

FCC RADIO TEST REPORT

FCC ID	:	TTUBEOPLAYEXL	
Equipment	:	Bluetooth Earphone	
Brand Name	:	Bang & Olufsen	
Model Name	:	EX Earbud L	
Applicant	:	Bang & Olufsen A/S	
		Bang og Olufsen Allé 1, 7600 Struer, Denmark	
Manufacturer	:	Bang & Olufsen A/S	
		Bang og Olufsen Allé 1, 7600 Struer, Denmark	
Standard	:	FCC Part 15 Subpart C §15.247	

The product was received on Aug. 02, 2021 and testing was started from Aug. 12, 2021 and completed on Aug. 26, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Su	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	9
	2.5	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	Antenna Requirements	31
4	List o	of Measuring Equipment	32
5	Unce	rtainty of Evaluation	33
Арј	pendix	A. Conducted Test Results	
Арј	pendix	B. Radiated Spurious Emission	
Арј	pendix	C. Radiated Spurious Emission Plots	
Ap	pendix	CD. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR180216-01B	01	Initial issue of report	Feb. 21, 2022
FR180216-01B	02	 Revise description in section 3.2 Revise appendix A and C 	Mar. 02, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 0.99 dB at 2483.520 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.6	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Lewis Ho Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth

Product Specification is subject to this standard			
Sample 1 TI Sensor (DRV5032AJDMRR)			
Sample 2 ABLIC Sensor (S-5716ANSL3-I4T1U)			
Sample 3 ABLIC Sensor (S-5716ACDL3-I4T1U)			
Sample 4	ample 4 Rohm Sensor (BU52095GWZ-E2)		
Antenna Type Monopole Antenna			

Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-2.1	

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessory			
Dottom: 1	Brand Name	Varta	
Battery 1	Model Name	CP1254 A4	
Pottony 2	Brand Name	VDL	
Battery 2	Model Name	ZJ1254H	
	Brand Name	Bang & Olufsen	
USB Cable 1	Model Name	BHC568	
	Manufacturer	Mingji	
	Brand Name	Bang & Olufsen	
USB Cable 2	Model Name	BHC568	
	Manufacturer	Perfect Cable	
Bluetooth Earphone (B)	Brand Name	Bang & Olufsen	
Bluetooth Earphone (R)	Model Name	EX Earbud R	
Charging Case	Brand Name	Bang & Olufsen	
Charging Case	Model Name	EX Charging case	

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH02-HY, 03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

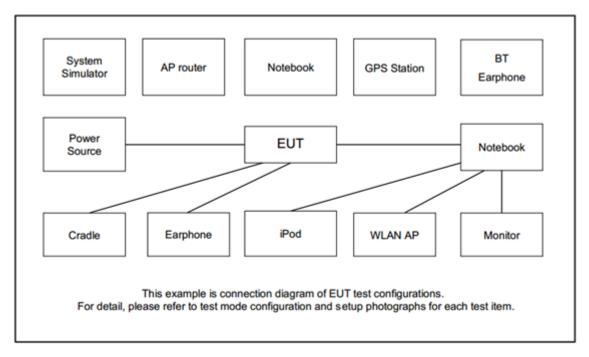
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth – LE / GFSK					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	<sample 1="" battery="" with=""></sample>					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
Test Cases	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	<sample 1="" 2="" battery="" with=""></sample>					
	Mode 1: Bluetooth Tx CH39_2480 MHz_2Mbps					

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

The RF test items, utility "Blue Test3(3.3.2)" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

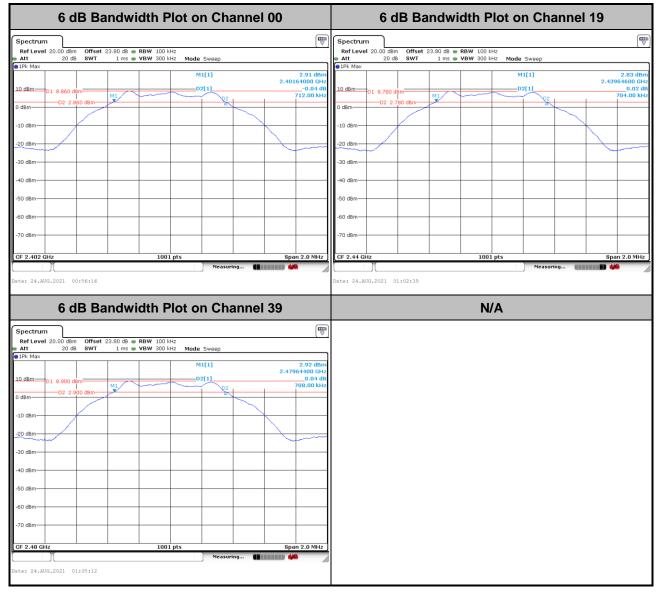
See list of measuring equipment of this test report.

3.1.3 Test Procedures

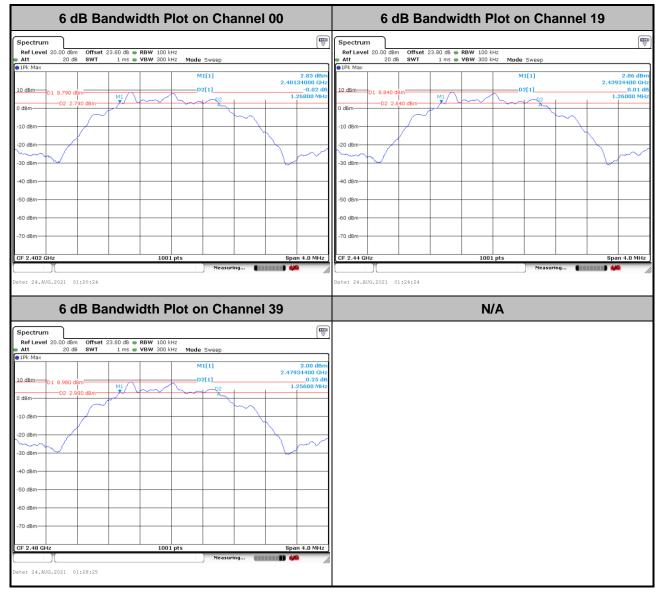
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

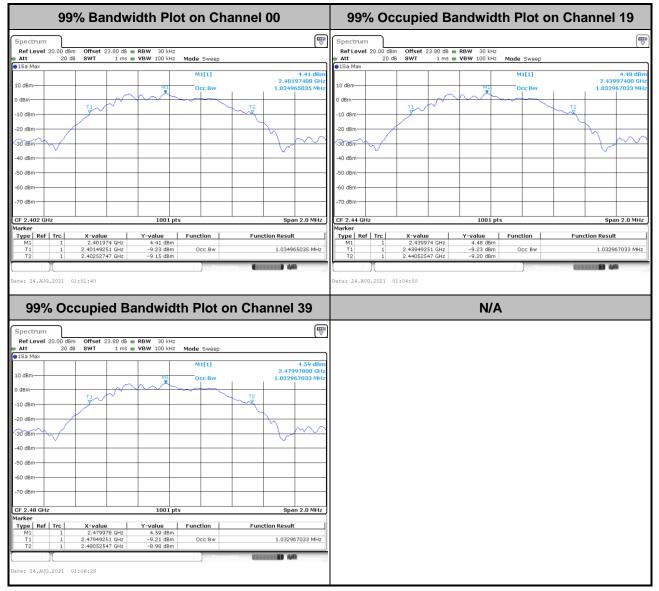

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

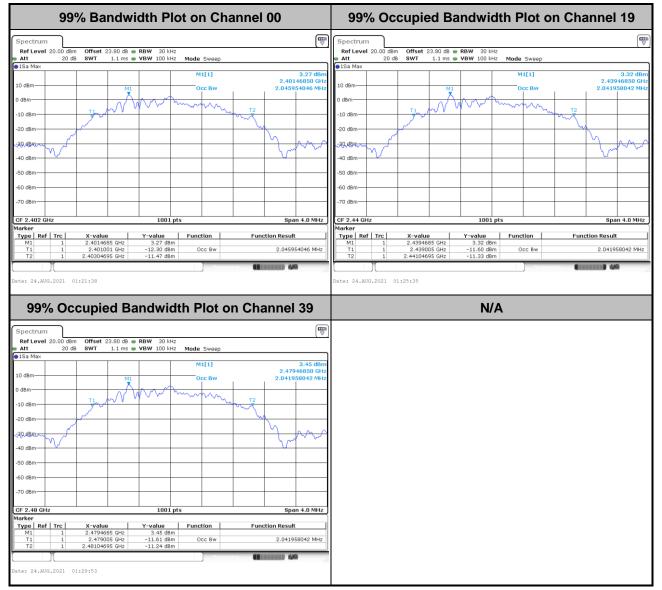
<1Mbps>

<2Mbps>


: 12 of 33 : Mar. 02, 2022 : 02

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

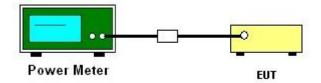
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1.
- 2. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 4. The path loss was compensated to the results for each measurement.
- 5. Set the maximum power setting and enable the EUT to transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

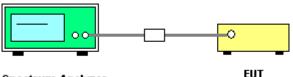
3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

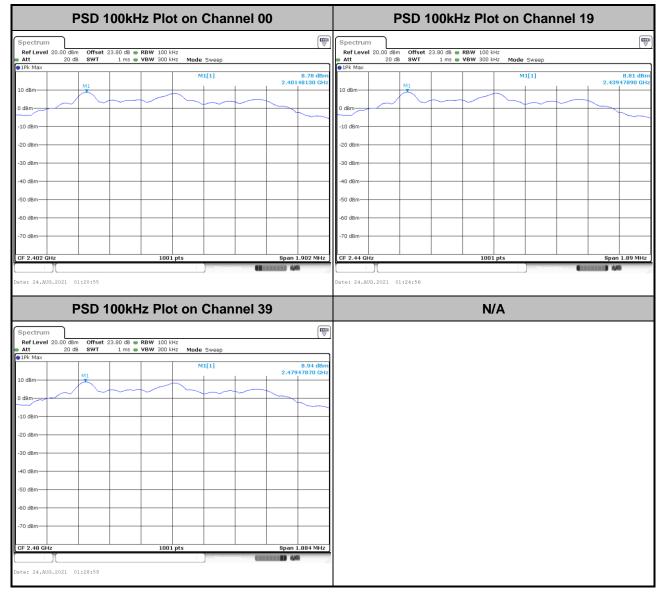
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

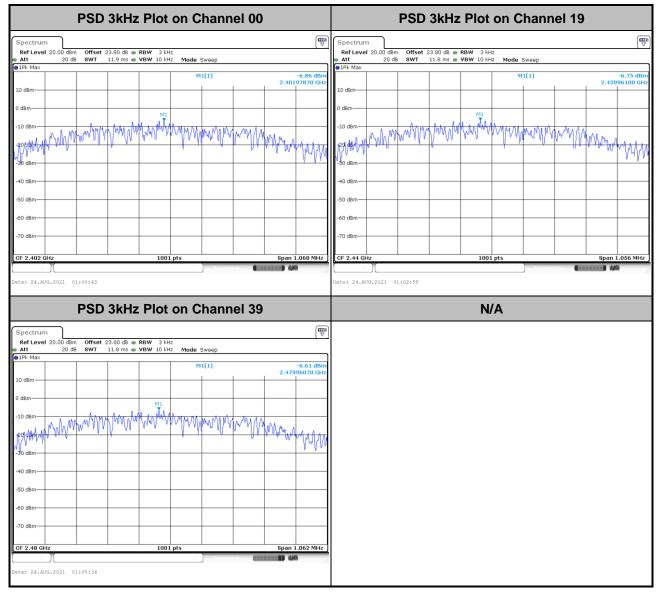
3.3.5 Test Result of Power Spectral Density

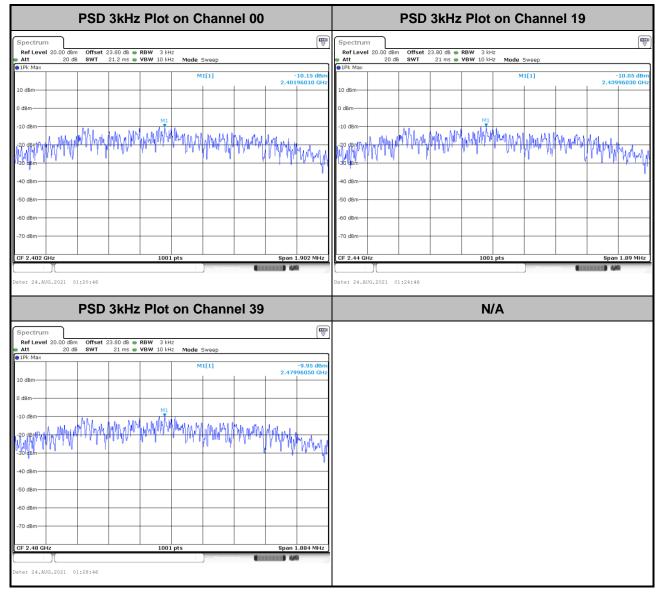
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 100	kHz Plot on Channel	00	PSD 100kHz Plot on Channel 19		
Spectrum Ref Level 20.00 dBm Offset 23.80 d	dB ● RBW 100 kHz		Spectrum Ref Level 20.00 dBm Offset	23.80 dB 🖷 RBW 100 kHz	
Att 20 dB SWT 1 n 1Pk Max	ns • VBW 300 kHz Mode Sweep M1[1]	8.77 dBm	Att 20 dB SWT 1Pk Max	1 ms • VBW 300 kHz Mode	41[1] 8.80 dBm
10 dBm		2.40173860 GHz	10 dBm		2.43973840 GH2
0 dBm			0 dBm		
-20 dBm			-20 dBm		
-30 dBm			-30 dBm		
-40 dBm			-40 dBm		
-60 dBm			-60 dBm		
-70 dBm			-70 dBm		
CF 2.402 GHz	1001 pts	Span 1.068 MHz	CF 2.44 GHz	1001 pts	Span 1.056 MHz
Date: 24.AUG.2021 01:00:53		20	Date: 24.AUG.2021 01:03:14	NI/A	
	kHz Plot on Channel	39		N/A	
Att 20 dB SWT 1 n	dB RBW 100 kHz ns VBW 300 kHz Mode Sweep				
1Pk Max 10 dBm 10 dBm	M1[1]	8.92 dBm 2.47973580 GHz			
0 dBm					
-10 d8m					
-20 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.48 GHz	1001 pts	Span 1.062 MHz			
Date: 24.AUG.2021 01:05:45	Measuring				


<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

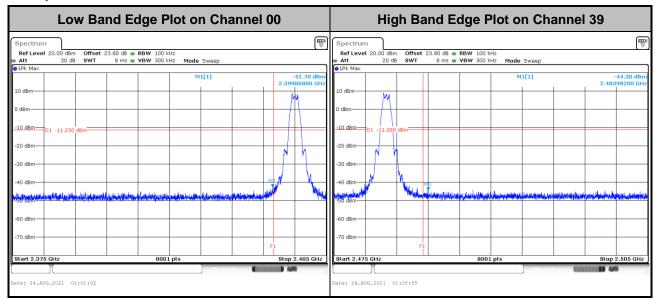
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

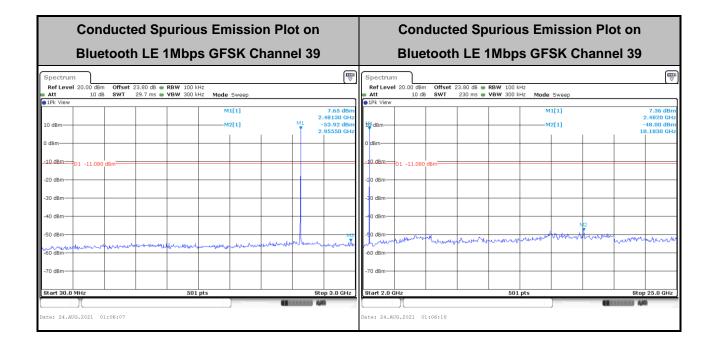

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

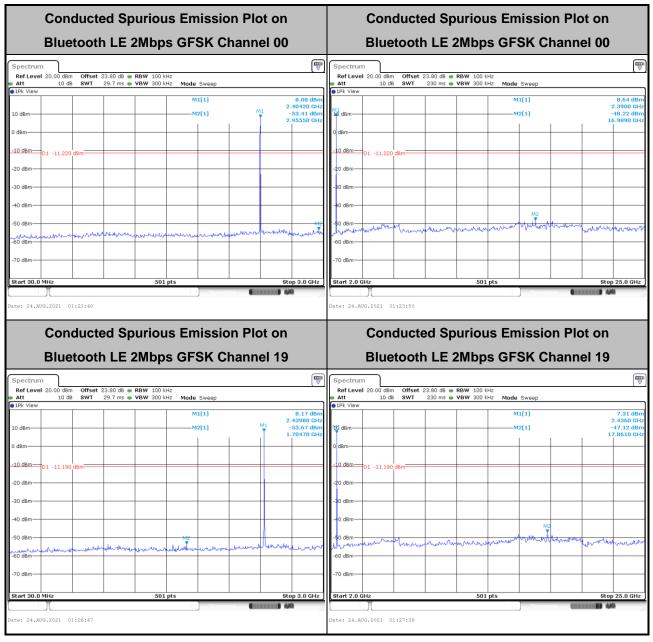
<2Mbps>

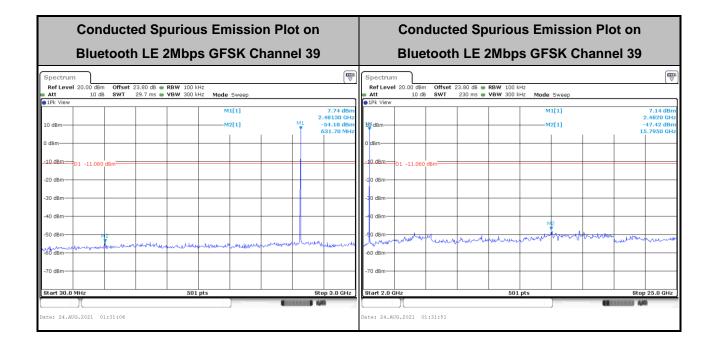
Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Spectrum Image: Constraint of the system Constand of the system Constraint of the	Spectrum ™ Ref Level 20.00 dBm Offset 23.80 dB ⊕ RBW 100 kHz ™ w Att 20 dB SWT 8 ms ⊕ VBW 300 kHz Mode Sweep
•• 19k Max 22.47 dBm 10 dBm 22.47 dBm 0 dBm 22.47 dBm 0 dBm 20 dBm -10 dBm 01 -11.220 dBm	• IPk Max -43.30 dBm 10 dBm 2.48619050 GHz 0 dBm -10.0Bm -10.0Bm -11.060 dBm -20 dBm -11.060 dBm -20 dBm -11.060 dBm -30 dBm -11.060 dBm -20 dBm -11.060 dBm -30 dBm -11.060 dBm -20 dBm -11.060 dBm -30 dBm -11.060 dBm -30 dBm -11.060 dBm -30 dBm -11.060 dBm -50 dBm -11.060 dBm -50 dBm -11.060 dBm -50 dBm -11.060 dBm -70 dBm -11.060 dBm -10.02 dBm -11.02 dBm



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>


Conducted	Spurious Emission		Conducted Spurious Emission Plot on						
Bluetooth I	E 1Mbps GFSK Cha	annel 00	Bluetooth LE 1Mbps GFSK Channel 00						
	0 dB ● RBW 100 kHz			t 23.80 dB • RBW 100 kHz	de Ourse				
Att 10 dB SWT 29.7 1Pk View	rms - VBW 300 kHz Mode Sweep	•1	Att 10 dB SWT	230 ms 🖷 VBW 300 kHz Mo	de Sweep				
10 dBm	M1[1] M2[1]	8.46 dBm 2.40420 GHz -54.52 dBm 1.02300 GHz	dBm		M1[1] -M2[1]	7.34 dBn 2.3900 GH: -49.03 dBn 19.5600 GH:			
dBm			dBm						
0 dBm 01 -11.230 dBm			D dBm D1 -11.230 dBm						
30 dBm			D dBm						
40 dBm		-=0	D dBm						
50 dBm	12	mun valuen of the other	D dBm	montenenterenterent	m Manuly mark	Wwwwwwwwwwwwwwwwwwww			
60 dBm			D dBm						
o ubin						Stop 25.0 GHz			
te: 24.AUG.2021 01:01:14	501 pts	Contract 440	e: 24.AUG.2021 01:01:30	501 pts	Measuring				
	Spurious Emission	Plot on	•: 24.AUG.2021 01:01:30	ted Spurious E		ot on			
te: 24.AUG.2021 01:01:14 Conducted	Nexorine	Plot on annel 19	•: 24.AUG.2021 01:01:30			ot on nel 19			
Conducted Bluetooth L	Spurious Emission -E 1Mbps GFSK Cha	Plot on annel 19	Conduct Bluetoot	ted Spurious Ei th LE 1Mbps GI	FSK Chanr	ot on nel 19			
te: 24,AUG.2021 01:01:14 Conducted Bluetooth L Spectrum Ref Level 20.00 dBm Offset 23.6(Att 10 dB SWT 29.7	Spurious Emission LE 1Mbps GFSK Cha	Plot on annel 19	Conduct Bluetoot	ted Spurious Ei th LE 1Mbps Gi	FSK Chanr	ot on nel 19			
te: 24.800.2021 01:01:14 Conducted Bluetooth L Spectrum Ref Level 20.00 dBm Offset 23.80 Att 10 dB SwT 29.7 IPk View	Spurious Emission -E 1Mbps GFSK Cha	Plot on annel 19	e: 24.AUG.2021 01:01:30 Conduct Bluetoot pectrum ter Level 20.00 dBm Offse swt 10 dB SwT	ted Spurious El th LE 1Mbps GI	FSK Chanr	et on nel 19 €.17 dBn 2.4360 dH -47.26 dBn			
te: 24.AUG.2021 01:01:14 Conducted Bluetooth L Spectrum Ref Level 20.00 dBm Offset 23.00 Att 10 dB SWT 29.7 IPK View I0 dBm 0	Spurious Emission LE 1Mbps GFSK Cha ms • VBW 100 kH2 ms • VBW 100 kH2 Mode Sweep	Plot on annel 19	e: 24.AUG.2021 01:01:30 Conduct Bluetoot Everturm Lef Level 20.00 dBm offse Xtt 10 dB SWT Pk View dBm lBm lBm lBm lBm lBm lBm lBm lBm lBm l	ted Spurious El th LE 1Mbps GI	FSK Chanr de sweep M1[1]	et on nel 19 €.17 dan 2.4360 dH			
te: 24.AUG.2021 01:01:14 Conducted Bluetooth L Spectrum Ref Level 20.00 dBm Offset 23.6(Att 10 dB SWT 29.7 IPk View 0 dBm dBm dBm 01 -11.200 dBm	Spurious Emission LE 1Mbps GFSK Cha ms • VBW 100 kH2 ms • VBW 100 kH2 Mode Sweep	Plot on annel 19	Conduct Bluetoot Ref Level 20.00 dBm Offse tt 10 dB SWT Pk View	ted Spurious El th LE 1Mbps GI	FSK Chanr de sweep M1[1]	et on nel 19 (v 8.17 dbr 2.4360 dr -47.96 dbr			
te: 24.AUG.2021 01:01:14 Conducted Bluetooth L Spectrum Ref Level 20.00 dBm Offset 23.8(Att 10 dB SWT 29.7 IPk View I0 dBm	Spurious Emission LE 1Mbps GFSK Cha ms • VBW 100 kH2 ms • VBW 100 kH2 Mode Sweep	Plot on annel 19	er 24.AUG.2021 01:01:30 Conduct Bluetoon Bluetoon ter Level 20.00 dBm Offse ter Level 20.00 dBm O	ted Spurious El th LE 1Mbps GI	FSK Chanr de sweep M1[1]	et on nel 19 (v 8.17 dbr 2.4360 dr -47.96 dbr			
	Spurious Emission LE 1Mbps GFSK Cha ms • VBW 100 kH2 ms • VBW 100 kH2 Mode Sweep	Plot on annel 19	e: 24.AUG.2021 01:01:30 Conduct Bluetoot Conduct Bluetoot Conduct Bluetoot Conduct Bluetoot Conduct Co	ted Spurious El th LE 1Mbps GI	FSK Chanr de sweep M1[1]	et on nel 19 8.17 dør 2.4360 dr -4.7.96 dør			
	Spurious Emission LE 1Mbps GFSK Cha	Plot on annel 19	e: 24.AUG.2021 01:01:30 Conduc: Bluetoot conduct biter Lavel 20.00 dBm biter Lavel 20.00 dBm biter Lavel 20.00 dBm biter bit	ted Spurious El th LE 1Mbps GI	FSK Chann	et on nel 19 8.17 dør 2.4360 dr -4.7.96 dør			
	Spurious Emission LE 1Mbps GFSK Cha	Plot on annel 19 Si Si		ted Spurious Ei th LE 1Mbps GI	FSK Chann	0t on nel 19			
	Spurious Emission LE 1Mbps GFSK Cha	Plot on annel 19 B.16 dm 975.50 MHz 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e: 24.AUG.2021 01:01:30 Conduc: Bluetoot conduct biter Lavel 20.00 dBm biter Lavel 20.00 dBm biter Lavel 20.00 dBm biter bit	ted Spurious Ei th LE 1Mbps GI	FSK Chann	et on nel 19 8.17 dir 2.4300 dr 4.4300 dr 17.8610 dr			



<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

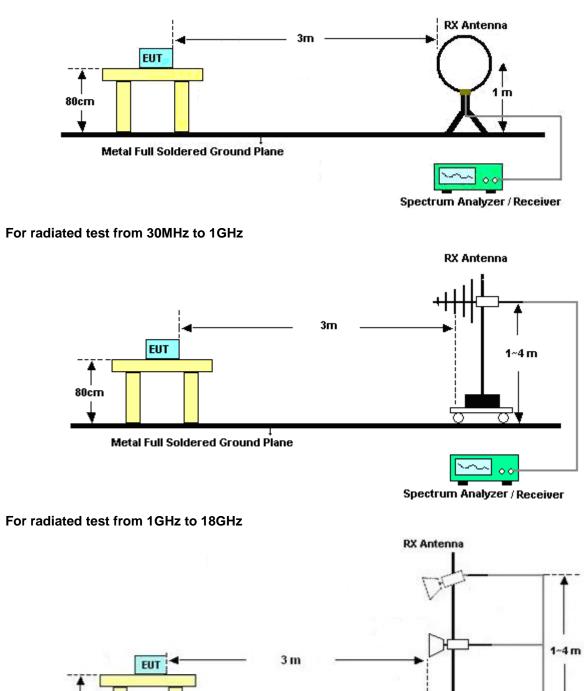
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

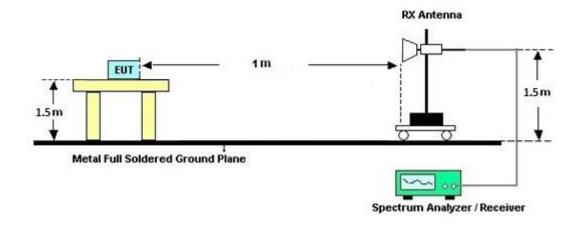

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Metal Full Soldered Ground Plane


1.5m

Page Number	: 29 of 33
Issued Date	: Mar. 02, 2022
Report Version	: 02

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 Antenna Requirements

3.6.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.6.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Aug. 24, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Aug. 24, 2021~ Aug. 26, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 24, 2021~ Aug. 26, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Aug. 24, 2021~ Aug. 26, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 18, 2021	Aug. 24, 2021~ Aug. 26, 2021	May. 17, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 31, 2020	Aug. 24, 2021~ Aug. 26, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	Aug. 24, 2021~ Aug. 26, 2021	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	Aug. 24, 2021~ Aug. 26, 2021	Jul. 21, 2022	Radiation (03CH07-HY)
Filter	Microwave	H1G013G1	SN477215	1GHz High Pass Filter	Oct. 31, 2020	Aug. 24, 2021~ Aug. 26, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682-4	30MHz to 18GHz	Feb. 24, 2021	Aug. 24, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 24, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 24, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,80 1606/2	18GHz~40GHz	Feb. 24, 2021	Aug. 24, 2021~ Aug. 26, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 18, 2020	Aug. 24, 2021~ Aug. 26, 2021	Sep. 17, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 03, 2021	Aug. 24, 2021~ Aug. 26, 2021	Apr. 02, 2022	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	Apr. 28, 2021	Aug. 24, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Aug. 24, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	Apr. 28, 2021	Aug. 24, 2021~ Aug. 26, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 24, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Aug. 24, 2021~ Aug. 26, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 09, 2021	Aug. 24, 2021~ Aug. 26, 2021	Mar. 08, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Dec. 02, 2020	Aug. 24, 2021~ Aug. 26, 2021	Dec. 01, 2021	Radiation (03CH07-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 01, 2021	Aug. 12, 2021~ Aug. 24, 2021	Feb. 28, 2022	Conducted (TH02-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12	10MHz~6GHz	Dec. 16, 2020	Aug. 12, 2021~ Aug. 24, 2021	Dec. 15, 2021	Conducted (TH02-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 01, 2021	Aug. 12, 2021~ Aug. 24, 2021	Jul. 31, 2022	Conducted (TH02-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 01, 2021	Aug. 12, 2021~ Aug. 24, 2021	Jul. 31, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Aug. 12, 2021~ Aug. 24, 2021	Nov. 12, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Aug. 12, 2021~ Aug. 24, 2021	Mar. 16, 2022	Conducted (TH02-HY)

: 32 of 33 Page Number Issued Date Report Version : 02

: Mar. 02, 2022

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9 dB
of 95% (U = 2Uc(y))	4.9 ab

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.1 dB
of 95% (U = 2Uc(y))	on de

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7 dB
of 95% (U = 2Uc(y))	4.7 dB

Report Number : FR180216-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	24.4~24.9	°C
Test Date:	2021/8/12~2021/8/24	Relative Humidity:	47.1~49.6	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	1.035	0.712	0.50	Pass			
BLE	1Mbps	1	19	2440	1.033	0.704	0.50	Pass			
BLE	1Mbps	1	39	2480	1.033	0.708	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>

N	/lod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
E	BLE	1Mbps	1	0	2402	8.76	30.00	-2.10	6.66	36.00	Pass
E	BLE	1Mbps	1	19	2440	8.87	30.00	-2.10	6.77	36.00	Pass
E	BLE	1Mbps	1	39	2480	9.07	30.00	-2.10	6.97	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail			
BLE	1Mbps	1	0	2402	8.60	30.00	-2.10	6.50	36.00	Pass			
BLE	1Mbps	1	19	2440	8.80	30.00	-2.10	6.70	36.00	Pass			
BLE	1Mbps	1	39	2480	9.00	30.00	-2.10	6.90	36.00	Pass			

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	8.77	-6.86	-2.10	8.00	Pass
BLE	1Mbps	1	19	2440	8.80	-6.75	-2.10	8.00	Pass
BLE	1Mbps	1	39	2480	8.92	-6.61	-2.10	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	2.046	1.268	0.50	Pass			
BLE	2Mbps	1	19	2440	2.042	1.260	0.50	Pass			
BLE	2Mbps	1	39	2480	2.042	1.256	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	8.75	30.00	-2.10	6.65	36.00	Pass
BLE	2Mbps	1	19	2440	8.88	30.00	-2.10	6.78	36.00	Pass
BLE	2Mbps	1	39	2480	8.95	30.00	-2.10	6.85	36.00	Pass

TEST RESULTS DATA Average Power Table

	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
ĺ	BLE	2Mbps	1	0	2402	8.60	30.00	-2.10	6.50	36.00	Pass
ĺ	BLE	2Mbps	1	19	2440	8.80	30.00	-2.10	6.70	36.00	Pass
ĺ	BLE	2Mbps	1	39	2480	8.90	30.00	-2.10	6.80	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	8.78	-10.15	-2.10	8.00	Pass
BLE	2Mbps	1	19	2440	8.81	-10.05	-2.10	8.00	Pass
BLE	2Mbps	1	39	2480	8.94	-9.95	-2.10	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

Test Engineer :	Jesse Wang and Stan Hsieh	Temperature :	23.5~25.1°C
lest Engineer .		Relative Humidity :	51.3~55.5%

<Sample 1 with Battery 1>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)	
----------------------	--

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V)
		2366.7	54.55	-19.45	74	40.12	31.83	18.01	35.41	135	80	Р	Н
		2387.805	45.53	-8.47	54	30.94	31.9	18.1	35.41	135	80	А	Н
	*	2402	105.35	-	-	90.72	31.9	18.15	35.42	135	80	Ρ	Н
BLE	*	2402	104.59	-	-	89.96	31.9	18.15	35.42	135	80	А	н
CH 00													Н
2402MHz		2383.92	54.59	-19.41	74	40.04	31.87	18.09	35.41	400	179	Р	V
240211112		2377.62	45.25	-8.75	54	30.73	31.87	18.06	35.41	400	179	А	V
	*	2402	100.08	-	-	85.45	31.9	18.15	35.42	400	179	Р	V
	*	2402	99.33	-	-	84.7	31.9	18.15	35.42	400	179	А	V
													V
		2348.36	54.18	-19.82	74	39.84	31.8	17.94	35.4	100	78	Ρ	Н
		2339.26	45.38	-8.62	54	31.08	31.8	17.9	35.4	100	78	А	Н
	*	2440	105.03	-	-	90.07	32.2	18.19	35.43	100	78	Ρ	Н
	*	2440	104.55	-	-	89.59	32.2	18.19	35.43	100	78	А	н
		2489.43	55.68	-18.32	74	40.29	32.6	18.24	35.45	100	78	Ρ	н
BLE CH 19		2495.94	46.24	-7.76	54	30.86	32.6	18.24	35.46	100	78	А	Н
Сп 19 2440MHz		2384.06	54.54	-19.46	74	39.99	31.87	18.09	35.41	398	182	Р	V
244010112		2365.3	45.23	-8.77	54	30.81	31.83	18	35.41	398	182	А	V
	*	2440	100.52	-	-	85.56	32.2	18.19	35.43	398	182	Ρ	V
	*	2440	100.02	-	-	85.06	32.2	18.19	35.43	398	182	А	V
		2483.55	55.04	-18.96	74	39.79	32.47	18.23	35.45	398	182	Р	V
		2495.24	46.22	-7.78	54	30.84	32.6	18.24	35.46	398	182	А	V

	*	2480	105.03	-	-	89.78	32.47	18.23	35.45	116	79	Р	Н
	*	2480	104.53	-	-	89.28	32.47	18.23	35.45	116	79	А	Н
		2483.52	59.54	-14.46	74	44.29	32.47	18.23	35.45	116	79	Р	Н
		2483.52	46.91	-7.09	54	31.66	32.47	18.23	35.45	116	79	А	Н
													н
BLE													Н
CH 39 2480MHz	*	2480	99.65	-	-	84.4	32.47	18.23	35.45	373	178	Ρ	V
240011112	*	2480	99.1	-	-	83.85	32.47	18.23	35.45	373	178	А	V
		2483.76	55.35	-18.65	74	40.1	32.47	18.23	35.45	373	178	Ρ	V
		2495.4	46.37	-7.63	54	30.99	32.6	18.24	35.46	373	178	А	V
													V
													V
Remark		o other spuriou I results are PA		Peak and	Average li	nit line.							

2.4GHz 2400~2483.5MHz

	[r	[-	SLE (Harm			-	ſ	Γ	r	1	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	. ,	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	41.09	-32.91	74	52.75	34	12.33	57.99	-	-	Р	Н
		4980	44.66	-29.34	74	55.72	34.2	12.52	57.78	-	-	Р	Н
BLE CH 00													H H
2402MHz		4804	41.21	-32.79	74	52.87	34	12.33	57.99	-	-	Р	V
		4980	52.67	-21.33	74	63.73	34.2	12.52	57.78	100	158	Р	V
		4980	41.62	-12.38	54	52.68	34.2	12.52	57.78	100	158	А	V
													V
		4880	42.89	-31.11	74	54.28	34.1	12.41	57.9	-	-	Р	Н
		4980	44.24	-29.76	74	55.3	34.2	12.52	57.78	-	-	Р	Н
		7320	41.89	-32.11	74	49.51	35.6	14.7	57.92	-	-	Ρ	Н
BLE													н
CH 19 2440MHz		4880	41.92	-32.08	74	53.31	34.1	12.41	57.9	-	-	Ρ	V
244010172		4980	53.73	-20.27	74	64.79	34.2	12.52	57.78	100	158	Ρ	V
		4980	42.44	-11.56	54	53.5	34.2	12.52	57.78	100	158	А	V
		7320	41.89	-32.11	74	49.51	35.6	14.7	57.92	-	-	Ρ	V
		4960	41.37	-32.63	74	52.48	34.2	12.5	57.81	-	-	Ρ	Н
		4980	44.15	-29.85	74	55.21	34.2	12.52	57.78	-	-	Ρ	Н
		7440	41.5	-32.5	74	49.04	35.6	14.9	58.04	-	-	Ρ	Н
BLE CH 39													н
сп 39 2480MHz		4960	41.48	-32.52	74	52.59	34.2	12.5	57.81	-	-	Ρ	V
2400141112		4980	53.87	-20.13	74	64.93	34.2	12.52	57.78	100	158	Ρ	V
-		4980	42.24	-11.76	54	53.3	34.2	12.52	57.78	100	158	А	V
		7440	41.82	-32.18	74	49.36	35.6	14.9	58.04	-	-	Р	V
	1. No	o other spurious	s found.			•		-		•			
Remark		results are PA	C C		U U		ission found	d with suf	ficient mar	ain adai	inst limit	line or	noise
		or only.								0			

BLE (Harmonic @ 3m)

	r	Γ	1	Г	2.4GHz E			-	Ē	F	F	1	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		21430	35.9	-38.1	74	51.96	38.17	5.78	60.01	-	-	Р	Н
													н
													н
													н
													н
													Н
													Н
													н
													н
													Н
2.4GHz													Н
BLE													Н
SHF		24860	35.66	-38.34	74	47.5	38.89	6.93	57.66	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1 1	othor cruster	found										V
		o other spurious		mit line									
Remark		I results are PA			0000 50 0000	n o oto -l	inninn farra	1	ficiontar		not limit	line er	noise
		e emission pos	Short marked	ias - M	eans no sus	pectea em	ISSION TOUNC	a with SUF	ncient mar	yın agal	nstimit	ine or	noise
	TIO	or only.											

2.4GHz BLE (SHF)

Emission	below	1GHz
----------	-------	------

2.4GHz BLE (LF) BLE Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table Peak Pol.													
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)			(H/V)
		30	23.53	-16.47	40	28.09	24.57	0.9	30.03	-	-	Р	Н
		48.36	16.96	-23.04	40	30.77	14.95	1.25	30.01	-	-	Р	Н
		106.95	19.32	-24.18	43.5	30.97	16.57	1.77	29.99	-	-	Р	Н
		796.3	30.45	-15.55	46	27.85	27.81	4.39	29.6	-	-	Р	Н
		862.1	31.57	-14.43	46	27.25	28.87	4.62	29.17	-	-	Р	Н
		950.3	32.77	-13.23	46	26.28	30.33	4.87	28.71	-	-	Р	Н
													Н
													Н
													Н
													Н
0.400													Н
2.4GHz													Н
BLE LF		30	30.32	-9.68	40	34.88	24.57	0.9	30.03	-	-	Р	V
LF		45.39	21.21	-18.79	40	33.32	16.69	1.21	30.01	-	-	Р	V
		83.46	20.31	-19.69	40	34.97	13.77	1.57	30	-	-	Р	V
		761.3	29.62	-16.38	46	27.27	27.73	4.28	29.66	-	-	Р	V
		878.9	31.43	-14.57	46	27.11	28.73	4.64	29.05	-	-	Р	V
		957.3	33.62	-12.38	46	26.73	30.67	4.9	28.68	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.	1	<u> </u>		1		1	1	1	1	L
	2. All	results are PA	SS against li	mit line.									
Remark	3. Th	e emission pos	ition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin aga	inst limit	line or	noise
	flo	or only.											
	1												

2.4GHz BLE (LF)

<2Mbps>

_	BLE (Band Edge @ 3m) BLE Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table Peak Pol.														
BLE	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Pos	Avg.			
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)		
		2381.295	53.7	-20.3	74	39.16	31.87	18.08	35.41	356	126	Р	Н		
		2389.065	47.05	-6.95	54	32.45	31.9	18.11	35.41	356	126	А	Н		
	*	2402	106.1	-	-	91.47	31.9	18.15	35.42	356	126	Р	н		
	*	2402	104.78	-	-	90.15	31.9	18.15	35.42	356	126	А	Н		
D 1 C													н		
BLE													н		
CH 00 2402MHz		2388.015	53.93	-20.07	74	39.34	31.9	18.1	35.41	310	20	Р	V		
240211112		2382.66	46.76	-7.24	54	32.22	31.87	18.08	35.41	310	20	А	V		
	*	2402	100.47	-	-	85.84	31.9	18.15	35.42	310	20	Ρ	V		
	*	2402	99.11	-	-	84.48	31.9	18.15	35.42	310	20	А	V		
													V		
													V		
		2384.76	53.95	-20.05	74	39.4	31.87	18.09	35.41	342	125	Р	Н		
		2382.24	46.67	-7.33	54	32.13	31.87	18.08	35.41	342	125	А	н		
	*	2440	106.1	-	-	91.14	32.2	18.19	35.43	342	125	Р	Н		
	*	2440	104.88	-	-	89.92	32.2	18.19	35.43	342	125	А	Н		
BLE		2487.89	55.31	-18.69	74	39.93	32.6	18.23	35.45	342	125	Р	Н		
CH 19		2499.79	48.21	-5.79	54	32.82	32.6	18.25	35.46	342	125	Α	Н		
2440MHz		2377.2	55.33	-18.67	74	40.81	31.87	18.06	35.41	271	41	Р	V		
27701112		2385.32	46.93	-7.07	54	32.38	31.87	18.09	35.41	271	41	А	V		
	*	2440	100.47	-	-	85.51	32.2	18.19	35.43	271	41	Р	V		
	*	2440	99.2	-	-	84.24	32.2	18.19	35.43	271	41	А	V		
		2494.26	54.71	-19.29	74	39.33	32.6	18.24	35.46	271	41	Р	V		
		2498.81	47.69	-6.31	54	32.3	32.6	18.25	35.46	271	41	Α	V		

	*	2480	105.53	-	-	90.28	32.47	18.23	35.45	332	126	Р	Н
	*	2480	104.12	-	-	88.87	32.47	18.23	35.45	332	126	Α	н
		2483.6	60.64	-13.36	74	45.39	32.47	18.23	35.45	332	126	Р	Н
		2483.52	53.01	-0.99	54	37.76	32.47	18.23	35.45	332	126	А	Н
													Н
BLE CH 39													Н
сп зэ 2480MHz	*	2480	99.38	-	-	84.13	32.47	18.23	35.45	296	27	Р	V
2400141112	*	2480	98.13	-	-	82.88	32.47	18.23	35.45	296	27	А	V
		2492.68	55.77	-18.23	74	40.39	32.6	18.24	35.46	296	27	Р	V
		2483.52	48.47	-5.53	54	33.22	32.47	18.23	35.45	296	27	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lii	mit line.							

2.4GHz 2400~2483.5MHz

	1	Г		L	SLE (Harm		JIII)	-	Г	Γ	Г	r	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	41.02	-32.98	74	52.68	34	12.33	57.99	-	-	Р	Н
		4980	45.67	-28.33	74	56.73	34.2	12.52	57.78	-	-	Р	Н
BLE													Н
													н
CH 00		4804	42.86	-31.14	74	54.52	34	12.33	57.99	-	-	Р	V
2402MHz		4980	53.72	-20.28	74	64.78	34.2	12.52	57.78	100	158	Р	V
		4980	45.12	-8.88	54	56.18	34.2	12.52	57.78	100	158	А	V
													V
		4880	42.69	-31.31	74	54.08	34.1	12.41	57.9	-	-	Ρ	Н
		4980	46.15	-27.85	74	57.21	34.2	12.52	57.78	-	-	Ρ	Н
515		7320	40.77	-33.23	74	48.39	35.6	14.7	57.92	-	-	Ρ	Н
BLE													Н
CH 19 2440MHz		4880	43.01	-30.99	74	54.4	34.1	12.41	57.9	-	-	Ρ	V
2440101112		4980	54.07	-19.93	74	65.13	34.2	12.52	57.78	100	158	Р	V
		4980	44.72	-9.28	54	55.78	34.2	12.52	57.78	100	158	А	V
		7320	41.31	-32.69	74	48.93	35.6	14.7	57.92	-	-	Р	V
		4960	42.28	-31.72	74	53.39	34.2	12.5	57.81	-	-	Р	Н
		4980	44.76	-29.24	74	55.82	34.2	12.52	57.78	-	-	Р	Н
		7440	40.88	-33.12	74	48.42	35.6	14.9	58.04	-	-	Р	Н
BLE CH 39													н
сп 39 2480MHz		4960	41.83	-32.17	74	52.94	34.2	12.5	57.81	-	-	Ρ	V
240010172		4980	54.32	-19.68	74	65.38	34.2	12.52	57.78	100	158	Р	V
_		4980	44.99	-9.01	54	56.05	34.2	12.52	57.78	100	158	А	V
		7440	41.55	-32.45	74	49.09	35.6	14.9	58.04	-	-	Р	V
	1. No	o other spurious	s found.			•		-		•		·	
Remark	2. Al	l results are PA	SS against F	Peak and	l Average lim	it line.							
	3. Tr	ne emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

BLE (Harmonic @ 3m)

	1	r	[-	2.4GHz E			-	ſ	F	ſ	ſ	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		24580	35.13	-38.87	74	47.34	39	6.79	58	-	-	Р	V
													Н
													н
													Н
													н
													Н
													Н
													н
													Н
													Н
2.4GHz													Н
BLE													Н
SHF		21045	36.11	-37.89	74	52.45	38.1	5.65	60.09	-	-	Ρ	Н
••••													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA											
		e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

2.4GHz BLE (SHF)

Emission	below	1GHz
----------	-------	------

	1	2.4GHz BLE (LF) Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table I													
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.		
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)			
		30.54	22.62	-17.38	40	27.56	24.17	0.92	30.03	-	-	P	H		
		50.79	16.79	-23.21	40	31.56	13.95	1.29	30.01	-	-	Р	н		
		118.56	17.1	-26.4	43.5	27.89	17.34	1.86	29.99	-	-	Р	Н		
		830.6	30.61	-15.39	46	27.63	27.83	4.53	29.38	-	-	Р	Н		
		891.5	32.32	-13.68	46	27.97	28.67	4.65	28.97	-	-	Ρ	Н		
		957.3	33.36	-12.64	46	26.47	30.67	4.9	28.68	-	-	Ρ	Н		
													Н		
													Н		
													Н		
													Н		
2.4GHz													Н		
BLE													Н		
LF		30	29.91	-10.09	40	34.47	24.57	0.9	30.03	-	-	Ρ	V		
		45.66	20.09	-19.91	40	32.35	16.54	1.21	30.01	-	-	Р	V		
		91.02	18.91	-24.59	43.5	32.56	14.73	1.61	29.99	-	-	Р	V		
		860	31.05	-14.95	46	26.78	28.83	4.62	29.18	-	-	Р	V		
		906.2	32.64	-13.36	46	28.21	28.63	4.69	28.89	-	-	Ρ	V		
		955.2	33.65	-12.35	46	26.9	30.55	4.89	28.69	-	-	Р	V		
													V		
													V		
													V		
													V		
													V		
													V		
		o other spurious													
Remark		l results are PA				<i>,</i> .			.						
		ne emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ticient mar	gin aga	inst limit	line or	noise		
	tlo	or only.													

2.4GHz BLE (LF)

<Sample 1 with Battery 2>

<2Mbps>

BLE (Band Edge @ 3m) BLE Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table Peak Pol.														
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.	
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)		
	*	2480	102.8	-	-	87.55	32.47	18.23	35.45	331	138	Ρ	н	
	*	2480	101.57	-	-	86.32	32.47	18.23	35.45	331	138	А	Н	
		2483.6	56.39	-17.61	74	41.14	32.47	18.23	35.45	331	138	Ρ	Н	
		2483.52	50.31	-3.69	54	35.06	32.47	18.23	35.45	331	138	А	Н	
BLE													н	
CH 39													Н	
2480MHz	*	2480	99.97	-	-	84.72	32.47	18.23	35.45	399	173	Р	V	
240011112	*	2480	98.49	-	-	83.24	32.47	18.23	35.45	399	173	А	V	
		2483.88	55.74	-18.26	74	40.49	32.47	18.23	35.45	399	173	Ρ	V	
		2483.68	49.23	-4.77	54	33.98	32.47	18.23	35.45	399	173	А	V	
													V	
													V	
1. No other spurious found. 2. All results are PASS against Peak and Average limit line.														

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	(118.0)
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	41.39	-32.61	74	52.5	34.2	12.5	57.81	-	-	Р	Н
		4980	45.7	-28.3	74	56.76	34.2	12.52	57.78	-	-	Р	н
		7440	40.79	-33.21	74	48.33	35.6	14.9	58.04	-	-	Р	н
BLE CH 39 2480MHz													н
		4960	41.37	-32.63	74	52.48	34.2	12.5	57.81	-	-	Р	V
240010112		4980	54.62	-19.38	74	65.68	34.2	12.52	57.78	100	159	Р	V
		4980	44	-10	54	55.06	34.2	12.52	57.78	100	159	А	V
		7440	42.29	-31.71	74	49.83	35.6	14.9	58.04	-	-	Р	V
	1. N	o other spurious	s found.										
Remark	2. A	II results are PA	SS against F	Peak and	Average lim	it line.							
	3. Т	he emission pos	ition marked	l as "-" m	eans no sus	pected em	ission found	d with suff	ficient mar	gin agai	nst limit	line or	noise
	fl	oor only.											

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

BLE Peak Pol. Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table Factor Limit Line Factor Pos Pos Avg. Level Loss (deg) (P/A) (H/V) (MHz) (dBµV/m) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) Ρ 24881 35.95 -38.05 74 47.73 38.91 6.94 57.63 ٧ --Н Н Н н Н Н Н Н Н Н 2.4GHz Н BLE Ρ 21283 35.9 74 52.1 5.73 60.04 Н -38.1 38.11 --SHF V V V V V V V V V ٧ V 1. No other spurious found. All results are PASS against limit line. 2. Remark 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

2.4GHz BLE (SHF)

Emission	below	1GHz
----------	-------	------

	1	ſ	-	F	2.4GHz)	-	ſ	Γ	Γ	ſ	T
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		30.54	22.57	-17.43	40	27.51	24.17	0.92	30.03	-	-	Р	Н
		39.72	18.5	-21.5	40	27.85	19.53	1.14	30.02	-	-	Р	Н
		106.95	17.33	-26.17	43.5	28.98	16.57	1.77	29.99	-	-	Ρ	Н
		769.7	30.47	-15.53	46	28.06	27.75	4.31	29.65	-	-	Ρ	Н
		869.8	32.46	-13.54	46	28.19	28.76	4.63	29.12	-	-	Р	Н
		947.5	33.66	-12.34	46	27.42	30.1	4.86	28.72	-	-	Р	Н
													Н
													н
													Н
													Н
													Н
2.4GHz													Н
BLE		30	29.76	-10.24	40	34.32	24.57	0.9	30.03	-	-	Р	V
LF		46.74	23.75	-16.25	40	36.75	15.78	1.23	30.01	-	-	Р	V
		64.29	21.46	-18.54	40	38.28	11.77	1.41	30	-	-	Р	V
		818.7	29.85	-16.15	46	27.38	27.45	4.48	29.46	-	-	Ρ	V
		892.9	31.67	-14.33	46	27.32	28.66	4.65	28.96	-	-	Ρ	V
		952.4	33.48	-12.52	46	26.87	30.43	4.88	28.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.	<u> </u>	1	<u> </u>	1		<u> </u>	<u> </u>	<u>I</u>	I	L
	2. Al	l results are PA	.SS against li	mit line.									
Remark	3. Th	e emission pos	sition marked	las"-"m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	[.] noise
		or only.											
		-											

2.4GHz BLE (LF)

-	-
*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

A calculation example for radiated spurious emission is shown as below:

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

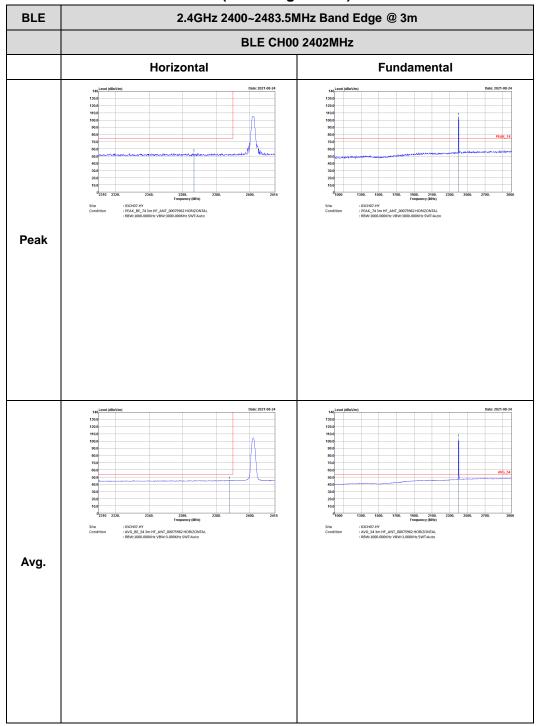
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

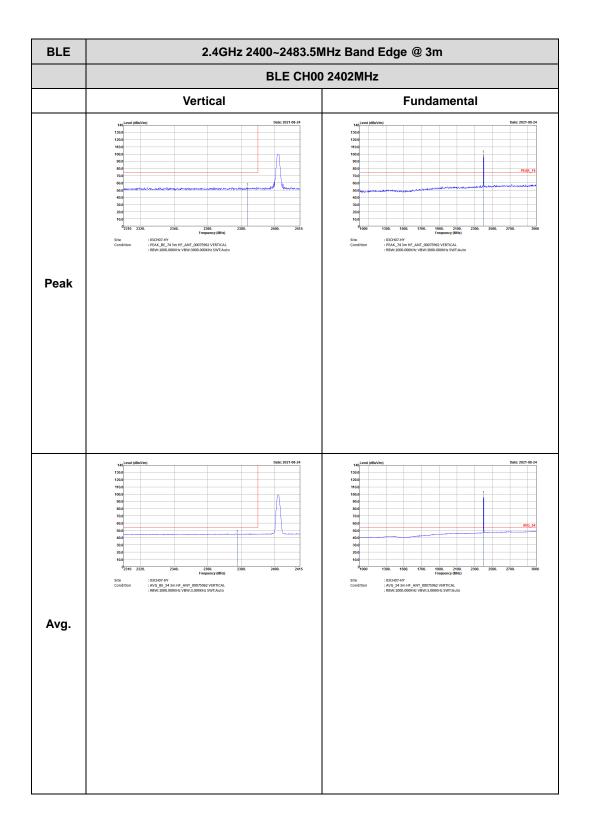
Toot Engineer	Jesse Wang and Stan Hsieh	Temperature :	23.5~25.1°C
Test Engineer :		Relative Humidity :	51.3~55.5%

Note symbol

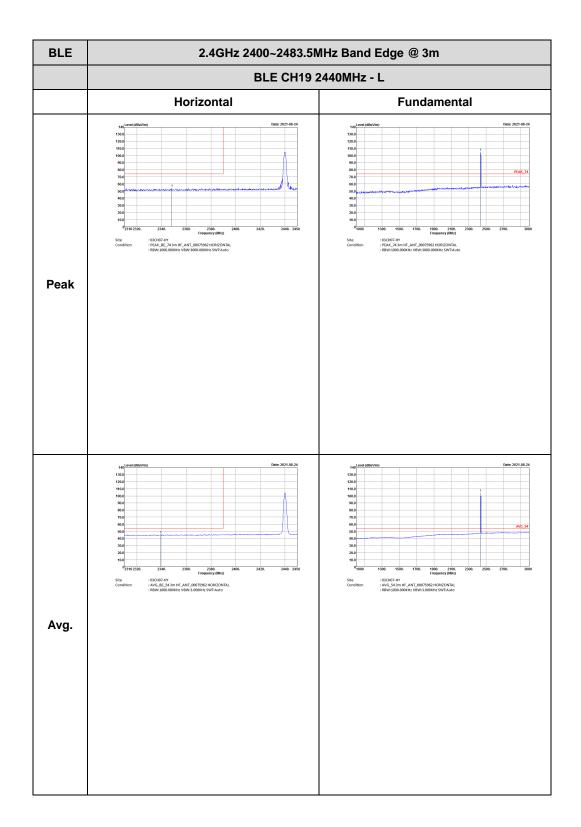
-L	Low channel location
-R	High channel location

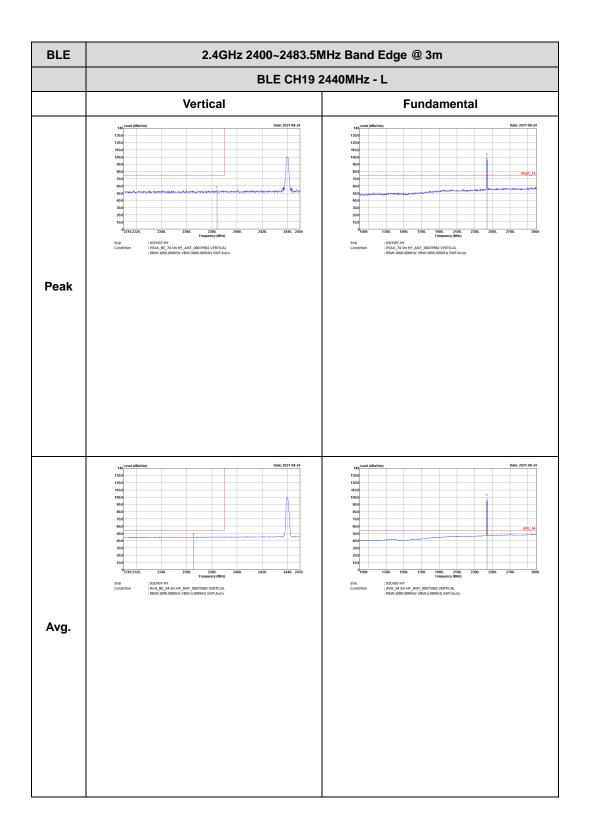


<Sample 1 with Battery 1>

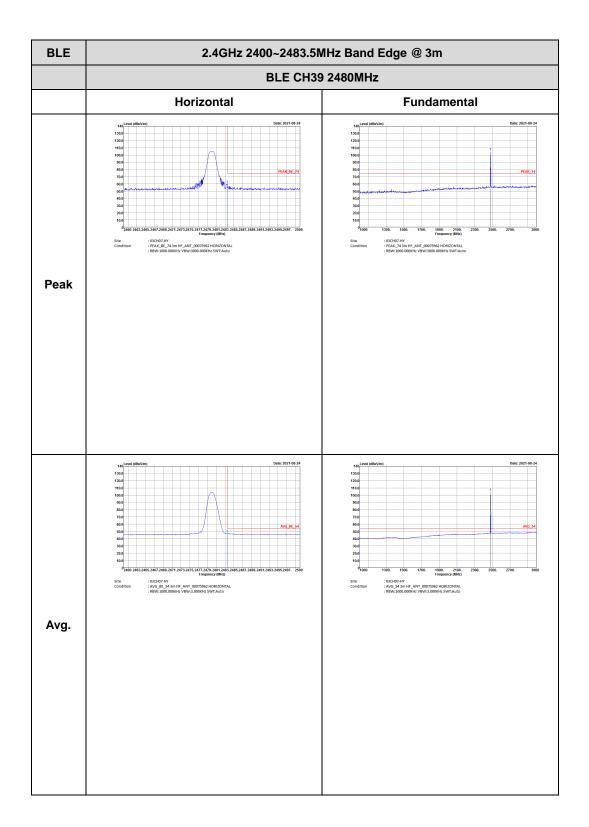

<1Mbps>

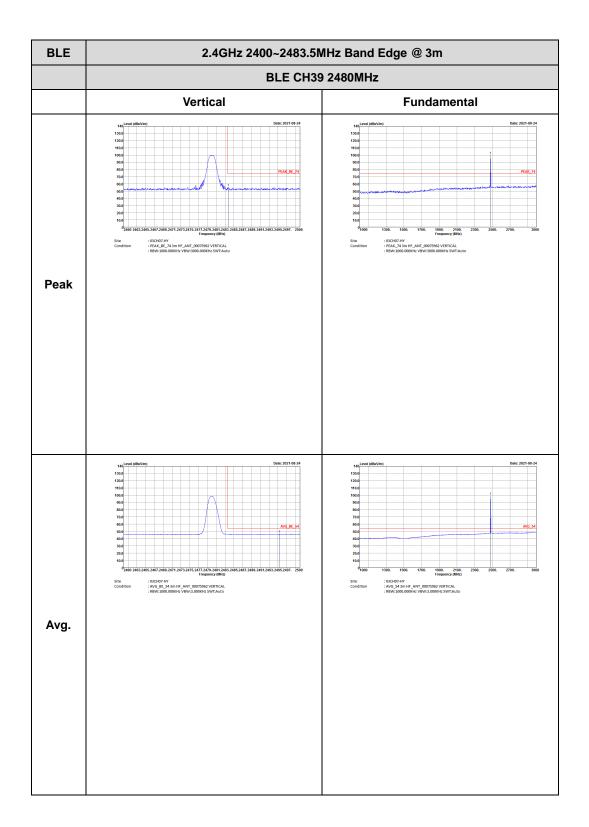
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

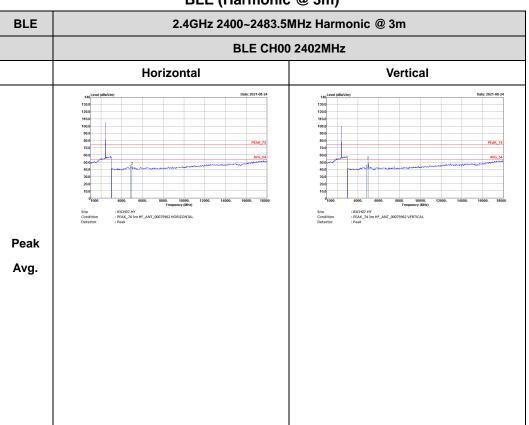


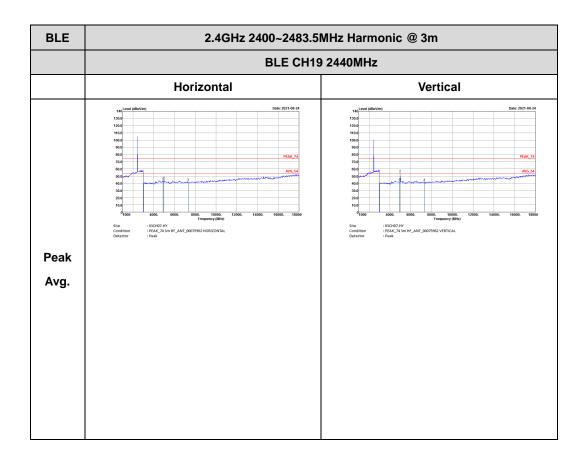
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2	440MHz - R			
	Horizontal	Fundamental			
Peak	interfactorDistributioninterfactorDistributi	Left blank			
Avg.	image: state stat	Left blank			

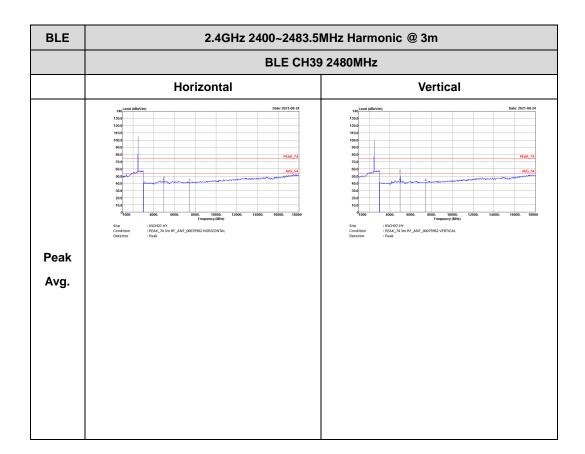


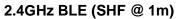


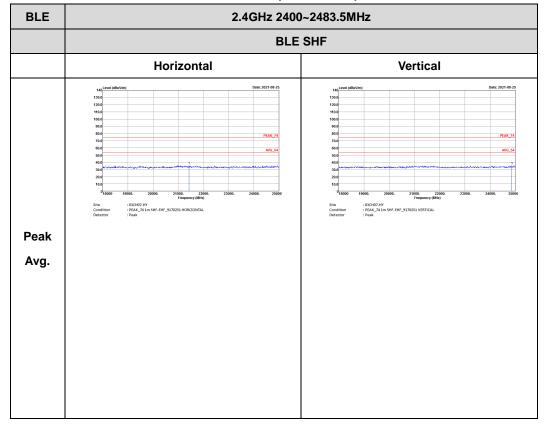
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2	440MHz - R			
	Vertical	Fundamental			
Peak	<figure></figure>	Left blank			
Avg.	enderstanding for the second s	Left blank			

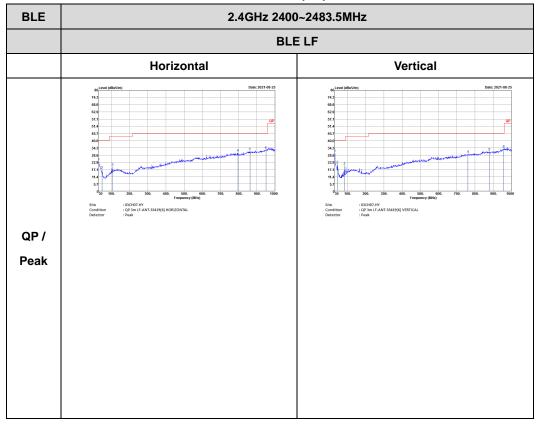




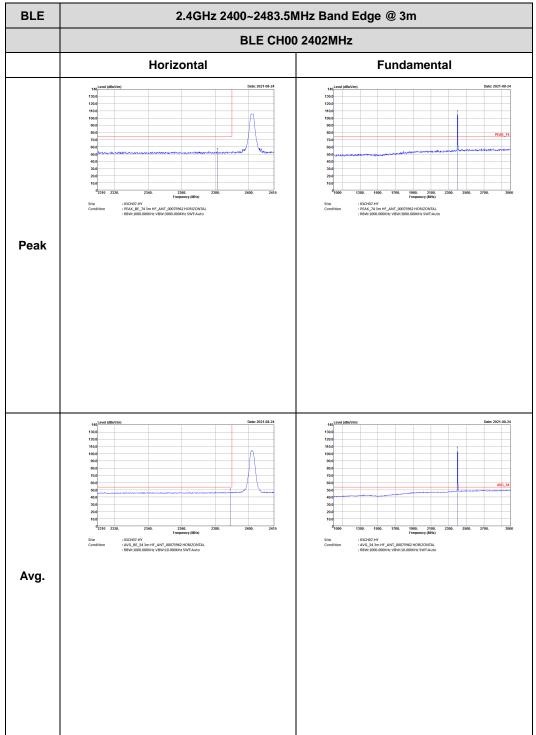


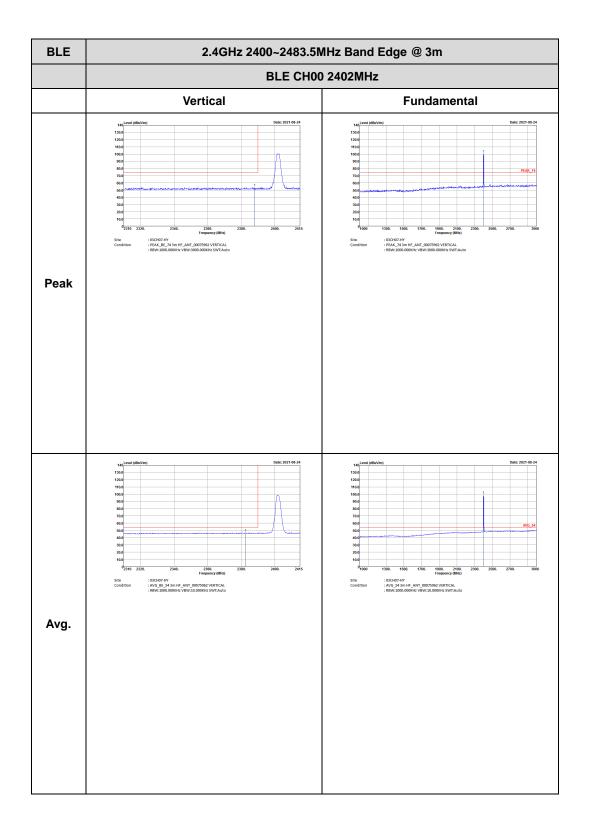




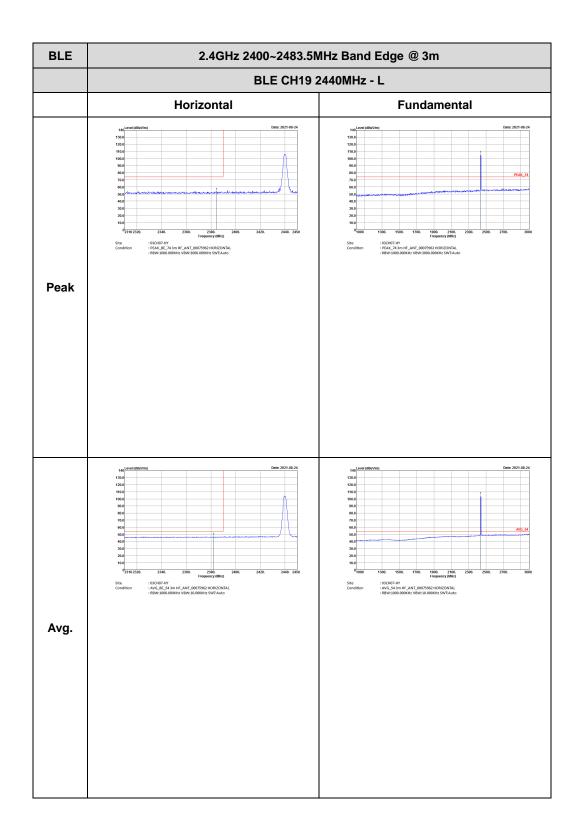


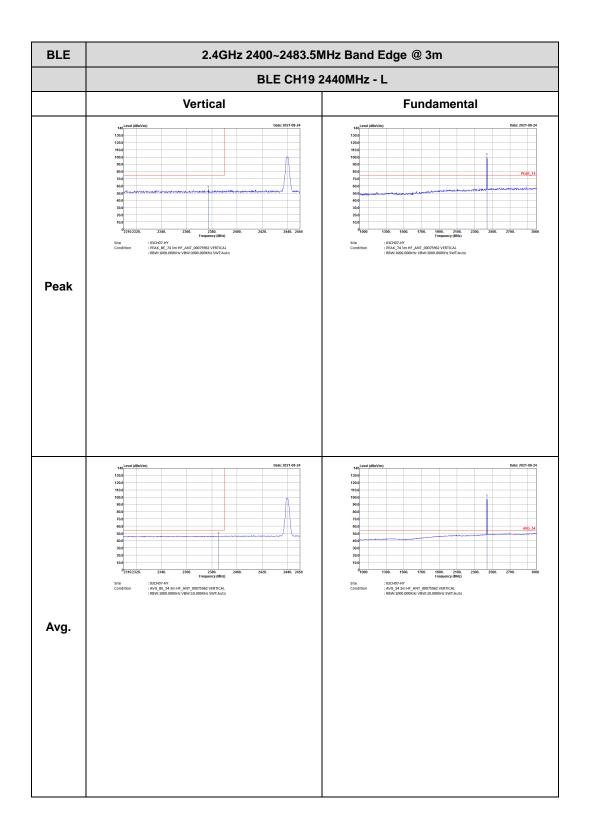
Emission below 1GHz



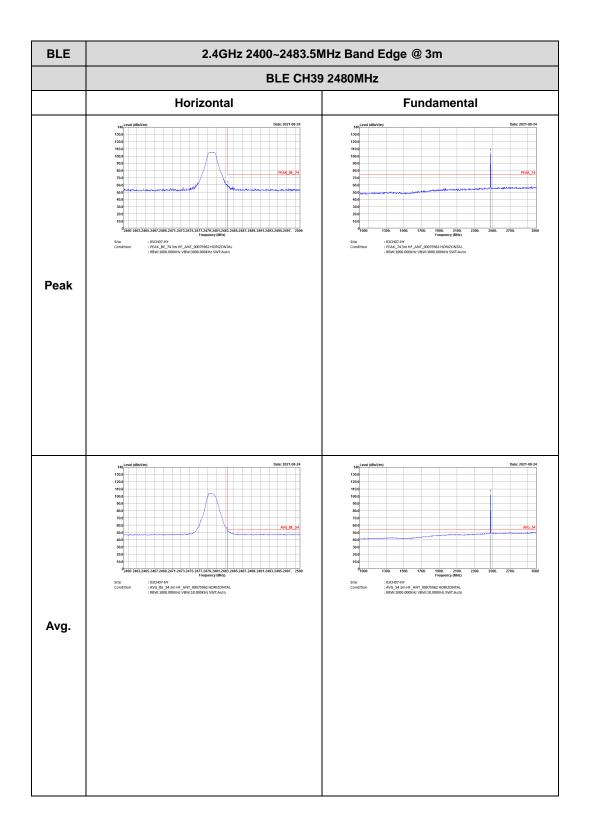


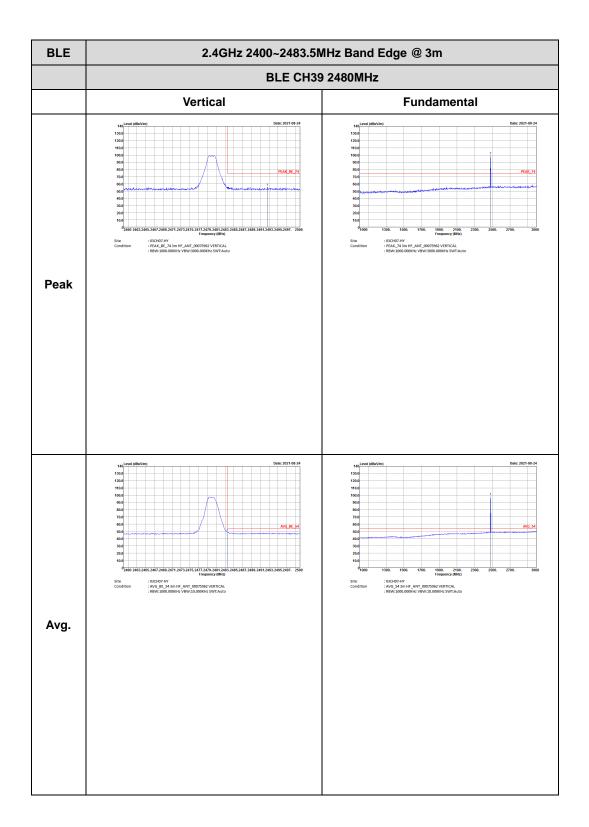
<2Mbps>



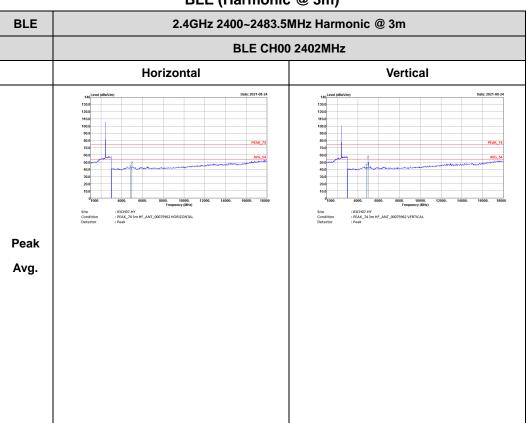


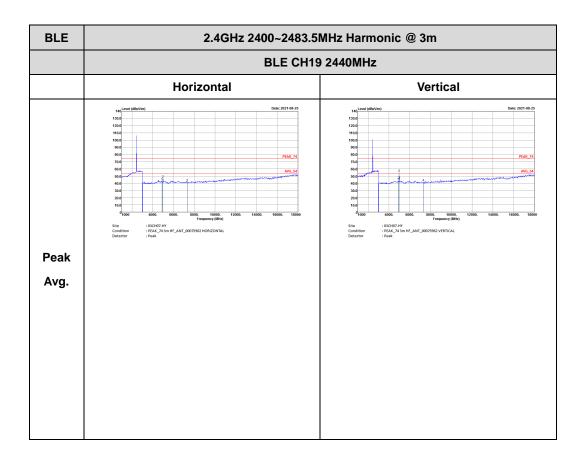
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2	440MHz - R			
	Horizontal	Fundamental			
Peak	eventilitieDescriptiond	Left blank			
Avg.	Image: Addition of the second seco	Left blank			



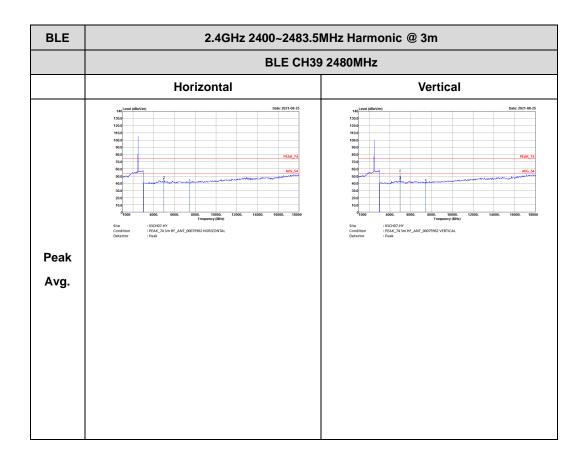


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2	440MHz - R				
	Vertical	Fundamental				
Peak	ending the state of the stat	Left blank				
Avg.	Image: With With With With With With With With	Left blank				

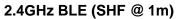


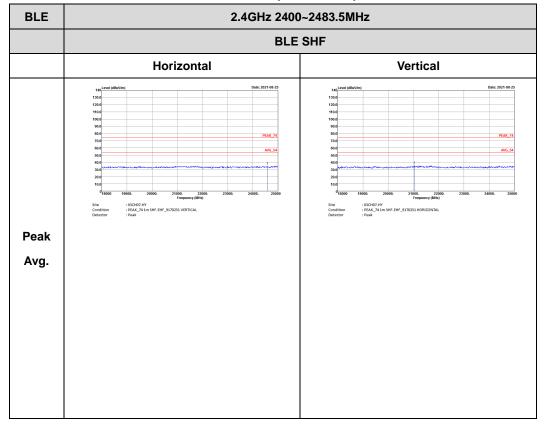


2.4GHz 2400~2483.5MHz

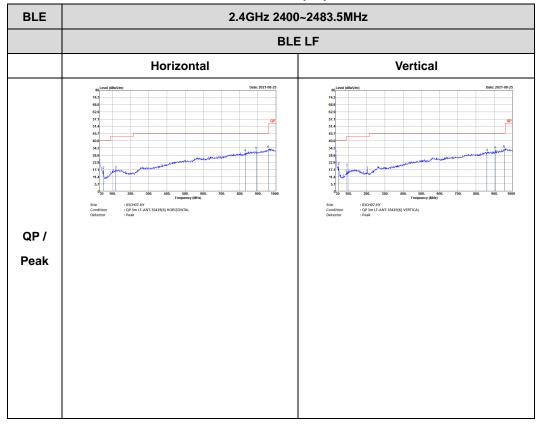


BLE (Harmonic @ 3m)

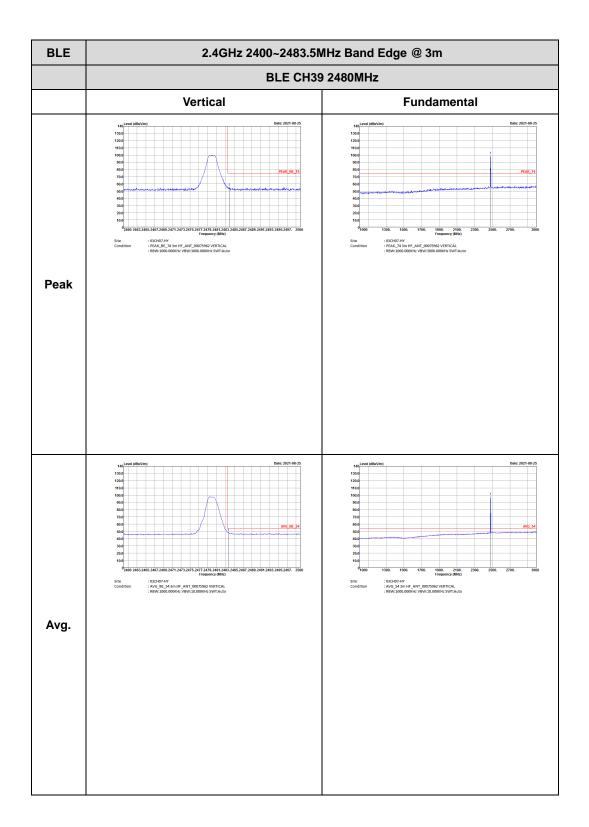




Emission above 18GHz

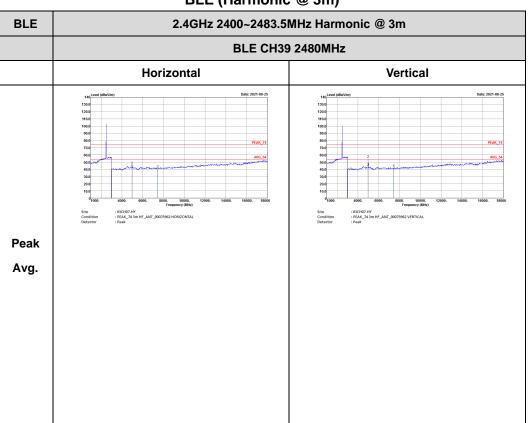


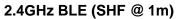
Emission below 1GHz

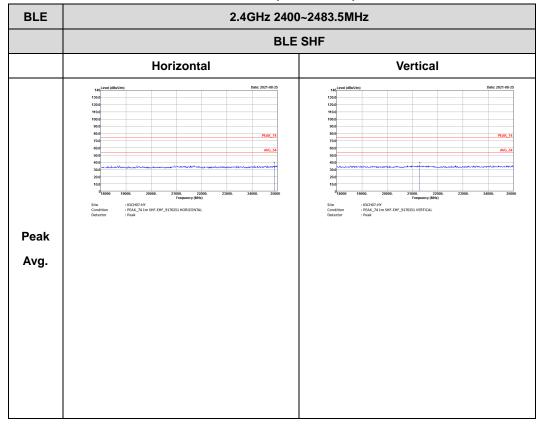

<Sample 1 with Battery 2>

<2Mbps>

2.4GHz 2400~2483.5MHz

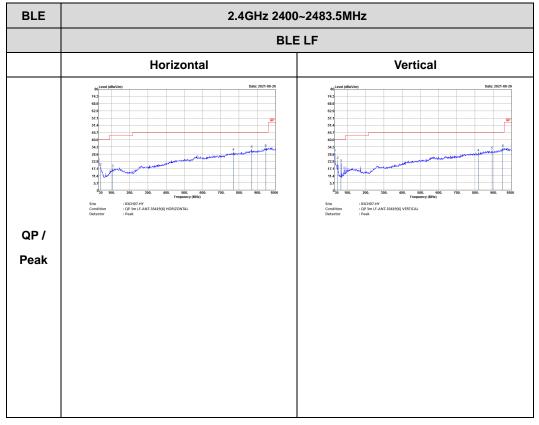

BLE (Band Edge @ 3m) BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH39 2480MHz Horizontal Fundamental 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 20.0 10.0 0 0 0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 : 03CH07-HY : PEAK_74 3m HF_ANT_00075962 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Aut : 03CH07-HY : PEAK_BE_74 3m HF_ANT_00075962 HORIZONTAL · RRW-1000 000KHz VBW:3000.000KHz SWT:Auto Site Cond Peak 1400 130.0 120.0 110.0 100.0 90.0 90.0 70.0 60.0 50.0 40.0 20.0 10.0 20.0 10.0 10.0 20.0 10 130.0 120.0 110.0 90.0 90.0 80.0 70.0 60.0 50.0 40.0 : 03CH07-HY : AVG_54 3m HF_ANT_00075962 HORIZONTAL : RBW:1000.000KHz VBW:10.000KHz SWT:Auto Site : 03CH07-HY : AVG_BE_54 3m HF_ANT_00075962 HORIZONTAL : RBW:1000.000KHz VBW:10.000KHz SWT:Auto Site Avg.


2.4GHz 2400~2483.5MHz

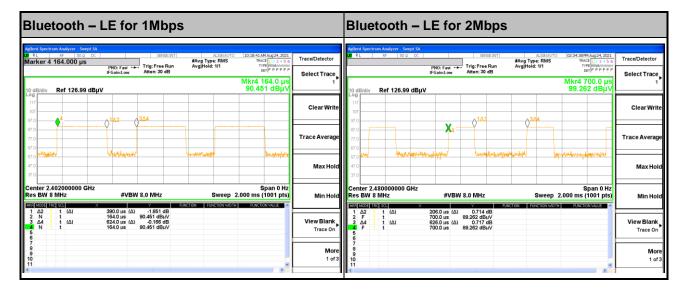


BLE (Harmonic @ 3m)

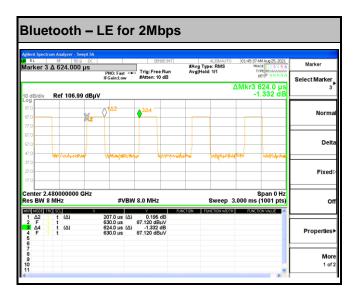
Emission above 18GHz



Emission below 1GHz



Appendix D. Duty Cycle Plots


<Sample 1 with Battery 1>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE for 1Mbps	62.50	390	2.56	3kHz
Bluetooth –LE for 2Mbps	32.91	206	4.85	10kHz

<Sample 1 with Battery 2>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 2Mbps	33.17	207	4.83	10kHz

