M2[1]           | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm<br>17.8600 GHz             |  |
| 1Pk View           0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vBW 300 kHz         Mode Auto Sweep           M1[1]         -M2[1]                                                | 2,49910 GHz<br>-42,12 dBm<br>2,95920 GHz<br>M1<br> | Att 20 dB SW     DPk View     D dBm     D dBm     D dBm     D 0 9,580 dBm     D d | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1[1]<br>M2[1]           | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm<br>17.8600 GHz             |  |
| 101: View<br>20 dBm<br>01 0.830 dBm<br>0 dBm<br>10-dBm<br>02 -10 170 dBm<br>20 dBm<br>40 dBm<br>40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vBW 300 kHz         Mode Auto Sweep           M1[1]         -M2[1]                                                | 2.49910 GHz                                        | Att 20 dB SW     DPk View     D dBm     D dBm     D dBm     D 0 9,580 dBm     D d | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr           Image: rr         Image: rr         Image: rr         Image: rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 9.58 dBm<br>2.4490 GHz<br>-34.41 dBm<br>17.8600 GHz             |  |
| 19k View 20 dBm 01 9.830 dBm 0 dBm 02 -10 170 dBm 20 dBm 20 dBm 40 dBm 60 dBm 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Node         Auto Sweep           M1[1]         M2[1]           M2[1]         M2[1]           M2[1]         M2[1] | 2,49910 GHz<br>-42,12 dBm<br>2,95920 GHz<br>M1<br> | Att 20 dB SW     DPk View     D dBm 01 9.580 dBm     D dBm 02 -10.420 d     dBm     O dBm     O dBm     O dBm     G0 | Image: rr         230 ms         VBW         300 kHz           Image: rr         Image: rr |                          | 9.58 dBm<br>2.4490 GH<br>-34.41 dBm<br>17.8600 GH<br>17.8600 GH |  |



|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | (m                                                |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| Spectrum                                                                                 | [₩ Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                   |
| Ref Level 30.00 dBm Offset 24.80 dB  RBW 100 kHz Att 20 dB SWT 29.7 ms  VBW 300 kHz Mode | Ref Level 30.00 dBm Offse<br>Auto Sweep Att 20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | it 24.80 dB    RBW 100 kHz   230 ms    VBW 300 kHz   Mode Auto Sweep |                                                   |
| PRC 2008 3W1 25.7 IIIS VBW 300 KH2 MDde 1                                                | atto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230 ms • VBW 300 kHz Mode Adio Sweep                                 |                                                   |
| 20 dBm                                                                                   | 2.47780 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1[1]<br>M2[1]                                                       | 8.38 dB)<br>2.4830 GF<br>-35.02 dB)<br>16.1300 GF |
| 10 dBm 01 9.750 dBm                                                                      | M1 10 dBm D1 8.380 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                   |
| 0 dBm                                                                                    | 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |
| 10-d8mD2 -10.250 dBm                                                                     | -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                    |                                                   |
| -20 dBm                                                                                  | -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                   |
| -30 dBm                                                                                  | -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M2                                                                   |                                                   |
| -40 dBm                                                                                  | mouture of the market ward and the second and the s | when we and the state of the state of the second                     | proceeding the here with                          |
| -50 dBm                                                                                  | -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                   |
| -60 dBm                                                                                  | -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                   |
| Start 30.0 MHz 691 pts                                                                   | Stop 3.0 GHz Start 2.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 691 pts                                                              | Stop 25.0 GHz                                     |
|                                                                                          | Nexuries III III III 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | AND 10 10 10 10 10 10 10 10 10 10 10 10 10        |



#### <3Mbps>

| Spectrum           Ref Level 30.00 dBm         Offset 24.80 dB 44           Att         20 dB 5WT 29.7 ms           IPk View         SWT 29.7 ms |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 GHz                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Ref Level 30.00 dBm Offset 24.80 dB<br>Att 20 dB SWT 29.7 ms                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spectrum                         |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Level 3                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (•)                                     |
|                                                                                                                                                  | VBW 300 KHZ Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Att     IPk View                 | 20 dB SWT 230 ms 🖶 VBW 3                                   | 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                                                                                                                                                  | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.82 dBm<br>2.40040 GHz          |                                                            | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.47 dBm<br>2.4160 GHz                  |
| 20 dBm                                                                                                                                           | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -41.86 dBm 20 dBm-               |                                                            | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -34.92 dBm<br>15.7300 GHz               |
| 10 d8m D1 9.820 d8m                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 M1                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U.                               | 1 8.470 dBm                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 0 dBm                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 dBm                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -10-dBm-D2 -10,180 dBm-                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10 dBm-                         | D2 -11.530 dBm                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -20 dBm-                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20 dBm                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -30 dBm-                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 dBm                          |                                                            | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| -40 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2                               | mark                                                       | was a provent the last and proved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | La mandamente work and                  |
| marken we weather washingthered                                                                                                                  | upper well and more more and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2 -40 dBm                       | much and der well the ward of the week                     | 004.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| -50 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50 dBm                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -60 dBm-                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -60 dBm-                         |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Start 30.0 MHz                                                                                                                                   | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 3.0 GHz Start 2.0 GH        | z                                                          | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 25.0 GHz                           |
| ][                                                                                                                                               | Mexicotion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                | π                                                          | Nextoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 449                                     |
| Spectrum<br>Ref Level 30.00 dBm Offset 24.80 dB                                                                                                  | 39 between 30 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z ~ 3 GHZ CS                     | 30.00 dBm Offset 24.80 dB • RBW 3                          | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 25 GHz                                |
| Att 20 dB SWT 29.7 ms                                                                                                                            | VBW 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 👄 Att                            | 20 dB SWT 230 ms 🖷 VBW 3                                   | 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| e 1Pk View                                                                                                                                       | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.83 dBm                         |                                                            | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.62 dBm                                |
| 20 dBm-                                                                                                                                          | -M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.43910 GHz<br>-42.57 dBm 20 dBm |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4490 GHz<br>-35.19 dBm                |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.10670 GHz                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.3910 GHz                             |
| -10 d8m D1 9.830 d8m                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 dBm                           | 1 8.620 dBm                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 0 dBm                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 dBm                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 10 dBm D2 -10.170 dBm                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10 dBm-                         | D2 -11.380 dBm                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -20 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20 dBm                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                       |
| -30 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 dBm                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 08/1                         |                                                            | LARGEN M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| -40 dBm - M2                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40 dBm-                         | belower behave the month of an and the month of an and the | and the substitution of th | Mander and a construction of the second |
|                                                                                                                                                  | When have been a state which the second seco | -50 dBm                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -50 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -60 dBm-                         |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -00 UBIII                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| -50 dBm                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            | 601 sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0447 05 0 01                            |
| -50 dBm                                                                                                                                          | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 3.0 GHz                     | Iz                                                         | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 25.0 GHz                           |
| -50 dBm                                                                                                                                          | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | π                                                          | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 25.0 GHz                           |



| Spectrum                         |                                  |                               | Spectrum                  |                                        |                                                   |
|----------------------------------|----------------------------------|-------------------------------|---------------------------|----------------------------------------|---------------------------------------------------|
|                                  | B 👄 RBW 100 kHz                  |                               |                           | 24.80 dB 🖷 RBW 100 kHz                 |                                                   |
| Att 20 dB SWT 29.7 m<br>1Pk View | is 🖷 VBW 300 kHz Mode Auto Sweep |                               | Att 20 dB SWT             | 230 ms 🖶 VBW 300 kHz 🛛 Mode Auto Sweep |                                                   |
| 20 dBm                           | M1[1]<br>M2[1]                   | 2.96350 GHz                   | 20 dBm                    | M1[1]<br>                              | 9.03 dBr<br>2.4830 GH<br>-34.70 dBr<br>17.9270 GH |
| 10 dBm D1 9.870 dBm              |                                  | M1                            | M1<br>18 dBm D1 9.030 dBm |                                        |                                                   |
| 0 dBm                            |                                  |                               | 0 dBm                     |                                        |                                                   |
| 10 dBm D2 -10.130 dBm            |                                  |                               | -10.dBmD2 -10.970 dBm     |                                        |                                                   |
| -20 dBm                          |                                  |                               | -20 dBm                   |                                        |                                                   |
| -30 dBm                          |                                  |                               | -30 dBm-                  | h m Migue LLN .                        | LMA                                               |
| -40 dBm-                         | with harpon binan with more ward | where all monorally monorally |                           | monto contraction of the               | how he reverse have really                        |
| -50 dBm                          |                                  |                               | -50 dBm                   |                                        |                                                   |
| -60 dBm                          |                                  |                               | -60 dBm                   |                                        |                                                   |
| Start 30.0 MHz                   | 691 pts                          | Stop 3.0 GHz                  | Start 2.0 GHz             | 691 pts                                | Stop 25.0 GHz                                     |
|                                  | Stearoring                       | 44 CT                         |                           | Steer order.                           | (IIIIIII) 4/9                                     |

# 3.8 Radiated Band Edges and Spurious Emission Measurement

# 3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

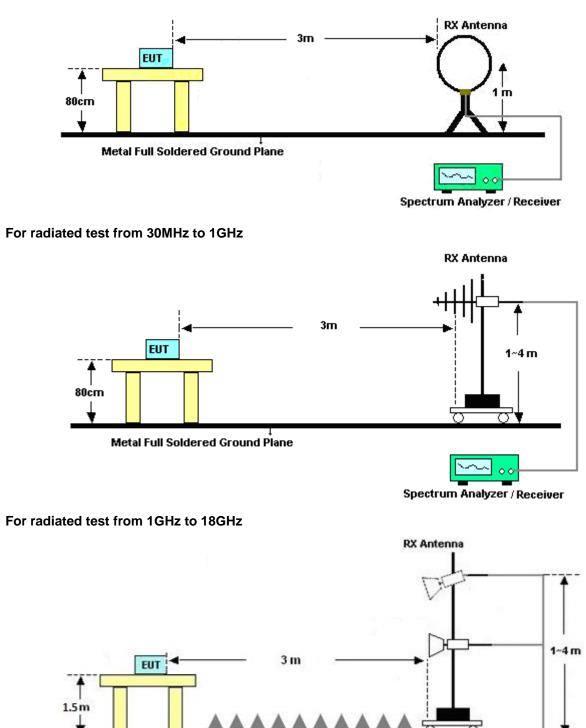
| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 – 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

## **3.8.2 Measuring Instruments**

See list of measuring equipment of this test report.



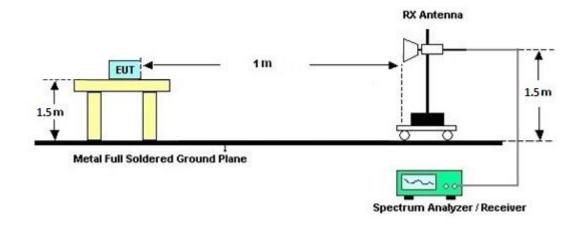
## 3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
  - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N<sub>1</sub>\*L<sub>1</sub>+N<sub>2</sub>\*L<sub>2</sub>+...+N<sub>n-1</sub>\*LN<sub>n-1</sub>+N<sub>n</sub>\*L<sub>n</sub> Where N<sub>1</sub> is number of type 1 pulses, L<sub>1</sub> is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20\*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



# 3.8.4 Test Setup


For radiated test below 30MHz



Metal Full Soldered Ground Plane



#### For radiated test above 18GHz



## 3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

## 3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

## 3.8.7 Duty Cycle

Please refer to Appendix D.

# 3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10<sup>th</sup> Harmonic)

Please refer to Appendix B and C.



# 3.9 Antenna Requirements

## 3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

# 3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

## 3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

#### List of Measuring Equipment 4

| Instrument                   | Brand Name         | Model No.                         | Serial No.            | Characteristics          | Calibration<br>Date | Test Date                       | Due Date      | Remark                   |
|------------------------------|--------------------|-----------------------------------|-----------------------|--------------------------|---------------------|---------------------------------|---------------|--------------------------|
| Bilog Antenna                | TESEQ              | CBL 6111D &<br>00800N1D01N<br>-06 | 35419 & 03            | 30MHz~1GHz               | Apr. 28, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Apr. 27, 2022 | Radiation<br>(03CH07-HY) |
| Double Ridge<br>Horn Antenna | ESCO               | 3117                              | 00075962              | 1GHz ~ 18GHz             | Dec. 01, 2020       | Aug. 20, 2021~<br>Aug. 26, 2021 | Nov. 30, 2021 | Radiation<br>(03CH07-HY) |
| Loop Antenna                 | Rohde &<br>Schwarz | HFH2-Z2                           | 100315                | 9 kHz~30 MHz             | Jan. 04, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Jan. 03, 2022 | Radiation<br>(03CH07-HY) |
| Preamplifier                 | MITEQ              | AMF-7D-0010<br>1800-30-10P        | 1590075               | 1GHz~18GHz               | Apr. 22, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Apr. 21, 2022 | Radiation<br>(03CH07-HY) |
| Preamplifier                 | COM-POWER          | PA-103A                           | 161241                | 10MHz~1GHz               | May 18, 2021        | Aug. 20, 2021~<br>Aug. 26, 2021 | May 17, 2022  | Radiation<br>(03CH07-HY) |
| Preamplifier                 | Agilent            | 8449B                             | 3008A02362            | 1GHz~26.5GHz             | Oct. 31, 2020       | Aug. 20, 2021~<br>Aug. 26, 2021 | Oct. 30, 2021 | Radiation<br>(03CH07-HY) |
| Preamplifier                 | EMEC               | EM18G40G                          | 0600789               | 18-40GHz                 | Jul. 23, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Jul. 22, 2022 | Radiation<br>(03CH07-HY) |
| Spectrum<br>Analyzer         | Agilent            | N9030A                            | MY52350276            | 3Hz~44GHz                | Jul. 22, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Jul. 21, 2022 | Radiation<br>(03CH07-HY) |
| Filter                       | Microwave          | H1G013G1                          | SN477215              | 1GHz High<br>Pass Filter | Oct. 31, 2020       | Aug. 20, 2021~<br>Aug. 26, 2021 | Oct. 30, 2021 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>104                   | MY15682-4             | 30MHz to<br>18GHz        | Feb. 24, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Feb. 23, 2022 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>104                   | MY24971-4             | 9kHz to 18GHz            | Feb. 24, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Feb. 23, 2022 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>104                   | MY28655-4             | 9kHz to 18GHz            | Feb. 24, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Feb. 23, 2022 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>102                   | MY2858/2,80<br>1606/2 | 18GHz~40GHz              | Feb. 24, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Feb. 23, 2022 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>126                   | 532078/126E           | 30MHz~18GHz              | Sep. 18, 2020       | Aug. 20, 2021~<br>Aug. 26, 2021 | Sep. 17, 2021 | Radiation<br>(03CH07-HY) |
| RF Cable                     | HUBER +<br>SUHNER  | SUCOFLEX<br>102                   | 801606/2              | 9KHz ~ 40GHz             | Apr. 03, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Apr. 02, 2022 | Radiation<br>(03CH07-HY) |
| Controller                   | EMEC               | EM1000                            | N/A                   | Control Ant<br>Mast      | Apr. 28, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Apr. 27, 2022 | Radiation<br>(03CH07-HY) |
| Controller                   | MF                 | MF-7802                           | N/A                   | Control Turn<br>table    | N/A                 | Aug. 20, 2021~<br>Aug. 26, 2021 | N/A           | Radiation<br>(03CH07-HY) |
| Antenna Mast                 | EMEC               | AM-BS-4500E                       | N/A                   | Boresight mast<br>1M~4M  | Apr. 28, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Apr. 27, 2022 | Radiation<br>(03CH07-HY) |
| Turn Table                   | ChainTek           | Chaintek 3000                     | N/A                   | 0~360 Degree             | N/A                 | Aug. 20, 2021~<br>Aug. 26, 2021 | N/A           | Radiation<br>(03CH07-HY) |
| Software                     | Audix              | E3<br>6.2009-8-24                 | N/A                   | N/A                      | N/A                 | Aug. 20, 2021~<br>Aug. 26, 2021 | N/A           | Radiation<br>(03CH07-HY) |
| USB Data<br>Logger           | TECPEL             | TR-32                             | HE17XB2495            | N/A                      | Mar. 09, 2021       | Aug. 20, 2021~<br>Aug. 26, 2021 | Mar. 08, 2022 | Radiation<br>(03CH07-HY) |
| SHF-EHF Horn<br>Antenna      | SCHWARZBE<br>CK    | BBHA 9170                         | BBHA917025<br>1       | 18GHz~40GHz              | Dec. 02, 2020       | Aug. 20, 2021~<br>Aug. 26, 2021 | Dec. 01, 2021 | Radiation<br>(03CH07-HY) |
| Hygrometer                   | Testo              | 608-H1                            | 34893241              | N/A                      | Mar. 02, 2021       | Aug. 11, 2021~<br>Aug. 24, 2021 | Mar. 01, 2022 | Conducted<br>(TH02-HY)   |
| Power Meter                  | Agilent            | E4416A                            | GB41292344            | N/A                      | Jan. 14, 2021       | Aug. 11, 2021~<br>Aug. 24, 2021 | Jan. 13, 2022 | Conducted<br>(TH02-HY)   |
| Power Sensor                 | Agilent            | E9327A                            | US40441548            | 50MHz~18GHz              | Jan. 14, 2021       | Aug. 11, 2021~<br>Aug. 24, 2021 | Jan. 13, 2022 | Conducted<br>(TH02-HY)   |
| Signal<br>Analyzer           | Rohde &<br>Schwarz | FSV40                             | 101397                | 10Hz~40GHz               | Nov. 27, 2020       | Aug. 11, 2021~<br>Aug. 24, 2021 | Nov. 26, 2021 | Conducted<br>(TH02-HY)   |
| Switch Box &<br>RF Cable     | EM Electronics     | EMSW18SE                          | SW200302              | N/A                      | Mar. 17, 2021       | Aug. 11, 2021~<br>Aug. 24, 2021 | Mar. 16, 2022 | Conducted<br>(TH02-HY)   |



# 5 Uncertainty of Evaluation

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 4.9 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 4.9 dB |

## Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 6.1 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 0.1 UB |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Measuring Uncertainty for a Level of Confidence | 4.7 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 4.7 UB |

Report Number : FR180215-01A

# Appendix A. Test Result of Conducted Test Items

| Test Engineer: | Hank Hsu / Tommy Lee | Temperature:       | 22.5~25.9 | °C |
|----------------|----------------------|--------------------|-----------|----|
| Test Date:     | 2021/8/11~2021/8/24  | Relative Humidity: | 45.1~58.7 | %  |

| <u>TEST RESULTS DATA</u><br>20dB and 99% Occupied Bandwidth and Hopping Channel Separation |              |     |     |                |                  |                           |                                                       |                                                             |           |
|--------------------------------------------------------------------------------------------|--------------|-----|-----|----------------|------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|
| Mod.                                                                                       | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | 20db BW<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>Limit (MHz) | Pass/Fail |
| DH                                                                                         | 1Mbps        | 1   | 0   | 2402           | 0.932            | 0.853                     | 1.002                                                 | 0.6213                                                      | Pass      |
| DH                                                                                         | 1Mbps        | 1   | 39  | 2441           | 0.955            | 0.862                     | 0.842                                                 | 0.6367                                                      | Pass      |
| DH                                                                                         | 1Mbps        | 1   | 78  | 2480           | 0.932            | 0.853                     | 0.998                                                 | 0.6213                                                      | Pass      |
| 2DH                                                                                        | 2Mbps        | 1   | 0   | 2402           | 1.337            | 1.180                     | 1.002                                                 | 0.8913                                                      | Pass      |
| 2DH                                                                                        | 2Mbps        | 1   | 39  | 2441           | 1.332            | 1.180                     | 1.002                                                 | 0.8880                                                      | Pass      |
| 2DH                                                                                        | 2Mbps        | 1   | 78  | 2480           | 1.332            | 1.180                     | 0.998                                                 | 0.8880                                                      | Pass      |
| 3DH                                                                                        | 3Mbps        | 1   | 0   | 2402           | 1.293            | 1.163                     | 0.864                                                 | 0.8620                                                      | Pass      |
| 3DH                                                                                        | 3Mbps        | 1   | 39  | 2441           | 1.298            | 1.169                     | 1.002                                                 | 0.8653                                                      | Pass      |
| 3DH                                                                                        | 3Mbps        | 1   | 78  | 2480           | 1.298            | 1.166                     | 0.998                                                 | 0.8653                                                      | Pass      |

| <u>TEST RESULTS DATA</u><br>Dwell Time |                                      |                                      |                                    |                     |                 |           |  |  |  |
|----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|---------------------|-----------------|-----------|--|--|--|
| Mod.                                   | Hopping<br>Channel<br>Number<br>Rate | Hops Over<br>Occupancy<br>Time(hops) | Package<br>Transfer<br>Time (msec) | Dwell Time<br>(sec) | Limits<br>(sec) | Pass/Fail |  |  |  |
| Nomal                                  | 79                                   | 106.67                               | 2.90                               | 0.31                | 0.4             | Pass      |  |  |  |
| AFH                                    | 20                                   | 53.33                                | 2.90                               | 0.15                | 0.4             | Pass      |  |  |  |

| <u>TEST RESULTS DATA</u><br>Peak Power Table |     |     |                     |                      |                |  |  |  |  |
|----------------------------------------------|-----|-----|---------------------|----------------------|----------------|--|--|--|--|
| DH                                           | CH. | NTX | Peak Power<br>(dBm) | Power Limit<br>(dBm) | Test<br>Result |  |  |  |  |
|                                              | 0   | 1   | 11.92               | 20.97                | Pass           |  |  |  |  |
| DH1                                          | 39  | 1   | 11.87               | 20.97                | Pass           |  |  |  |  |
|                                              | 78  | 1   | 11.94               | 20.97                | Pass           |  |  |  |  |
|                                              | 0   | 1   | 11.65               | 20.97                | Pass           |  |  |  |  |
| 2DH1                                         | 39  | 1   | 11.56               | 20.97                | Pass           |  |  |  |  |
|                                              | 78  | 1   | 11.63               | 20.97                | Pass           |  |  |  |  |
|                                              | 0   | 1   | 12.26               | 20.97                | Pass           |  |  |  |  |
| 3DH1                                         | 39  | 1   | 12.23               | 20.97                | Pass           |  |  |  |  |
|                                              | 78  | 1   | 12.27               | 20.97                | Pass           |  |  |  |  |

| <u>TEST RESULTS DATA</u><br><u>Average Power Table</u><br>(Reporting Only) |     |     |                        |                     |  |  |  |
|----------------------------------------------------------------------------|-----|-----|------------------------|---------------------|--|--|--|
| DH                                                                         | CH. | NTX | Average Power<br>(dBm) | Duty Factor<br>(dB) |  |  |  |
|                                                                            | 0   | 1   | 11.88                  | 5.15                |  |  |  |
| DH1                                                                        | 39  | 1   | 11.83                  | 5.15                |  |  |  |
|                                                                            | 78  | 1   | 11.91                  | 5.15                |  |  |  |
|                                                                            | 0   | 1   | 8.87                   | 5.15                |  |  |  |
| 2DH1                                                                       | 39  | 1   | 8.78                   | 5.15                |  |  |  |
|                                                                            | 78  | 1   | 8.85                   | 5.15                |  |  |  |
|                                                                            | 0   | 1   | 8.91                   | 5.15                |  |  |  |
| 3DH1                                                                       | 39  | 1   | 8.86                   | 5.15                |  |  |  |
|                                                                            | 78  | 1   | 8.87                   | 5.15                |  |  |  |

|                                |                                               | <u>TEST RE</u><br>Number of H | SULTS DA  |  |
|--------------------------------|-----------------------------------------------|-------------------------------|-----------|--|
| Number of Hopping<br>(Channel) | Adaptive<br>Frequency<br>Hopping<br>(Channel) | Limits<br>(Channel)           | Pass/Fail |  |
| 79                             | 20                                            | > 15                          | Pass      |  |



# Appendix B. Radiated Spurious Emission

| Test Engineer : | Jesse Wang and Stan Hsieh   | Temperature :       | 23.5~25.1°C |
|-----------------|-----------------------------|---------------------|-------------|
| Test Engineer.  | Jesse Wang and Starr I Sien | Relative Humidity : | 51.3~55.5%  |

<Sample 1 with Battery 1>

## 2.4GHz 2400~2483.5MHz

|         |      |           |            |        | BT (Band E | age @  | 3m)      |        |        |        |       |       |       |
|---------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|-------|-------|-------|
| вт      | Note | Frequency | Level      | Over   | Limit      | Read   | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol.  |
|         |      |           |            | Limit  | Line       | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|         |      | (MHz)     | ( dBµV/m ) | ( dB ) | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
|         |      | 2389.59   | 48.45      | -25.55 | 74         | 43.88  | 31.9     | 8.08   | 35.41  | 354    | 100   | Р     | Н     |
|         |      | 2389.59   | 23.66      | -30.34 | 54         | -      | -        | -      | -      | -      | -     | А     | Н     |
|         | *    | 2402      | 102.39     | -      | -          | 97.79  | 31.9     | 8.12   | 35.42  | 354    | 100   | Р     | Н     |
| вт      | *    | 2402      | 77.6       | -      | -          | -      | -        | -      | -      | -      | -     | A     | Н     |
| СН00    |      |           |            |        |            |        |          |        |        |        |       |       | Н     |
| 2402MHz |      | 2375.625  | 44.23      | -29.77 | 74         | 39.75  | 31.87    | 8.02   | 35.41  | 309    | 329   | Р     | V     |
|         |      | 2375.625  | 19.44      | -34.56 | 54         | -      | -        | -      | -      | -      | -     | А     | V     |
|         | *    | 2402      | 98.62      | -      | -          | 94.02  | 31.9     | 8.12   | 35.42  | 309    | 329   | Р     | V     |
|         | *    | 2402      | 73.83      | -      | -          | -      | -        | -      | -      | -      | -     | А     | V     |
|         |      |           |            |        |            |        |          |        |        |        |       |       | V     |
|         |      | 2323.02   | 44.43      | -29.57 | 74         | 40.23  | 31.77    | 7.82   | 35.39  | 340    | 101   | Р     | Н     |
|         |      | 2323.02   | 19.64      | -34.36 | 54         | -      | -        | -      | -      | -      | -     | А     | Н     |
|         | *    | 2441      | 103.2      | -      | -          | 98.26  | 32.2     | 8.18   | 35.44  | 340    | 101   | Ρ     | Н     |
|         | *    | 2441      | 78.41      | -      | -          | -      | -        | -      | -      | -      | -     | А     | Н     |
| вт      |      | 2485.72   | 45.76      | -28.24 | 74         | 40.5   | 32.47    | 8.24   | 35.45  | 340    | 101   | Р     | Н     |
| CH 39   |      | 2485.72   | 20.97      | -33.03 | 54         | -      | -        | -      | -      | -      | -     | А     | Н     |
| 2441MHz |      | 2375.94   | 44.35      | -29.65 | 74         | 39.87  | 31.87    | 8.02   | 35.41  | 315    | 154   | Р     | V     |
|         |      | 2375.94   | 19.56      | -34.44 | 54         | -      | -        | -      | -      | -      | -     | А     | V     |
|         | *    | 2441      | 101.38     | -      | -          | 96.44  | 32.2     | 8.18   | 35.44  | 315    | 154   | Р     | V     |
|         | *    | 2441      | 76.59      | -      | -          | -      | -        | -      | -      | -      | -     | А     | V     |
|         |      | 2495.17   | 45.06      | -28.94 | 74         | 39.67  | 32.6     | 8.25   | 35.46  | 315    | 154   | Р     | V     |
|         |      | 2495.17   | 20.27      | -33.73 | 54         | -      | -        | -      | -      | -      | -     | А     | V     |

BT (Band Edge @ 3m)



|                  | * | 2480                                 | 101.14 | -        | -           | 95.89     | 32.47 | 8.23 | 35.45 | 100 | 63  | Р | Н |
|------------------|---|--------------------------------------|--------|----------|-------------|-----------|-------|------|-------|-----|-----|---|---|
|                  | * | 2480                                 | 76.35  | -        | -           | -         | -     | -    | -     | -   | -   | А | Н |
|                  |   | 2483.8                               | 52.83  | -21.17   | 74          | 47.57     | 32.47 | 8.24 | 35.45 | 100 | 63  | Р | Н |
|                  |   | 2483.8                               | 28.04  | -25.96   | 54          | -         | -     | -    | -     | -   | -   | А | Н |
| DT               |   |                                      |        |          |             |           |       |      |       |     |     |   | Н |
| ВТ<br>СН 78      |   |                                      |        |          |             |           |       |      |       |     |     |   | Н |
| СП 76<br>2480MHz | * | 2480                                 | 98.58  | -        | -           | 93.33     | 32.47 | 8.23 | 35.45 | 300 | 154 | Р | V |
| 2400141112       | * | 2480                                 | 73.79  | -        | -           | -         | -     | -    | -     | -   | -   | А | V |
|                  |   | 2483.64                              | 50.26  | -23.74   | 74          | 45        | 32.47 | 8.24 | 35.45 | 300 | 154 | Ρ | V |
|                  |   | 2483.64                              | 25.47  | -28.53   | 54          | -         | -     | -    | -     | -   | -   | А | V |
|                  |   |                                      |        |          |             |           |       |      |       |     |     |   | V |
|                  |   |                                      |        |          |             |           |       |      |       |     |     |   | V |
| Remark           |   | o other spurious<br>I results are PA |        | Peak and | Average lir | nit line. |       |      |       |     |     |   |   |



### 2.4GHz 2400~2483.5MHz

| вт          | Nete | <b>-</b>  | 1        |               |               |               | -                 | Deth         | Due entre      | <b>A</b> 1 | Table        | Peak         | Del |
|-------------|------|-----------|----------|---------------|---------------|---------------|-------------------|--------------|----------------|------------|--------------|--------------|-----|
| ы           | Note | Frequency | Level    | Over<br>Limit | Limit<br>Line | Read<br>Level | Antenna<br>Factor | Path<br>Loss | Preamp         | Ant<br>Pos | Table<br>Pos | Peak<br>Avg. |     |
|             |      | (MHz)     | (dBµV/m) |               | (dBµV/m)      |               | (dB/m)            | (dB)         | Factor<br>(dB) | (cm)       | ( deg )      |              |     |
|             |      | 4804      | 42.79    | -31.21        | 74            | 54.45         | 34                | 12.33        | 57.99          | -          | -            | P            | H   |
|             |      | 4804      | 18       | -36           | 54            | -             | -                 | -            | -              | -          | -            | А            | Н   |
|             |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
|             |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
| вт          |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
| CH 00       |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
| 2402MHz     |      | 4804      | 43.19    | -30.81        | 74            | 54.85         | 34                | 12.33        | 57.99          | -          | -            | Ρ            | V   |
|             |      | 4804      | 18.4     | -35.6         | 54            | -             | -                 | -            | -              | -          | -            | А            | V   |
|             |      | 4980      | 54.79    | -19.21        | 74            | 65.85         | 34.2              | 12.52        | 57.78          | 100        | 159          | Р            | V   |
|             |      | 4980      | 30       | -24           | 54            | -             | -                 | -            | -              | -          | -            | А            | V   |
|             |      |           |          |               |               |               |                   |              |                |            |              |              | V   |
|             |      |           |          |               |               |               |                   |              |                |            |              |              | V   |
|             |      | 4882      | 42.94    | -31.06        | 74            | 54.33         | 34.1              | 12.41        | 57.9           | -          | -            | Ρ            | Н   |
|             |      | 4882      | 18.15    | -35.85        | 54            | -             | -                 | -            | -              | -          | -            | А            | Н   |
|             |      | 7323      | 43.46    | -30.54        | 74            | 51.08         | 35.6              | 14.7         | 57.92          | -          | -            | Р            | Н   |
|             |      | 7323      | 18.67    | -35.33        | 54            | -             | -                 | -            | -              | -          | -            | А            | Н   |
| вт          |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
| CH 39       |      |           |          |               |               |               |                   |              |                |            |              |              | Н   |
| 2441MHz     |      | 4882      | 43.39    | -30.61        | 74            | 54.78         | 34.1              | 12.41        | 57.9           | -          | -            | Р            | V   |
| 277 I WI IZ |      | 4882      | 18.6     | -35.4         | 54            | -             | -                 | -            | -              | -          | -            | А            | V   |
|             |      | 4980      | 55.11    | -18.89        | 74            | 66.17         | 34.2              | 12.52        | 57.78          | 100        | 159          | Р            | V   |
|             |      | 4980      | 30.32    | -23.68        | 54            | -             | -                 | -            | -              | -          | -            | А            | V   |
|             |      | 7323      | 42.3     | -31.7         | 74            | 49.92         | 35.6              | 14.7         | 57.92          | -          | -            | Ρ            | V   |
|             |      | 7323      | 17.51    | -36.49        | 54            | -             | -                 | -            | -              | -          | -            | А            | V   |

## BT (Harmonic @ 3m)



|         |    | 4960               | 42.04       | -31.96      | 74          | 53.15     | 34.2       | 12.5        | 57.81      | -        | -         | Р       | Н     |
|---------|----|--------------------|-------------|-------------|-------------|-----------|------------|-------------|------------|----------|-----------|---------|-------|
|         |    | 4960               | 17.25       | -36.75      | 54          | -         | -          | -           | -          | -        | -         | А       | Н     |
|         |    | 7440               | 43.22       | -30.78      | 74          | 50.76     | 35.6       | 14.9        | 58.04      | -        | -         | Ρ       | н     |
|         |    | 7440               | 18.43       | -35.57      | 54          | -         | -          | -           | -          | -        | -         | А       | н     |
| DT      |    |                    |             |             |             |           |            |             |            |          |           |         | Н     |
| BT      |    |                    |             |             |             |           |            |             |            |          |           |         | н     |
|         |    | 4960               | 42.21       | -31.79      | 74          | 53.32     | 34.2       | 12.5        | 57.81      | -        | -         | Р       | V     |
| 2480MHz |    | 4960               | 17.42       | -36.58      | 54          | -         | -          | -           | -          | -        | -         | А       | V     |
|         |    | 4980               | 54.76       | -19.24      | 74          | 65.82     | 34.2       | 12.52       | 57.78      | 100      | 159       | Ρ       | V     |
|         |    | 4980               | 29.97       | -24.03      | 54          | -         | -          | -           | -          | -        | -         | А       | V     |
|         |    | 7440               | 41.68       | -32.32      | 74          | 49.22     | 35.6       | 14.9        | 58.04      | -        | -         | Ρ       | V     |
|         |    | 7440               | 16.89       | -37.11      | 54          | -         | -          | -           | -          | -        | -         | А       | V     |
|         | 1. | No other spurious  | s found.    | <u> </u>    |             |           |            |             | •          | •        | •         |         |       |
| Remark  | 2. | All results are PA | SS against  | Peak and    | Average lin | nit line. |            |             |            |          |           |         |       |
| Nemark  | 3. | The emission pos   | ition marke | d as "-" me | eans no sus | pected em | ssion foun | d with suff | icient mar | gin agai | nst limit | line or | noise |
|         |    | floor only.        |             |             |             |           |            |             |            |          |           |         |       |



## Emission above 18GHz

|        |        |                 |               |           | 2.4GHz       | BT (SHF   | -)           |            |             |          |            |         |       |
|--------|--------|-----------------|---------------|-----------|--------------|-----------|--------------|------------|-------------|----------|------------|---------|-------|
| BT     | Note   | Frequency       | Level         | Over      | Limit        | Read      | Antenna      | Path       | Preamp      | Ant      | Table      | Peak    | Pol.  |
|        |        |                 |               | Limit     | Line         | Level     | Factor       | Loss       | Factor      | Pos      | Pos        | Avg.    |       |
|        |        | (MHz)           | ( dBµV/m )    | ( dB )    | ( dBµV/m )   | (dBµV)    | ( dB/m )     | ( dB )     | ( dB )      | ( cm )   | (deg)      |         | (H/V) |
|        |        | 20940           | 35.94         | -38.06    | 74           | 52.42     | 38.01        | 5.61       | 60.1        | -        | -          | Р       | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | Н     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
| 2.4GHz |        |                 |               |           |              |           |              |            |             |          |            |         | н     |
| ВТ     |        | 24517           | 35.67         | -38.33    | 74           | 47.91     | 39.07        | 6.76       | 58.07       | -        | _          | Р       | V     |
| SHF    |        | 24317           | 55.07         | -30.33    | 74           | 47.91     | 39.07        | 0.70       | 58.07       | -        | -          | Г       | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         |       |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        |        |                 |               |           |              |           |              |            |             |          |            |         | V     |
|        | 1. No  | o other spuriou | s found.      |           |              |           |              |            |             |          |            |         |       |
| Remark | 2. All | results are PA  | SS against li | mit line. |              |           |              |            |             |          |            |         |       |
|        | 3. Th  | e emission pos  | sition marked | as "-" m  | eans no susp | pected em | ission found | d with suf | ficient mar | gin agai | inst limit | line or | noise |
|        | flo    | or only.        |               |           |              |           |              |            |             |          |            |         |       |

# 2.4GHz BT (SHF)



## Emission below 1GHz

|        |       |                  |                |                 | 2.4GHz           |                 |                  |              |                |             |              |         |                    |
|--------|-------|------------------|----------------|-----------------|------------------|-----------------|------------------|--------------|----------------|-------------|--------------|---------|--------------------|
| BT     | Note  | Frequency        | Level          | Over            | Limit            | Read            | Antenna          | Path         | Preamp         | Ant         | Table        | ļ       |                    |
|        |       | (MHz)            | (dBµV/m)       | Limit<br>(dB)   | Line<br>(dBµV/m) | Level<br>(dBµV) | Factor<br>(dB/m) | Loss<br>(dB) | Factor<br>(dB) | Pos<br>(cm) | Pos<br>(deg) | Avg.    |                    |
|        |       | 30.54            | 22.98          | -17.02          | 40               | 27.92           | 24.17            | 0.92         | 30.03          | -           | -            | P       | н                  |
|        |       | 37.56            | 20.85          | -19.15          | 40               | 29.02           | 20.73            | 1.12         | 30.02          | -           | -            | Р       | н                  |
|        |       | 106.95           | 18.39          | -25.11          | 43.5             | 30.04           | 16.57            | 1.77         | 29.99          | -           | -            | Р       | н                  |
|        |       | 765.5            | 30.23          | -15.77          | 46               | 27.85           | 27.73            | 4.3          | 29.65          | -           | -            | Р       | н                  |
|        |       | 860.7            | 31.64          | -14.36          | 46               | 27.36           | 28.84            | 4.62         | 29.18          | -           | -            | Р       | Н                  |
|        |       | 953.8            | 33.09          | -12.91          | 46               | 26.41           | 30.49            | 4.89         | 28.7           | -           | -            | Р       | н                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | н                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | Н                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | Н                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | Н                  |
| 2.4GHz |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | н                  |
| вт     |       | 20               | 00.00          | 0.40            | 40               | 05.00           | 04.57            |              | 00.00          |             |              | _       | H                  |
| LF     |       | 30<br>45.39      | 30.82<br>20.53 | -9.18<br>-19.47 | 40<br>40         | 35.38<br>32.64  | 24.57<br>16.69   | 0.9          | 30.03<br>30.01 | -           | -            | P<br>P  | V<br>V             |
|        |       | 84.54            | 18.56          | -21.44          | 40               | 33.09           | 13.89            | 1.58         | 30.01          | -           | -            | P       | V                  |
|        |       | 729.8            | 29.59          | -16.41          | 40               | 28.17           | 26.93            | 4.21         | 29.72          | _           |              | P       | V                  |
|        |       | 862.1            | 31.71          | -14.29          | 46               | 27.39           | 28.87            | 4.62         | 29.12          | -           | -            | '<br>P  | V                  |
|        |       | 959.4            | 33.54          | -12.46          | 46               | 26.5            | 30.8             | 4.91         | 28.67          | -           | -            | P       | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        |       |                  |                |                 |                  |                 |                  |              |                |             |              |         | V                  |
|        | 1. No | o other spurious | s found.       |                 |                  |                 |                  |              |                |             |              |         |                    |
| Remark |       | results are PA   |                |                 |                  |                 |                  |              |                |             |              |         |                    |
|        |       | e emission pos   | ition marked   | l as "-" m      | eans no sus      | pected em       | ission found     | d with suff  | ficient mar    | gin agai    | nst limit    | line or | <sup>.</sup> noise |
|        | flo   | or only.         |                |                 |                  |                 |                  |              |                |             |              |         |                    |

# 2.4GHz BT (LF)



## <Sample 1 with Battery 2>

## 2.4GHz 2400~2483.5MHz

# BT (Band Edge @ 3m)

| вт               | Note   | Frequency        | Level        | Over    | Limit       | Read     | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol.  |
|------------------|--------|------------------|--------------|---------|-------------|----------|----------|--------|--------|--------|-------|-------|-------|
|                  |        |                  |              | Limit   | Line        | Level    | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|                  |        | (MHz)            | (dBµV/m)     | ( dB )  | (dBµV/m)    | (dBµV)   | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
|                  |        | 2379.86          | 45.39        | -28.61  | 74          | 40.89    | 31.87    | 8.04   | 35.41  | 100    | 89    | Р     | Н     |
|                  |        | 2379.86          | 20.6         | -33.4   | 54          | -        | -        | -      | -      | -      | -     | А     | н     |
|                  | *      | 2441             | 103.3        | -       | -           | 98.36    | 32.2     | 8.18   | 35.44  | 100    | 89    | Р     | Н     |
|                  | *      | 2441             | 78.51        | -       | -           | -        | -        | -      | -      | -      | -     | А     | н     |
|                  |        | 2490.13          | 45.06        | -28.94  | 74          | 39.66    | 32.6     | 8.25   | 35.45  | 100    | 89    | Р     | н     |
| BT               |        | 2490.13          | 20.27        | -33.73  | 54          | -        | -        | -      | -      | -      | -     | А     | н     |
| CH 39<br>2441MHz |        | 2349.2           | 43.92        | -30.08  | 74          | 39.6     | 31.8     | 7.92   | 35.4   | 390    | 172   | Р     | V     |
| 244 (10112       |        | 2349.2           | 19.13        | -34.87  | 54          | -        | -        | -      | -      | -      | -     | А     | V     |
|                  | *      | 2441             | 100.23       | -       | -           | 95.29    | 32.2     | 8.18   | 35.44  | 390    | 172   | Р     | V     |
|                  | *      | 2441             | 75.44        | -       | -           | -        | -        | -      | -      | -      | -     | А     | V     |
|                  |        | 2491.53          | 45.61        | -28.39  | 74          | 40.21    | 32.6     | 8.25   | 35.45  | 390    | 172   | Р     | V     |
|                  |        | 2491.53          | 20.82        | -33.18  | 54          | -        | -        | -      | -      | -      | -     | А     | V     |
|                  | 1. No  | o other spurious | s found.     |         |             |          |          |        |        |        |       |       |       |
| Remark           | 2. All | results are PA   | SS against F | eak and | Average lim | it line. |          |        |        |        |       |       |       |



| ВТ      | Note   | Frequency        | Level        | Over     | Limit       | Read      | Antenna      | Path        | Preamp     | Ant      | Table     | Peak    | Pol.  |
|---------|--------|------------------|--------------|----------|-------------|-----------|--------------|-------------|------------|----------|-----------|---------|-------|
|         |        |                  | ( dBu)//m )  | Limit    | Line        |           | Factor       | Loss        | Factor     | Pos      |           | Avg.    |       |
|         |        | ( MHz )          | (dBµV/m)     | (dB)     | (dBµV/m)    | (dBµV)    | (dB/m)       | (dB)        | (dB)       | ( cm )   | (deg)     | (P/A)   |       |
|         |        | 4882             | 42.36        | -31.64   | 74          | 53.75     | 34.1         | 12.41       | 57.9       | -        | -         | Р       | Н     |
|         |        | 4882             | 17.57        | -36.43   | 54          | -         | -            | -           | -          | -        | -         | А       | Н     |
|         |        | 4980             | 45.58        | -28.42   | 74          | 56.64     | 34.2         | 12.52       | 57.78      | -        | -         | Р       | н     |
|         |        | 4980             | 20.79        | -33.21   | 54          | -         | -            | -           | -          | -        | -         | А       | н     |
|         |        | 7323             | 42.07        | -31.93   | 74          | 49.69     | 35.6         | 14.7        | 57.92      | -        | -         | Р       | н     |
| BT      |        | 7323             | 17.28        | -36.72   | 54          | -         | -            | -           | -          | -        | -         | А       | н     |
| CH 39   |        | 4882             | 43.1         | -30.9    | 74          | 54.49     | 34.1         | 12.41       | 57.9       | -        | -         | Р       | V     |
| 2441MHz |        | 4882             | 18.31        | -35.69   | 54          | -         | -            | -           | -          | -        | -         | А       | V     |
|         |        | 4980             | 50.91        | -23.09   | 74          | 61.97     | 34.2         | 12.52       | 57.78      | -        | -         | Ρ       | V     |
|         |        | 4980             | 26.12        | -27.88   | 54          | -         | -            | -           | -          | -        | -         | А       | V     |
|         |        | 7323             | 41.74        | -32.26   | 74          | 49.36     | 35.6         | 14.7        | 57.92      | -        | -         | Р       | V     |
|         |        | 7323             | 16.95        | -37.05   | 54          | -         | -            | -           | -          | -        | -         | А       | V     |
|         | 1. No  | o other spurious | s found.     |          |             |           |              |             |            |          |           |         |       |
| Remark  | 2. All | results are PA   | SS against F | eak and  | Average lim | it line.  |              |             |            |          |           |         |       |
|         | 3. Th  | e emission pos   | ition marked | as "-" m | eans no sus | pected em | ission found | d with suff | icient mar | gin agai | nst limit | line or | noise |
|         | flo    | or only.         |              |          |             |           |              |             |            |          |           |         |       |

# 2.4GHz 2400~2483.5MHz BT (Harmonic @ 3m)



## Emission above 18GHz

|        |      |                 |               |          | 2.4GHz       | BI (SHF   | .)           |            | -           |          |           |         |       |
|--------|------|-----------------|---------------|----------|--------------|-----------|--------------|------------|-------------|----------|-----------|---------|-------|
| BT     | Note | Frequency       | Level         | Over     | Limit        | Read      | Antenna      | Path       | Preamp      | Ant      | Table     | Peak    | Pol.  |
|        |      |                 |               | Limit    | Line         | Level     | Factor       | Loss       | Factor      | Pos      | Pos       | Avg.    |       |
|        |      | (MHz)           | (dBµV/m)      | ( dB )   | ( dBµV/m )   | (dBµV)    | ( dB/m )     | ( dB )     | (dB)        | ( cm )   | (deg)     | (P/A)   |       |
|        |      | 23201           | 36.24         | -37.76   | 74           | 50.14     | 38.8         | 6.3        | 59          | -        | -         | Р       | Н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | н     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         |       |
| 2.4GHz |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
| вт     |      |                 |               |          |              |           |              |            |             |          |           |         | Н     |
| SHF    |      | 23194           | 37.11         | -36.89   | 74           | 51.01     | 38.8         | 6.3        | 59          | -        | -         | Р       | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         | V     |
|        |      |                 |               |          |              |           |              |            |             |          |           |         |       |
|        |      |                 | · ·           |          |              |           |              |            |             |          |           |         | V     |
|        |      | o other spuriou |               |          |              |           |              |            |             |          |           |         |       |
| Remark |      | results are PA  |               |          |              |           |              |            | <i>.</i>    |          |           |         |       |
|        |      | e emission pos  | sition marked | as "-" m | eans no susp | pected em | ission found | a with suf | ficient mar | gin agai | nst limit | line or | noise |
|        | flo  | or only.        |               |          |              |           |              |            |             |          |           |         |       |

## 2.4GHz BT (SHF)



## Emission below 1GHz

| BT     | Note  | Frequency       | Level    | Over      | Limit        | Read      | Antenna      | Path       | Preamp      | Ant      | Table      | Peak    | Pol.              |
|--------|-------|-----------------|----------|-----------|--------------|-----------|--------------|------------|-------------|----------|------------|---------|-------------------|
|        |       |                 |          | Limit     | Line         | Level     | Factor       | Loss       | Factor      | Pos      | Pos        | Avg.    |                   |
|        |       | (MHz)           | (dBµV/m) | -         | (dBµV/m)     | (dBµV)    | ( dB/m )     | ( dB )     | (dB)        | ( cm )   | (deg)      |         |                   |
|        |       | 30              | 22.9     | -17.1     | 40           | 27.46     | 24.57        | 0.9        | 30.03       | -        | -          | Р       | Н                 |
|        |       | 38.91           | 17.99    | -22.01    | 40           | 26.88     | 20           | 1.13       | 30.02       | -        | -          | Р       | Н                 |
|        |       | 106.95          | 18.7     | -24.8     | 43.5         | 30.35     | 16.57        | 1.77       | 29.99       | -        | -          | Р       | Н                 |
|        |       | 783.7           | 30.23    | -15.77    | 46           | 27.67     | 27.83        | 4.35       | 29.62       | -        | -          | Р       | Н                 |
|        |       | 843.9           | 31.28    | -14.72    | 46           | 27.43     | 28.56        | 4.58       | 29.29       | -        | -          | Ρ       | н                 |
|        |       | 955.9           | 33.93    | -12.07    | 46           | 27.14     | 30.59        | 4.89       | 28.69       | -        | -          | Ρ       | н                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | Н                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | Н                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | н                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | н                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | Н                 |
| 2.4GHz |       |                 |          |           |              |           |              |            |             |          |            |         | н                 |
| вт     |       | 30              | 30.29    | -9.71     | 40           | 34.85     | 24.57        | 0.9        | 30.03       | -        | -          | Р       | V                 |
| LF     |       | 45.93           | 19.6     | -20.4     | 40           | 32.02     | 16.38        | 1.21       | 30.01       | -        | -          | Р       | V                 |
|        |       | 91.02           | 19.19    | -24.31    | 43.5         | 32.84     | 14.73        | 1.61       | 29.99       | -        | -          | Р       | V                 |
|        |       | 766.2           | 30.23    | -15.77    | 46           | 27.85     | 27.73        | 4.3        | 29.65       | -        | -          | Р       | V                 |
|        |       | 889.4           | 31.85    | -14.15    | 46           | 27.5      | 28.68        | 4.65       | 28.98       | -        | -          | Р       | V                 |
|        |       | 958             | 33.26    | -12.74    | 46           | 26.33     | 30.71        | 4.9        | 28.68       | -        | -          | Р       | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        |       |                 |          |           |              |           |              |            |             |          |            |         | V                 |
|        | 1. No | o other spuriou | s found. |           | 1            |           | 1            |            | <u> </u>    | <u> </u> | <u> </u>   | I       | I                 |
|        |       | results are PA  |          | mit line. |              |           |              |            |             |          |            |         |                   |
| Remark |       | e emission pos  | -        |           | eans no susi | pected em | ission found | d with suf | ficient mar | gin agai | inst limit | line oi | <sup>.</sup> nois |
|        |       | or only.        |          |           |              |           |              |            |             |          |            |         |                   |

# 2 4GHz BT (I F)



## Note symbol

| *   | Fundamental Frequency which can be ignored. However, the level of any unwanted emissions |
|-----|------------------------------------------------------------------------------------------|
|     | shall not exceed the level of the fundamental frequency.                                 |
| !   | Test result is <b>over limit</b> line.                                                   |
| P/A | Peak or Average                                                                          |
| H/V | Horizontal or Vertical                                                                   |



# A calculation example for radiated spurious emission is shown as below:

| вт      | Note | Frequency | Level    | Over   | Limit    | Read   | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol.  |
|---------|------|-----------|----------|--------|----------|--------|----------|--------|--------|--------|-------|-------|-------|
|         |      |           |          | Limit  | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|         |      | (MHz)     | (dBµV/m) | ( dB ) | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
| вт      |      | 2390      | 55.45    | -18.55 | 74       | 54.51  | 32.22    | 4.58   | 35.86  | 103    | 308   | Р     | н     |
| CH 00   |      |           |          |        |          |        |          |        |        |        |       |       |       |
| 2402MHz |      | 2390      | 43.54    | -10.46 | 54       | 42.6   | 32.22    | 4.58   | 35.86  | 103    | 308   | А     | Н     |

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level( $dB\mu V/m$ ) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

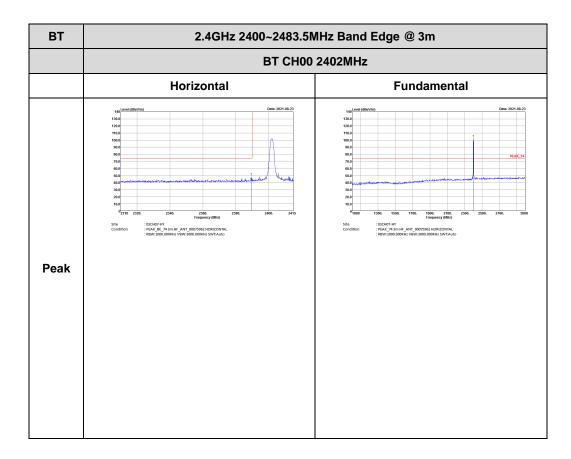
3. Over Limit(dB) = Level(dB $\mu$ V/m) – Limit Line(dB $\mu$ V/m)

## For Peak Limit @ 2390MHz:

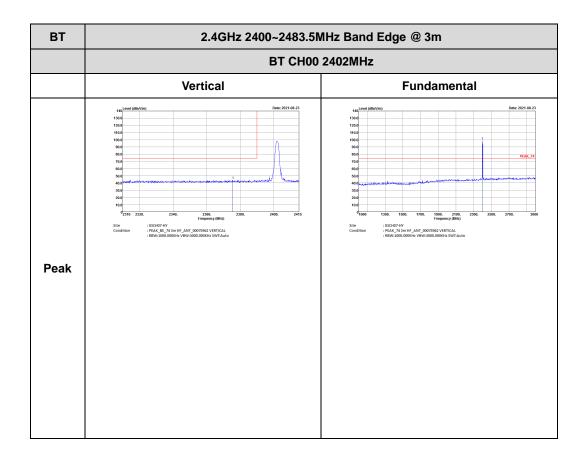
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB $\mu$ V/m) Limit Line(dB $\mu$ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

Peak measured complies with the limit line, so test result is "PASS".

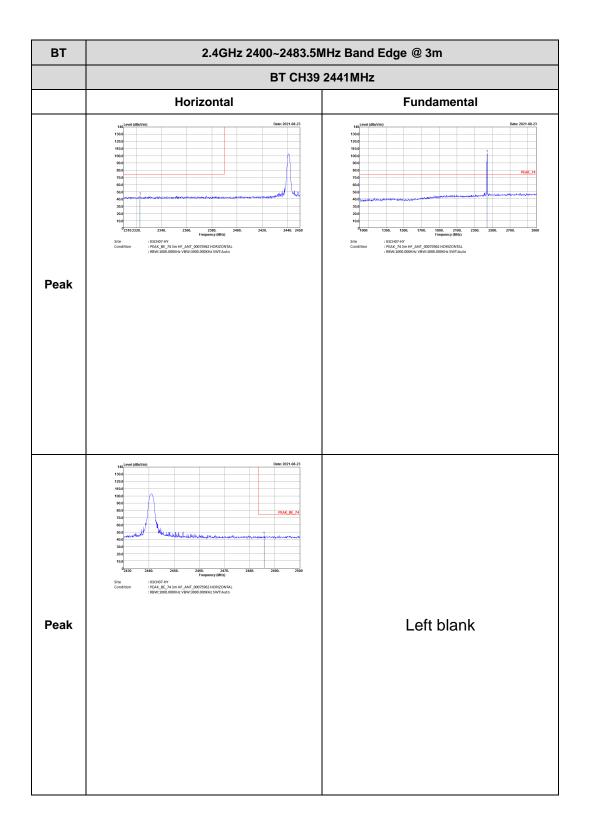



# **Appendix C. Radiated Spurious Emission Plots**

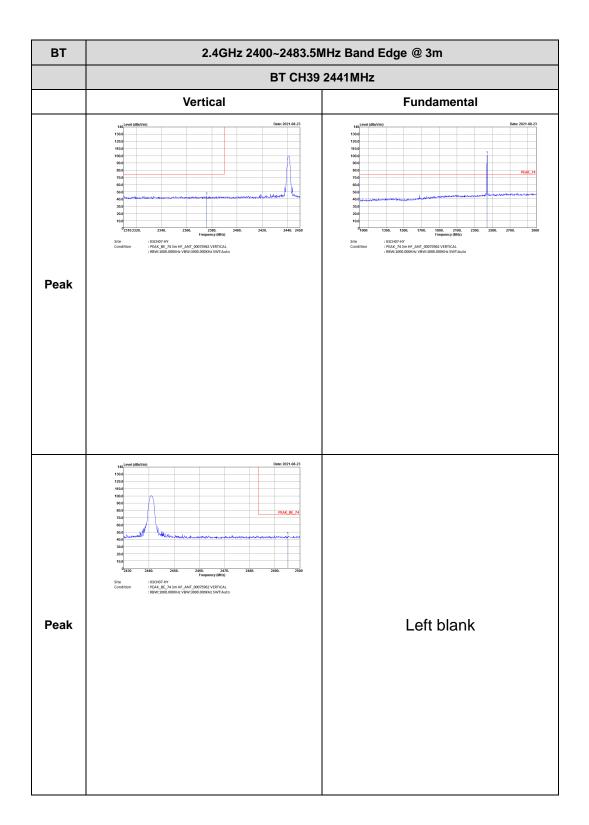
| Test Engineer : | Jesse Wang and Stan Hsieh | Temperature :       | 23.5~25.1°C |
|-----------------|---------------------------|---------------------|-------------|
| rest Engineer.  |                           | Relative Humidity : | 51.3~55.5%  |


<Sample 1 with Battery 1>

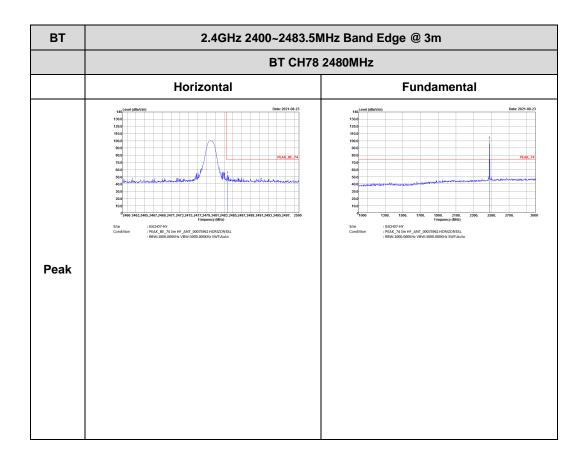
## 2.4GHz 2400~2483.5MHz


## BT (Band Edge @ 3m)







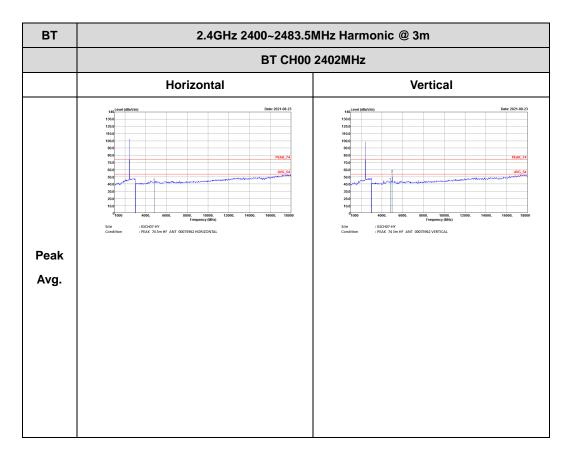







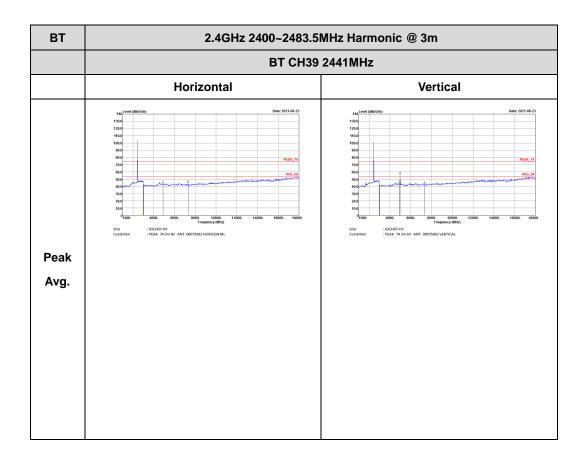




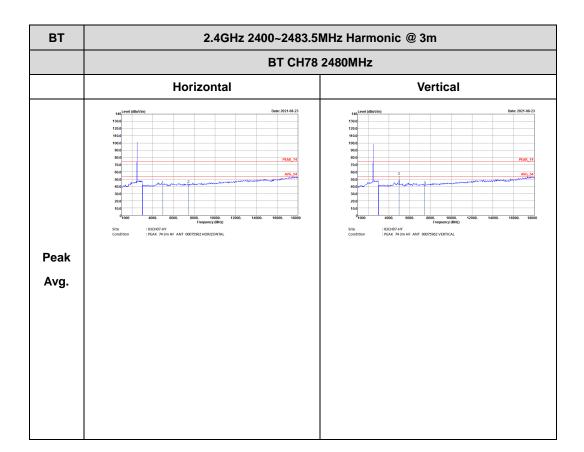







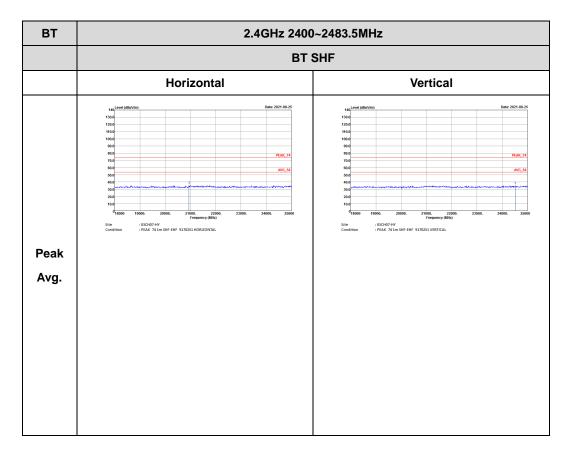




## 2.4GHz 2400~2483.5MHz




## BT (Harmonic @ 3m)



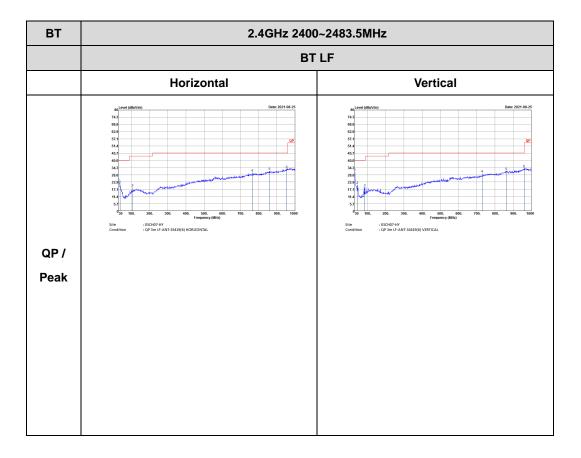









# Emission above 18GHz

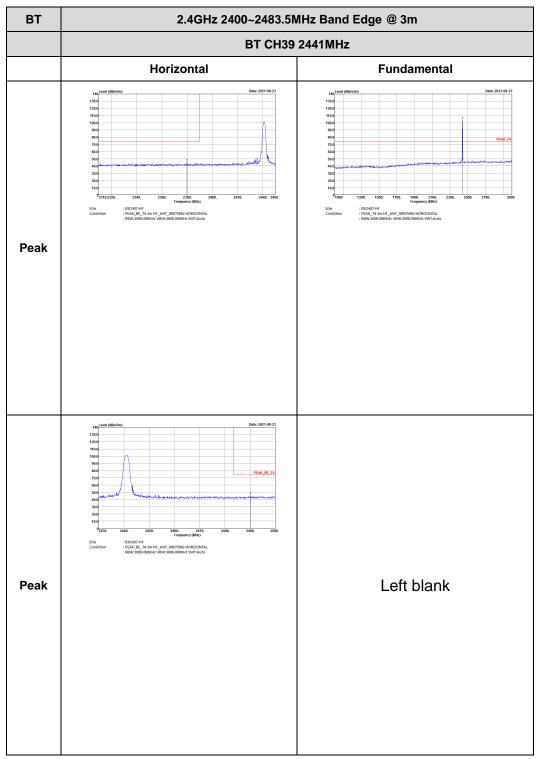



# 2.4GHz BT (SHF @ 1m)

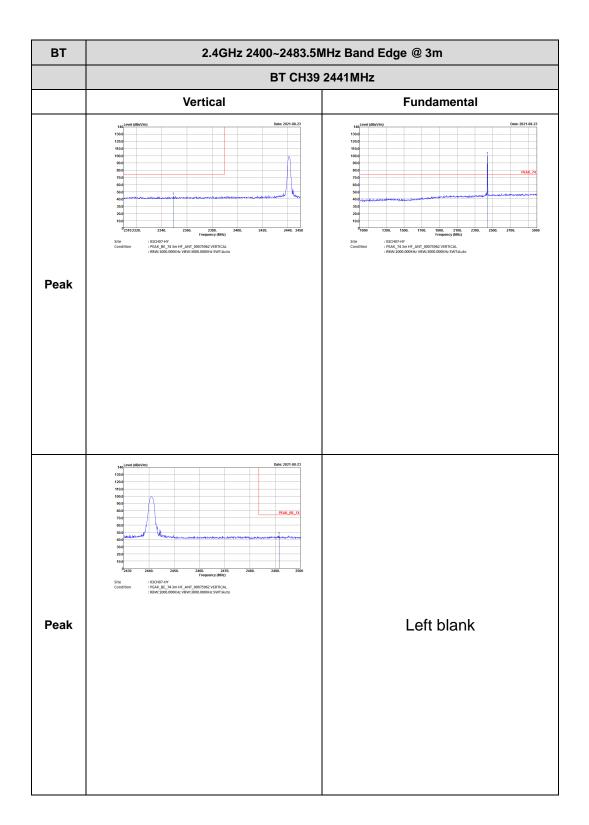


# Emission below 1GHz

## 2.4GHz BT (LF)

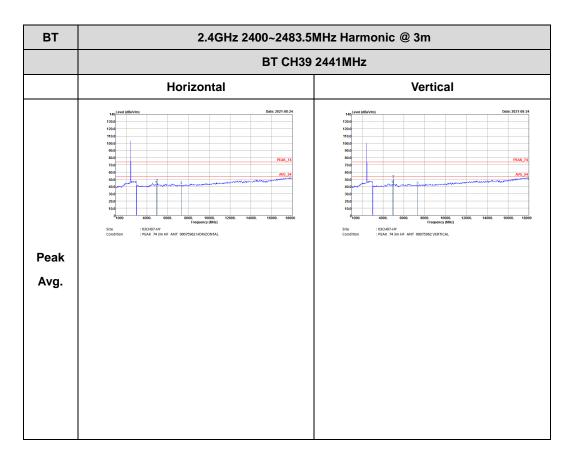






## <Sample 1 with Battery 2>

## 2.4GHz 2400~2483.5MHz

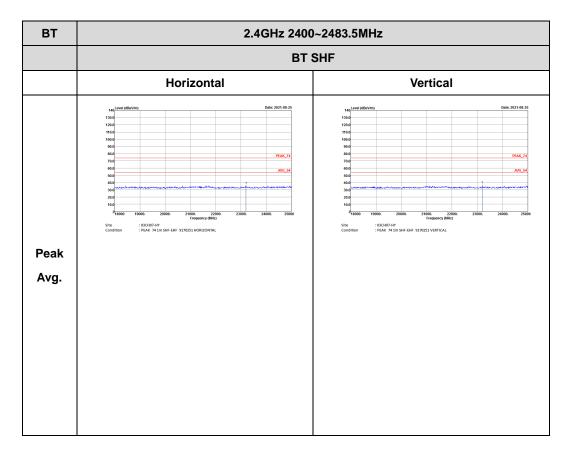
## BT (Band Edge @ 3m)









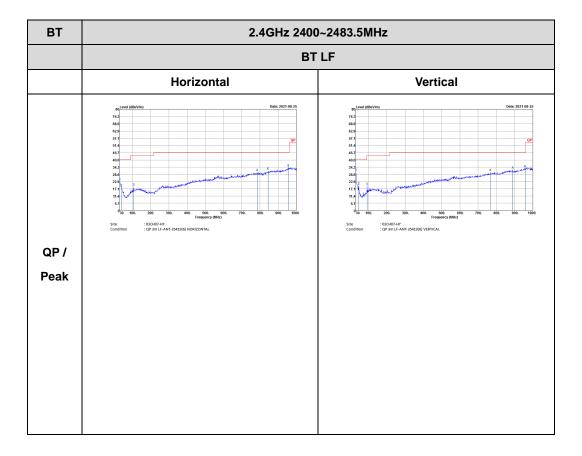


## 2.4GHz 2400~2483.5MHz



## BT (Harmonic @ 3m)



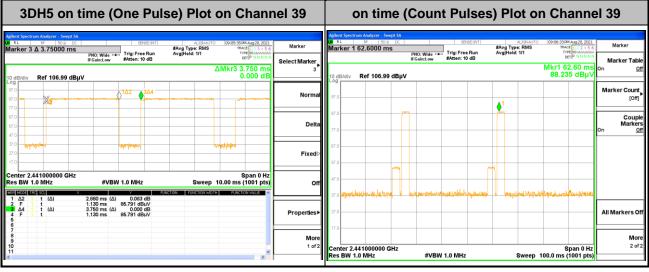
# Emission above 18GHz




# 2.4GHz BT (SHF @ 1m)



# Emission below 1GHz


# 2.4GHz BT (LF)





# Appendix D. Duty Cycle Plots

## <Sample 1 with Battery 1>



#### Note:

1. Worst case Duty cycle = on time/100 milliseconds = 2 \* 2.88 / 100 = 5.76 %

- 2. Worst case Duty cycle correction factor = 20\*log(Duty cycle) = -24.79 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

## Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

#### 2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms ] = 2 hops Thus, the maximum possible ON time:

#### 2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

20 x log(5.76 ms/100 ms) = -24.79 dB

### <Sample 1 with Battery 2>

| 3DH5 on t                                                                                                               | ime (One Pul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se) Plot on Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nnel 39        | on time (Count Pulses) Plot on Channel 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agilent Spectrum Analyzer - Swept SA           Qa RL         RF         S0 Ω         DC           Marker 3 Δ 3.75000 ms | SENSE-INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGNAUTO 09:38:07PM Aug23,<br>#Avg Type: RMS TRACE 123<br>AvgHold: 1/1 TYPE MWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marker         | Addred Spectrum Analyzer - Swyd XA.<br>■ RL #F ISD 2 DC SPECENT ALIONAUTO (09:99:23MA Agg23, 2021<br>Marker 1 40,1000 ms PHO: Widg +++ Trig: Free Run<br>PHO: Widg +++ Trig: Free Run<br>PHO: Widg +++ Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 dB/div Ref 116.99 dBµV                                                                                               | IFGain:Low #Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔMkr3 3.750<br>-0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select Marker  | Million         Anter: 20 dB         Might and the set of pointing         Peak Criteria           10 dB/div         Ref 116.99 dB/tV         S7.461 dB/tV         Peak Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 107<br>97.0                                                                                                             | Δ <sup>1Δ2</sup> 3Δ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etterstration of the second seco | Normal         | 107 Peak Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 87.0<br>77.0<br>67.0<br>57.0                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delta          | Image: State |
| 47.0<br>47.0<br>37.0<br>27.0                                                                                            | htterite the second sec | Willhaush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fixed⊳         | 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Center 2.441000000 GHz<br>Res BW 1.0 MHz                                                                                | #VBW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Span 0<br>Sweep 10.00 ms (1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 570 Pk-Pk Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 Δ2 1 t (Δ)<br>2 F 1 t<br>3 Δ4 1 t (Δ)<br>4 F 1 t<br>5                                                                 | 2.880 ms (Δ) 1.803 dB<br>240.0 μs 94.968 dBμV<br>3.760 ms (Δ) -0.018 dB<br>240.0 μs 94.968 dBμV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Properties►    | 270         agen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6<br>7<br>8<br>9<br>10                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | More<br>1 of 2 | 270 Mo<br>Center 2.441000000 GHz Span 0 Hz 2 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11<br><                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×              | Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 \* 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20\*log(Duty cycle) = -24.79 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

#### Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

#### 2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms ] = 2 hops Thus, the maximum possible ON time:

## 2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$