

FCC RADIO TEST REPORT

FCC ID	:	TTUBEOPLAYEXR
Equipment	:	Bluetooth Earphone
Brand Name	:	Bang & Olufsen
Model Name	:	EX Earbud R
Applicant	:	Bang & Olufsen A/S
		Bang og Olufsen Allé 1, 7600 Struer, Denmark
Manufacturer	:	Bang & Olufsen A/S
		Bang og Olufsen Allé 1, 7600 Struer, Denmark
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Aug. 02, 2021 and testing was started from Aug. 11, 2021 and completed on Aug. 26, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Page Number: 1 of 33Issued Date: Mar. 02, 2022Report Version: 02

Table of Contents

His	tory o	f this test report	3		
Sur	nmary	y of Test Result	4		
1	Gene	ral Description	5		
	1.1	Product Feature of Equipment Under Test	5		
	1.2	Modification of EUT	5		
	1.3	Testing Location	6		
	1.4	Applicable Standards	6		
2	Test	Configuration of Equipment Under Test	7		
	2.1	Carrier Frequency Channel	7		
	2.2	Test Mode	8		
	2.3	Connection Diagram of Test System	9		
	2.4	EUT Operation Test Setup	9		
	2.5	Measurement Results Explanation Example	9		
3	Test	Result	10		
	3.1	6dB and 99% Bandwidth Measurement	10		
	3.2	Output Power Measurement	15		
	3.3	Power Spectral Density Measurement	16		
	3.4	Conducted Band Edges and Spurious Emission Measurement	21		
	3.5	Radiated Band Edges and Spurious Emission Measurement	27		
	3.6	Antenna Requirements	31		
4	List o	of Measuring Equipment	32		
5	Unce	rtainty of Evaluation	33		
Арј	oendix	A. Conducted Test Results			
Арј	oendix	K B. Radiated Spurious Emission			
Арј	oendix	c C. Radiated Spurious Emission Plots			
Арј	Appendix D. Duty Cycle Plots				

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR180215-01B	01	Initial issue of report	Feb. 21, 2022
FR180215-01B	02	 Revise description in section 3.2 Revise appendix A and C 	Mar. 02, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 5.07 dB at 2483.520 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.6	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Lewis Ho Report Producer: Vivian Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth

Product Specification subjective to this standard			
Sample 1 TI Sensor (DRV5032AJDMRR)			
Sample 2 ABLIC Sensor (S-5716ANSL3-I4T1U)			
Sample 3 ABLIC Sensor (S-5716ACDL3-I4T1U)			
Sample 4 Rohm Sensor (BU52095GWZ-E2)			
Antenna Type monopole Antenna			
Antonno information			

Antenna information2400 MHz ~ 2483.5 MHzPeak Gain (dBi)-2.2

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessory			
Battery 1	Brand Name	Varta	
	Model Name	CP1254 A4	
Detterre	Brand Name	VDL	
Dattery Z	Model Name	ZJ1254H	
	Brand Name	Bang & Olufsen	
USB Cable 1	Model Name	BHC568	
	Manufacturer	Mingji	
	Brand Name	Bang & Olufsen	
USB Cable 2	Model Name	BHC568	
	Manufacturer	Perfect Cable	
Bluctooth Formhone (I)	Brand Name	Bang & Olufsen	
Biuetooth Earphone (L)	Model Name	EX Earbud L	
Charging Case	Brand Name	Bang & Olufsen	
Charging Case	Model Name	EX Charging case	

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist.,		
	Taoyuan City 333, Taiwan (R.O.C.)		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Tost Sito No	Sporton Site No.		
Test Sile NO.	TH02-HY, 03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
	<sample 1="" battery="" with=""></sample>				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Dedicted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
Test Cases	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
	<sample 1="" 2="" battery="" with=""></sample>				
	Mode 1: Bluetooth Tx CH39_2480 MHz_2Mbps				

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

The RF test items, utility "Blue Test V_3.3.2" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

<1Mbps>

<2Mbps>

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1.
- 2. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 4. The path loss was compensated to the results for each measurement.
- 5. Set the maximum power setting and enable the EUT to transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

<2Mbps>

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

Low Band Edge P	00	Hig	h Band Edg	e Plot on Ch	annel 39	
Spectrum			Spectrum			
Ref Level 30.00 dBm Offset 24.80 dB RBW 100 k Att 20 dB SWT 8 ms VBW 300 k Att 20 dB SWT 8 ms VBW 300 k	Hz Hz Mode Sweep		Ref Level 30.00 dBm Att 20 dB	Offset 24.80 dB RBW SWT 8 ms VBW	100 kHz 300 kHz Mode Sweep	
00 d0=	M1[1]	-43.19 dBm 2.39941880 GHz	OD dom		M1[1]	-43.67 dBm 2.49349830 GHz
20 dBm			10 dBm			
0 dBm		<u> </u>	0 dBm			
-10 dBm 01 -11.350 dBm			<u>-10 dBm</u> D1 -11.360	dBm		
-20 dBm		Nh	-20 dBm			
-30 dBm			-30 dBm	\	M1	
a gin dan ta basa kan kasaran makan ki sekita ta ta mina kan seka	an falit iteration in the strend lay is a life of the strend state it	V Nu	-50 dBm	Water and the state of the second second	Weiterland the first of the standard store to	an a
-60 dBm			-60 dBm			
Start 2.375 GHz 8001	L pts	Stop 2.405 GHz	Start 2.475 GHz	F1	8001 pts	Stop 2.505 GHz)
Date: 24 AUG 2021 22:14:18	Measuring		Date: 24.AUG.2021 22:20:0	3	Measur	

<2Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Spectrum 🕎	Spectrum
Ref Level 30.00 dBm Offset 24.80 dB RBW 100 kHz Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep	Ref Level 30.00 dBm Offset 24.80 dB RBW 100 kHz Att 20 dB SWT 8 ms VBW 300 kHz Mode Sweep
DPk Max M1[1] -23.46 dBm 2.39998500 GHz	(9 19k Max
10 dBm	10 dem
0 dBm	0 dBm
-10 dBm 01 -11.810 dBm	-10 dBm 01 -11.510 dBm
-30 dBm	-30 dBm
	-50 dBm
-60 dBm - F1	-60 dBmF1
Start 2.375 GHz 8001 pts Stop 2.405 GHz	Start 2.475 GHz 8001 pts Stop 2.505 GHz
Measuring	
Date: 24 AUG-2021 22:27:40	Uate: 24 AUG 2021 22 43:33

3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on				
Bluetooth LE 1Mbps GFSK Channel 00	Bluetooth LE 1Mbps GFSK Channel 00				
Spectrum Image: Construction of the sector of	Spectrum Image: Constraint of the sector of t				
DPK VIBW M1[1] 8.17 dBm 2.40420 GHz 43.09 dBm M2[1] -43.09 dBm 2.90420 GHz	1Pk View 10 M1[1] 7.70 dBm 2.3900 GHz 2.3900 GHz 15.7950 GHz 15.7950 GHz				
10 dBm	Úp dBm-				
-10 dBm01 -11.350 dBm	-10 dBm 01 -11.350 dBm				
-30 dBm	-80 dBm				
-40 dBm 	40 dem www.www.www.www.www.www.www.www.www.ww				
-60 d8m	-60 dBm				
Date: 24 AUG 2021 22:14:56	Date: 24 AUG 2021 22 15:45				
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19	Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19				
Spectrum Image: Constraint of the second seco	Spectrum Image: Constraint of the system Image: Constand of the system				
Image: Pk View M1[1] 7.56 dBm 20 dBm M2[1] -43.06 dDm 20,000 M2[1] -43.06 dDm	(1) Pk View (1) Pk Vi				
10 dBm	10 d8m				
-10 dBm	-10 dBm 01 -11.270 dBm				
-30 dBm	-0 dem				
50 dBm	-50 d8m				
Start 30.0 MHz 501 pts Stop 3.0 GHz	Start 2.0 GHz 501 pts Stop 25.0 GHz				
te: 24 AUG 2021 22:12:22 Date: 24 AUG 2021 22:12:35					

<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Metal Full Soldered Ground Plane

1.5m

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 Antenna Requirements

3.6.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.6.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Aug. 20, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Aug. 20, 2021~ Aug. 26, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 20, 2021~ Aug. 26, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Aug. 20, 2021~ Aug. 26, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 18, 2021	Aug. 20, 2021~ Aug. 26, 2021	May 17, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 31, 2020	Aug. 20, 2021~ Aug. 26, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	Aug. 20, 2021~ Aug. 26, 2021	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	Aug. 20, 2021~ Aug. 26, 2021	Jul. 21, 2022	Radiation (03CH07-HY)
Filter	Microwave	H1G013G1	SN477215	1GHz High Pass Filter	Oct. 31, 2020	Aug. 20, 2021~ Aug. 26, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682-4	30MHz to 18GHz	Feb. 24, 2021	Aug. 20, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 20, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 20, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,80 1606/2	18GHz~40GHz	Feb. 24, 2021	Aug. 20, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 18, 2020	Aug. 20, 2021~ Aug. 26, 2021	Sep. 17, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 03, 2021	Aug. 20, 2021~ Aug. 26, 2021	Apr. 02, 2022	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	Apr. 28, 2021	Aug. 20, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Aug. 20, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	Apr. 28, 2021	Aug. 20, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 20, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Aug. 20, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 09, 2021	Aug. 20, 2021~ Aug. 26, 2021	Mar. 08, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Dec. 02, 2020	Aug. 20, 2021~ Aug. 26, 2021	Dec. 01, 2021	Radiation (03CH07-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2021	Aug. 11, 2021~ Aug. 24, 2021	Mar. 01, 2022	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Aug. 11, 2021~ Aug. 24, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 27, 2020	Aug. 11, 2021~ Aug. 24, 2021	Nov. 26, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Aug. 11, 2021~ Aug. 24, 2021	Mar. 16, 2022	Conducted (TH02-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 0 dB
of 95% (U = 2Uc(y))	4.7 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6 1 dP
of 95% (U = 2Uc(y))	0.1 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4 7 dB
of 95% (U = 2Uc(y))	4.7 UB

Report Number : FR180215-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu / Tommy Lee	Temperature:	22.5~25.9	°C
Test Date:	2021/8/11~8/24	Relative Humidity:	45.1~58.7	%

						<u>6dE</u>	<u>TEST </u> and 99%	RESULTS Occupie	<u>DATA</u> d Bandwi	<u>dth</u>
						99%				
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
I	BLE	1Mbps	1	0	2402	1.034	0.716	0.50	Pass	
l	BLE	1Mbps	1	19	2440	1.032	0.706	0.50	Pass	
ſ	BLE	1Mbps	1	39	2480	1.032	0.706	0.50	Pass	

						<u>TEST F</u> <u>Peak</u>	RESULTS Power T	<u>DATA</u> able		
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	8.93	30.00	-2.20	6.73	36.00	Pass
BLE	1Mbps	1	19	2440	8.84	30.00	-2.20	6.64	36.00	Pass
BLE	1Mbps	1	39	2480	8.90	30.00	-2.20	6.70	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table (Reporting Only)</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	8.90	30.00	-2.20	6.70	36.00	Pass	
BLE	1Mbps	1	19	2440	8.80	30.00	-2.20	6.60	36.00	Pass	
BLE	1Mbps	1	39	2480	8.80	30.00	-2.20	6.60	36.00	Pass	

						<u>TEST F</u> Peak	<u>RESULTS</u> Power De	<u>EDATA</u> ensity		
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	8.65	-6.82	-2.20	8.00	Pass	
BLE	1Mbps	1	19	2440	8.73	-6.77	-2.20	8.00	Pass	
BLE	1Mbps	1	39	2480	8.64	-6.84	-2.20	8.00	Pass	

Report Number : FR180215-01B

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	8.92	30.00	-2.20	6.72	36.00	Pass
BLE	2Mbps	1	19	2440	8.84	30.00	-2.20	6.64	36.00	Pass
BLE	2Mbps	1	39	2480	8.90	30.00	-2.20	6.70	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table (Reporting Only)</u>												
Mod. Data Rate NTX CH. Freq. Average (MHz) CPWer (dBm)						Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	2Mbps	1	0	2402	8.80	30.00	-2.20	6.60	36.00	Pass		
BLE	2Mbps	1	19	2440	8.80	30.00	-2.20	6.60	36.00	Pass		
BLE	2Mbps	1	39	2480	8.80	30.00	-2.20	6.60	36.00	Pass		

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	2Mbps	1	0	2402	8.19	-10.67	-2.20	8.00	Pass		
BLE	2Mbps	1	19	2440	8.46	-10.37	-2.20	8.00	Pass		
BLE	2Mbps	1	39	2480	8.49	-10.45	-2.20	8.00	Pass		

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

Toot Engineer	Josso Wang and Stan Heigh	Temperature :	23.5~25.1°C
rest Engineer :		Relative Humidity :	51.3~55.5%

<Sample 1 with Battery 1>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2327.22	53.85	-20.15	74	39.63	31.77	17.84	35.39	243	200	Р	Н
		2389.59	45.35	-8.65	54	30.75	31.9	18.11	35.41	243	200	А	Н
	*	2402	101	-	-	86.37	31.9	18.15	35.42	243	200	Р	н
51.5	*	2402	100.52	-	-	85.89	31.9	18.15	35.42	243	200	А	н
BLE													Н
2402MHz		2378.88	54.15	-19.85	74	39.62	31.87	18.07	35.41	356	139	Р	V
		2381.925	45.37	-8.63	54	30.83	31.87	18.08	35.41	356	139	Α	V
	*	2402	97.63	-	-	83	31.9	18.15	35.42	356	139	Ρ	V
	*	2402	97.12	-	-	82.49	31.9	18.15	35.42	356	139	А	V
													V
		2387.28	53.83	-20.17	74	39.24	31.9	18.1	35.41	209	200	Ρ	Н
		2375.66	45.54	-8.46	54	31.03	31.87	18.05	35.41	209	200	Α	Н
	*	2440	101.23	-	-	86.27	32.2	18.19	35.43	209	200	Ρ	Н
	*	2440	100.66	-	-	85.7	32.2	18.19	35.43	209	200	А	н
515		2491.88	55.13	-18.87	74	39.75	32.6	18.24	35.46	209	200	Ρ	Н
BLE		2498.39	46.28	-7.72	54	30.89	32.6	18.25	35.46	209	200	Α	Н
		2348.5	54.28	-19.72	74	39.94	31.8	17.94	35.4	305	141	Ρ	V
2440MHZ		2384.34	45.8	-8.2	54	31.25	31.87	18.09	35.41	305	141	А	V
	*	2440	98.73	-	-	83.77	32.2	18.19	35.43	305	141	Р	V
	*	2440	97.95	-	-	82.99	32.2	18.19	35.43	305	141	А	V
		2497.9	54.59	-19.41	74	39.2	32.6	18.25	35.46	305	141	Р	V
		2496.29	46.24	-7.76	54	30.86	32.6	18.24	35.46	305	141	Α	V

P	1			1					1	ī.		1	-
	*	2480	99.71	-	-	84.46	32.47	18.23	35.45	100	200	Ρ	Н
	*	2480	98.94	-	-	83.69	32.47	18.23	35.45	100	200	А	Н
		2484.24	56.29	-17.71	74	41.04	32.47	18.23	35.45	100	200	Ρ	Н
		2487.36	46.21	-7.79	54	30.96	32.47	18.23	35.45	100	200	А	Н
													Н
BLE CH 20													Н
СП 39 2480МН -	*	2480	96.39	-	-	81.14	32.47	18.23	35.45	300	139	Р	V
2480MHz	*	2480	95.8	-	-	80.55	32.47	18.23	35.45	300	139	А	V
		2488.44	54.92	-19.08	74	39.54	32.6	18.23	35.45	300	139	Р	V
		2493.76	46.32	-7.68	54	30.94	32.6	18.24	35.46	300	139	А	V
													V
													V
	1. N	o other spurious	s found.										
Remark	2. AI	I results are PA	SS against I	Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

							,						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	42.53	-31.47	74	54.19	34	12.33	57.99	-	-	P	Н
													Н
BIE													Н
													н
2402MH -		4804	42.26	-31.74	74	53.92	34	12.33	57.99	-	-	Р	V
240211112		4980	54.99	-19.01	74	66.05	34.2	12.52	57.78	100	159	Р	V
		4980	43.05	-10.95	54	54.11	34.2	12.52	57.78	100	159	А	V
													V
		4880	42.93	-31.07	74	54.32	34.1	12.41	57.9	-	-	Р	Н
		7320	44.12	-29.88	74	51.74	35.6	14.7	57.92	-	-	Р	Н
			-										н
BLE			-										н
CH 19		4880	43.19	-30.81	74	54.58	34.1	12.41	57.9	-	-	Р	V
2440MHz		4980	54.51	-19.49	74	65.57	34.2	12.52	57.78	100	159	Р	V
		4980	42.79	-11.21	54	53.85	34.2	12.52	57.78	100	159	Α	V
		7320	42.15	-31.85	74	49.77	35.6	14.7	57.92	-	-	Р	V
		4960	43.34	-30.66	74	54.45	34.2	12.5	57.81	-	-	Р	н
		7440	42.62	-31.38	74	50.16	35.6	14.9	58.04	-	-	Р	н
													Н
BLE													Н
CH 39		4960	42.47	-31.53	74	53.58	34.2	12.5	57.81	-	-	Р	V
2400101172		4980	54.97	-19.03	74	66.03	34.2	12.52	57.78	100	159	Р	V
		4980	42.5	-11.5	54	53.56	34.2	12.52	57.78	100	159	А	V
		7440	41.51	-32.49	74	49.05	35.6	14.9	58.04	-	-	Р	V
	1. No	o other spuriou	s found.										
Domort	2. All	l results are PA	SS against F	Peak and	l Average lim	it line.							
Reindik	3. Th	ne emission pos	sition marked	l as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

BLE (Harmonic @ 3m)

2.4GHz	BLE ((SHF)
--------	-------	-------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21003	36.47	-37.53	74	52.84	38.1	5.63	60.1	-	-	Р	Н
													н
													Н
													Н
													н
													Н
													Н
													Н
													Н
													н
2 4047													Н
2.4GHZ BLE SHF													Н
		23334	35.63	-38.37	74	49.25	38.92	6.33	58.87	-	-	Р	V
••••													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. Al	I results are PA	SS against li	mit line.		4 - 1	i	1	() _ : (Ľ., .	
	3. In	e emission pos	Sition marked	ias "-" m	eans no sus	pected em	ISSION TOUN	a with suf	licient mar	gin agai	rist iimit	iine or	noise
	TIO	ior only.											

						(/						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	22.76	-17.24	40	27.32	24.57	0.9	30.03	-	-	Р	Н
		36.21	20.72	-19.28	40	28.34	21.3	1.1	30.02	-	-	Р	Н
		106.95	18.28	-25.22	43.5	29.93	16.57	1.77	29.99	-	-	Ρ	Н
		753.6	29.76	-16.24	46	27.49	27.68	4.26	29.67	-	-	Ρ	Н
		850.9	31.48	-14.52	46	27.45	28.67	4.61	29.25	-	-	Ρ	Н
		956.6	33.27	-12.73	46	26.42	30.63	4.9	28.68	-	-	Р	Н
													Н
													Н
													Н
													Н
2 4 6 4 7													Н
BI F													Н
IF		30	30.07	-9.93	40	34.63	24.57	0.9	30.03	-	-	Ρ	V
		45.93	20.33	-19.67	40	32.75	16.38	1.21	30.01	-	-	Р	V
		82.38	18.4	-21.6	40	33.11	13.73	1.56	30	-	-	Р	V
		745.2	29.42	-16.58	46	27.35	27.52	4.24	29.69	-	-	Ρ	V
		862.8	32.76	-13.24	46	28.42	28.89	4.62	29.17	-	-	Р	V
		957.3	33.66	-12.34	46	26.77	30.67	4.9	28.68	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. Nc	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suff	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ • ••• \		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHZ)	(dBµv/m)	(dB)	(abhr/w)	(arh v)	(dB/m)	(ab)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2343.18	54.32	-19.68	74	40	31.8	17.92	35.4	130	68	Р	Н
		2338.245	47.02	-6.98	54	32.72	31.8	17.89	35.39	130	68	Α	Н
	*	2402	100.48	-	-	85.85	31.9	18.15	35.42	130	68	Р	Н
	*	2402	99.16	-	-	84.53	31.9	18.15	35.42	130	68	Α	Н
BLE													Н
													н
CH 00		2359.56	55	-19	74	40.59	31.83	17.98	35.4	358	170	Р	V
240210112		2384.445	47.43	-6.57	54	32.88	31.87	18.09	35.41	358	170	А	V
	*	2402	97.47	-	-	82.84	31.9	18.15	35.42	358	170	Р	V
	*	2402	96.29	-	-	81.66	31.9	18.15	35.42	358	170	А	V
													V
													V
		2375.66	54.79	-19.21	74	40.28	31.87	18.05	35.41	101	70	Р	Н
		2388.12	47.38	-6.62	54	32.79	31.9	18.1	35.41	101	70	А	н
	*	2440	100.66	-	-	85.7	32.2	18.19	35.43	101	70	Р	Н
	*	2440	99.15	-	-	84.19	32.2	18.19	35.43	101	70	Α	Н
		2497.06	55.43	-18.57	74	40.04	32.6	18.25	35.46	101	70	Р	Н
		2498.6	47.59	-6.41	54	32.2	32.6	18.25	35.46	101	70	Α	Н
2440MH7		2358.44	54.39	-19.61	74	39.98	31.83	17.98	35.4	398	172	Р	V
244010112		2363.62	46.98	-7.02	54	32.55	31.83	18	35.4	398	172	А	V
	*	2440	99.93	-	-	84.97	32.2	18.19	35.43	398	172	Р	V
	*	2440	98.57	-	-	83.61	32.2	18.19	35.43	398	172	А	V
		2492.44	55.91	-18.09	74	40.53	32.6	18.24	35.46	398	172	Р	V
		2499.65	47.64	-6.36	54	32.25	32.6	18.25	35.46	398	172	А	V

F	1		1			1		1		1	1	1	
	*	2480	99.96	-	-	84.71	32.47	18.23	35.45	118	73	Р	Н
	*	2480	98.56	-	-	83.31	32.47	18.23	35.45	118	73	А	Н
		2483.52	57.14	-16.86	74	41.89	32.47	18.23	35.45	118	73	Ρ	Н
		2483.52	48.93	-5.07	54	33.68	32.47	18.23	35.45	118	73	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	97.86	-	-	82.61	32.47	18.23	35.45	384	172	Ρ	V
	*	2480	96.55	-	-	81.3	32.47	18.23	35.45	384	172	А	V
		2483.92	54.97	-19.03	74	39.72	32.47	18.23	35.45	384	172	Ρ	V
		2483.52	48.61	-5.39	54	33.36	32.47	18.23	35.45	384	172	А	V
													V
													V
	1. N	o other spurious	s found.										
Remark	2. AI	I results are PA	SS against	Peak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

							,						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		<i></i> .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	43.31	-30.69	74	54.97	34	12.33	57.99	-	-	Р	н
													Н
BLE													Н
CH 00													Н
2402MH7		4804	43.17	-30.83	74	54.83	34	12.33	57.99	-	-	Р	V
		4980	54.39	-19.61	74	65.45	34.2	12.52	57.78	100	159	Р	V
		4980	44.82	-9.18	54	55.88	34.2	12.52	57.78	100	159	А	V
													V
		4880	43.03	-30.97	74	54.42	34.1	12.41	57.9	-	-	Р	н
		7320	42.95	-31.05	74	50.57	35.6	14.7	57.92	-	-	Р	Н
													н
BLE													н
CH 19		4880	43.21	-30.79	74	54.6	34.1	12.41	57.9	-	-	Р	V
2440MHz		4980	54.85	-19.15	74	65.91	34.2	12.52	57.78	100	159	Р	V
		4980	44.29	-9.71	54	55.35	34.2	12.52	57.78	100	159	Α	V
		7320	41.77	-32.23	74	49.39	35.6	14.7	57.92	-	-	Р	V
		4960	43.18	-30.82	74	54.29	34.2	12.5	57.81	-	-	Р	н
		7440	42.13	-31.87	74	49.67	35.6	14.9	58.04	-	-	Р	н
													н
BLE													н
CH 39		4960	42.36	-31.64	74	53.47	34.2	12.5	57.81	-	-	Р	V
2400101172		4980	54.42	-19.58	74	65.48	34.2	12.52	57.78	100	160	Р	V
		4980	44.66	-9.34	54	55.72	34.2	12.52	57.78	100	160	А	V
		7440	41.59	-32.41	74	49.13	35.6	14.9	58.04	-	-	Р	V
	1. No	o other spurious	s found.	1		1				I	1	1	1
Domest	2. All	l results are PA	SS against F	Peak and	Average lim	it line.							
Reindik	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

BLE (Harmonic @ 3m)

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ · · · ·		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(1.5.5.)
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21241	35.49	-38.51	74	51.73	38.1	5.71	60.05	-	-	Р	н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													Н
2.4GHz BLE SHF													Н
		24853	36.23	-37.77	74	48.08	38.89	6.92	57.66	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
	2. All	results are PA	SS against li	mit line.									
Remark	3. Th	e emission pos	- sition marked	as "-" m	eans no susp	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.			·					- 0			
		-											

					2.40112		,						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	23.32	-16.68	40	27.88	24.57	0.9	30.03	-	-	Р	Н
		50.52	15.08	-24.92	40	29.72	14.08	1.29	30.01	-	-	Р	Н
		106.95	18.85	-24.65	43.5	30.5	16.57	1.77	29.99	-	-	Р	Н
		768.3	30.44	-15.56	46	28.05	27.74	4.3	29.65	-	-	Ρ	Н
		853.7	32	-14	46	27.85	28.77	4.61	29.23	-	-	Ρ	Н
		958.7	34.14	-11.86	46	27.17	30.75	4.9	28.68	-	-	Ρ	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		30	30.5	-9.5	40	35.06	24.57	0.9	30.03	-	-	Р	V
		45.93	20.24	-19.76	40	32.66	16.38	1.21	30.01	-	-	Р	V
		79.95	19.09	-20.91	40	34.26	13.3	1.53	30	-	-	Р	V
		745.9	30.44	-15.56	46	28.35	27.54	4.24	29.69	-	-	Р	V
		847.4	32.71	-13.29	46	28.76	28.62	4.6	29.27	-	-	Р	V
		952.4	33.2	-12.8	46	26.59	30.43	4.88	28.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. Al	e emission por	sition marked	mit line.	eans no cuo	nected or	ission found	l with out	ficient mor	ain agai	inet limit	line or	noice
	5. If		Shori marked	ias - 11	icans no sus	Jeclea em	เออเบเท เบนไได	a with SUI	ncient mal	yin ayai	1151 111111		10156
	10	or only.											

2 4GHz BI E (I E)

<Sample 1 with Battery 2>

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	101.05	-	-	85.8	32.47	18.23	35.45	117	88	Р	Н
	*	2480	98.65	-	-	83.4	32.47	18.23	35.45	117	88	А	Н
		2488.92	55.83	-18.17	74	40.45	32.6	18.23	35.45	117	88	Р	н
		2483.52	48.76	-5.24	54	33.51	32.47	18.23	35.45	117	88	А	Н
51.5													Н
BLE CH 39 2480MHz													Н
	*	2480	97.09	-	-	81.84	32.47	18.23	35.45	322	10	Р	V
	*	2480	94.81	-	-	79.56	32.47	18.23	35.45	322	10	Α	V
		2490.96	56.36	-17.64	74	40.97	32.6	18.24	35.45	322	10	Ρ	V
		2483.64	47.72	-6.28	54	32.47	32.47	18.23	35.45	322	10	Α	V
													V
													V
Remark	1. No 2. All	o other spurious	s found. SS against F	eak and	Average lim	it line.							

BLE	Not	e Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MH=)	(dRu)//m)	Limit	Line		Factor	Loss	Factor	Pos	Pos	Avg.	/U//
			(""")	(ub)	(ασμν/Π)	(uphr)	(ub/iii)	(ub)	(0)	(()	(deg)	(F/A)	(П/У)
		4960	41.22	-32.78	74	52.33	34.2	12.5	57.81	-	-	Р	Н
		4980	46.41	-27.59	74	57.47	34.2	12.52	57.78	-	-	Ρ	Н
515		7440	41.06	-32.94	74	48.6	35.6	14.9	58.04	-	-	Ρ	Н
BLE													Н
CH 39 2480MHz		4960	41.63	-32.37	74	52.74	34.2	12.5	57.81	-	-	Ρ	V
		4980	53.69	-20.31	74	64.75	34.2	12.52	57.78	100	159	Ρ	V
		4980	43.67	-10.33	54	54.73	34.2	12.52	57.78	100	159	А	V
		7440	40.48	-33.52	74	48.02	35.6	14.9	58.04	-	-	Ρ	V
Remark	1.	No other spurious	s found.										
	2.	All results are PA	SS against P	eak and	Average lim	it line.							
	3.	The emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suff	ficient mar	gin agai	nst limit	line or	noise
		floor only.											

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21682	36.54	-37.46	74	52.28	38.42	5.87	60.03	-	-	Р	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2 4011-													Н
2.4GHZ													н
SHE		21689	35.35	-38.65	74	51.07	38.45	5.87	60.04	-	-	Р	V
511													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

					2.40112		/						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.27	23.14	-16.86	40	27.89	24.37	0.91	30.03	-	-	Р	Н
		41.61	16.83	-23.17	40	27.1	18.59	1.16	30.02	-	-	Р	Н
		106.95	18.99	-24.51	43.5	30.64	16.57	1.77	29.99	-	-	Р	Н
		764.1	30.07	-15.93	46	27.7	27.73	4.29	29.65	-	-	Р	Н
		881	31.5	-14.5	46	27.2	28.7	4.64	29.04	-	-	Р	Н
		958.7	33.34	-12.66	46	26.37	30.75	4.9	28.68	-	-	Р	Н
													Н
													Н
													Н
													Н
2 4 GHz													Н
BI F													Н
LF		30	30.33	-9.67	40	34.89	24.57	0.9	30.03	-	-	Р	V
		45.93	19.95	-20.05	40	32.37	16.38	1.21	30.01	-	-	Р	V
		91.02	19.81	-23.69	43.5	33.46	14.73	1.61	29.99	-	-	Р	V
		762	29.82	-16.18	46	27.46	27.73	4.29	29.66	-	-	Р	V
		853.7	31.99	-14.01	46	27.84	28.77	4.61	29.23	-	-	Р	V
		952.4	34.57	-11.43	46	27.96	30.43	4.88	28.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	l results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
floor only.													

2 4GHz BI E (I E)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00 2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Toot Engineer	Josep Wang and Stan Heigh	Temperature :	23.5~25.1°C
Test Engineer :	Jesse Wang and Stan Eslen	Relative Humidity :	51.3~55.5%

Note symbol

-L	Low channel location
-R	High channel location

<Sample 1 with Battery 1>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2	2440MHz - R				
	Horizontal	Fundamental				
Peak	ever	Left blank				
Avg.	<pre>interflowing file of the second second</pre>	Left blank				

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2	BLE CH19 2440MHz - R					
	Vertical	Fundamental					
Peak	end Edit	Left blank					
Avg.	the start of the s	Left blank					

2.4GHz 2400~2483.5MHz

BLE 2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH00 2402MHz Horizontal Vertical Date: 2021-08-23 te: 2021-08-2 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 PEAK_ PEAK VG_ : 03CH07-HY : PEAK 74 3m HF ANT 00075962 VERTICAL Site Condition : 03CH07-HY : PEAK 74 3m HF ANT 00075962 HORIZONTAL Site Condition Peak Avg.

BLE (Harmonic @ 3m)

2.4GHz BLE (SHF @ 1m)

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak		Left blank				
Avg.	<pre></pre>	Left blank				

2.4GHz 2400~2483.5MHz

BLE 2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH00 2402MHz Horizontal Vertical Date: 2021-08-23 te: 2021-08-2 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 PEAK_ PEAK WG_ : 03CH07-HY : PEAK 74 3m HF ANT 00075962 VERTICAL Site Condition : 03CH07-HY : PEAK 74 3m HF ANT 00075962 HORIZONTAL Site Condition Peak Avg.

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

<Sample 1 with Battery 2>

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

BLE 2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH39 2480MHz Horizontal Vertical Date: 2021-08-24 nte: 2021-08-3 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 40.0 PEAK PEAK AVG_5 AVG_ : 03CH07-HY : PEAK 74 3m HF ANT 00075962 VERTICAL : 03CH07-HY : PEAK 74 3m HF ANT 00075962 HORIZONTAL Site Condition Site Condition Peak Avg.

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

<Sample 1 with Battery 1>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting		
Bluetooth - LE for 1Mbps	62.40	390	2.56	3kHz		
Bluetooth - LE for 2Mbps	33.60	210	4.76	10kHz		

<Sample 1 with Battery 2>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 2Mbps	33.17	207	4.83	10kHz

Blι	le	to	oot	:h	- 1	LE	E f	or	2	Mk	p	s										
Agilent	Spect	rum A	nalyzer	· - Swep	et SA																	
Mark	er 3	Δ	F 524.0	50 Q 100 U	DC S	_		_	1	SEN	SE:INT		#Avg	Туре	ALIGNAU B: RMS	TO	12:02	10 AM TRAC	Aug 24, 1 1 2 3	2021	ſ	Marker
						PN IFG	IO: Fas ain:Lo	(- →	Trig #At	g: Free Run tten: 10 dB			Avg Hold: 1/1			TY		T P N N	NNN	5	Select Marker	
10 dB	10 dB/div Ref 106.99 dBuV																ΔMkr3 624.0 μs -0.817 dB					3
97.0 - 87.0 - 77.0 -	7			X2	0	Δ2		¢ ³	∆4			ſ										Normal
67.0 - 57.0 - 47.0 -			Adata			Lat.	Sont			19.500		~		Upla	hutthe	1			unate	بداله		Delta
37.0 - 27.0 - 17.0 -														_								Fixed⊳
Cent Res E	er 2. BW 8	480 3 Mi	0000 Iz	00 GI	Hz		#\	/BW	8.0	MHz		FUNCT	IDN	S FUN	Sweep) 3.0 DH	100 m	S ns (1	pan 0 1001	Hz pts)		Off
1 2 2 1 3 2 4 1 5 6	12 F 14	t t t	(Δ) (Δ)			201 510 624 510	7.0 µs 0.0 µs 4.0 µs 0.0 µs	(Δ) (Δ)	84.3 4 84.3	0.132 d 15 dBi 0.817 d 15 dBi	#B #B #V										Ē	Properties►
7 8 9 10 11																				~		More 1 of 2
																					-	