

Report No. : FR490411

FCC RADIO TEST REPORT

FCC ID : TTUBEOPLAYEXCG2

Equipment : Charging Case
Brand Name : Bang & Olufsen
Model Name : EX Case G2

Applicant : Bang & Olufsen A/S

Bang og Olufsen Allé 1, 7600 Struer, Denmark

Manufacturer : Bang & Olufsen A/S

Bang og Olufsen Allé 1, 7600 Struer, Denmark

Standard : FCC Part 15 Subpart C §15.247

The product was received on Aug. 02, 2021 and testing was started from Aug. 10, 2021 to Sep. 27, 2024. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

Table of Contents

Report No.: FR490411

His	tory o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	5	
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	6
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	33
4	List	of Measuring Equipment	34
5	Meas	surement Uncertainty	36
Ар	pendi	x A. Conducted Test Results	
Аp	pendi	x B. AC Conducted Emission Test Result	
Ар	pendi	x C. Radiated Spurious Emission	
Ар	pendi	x D. Radiated Spurious Emission Plots	
Ар	pendi	x E. Duty Cycle Plots	
Δn	nandi	x F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

History of this test report

Report No.: FR490411

Report No.	Version	Description	Issued Date
FR490411	01	Initial issue of report	Nov. 07, 2024
FR490411	02	Revise Carrier Frequency Channel This report is an updated version, replacing the report issued on Nov. 07, 2024.	Nov. 12, 2024

Summary of Test Result

Report No.: FR490411

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Pass	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	4.47 dB under the limit at 2483.64 MHz
3.6	15.207	AC Conducted Emission	Pass	9.65 dB under the limit at 0.17 MHz
3.7	15.203	Antenna Requirement	Pass	-

Note: This is a variant report by updating accessories and adding charging case 2. All the test cases were performed on original report which can be referred to Sporton Report Number FR180213-01. Based on the original report, only worst case was verified.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Lewis Ho Report Producer: Mila Chen

TEL: 886-3-327-3456 Page Number : 4 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
General Specs				
Bluetooth - LE and WPC Rx.				
Antenna Type Bluetooth - LE: Printed Antenna WPC Rx: Coil Antenna				
Sample 1	Charging case 1: CPS / CPS3039			
Sample 2	Charging case 2: CPS / CPS4019 + TI / BQ25180			

Report No.: FR490411

Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-2.10	

Remark:

- 1. The difference between Sample 1 and Sample 2 is component replacement and not affect RF functionality.
- 2. The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessory				
Plustooth Fornhans (P)	Brand Name	Bang & Olufsen		
Bluetooth Earphone (R)	Model Name	EX Earbud R		
Plustaeth Fernhans (L)	Brand Name	Bang & Olufsen		
Bluetooth Earphone (L)	Model Name	EX Earbud L		
Dottom: 1	Brand Name	VDL		
Battery 1	Model Name	751646		
Pottory 2	Brand Name	Apower Electronics Co.,Ltd. (AEC)		
Battery 2	Model Name	751646		
Pottory 2	Brand Name	Apower Electronics Co.,Ltd. (AEC)		
Battery 3	Model Name	751646A		
	Brand Name	Bang & Olufsen		
USB Cable 1	Model Name	BHC568		
	Manufacturer	Mingji		
	Brand Name	Bang & Olufsen		
USB Cable 2	Model Name	BHC568		
	Manufacturer	Perfect Cable		
	Brand Name	Bang & Olufsen		
USB Cable 3 (A to C)	Model Name	BHC568		
	Manufacturer	Yingtong		
	Brand Name	Bang & Olufsen		
USB Cable 4 (C to C)	Model Name	BHC569		
	Manufacturer	Yongzhou SanYu Electronic Technology Co., LTD		

TEL: 886-3-327-3456 Page Number : 5 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
	No.52, Huaya 1st Rd., Guishan Dist.,
Test Site Location	Taoyuan City 333, Taiwan (R.O.C.)
rest Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
rest site No.	TH02-HY, CO05-HY, 03CH07-HY

Report No.: FR490411

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

Report No.: FR490411

Remark: The EUT pre-scanned EUT charging with notebook, Standalone (w/ or w/o earphone), and EUT charging with WPC, the worst case is standalone mode, and only the worst case emissions were reported in this report..

TEL: 886-3-327-3456 Page Number : 7 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

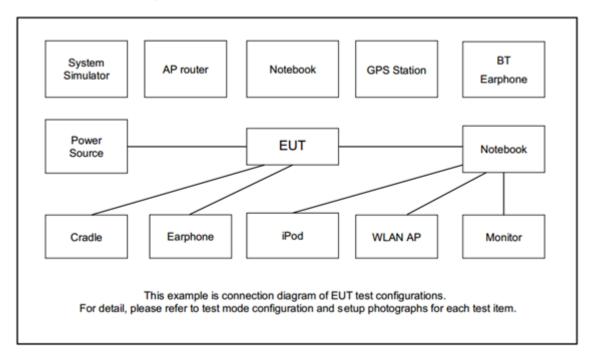
2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No. : FR490411

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth – LE / GFSK					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
rest Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	Mode 1: Bluetooth Link with mobile phone + Bluetooth Earphone (L+R) Charging					
AC Conducted mode via Charging Case + USB Cable 4 (Charging from No						
Emission	Mode 2: Bluetooth Link with mobile phone + Bluetooth Earphone (L+R) Charging					
	mode via Charging Case + USB Cable 3 (Charging from Notebook)					
Remark:						

Remark:

- 1. The worst case of Conducted Emission is mode 1; only the test data of it was reported.
- 2. For Radiated Test Cases, the tests were performed with USB Cable 3 and 4.

TEL: 886-3-327-3456 Page Number : 8 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

2.3 Connection Diagram of Test System

Report No. : FR490411

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Phone	SAMSUNG	GT-N7000	A3LSMA730F	N/A	N/A
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "btool V1.42.10" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 9 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No. : FR490411

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-3456 Page Number : 10 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3 Test Result

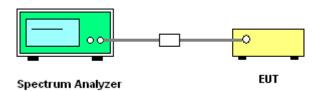
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

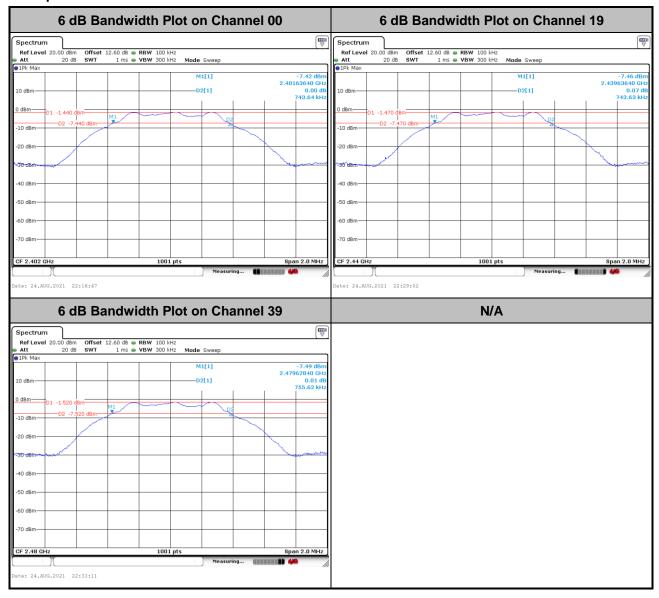

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No. : FR490411

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

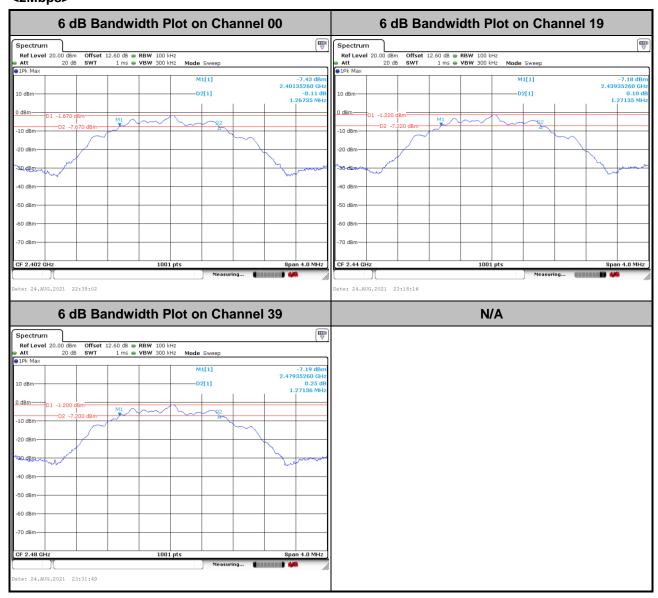
3.1.4 Test Setup



TEL: 886-3-327-3456 Page Number : 11 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.1.5 Test Result of 6dB Bandwidth

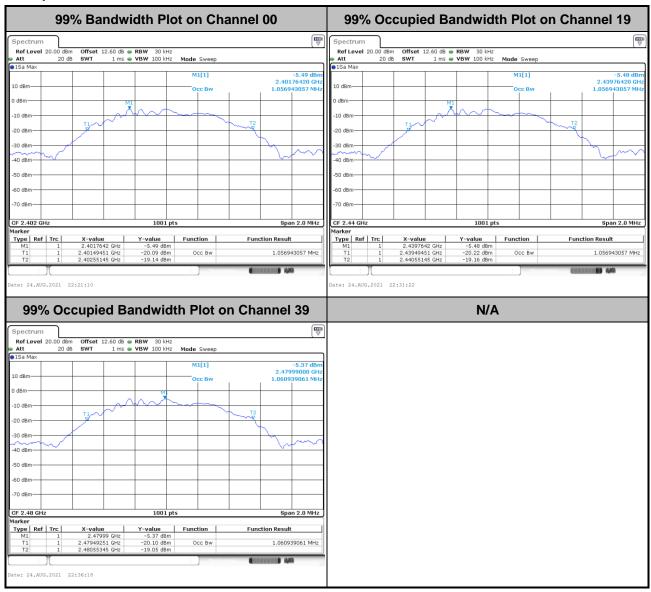
Please refer to Appendix A.


<1Mbps>

Report No. : FR490411

TEL: 886-3-327-3456 Page Number : 12 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

<2Mbps>

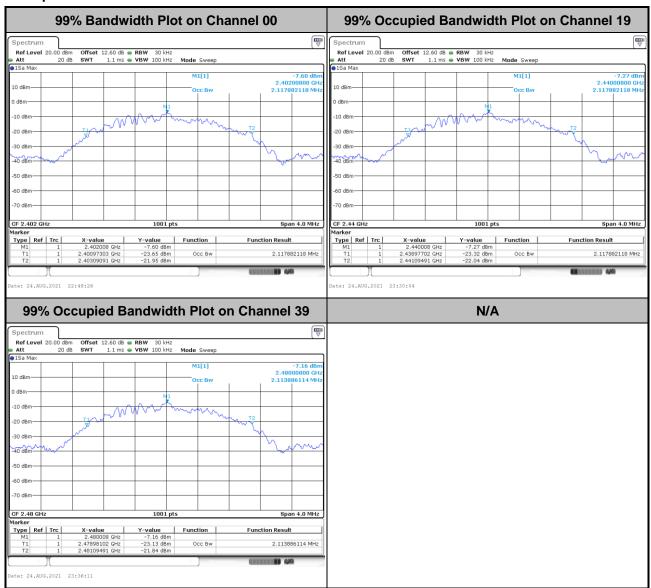

Report No.: FR490411

TEL: 886-3-327-3456 Page Number : 13 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024 : 02

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>



Report No. : FR490411

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 14 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

<2Mbps>

Report No. : FR490411

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

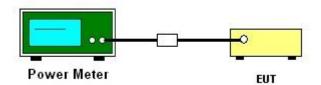
TEL: 886-3-327-3456 Page Number : 15 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Report No. : FR490411


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1.
- 2. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 4. The path loss was compensated to the results for each measurement.
- 5. Set the maximum power setting and enable the EUT to transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

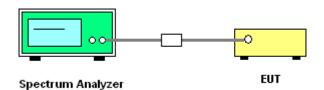
TEL: 886-3-327-3456 Page Number : 16 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

Report No. : FR490411

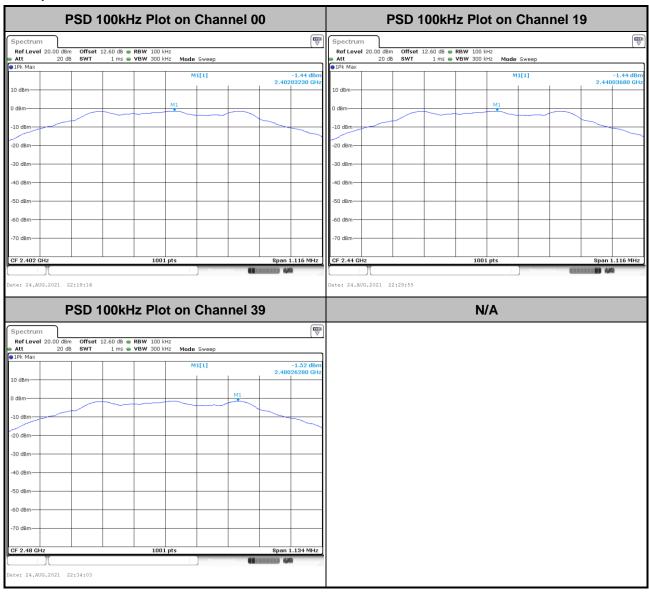

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

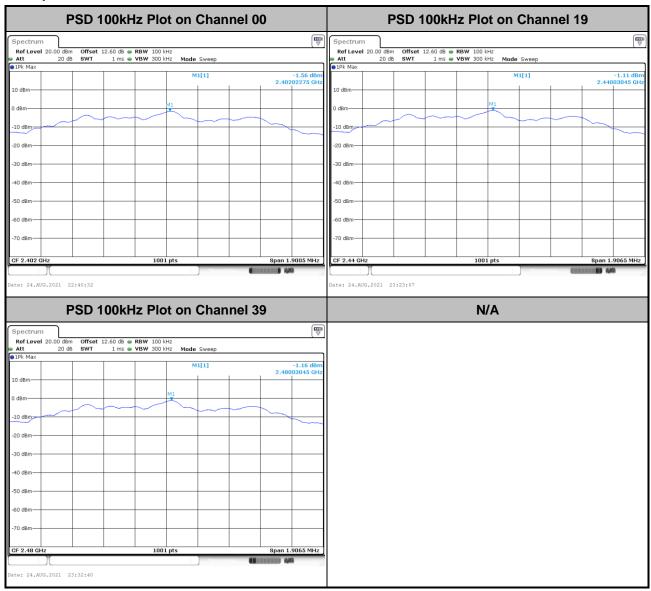
3.3.4 Test Setup


3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 17 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

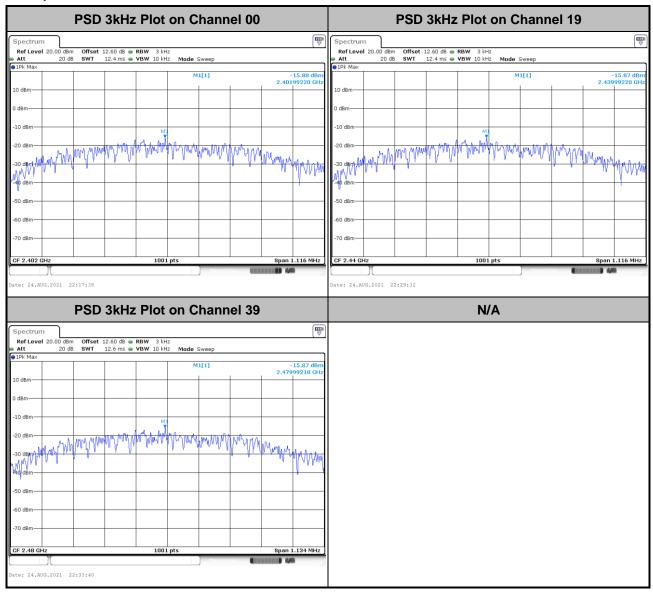
3.3.6 Test Result of Power Spectral Density Plots (100kHz)


<1Mbps>

Report No.: FR490411

TEL: 886-3-327-3456 Page Number : 18 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

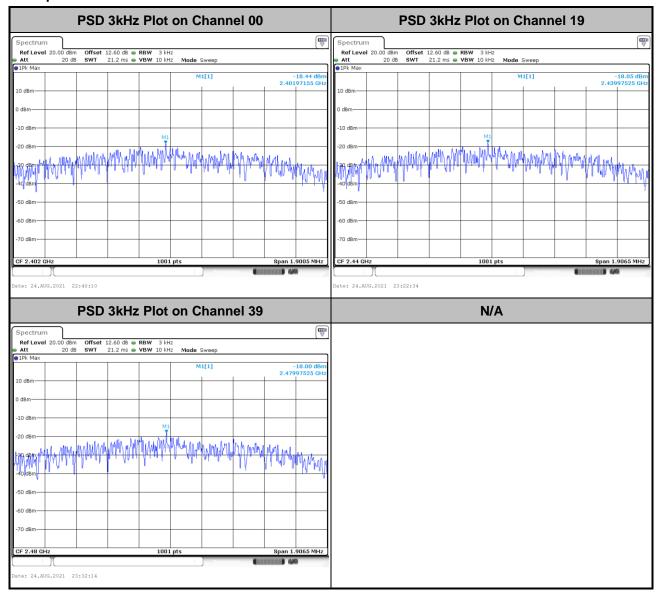
<2Mbps>



Report No.: FR490411

TEL: 886-3-327-3456 Page Number : 19 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.3.7 Test Result of Power Spectral Density Plots (3kHz)


<1Mbps>

Report No.: FR490411

TEL: 886-3-327-3456 : 20 of 36 Page Number FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024 : 02

<2Mbps>

Report No.: FR490411

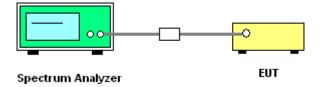
TEL: 886-3-327-3456 Page Number : 21 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

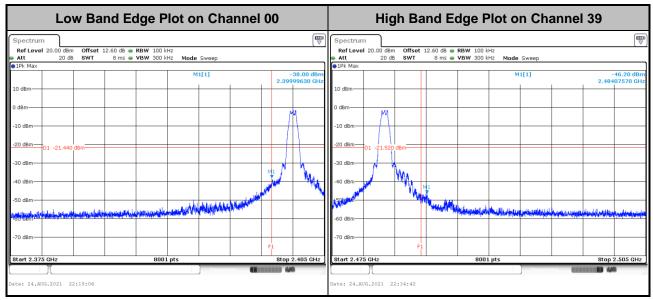
Report No. : FR490411


3.4.2 Measuring Instruments

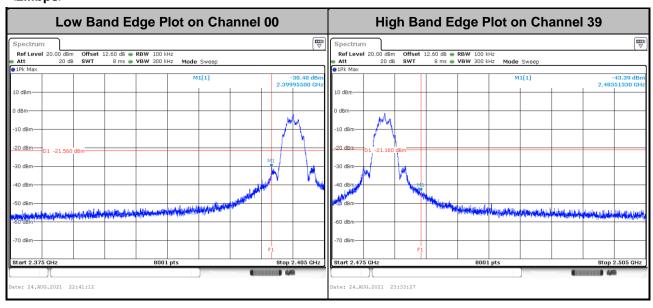
See list of measuring equipment of this test report.

3.4.3 Test Procedure

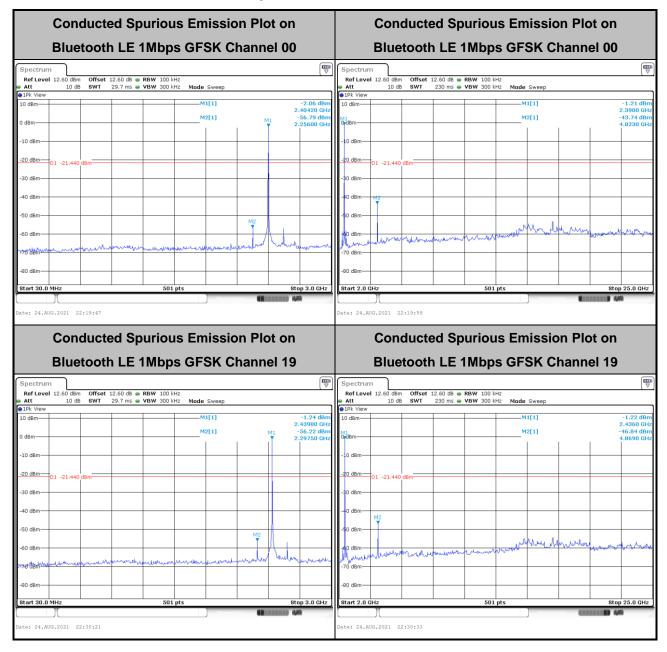
- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

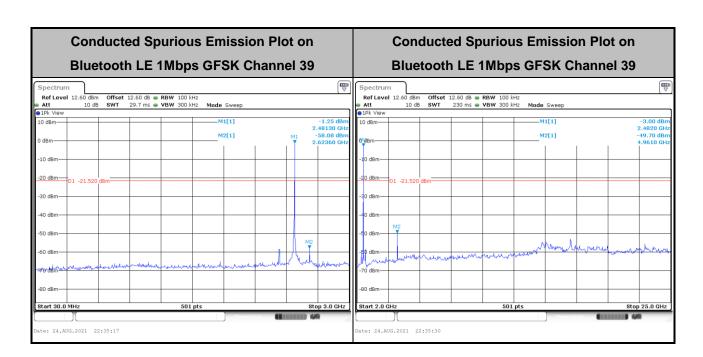
TEL: 886-3-327-3456 Page Number : 22 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024


3.4.5 Test Result of Conducted Band Edges Plots

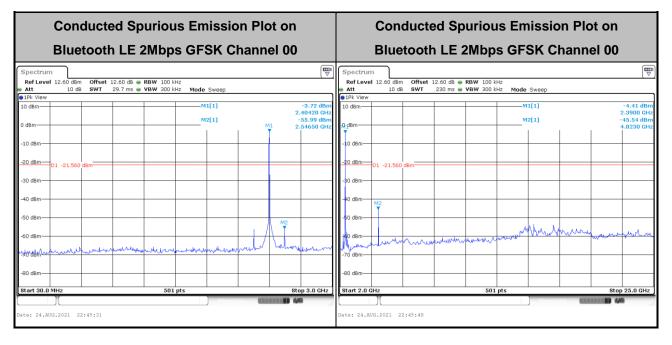
<1Mbps>


Report No. : FR490411

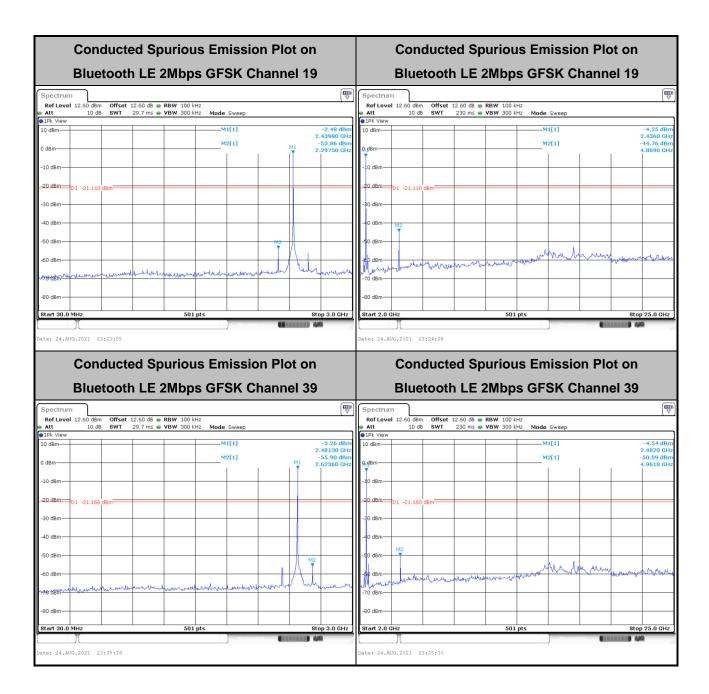
<2Mbps>


TEL: 886-3-327-3456 : 23 of 36 Page Number FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024 : 02

3.4.6 Test Result of Conducted Spurious Emission Plots



Report No. : FR490411


TEL: 886-3-327-3456 Page Number : 24 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

Report No. : FR490411

TEL: 886-3-327-3456 Page Number : 25 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

Report No. : FR490411

TEL: 886-3-327-3456 Page Number : 26 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No. : FR490411

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

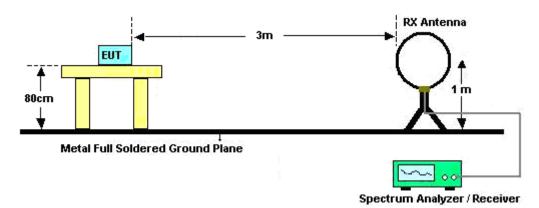
3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 27 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

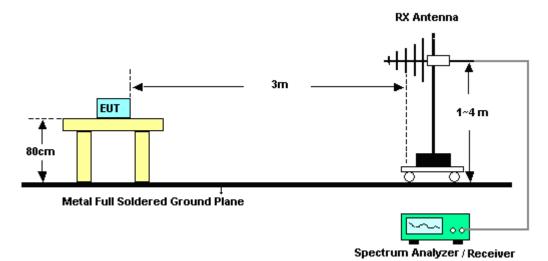
3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

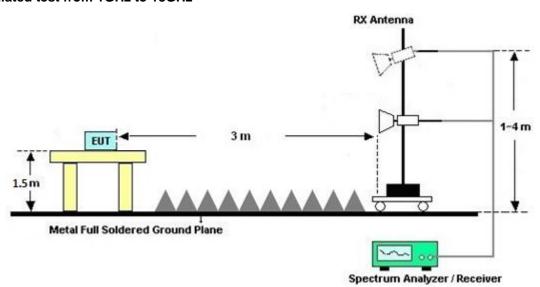

Report No. : FR490411

- The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and be reported.
- 7. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and be reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 28 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

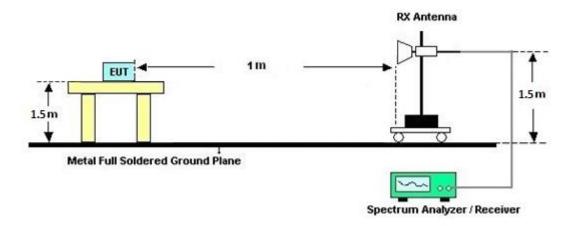

3.5.4 Test Setup

For radiated test below 30MHz



Report No.: FR490411

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-3456 Page Number : 29 of 36
FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

For radiated test above 18GHz

Report No.: FR490411

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 30 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

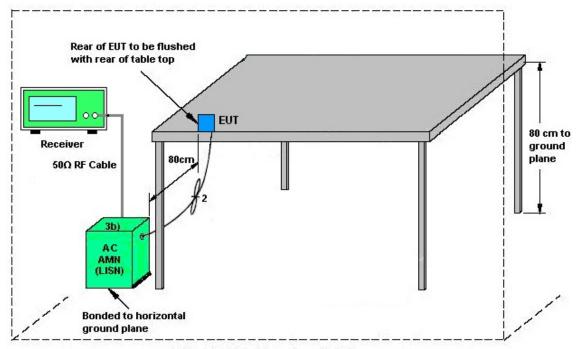
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No. : FR490411

Eroquency of emission (MHz)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 31 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.6.4 Test Setup

Report No.: FR490411

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 32 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

3.7 Antenna Requirements

3.7.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Report No. : FR490411

3.7.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

TEL: 886-3-327-3456 Page Number : 33 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Aug. 17, 2021~ Aug. 18, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Aug. 17, 2021~ Aug. 18, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 17, 2021~ Aug. 18, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Aug. 17, 2021~ Aug. 18, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 18, 2021	Aug. 17, 2021~ Aug. 18, 2021	May 17, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 31, 2020	Aug. 17, 2021~ Aug. 18, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	Aug. 17, 2021~ Aug. 18, 2021	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	Aug. 17, 2021~ Aug. 18, 2021	Jul. 21, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682-4	30MHz to 18GHz	Feb. 24, 2021	Aug. 17, 2021~ Aug. 18, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 17, 2021~ Aug. 18, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655-4	9kHz to 18GHz	Feb. 24, 2021	Aug. 17, 2021~ Aug. 18, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,801 606/2	18GHz~40GHz	Feb. 24, 2021	Aug. 17, 2021~ Aug. 18, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 18, 2020	Aug. 17, 2021~ Aug. 18, 2021	Sep. 17, 2021	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	Apr. 28, 2021	Aug. 17, 2021~ Aug. 18, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Aug. 17, 2021~ Aug. 18, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	Apr. 28, 2021	Aug. 17, 2021~ Aug. 18, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 17, 2021~ Aug. 18, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Aug. 17, 2021~ Aug. 18, 2021	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 09, 2021	Aug. 17, 2021~ Aug. 18, 2021	Mar. 08, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Dec. 02, 2020	Aug. 17, 2021~ Aug. 18, 2021	Dec. 01, 2021	Radiation (03CH07-HY)

Report No.: FR490411

TEL: 886-3-327-3456 Page Number : 34 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 01, 2021	Aug. 10, 2021~ Aug. 24, 2021	Feb. 28, 2022	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Aug. 10, 2021~ Aug. 24, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Aug. 10, 2021~ Aug. 24, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Aug. 10, 2021~ Aug. 24, 2021	Nov. 12, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Aug. 10, 2021~ Aug. 24, 2021	Mar. 16, 2022	Conducted (TH02-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 24, 2024~ Sep. 27, 2024	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 06, 2023	Sep. 24, 2024~ Sep. 27, 2024	Dec. 05, 2024	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Oct. 26, 2023	Sep. 24, 2024~ Sep. 27, 2024	Oct. 25, 2024	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 08, 2023	Sep. 24, 2024~ Sep. 27, 2024	Dec. 07, 2024	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 22, 2023	Sep. 24, 2024~ Sep. 27, 2024	Nov. 21, 2024	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Sep. 24, 2024~ Sep. 27, 2024	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 30, 2024	Sep. 24, 2024~ Sep. 27, 2024	Jul. 29, 2025	Conduction (CO05-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Sep. 24, 2024~ Sep. 27, 2024	Mar. 13, 2025	Conduction (CO05-HY)

Report No.: FR490411

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.5 dB
of 95% (U = 2Uc(y))	3.5 dB

Report No.: FR490411

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9 dB
of 95% (U = 2Uc(y))	4.9 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.1 dB
of 95% (U = 2Uc(y))	0.1 dB

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.7.10
of 95% (U = 2Uc(y))	4.7 dB

TEL: 886-3-327-3456 Page Number : 36 of 36 FAX: 886-3-328-4978 Issue Date : Nov. 12, 2024

Report Number: FR490411

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Tommy Lee and Shiming Liu	Temperature:	24.4~24.9	°C
Test Date:	2021/8/10~2021/8/24	Relative Humidity:	45.9~51.5	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤×	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.057	0.744	0.50	Pass
BLE	1Mbps	1	19	2440	1.057	0.744	0.50	Pass
BLE	1Mbps	1	39	2480	1.061	0.756	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	N⊤×	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	0.07	30.00	-2.10	-2.03	36.00	Pass
BLE	1Mbps	1	19	2440	0.08	30.00	-2.10	-2.02	36.00	Pass
BLE	1Mbps	1	39	2480	0.04	30.00	-2.10	-2.06	36.00	Pass

<u>TEST RESULTS DATA</u> Average Power Table (Reporting Only)

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	-0.01	30.00	-2.10	-2.11	36.00	Pass
BLE	1Mbps	1	19	2440	0.00	30.00	-2.10	-2.10	36.00	Pass
BLE	1Mbps	1	39	2480	-0.01	30.00	-2.10	-2.11	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	N⊤×	СН.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	-1.44	-15.88	-2.10	8.00	Pass
BLE	1Mbps	1	19	2440	-1.44	-15.87	-2.10	8.00	Pass
BLE	1Mbps	1	39	2480	-1.52	-15.87	-2.10	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Report Number : FR490411

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.118	1.267	0.50	Pass
BLE	2Mbps	1	19	2440	2.118	1.271	0.50	Pass
BLE	2Mbps	1	39	2480	2.114	1.271	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	N⊤×	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	0.05	30.00	-2.10	-2.05	36.00	Pass
BLE	2Mbps	1	19	2440	0.06	30.00	-2.10	-2.04	36.00	Pass
BLE	2Mbps	1	39	2480	-0.08	30.00	-2.10	-2.18	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	-0.10	30.00	-2.10	-2.20	36.00	Pass
BLE	2Mbps	1	19	2440	0.00	30.00	-2.10	-2.10	36.00	Pass
BLE	2Mbps	1	39	2480	-0.10	30.00	-2.10	-2.20	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	-1.56	-18.44	-2.10	8.00	Pass
BLE	2Mbps	1	19	2440	-1.11	-18.05	-2.10	8.00	Pass
BLE	2Mbps	1	39	2480	-1.16	-18.00	-2.10	8.00	Pass

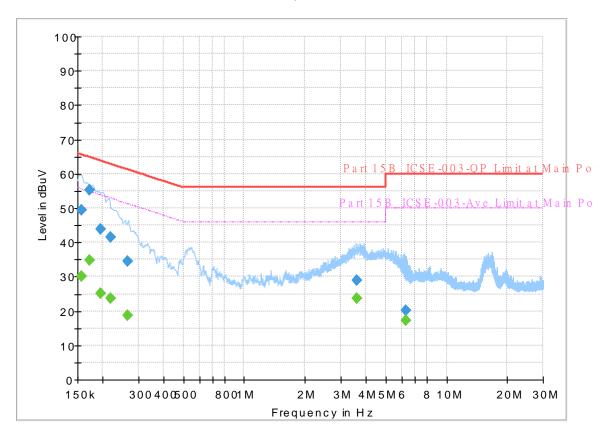
Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Mana	Temperature :	23~26 ℃
rest Engineer:	Calvin wang	Relative Humidity :	45~55%

Report No. : FR490411

TEL: 886-3-327-3456 Page Number : B1 of B3


EUT Information

Report NO: 490411 Test Mode: Mode 1

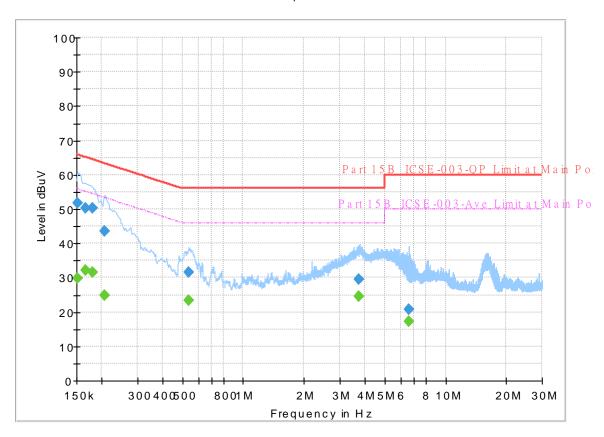
Test Voltage : Power From System

Phase: Line

Full Spectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.156750		30.01	55.63	25.62	L1	OFF	19.8
0.156750	49.29		65.63	16.34	L1	OFF	19.8
0.172500		34.74	54.84	20.10	L1	OFF	19.8
0.172500	55.19		64.84	9.65	L1	OFF	19.8
0.195000		25.27	53.82	28.55	L1	OFF	19.8
0.195000	43.74		63.82	20.08	L1	OFF	19.8
0.217500		23.63	52.91	29.28	L1	OFF	19.8
0.217500	41.43		62.91	21.48	L1	OFF	19.8
0.264750		18.76	51.28	32.52	L1	OFF	19.8
0.264750	34.60		61.28	26.68	L1	OFF	19.8
3.615000		23.57	46.00	22.43	L1	OFF	19.8
3.615000	28.89		56.00	27.11	L1	OFF	19.8
6.279000		17.29	50.00	32.71	L1	OFF	19.9
6.279000	20.23		60.00	39.77	L1	OFF	19.9


EUT Information

Report NO: 490411 Test Mode: Mode 1

Test Voltage : Power From System

Phase: Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		29.68	55.88	26.20	N	OFF	19.8
0.152250	51.67		65.88	14.21	N	OFF	19.8
0.165750		32.10	55.17	23.07	N	OFF	19.8
0.165750	50.19		65.17	14.98	N	OFF	19.8
0.179250		31.47	54.52	23.05	N	OFF	19.8
0.179250	50.41		64.52	14.11	N	OFF	19.8
0.206250		24.95	53.36	28.41	N	OFF	19.8
0.206250	43.62		63.36	19.74	N	OFF	19.8
0.534750		23.33	46.00	22.67	N	OFF	19.8
0.534750	31.67		56.00	24.33	N	OFF	19.8
3.738750		24.52	46.00	21.48	N	OFF	19.8
3.738750	29.44		56.00	26.56	N	OFF	19.8
6.596250		17.37	50.00	32.63	N	OFF	19.9
6.596250	20.64		60.00	39.36	N	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang and Stan Hsieh	Temperature :	23.5~24.1°C
rest Engineer.		Relative Humidity :	54.3~54.9%

Report No.: FR490411

<1Mbps>

2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	-
		2368.59	53.66	-20.34	74	39.18	31.87	18.02	35.41	358	281	Р	Н
		2390	45.12	-8.88	54	30.53	31.9	18.11	35.42	358	281	Α	Н
	*	2402	86.74	-	-	72.11	31.9	18.15	35.42	358	281	Р	Н
	*	2402	86.05	-	-	71.42	31.9	18.15	35.42	358	281	Α	Н
BLE													Н
CH 00													Н
2402MHz		2376.255	53.93	-20.07	74	39.41	31.87	18.06	35.41	353	48	Р	V
2402111112		2389.59	45.01	-8.99	54	30.41	31.9	18.11	35.41	353	48	Α	V
	*	2402	86.93	-	-	72.3	31.9	18.15	35.42	353	48	Р	V
	*	2402	86.27	-	-	71.64	31.9	18.15	35.42	353	48	Α	V
													V
													V
		2380	53.95	-20.05	74	39.42	31.87	18.07	35.41	305	280	Р	Н
		2387.7	45.15	-8.85	54	30.56	31.9	18.1	35.41	305	280	Α	Н
	*	2440	85.86	-	1	70.9	32.2	18.19	35.43	305	280	Р	Н
	*	2440	85.3	-	1	70.34	32.2	18.19	35.43	305	280	Α	Н
DI E		2492.02	54.49	-19.51	74	39.11	32.6	18.24	35.46	305	280	Р	Н
BLE CH 19		2498.46	45.65	-8.35	54	30.26	32.6	18.25	35.46	305	280	Α	Н
2440MHz		2348.78	54.08	-19.92	74	39.74	31.8	17.94	35.4	388	48	Р	V
2440111112		2368.94	44.93	-9.07	54	30.45	31.87	18.02	35.41	388	48	Α	V
	*	2440	86.98	-	ı	72.02	32.2	18.19	35.43	388	48	Р	V
	*	2440	86.4	-	-	71.44	32.2	18.19	35.43	388	48	Α	V
		2486.56	55.18	-18.82	74	39.93	32.47	18.23	35.45	388	48	Р	V
		2494.05	45.72	-8.28	54	30.34	32.6	18.24	35.46	388	48	Α	V

TEL: 886-3-327-3456 Page Number : C1 of C12

	*	2480	87.84	-	-	72.59	32.47	18.23	35.45	317	185	Р	Н
	*	2480	87.13	-	-	71.88	32.47	18.23	35.45	317	185	Α	Н
		2483.76	56.01	-17.99	74	40.76	32.47	18.23	35.45	317	185	Р	Н
		2483.52	46.32	-7.68	54	31.07	32.47	18.23	35.45	317	185	Α	Н
DI E													Н
BLE CH 39													Н
2480MHz	*	2480	87.55	-	-	72.3	32.47	18.23	35.45	339	61	Р	V
2400WII 12	*	2480	86.98	-	-	71.73	32.47	18.23	35.45	339	61	Α	V
		2498.28	55.61	-18.39	74	40.22	32.6	18.25	35.46	339	61	Р	V
		2483.72	46.34	-7.66	54	31.09	32.47	18.23	35.45	339	61	Α	V
													V
													V
	1. No	o other spurious	s found.										
Remark		I results are PA		Peak and	Average lir	nit line.							

TEL: 886-3-327-3456 Page Number : C2 of C12

2.4GHz 2400~2483.5MHz

Report No. : FR490411

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dD)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos	Pos (deg)	Avg. (P/A)	(HVV
		4804	45.47	-28.53	74	57.13	34	12.33	57.99	(cm) 100	0	P	H
				20.00		01110	0.		000				Н
													Н
BLE													Н
CH 00		4804	46.23	-27.77	74	57.89	34	12.33	57.99	100	0	Р	V
2402MHz		4004	40.23	-21.11	74	37.09	34	12.33	37.99	100	U	<u> </u>	V
													V
													V
		4000	42.04	20.20	74		24.4	10.11	F7.0	100	0	Р	
		4880	43.61	-30.39	74	55	34.1	12.41	57.9	100	0		Н
		7320	41.81	-32.19	74	49.43	35.6	14.7	57.92	100	0	Р	Н
BLE													Н
CH 19													Н
2440MHz		4880	47.2	-26.8	74	58.59	34.1	12.41	57.9	100	0	Р	V
		7320	41.64	-32.36	74	49.26	35.6	14.7	57.92	100	0	Р	V
													V
													V
		4960	43.23	-30.77	74	54.34	34.2	12.5	57.81	100	0	Р	Н
		7440	41.28	-32.72	74	48.82	35.6	14.9	58.04	100	0	Р	Н
BLE													Н
CH 39													Н
2480MHz		4960	46.56	-27.44	74	57.67	34.2	12.5	57.81	100	0	Р	V
		7440	41.56	-32.44	74	49.1	35.6	14.9	58.04	100	0	Р	V
													V
													V
Remark		o other spurious		Peak and	Average lim	it line.			,			•	

TEL: 886-3-327-3456 Page Number : C3 of C12

Emission above 18GHz

Report No. : FR490411

2.4GHz BLE (SHF)

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21927	48.9	-25.1	74	64.93	38.1	5.95	60.08	100	0	Р	Н
													Н
													Н
													Н
													Н
													Н
													н
													H
													Н
													Н
2.4GHz													Н
BLE													Н
SHF		24195	48.77	-25.23	74	61.54	38.85	6.6	58.22	100	0	Р	V
01													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark		o other spurious		imit line.									

TEL: 886-3-327-3456 Page Number : C4 of C12

Emission below 1GHz 2.4GHz BLE (LF)

Report No. : FR490411

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	22.55	-17.45	40	27.11	24.57	0.9	30.03	-	-	Р	Н
		49.71	16.47	-23.53	40	30.73	14.47	1.28	30.01	-	-	Р	Н
		106.95	20.05	-23.45	43.5	31.7	16.57	1.77	29.99	-	-	Р	Н
		763.4	30.06	-15.94	46	27.7	27.73	4.29	29.66	-	-	Р	Н
		872.6	31.37	-14.63	46	27.06	28.78	4.63	29.1	-	-	Р	Н
		951.7	33.34	-12.66	46	26.77	30.39	4.88	28.7	100	0	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
2.4GHZ BLE													Н
LF		30	32.75	-7.25	40	37.31	24.57	0.9	30.03	100	0	Р	V
		44.85	30.12	-9.88	40	41.96	16.97	1.2	30.01	-	-	Р	V
		106.95	27.97	-15.53	43.5	39.62	16.57	1.77	29.99	-	-	Р	V
		559.7	26.92	-19.08	46	27.21	25.86	3.74	29.89	-	-	Р	V
		777.4	30.12	-15.88	46	27.64	27.78	4.33	29.63	-	-	Р	V
		951	33.53	-12.47	46	27	30.36	4.87	28.7	-	-	Р	V
													V
													V
													V
													V
													V
													V
	3. No	o other spurious	s found.										
Remark		I results are PA		mit line.									

TEL: 886-3-327-3456 Page Number : C5 of C12

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

Report No. : FR490411

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2380.56	54.64	-19.36	74	40.11	31.87	18.07	35.41	315	278	Р	Н
		2386.755	46.62	-7.38	54	32.03	31.9	18.1	35.41	315	278	Α	Н
	*	2402	88.08	-	-	73.45	31.9	18.15	35.42	315	278	Р	Н
	*	2402	86.79	-	-	72.16	31.9	18.15	35.42	315	278	Α	Н
BLE													Н
CH 00													Н
2402MHz		2377.41	54.01	-19.99	74	39.49	31.87	18.06	35.41	312	315	Р	V
2402111112		2312.415	46.66	-7.34	54	32.53	31.73	17.78	35.38	312	315	Α	V
	*	2402	84.71	-	-	70.08	31.9	18.15	35.42	312	315	Р	V
	*	2402	83.44	-	-	68.81	31.9	18.15	35.42	312	315	Α	V
													V
													V
		2348.22	54.15	-19.85	74	39.81	31.8	17.94	35.4	303	282	Р	Н
		2354.38	46.76	-7.24	54	32.37	31.83	17.96	35.4	303	282	Α	Н
	*	2440	87.33	-	-	72.37	32.2	18.19	35.43	303	282	Р	Н
	*	2440	85.96	-	-	71	32.2	18.19	35.43	303	282	Α	Н
DI E		2492.65	55.06	-18.94	74	39.68	32.6	18.24	35.46	303	282	Р	Н
BLE CH 19		2492.37	47.9	-6.1	54	32.52	32.6	18.24	35.46	303	282	Α	Н
2440MHz		2342.34	54.67	-19.33	74	40.36	31.8	17.91	35.4	346	316	Р	V
Z77VIVII IZ		2328.76	46.72	-7.28	54	32.49	31.77	17.85	35.39	346	316	Α	٧
	*	2440	85.16	-	-	70.2	32.2	18.19	35.43	346	316	Р	V
	*	2440	83.65	-	-	68.69	32.2	18.19	35.43	346	316	Α	٧
		2489.99	54.83	-19.17	74	39.44	32.6	18.24	35.45	346	316	Р	V
		2491.46	47.39	-6.61	54	32	32.6	18.24	35.45	346	316	Α	V

TEL: 886-3-327-3456 Page Number : C6 of C12

FCC RADIO TEST REPORT

	1												$\overline{}$
	*	2480	89.11	-	-	73.86	32.47	18.23	35.45	360	173	Р	Н
	*	2480	87.84	-	-	72.59	32.47	18.23	35.45	360	173	Α	Н
		2483.76	57.13	-16.87	74	41.88	32.47	18.23	35.45	360	173	Р	Н
		2483.64	49.53	-4.47	54	34.28	32.47	18.23	35.45	360	173	Α	Н
51.5													Н
BLE													Н
CH 39 2480MHz	*	2480	84.89	-	-	69.64	32.47	18.23	35.45	341	329	Р	V
2400WITI2	*	2480	83.55	-	-	68.3	32.47	18.23	35.45	341	329	Α	V
		2484.44	55.8	-18.2	74	40.55	32.47	18.23	35.45	341	329	Р	V
		2483.56	48.17	-5.83	54	32.92	32.47	18.23	35.45	341	329	Α	V
													V
													V
	1. N	o other spurious	s found										
Remark		•		.	A 1:								
	2. A	I results are PA	SS against	Peak and	Average lin	nit line.							

Report No. : FR490411

TEL: 886-3-327-3456 Page Number : C7 of C12

2.4GHz 2400~2483.5MHz

Report No. : FR490411

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	42.84	-31.16	74	54.5	34	12.33	57.99	100	0	Р	Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	45.51	-28.49	74	57.17	34	12.33	57.99	100	0	Р	V
2402WII 12													٧
													٧
													V
		4880	43.01	-30.99	74	54.4	34.1	12.41	57.9	100	0	Р	Н
		7320	41.35	-32.65	74	48.97	35.6	14.7	57.92	100	0	Р	Н
													Н
BLE													Н
CH 19		4880	46.63	-27.37	74	58.02	34.1	12.41	57.9	100	0	Р	V
2440MHz		7320	41.93	-32.07	74	49.55	35.6	14.7	57.92	100	0	Р	٧
													٧
													٧
		4960	41.87	-32.13	74	52.98	34.2	12.5	57.81	100	0	Р	Н
		7440	41.18	-32.82	74	48.72	35.6	14.9	58.04	100	0	Р	Н
													Н
BLE													Н
CH 39		4960	44.27	-29.73	74	55.38	34.2	12.5	57.81	100	0	Р	٧
2480MHz		7440	41.22	-32.78	74	48.76	35.6	14.9	58.04	100	0	Р	V
													٧
													٧
				1	<u>I</u>	I	<u>I</u>		1	1	1	1	
Remark		o other spurious		Danie 1	I A	:4 li							
	2. All	results are PA	SS against F	eak and	ı Average lim	It line.							

TEL: 886-3-327-3456 Page Number : C8 of C12

Emission above 18GHz

Report No. : FR490411

2.4GHz BLE (SHF)

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		22564	48.56	-25.44	74	63.75	38.15	6.13	59.47	100	0	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		24860	48.93	-25.07	74	60.77	38.89	6.93	57.66	100	0	Р	V
SHF		24000	40.93	-25.07	74	00.77	36.69	0.93	37.00	100	U	Г	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark		o other spurious		imit line.									

TEL: 886-3-327-3456 Page Number : C9 of C12

Emission below 1GHz 2.4GHz BLE (LF)

Report No.: FR490411

(MHz) 30	(dBµV/m) 23.13	(dB)	Line	Level	Factor	Loss	Factor	Pos	Pos	A	
30		(dB)			i doto.	LUSS	Factor	POS	Pos	Avg.	
	23.13		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
47.04		-16.87	40	27.69	24.57	0.9	30.03	-	-	Р	Н
47.01	16.84	-23.16	40	30.05	15.57	1.23	30.01	-	-	Р	Н
106.95	20.44	-23.06	43.5	32.09	16.57	1.77	29.99	-	-	Р	Н
687.1	28.12	-17.88	46	27.64	26.15	4.12	29.79	-	-	Р	Н
766.9	31.37	-14.63	46	28.98	27.74	4.3	29.65	-	-	Р	Н
954.5	33.47	-12.53	46	26.75	30.52	4.89	28.69	100	0	Р	Н
											Н
											Н
											Н
											Н
											Н
											Н
30	30.58	-9.42	40	35.14	24.57	0.9	30.03	100	0	Р	V
45.66	22.47	-17.53	40	34.73	16.54	1.21	30.01	-	-	Р	V
106.95	25.89	-17.61	43.5	37.54	16.57	1.77	29.99	-	-	Р	V
648.6	27.55	-18.45	46	27.32	26.06	4.02	29.85	-	-	Р	٧
840.4	30.1	-15.9	46	26.41	28.43	4.57	29.31	-	-	Р	V
955.9	34.3	-11.7	46	27.51	30.59	4.89	28.69	-	-	Р	V
											V
											V
											V
											V
											V
											V
No	766.9 954.5 30 45.66 106.95 648.6 840.4 955.9	766.9 31.37 954.5 33.47 30 30.58 45.66 22.47 106.95 25.89 648.6 27.55 840.4 30.1 955.9 34.3	766.9 31.37 -14.63 954.5 33.47 -12.53 30 30.58 -9.42 45.66 22.47 -17.53 106.95 25.89 -17.61 648.6 27.55 -18.45 840.4 30.1 -15.9 955.9 34.3 -11.7	766.9 31.37 -14.63 46 954.5 33.47 -12.53 46 30 30.58 -9.42 40 45.66 22.47 -17.53 40 106.95 25.89 -17.61 43.5 648.6 27.55 -18.45 46 840.4 30.1 -15.9 46 955.9 34.3 -11.7 46	766.9 31.37 -14.63 46 28.98 954.5 33.47 -12.53 46 26.75 30 30.58 -9.42 40 35.14 45.66 22.47 -17.53 40 34.73 106.95 25.89 -17.61 43.5 37.54 648.6 27.55 -18.45 46 27.32 840.4 30.1 -15.9 46 26.41 955.9 34.3 -11.7 46 27.51	766.9 31.37 -14.63 46 28.98 27.74 954.5 33.47 -12.53 46 26.75 30.52 30 30.58 -9.42 40 35.14 24.57 45.66 22.47 -17.53 40 34.73 16.54 106.95 25.89 -17.61 43.5 37.54 16.57 648.6 27.55 -18.45 46 27.32 26.06 840.4 30.1 -15.9 46 26.41 28.43 955.9 34.3 -11.7 46 27.51 30.59	766.9 31.37 -14.63 46 28.98 27.74 4.3 954.5 33.47 -12.53 46 26.75 30.52 4.89 30 30.58 -9.42 40 35.14 24.57 0.9 45.66 22.47 -17.53 40 34.73 16.54 1.21 106.95 25.89 -17.61 43.5 37.54 16.57 1.77 648.6 27.55 -18.45 46 27.32 26.06 4.02 840.4 30.1 -15.9 46 26.41 28.43 4.57 955.9 34.3 -11.7 46 27.51 30.59 4.89	766.9 31.37 -14.63 46 28.98 27.74 4.3 29.65 954.5 33.47 -12.53 46 26.75 30.52 4.89 28.69 30 30.58 -9.42 40 35.14 24.57 0.9 30.03 45.66 22.47 -17.53 40 34.73 16.54 1.21 30.01 106.95 25.89 -17.61 43.5 37.54 16.57 1.77 29.99 648.6 27.55 -18.45 46 27.32 26.06 4.02 29.85 840.4 30.1 -15.9 46 26.41 28.43 4.57 29.31 955.9 34.3 -11.7 46 27.51 30.59 4.89 28.69	766.9 31.37 -14.63 46 28.98 27.74 4.3 29.65 - 954.5 33.47 -12.53 46 26.75 30.52 4.89 28.69 100 30 30.58 -9.42 40 35.14 24.57 0.9 30.03 100 45.66 22.47 -17.53 40 34.73 16.54 1.21 30.01 - 106.95 25.89 -17.61 43.5 37.54 16.57 1.77 29.99 - 648.6 27.55 -18.45 46 27.32 26.06 4.02 29.85 - 840.4 30.1 -15.9 46 26.41 28.43 4.57 29.31 - 955.9 34.3 -11.7 46 27.51 30.59 4.89 28.69 -	766.9 31.37 -14.63 46 28.98 27.74 4.3 29.65 - - 954.5 33.47 -12.53 46 26.75 30.52 4.89 28.69 100 0 30 30.58 -9.42 40 35.14 24.57 0.9 30.03 100 0 45.66 22.47 -17.53 40 34.73 16.54 1.21 30.01 - - 106.95 25.89 -17.61 43.5 37.54 16.57 1.77 29.99 - - 840.4 30.1 -15.9 46 26.41 28.43 4.57 29.31 - - 955.9 34.3 -11.7 46 27.51 30.59 4.89 28.69 - -	766.9 31.37 -14.63 46 28.98 27.74 4.3 29.65 P 954.5 33.47 -12.53 46 26.75 30.52 4.89 28.69 100 0 P 30 30.58 -9.42 40 35.14 24.57 0.9 30.03 100 0 P 45.66 22.47 -17.53 40 34.73 16.54 1.21 30.01 P 106.95 25.89 -17.61 43.5 37.54 16.57 1.77 29.99 P 648.6 27.55 -18.45 46 27.32 26.06 4.02 29.85 P 840.4 30.1 -15.9 46 26.41 28.43 4.57 29.31 P 955.9 34.3 -11.7 46 27.51 30.59 4.89 28.69 P

No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-3456 Page Number: C10 of C12

Note symbol

Report No.: FR490411

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C11 of C12

A calculation example for radiated spurious emission is shown as below:

Report No. : FR490411

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Margin(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

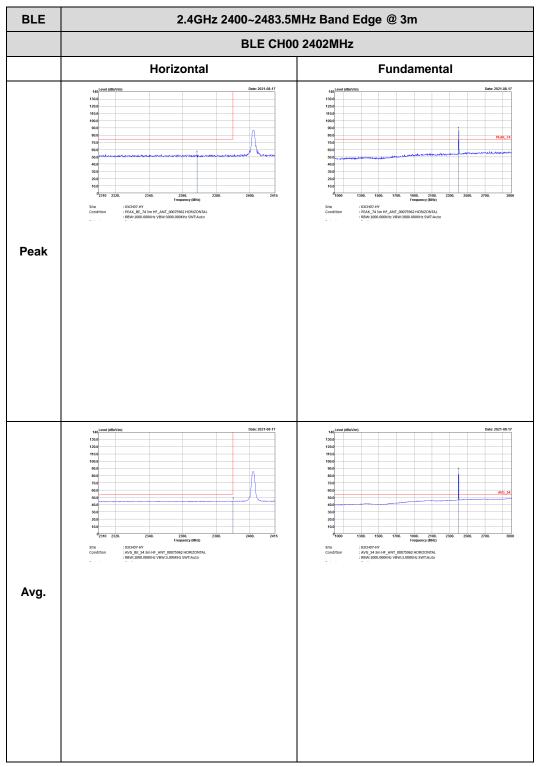
TEL: 886-3-327-3456 Page Number : C12 of C12

Appendix D. Radiated Spurious Emission Plots

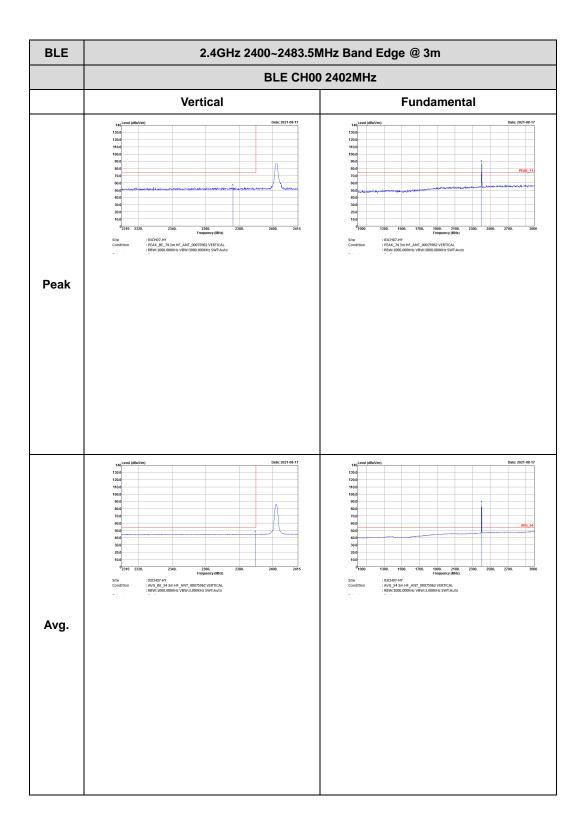
Test Engineer :	Jesse Wang and Stan Hsieh	Temperature :	23.5~24.1°C
rest Engineer.		Relative Humidity :	54.3~54.9%

Report No.: FR490411

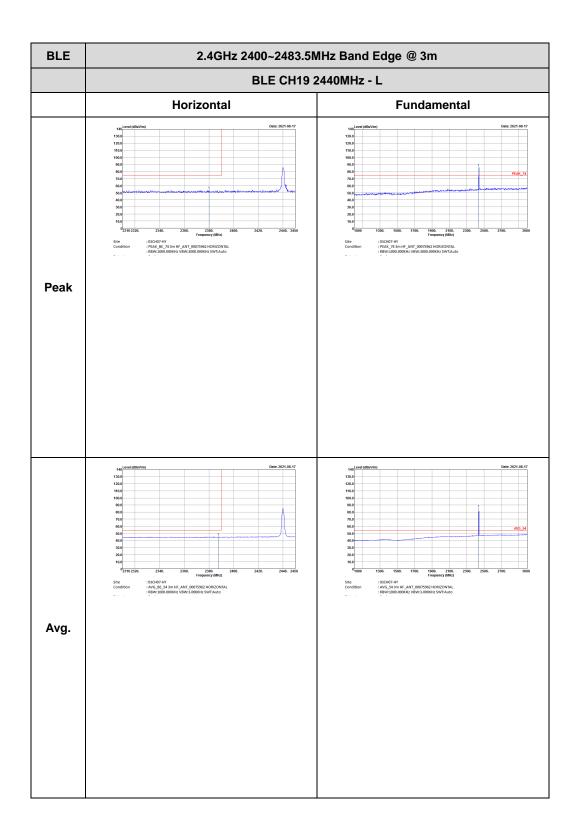
Note symbol

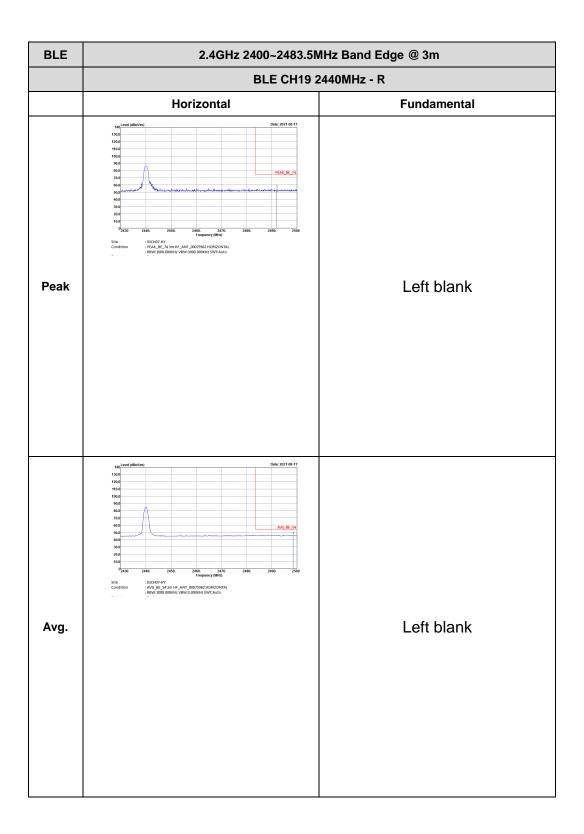

-L	Low channel location	
-R	High channel location	

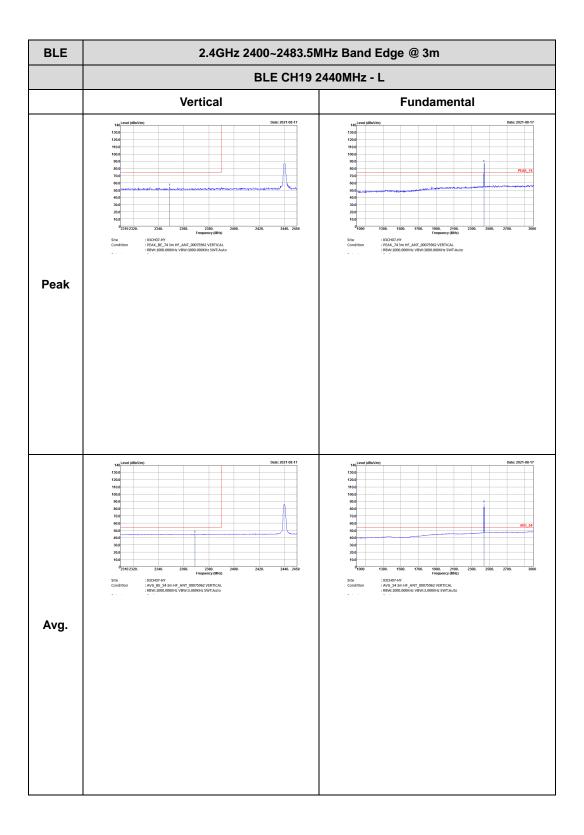
TEL: 886-3-327-3456 Page Number: D1 of D27

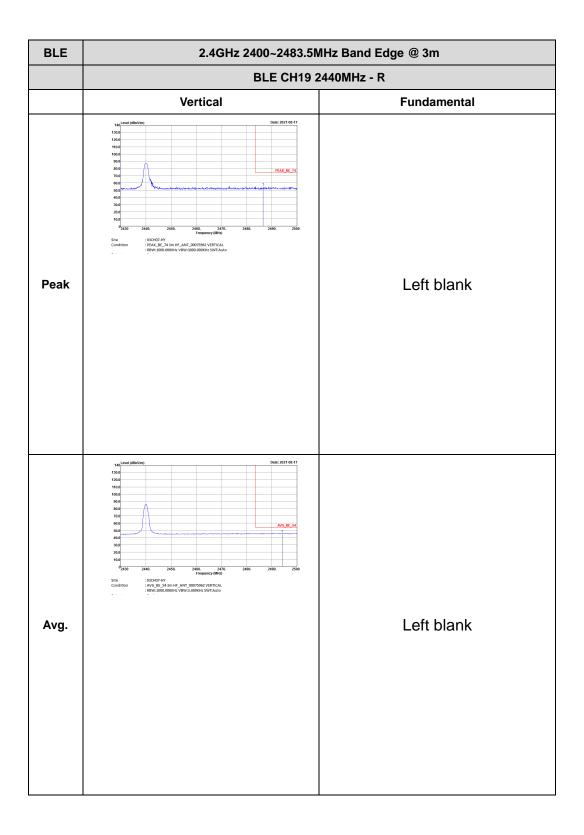

<1Mbps>

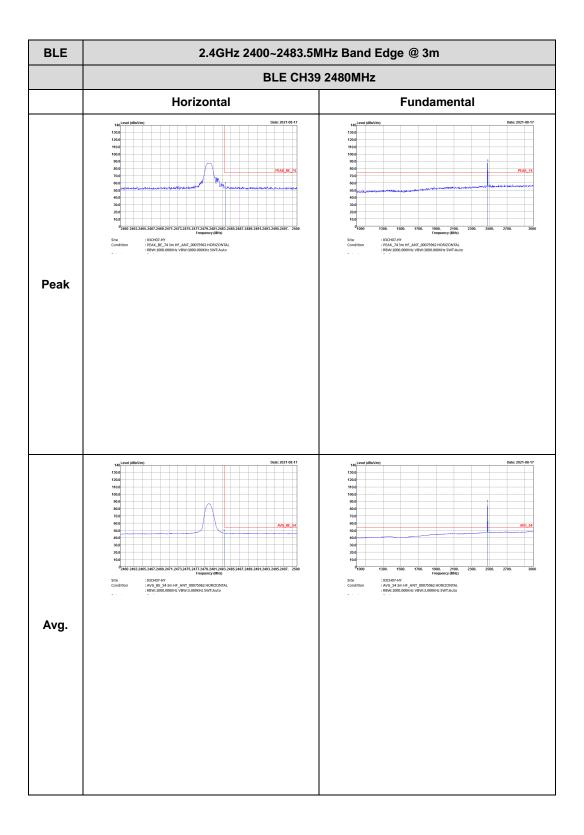
2.4GHz 2400~2483.5MHz

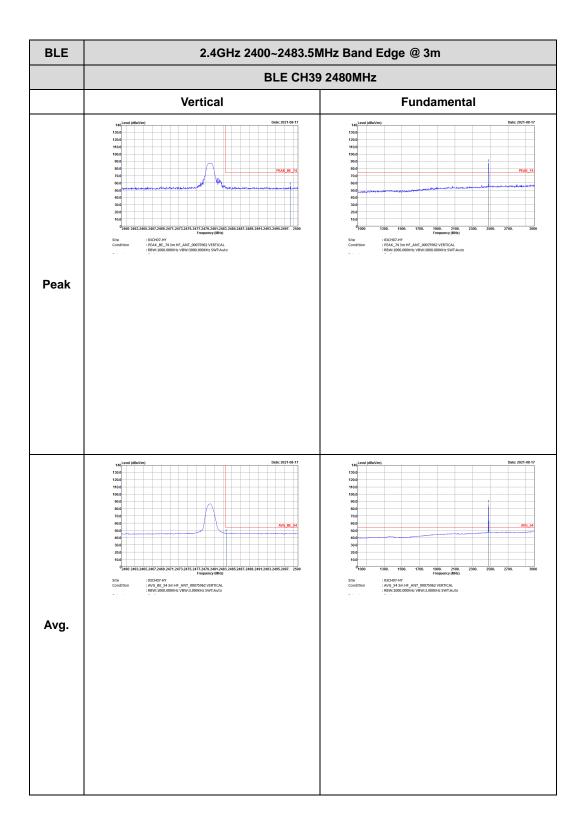

BLE (Band Edge @ 3m)


TEL: 886-3-327-3456 Page Number: D2 of D27


TEL: 886-3-327-3456 Page Number: D3 of D27

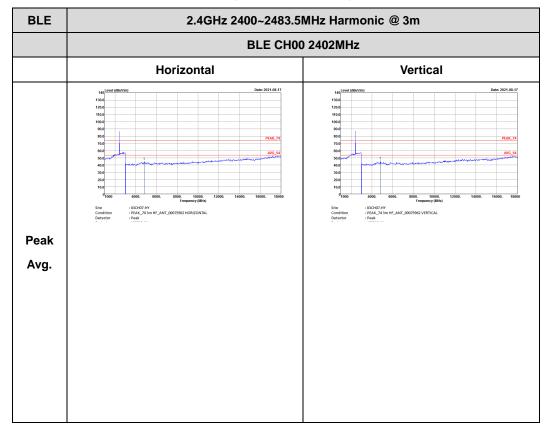

TEL: 886-3-327-3456 Page Number: D4 of D27


: D5 of D27 TEL: 886-3-327-3456 Page Number


TEL: 886-3-327-3456 Page Number: D6 of D27

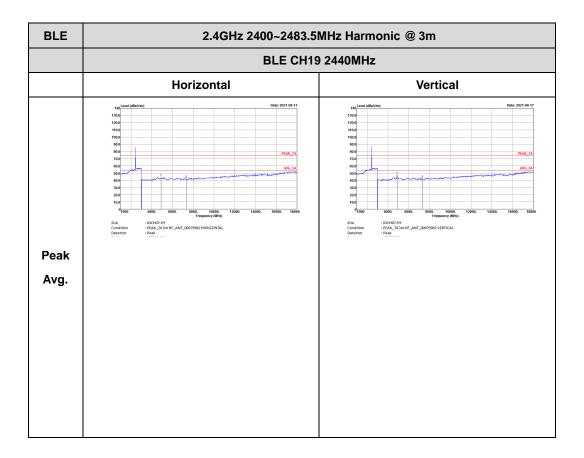
: D7 of D27 TEL: 886-3-327-3456 Page Number

TEL: 886-3-327-3456 Page Number : D8 of D27

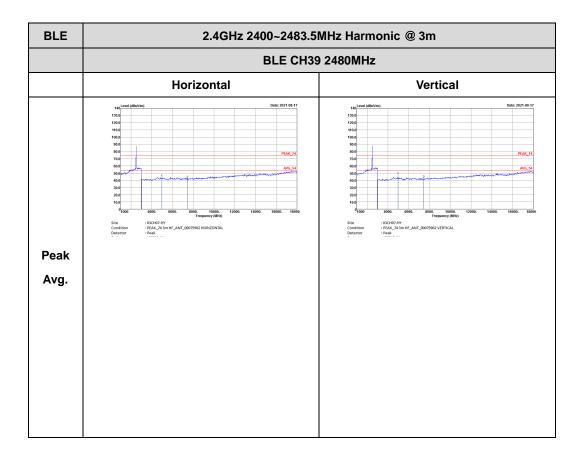


TEL: 886-3-327-3456 Page Number: D9 of D27

2.4GHz 2400~2483.5MHz


Report No.: FR490411

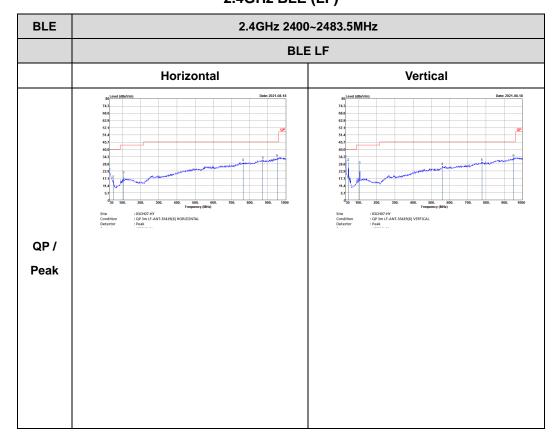
BLE (Harmonic @ 3m)


TEL: 886-3-327-3456 Page Number : D10 of D27

TEL: 886-3-327-3456 : D11 of D27 Page Number

TEL: 886-3-327-3456 : D12 of D27 Page Number

Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No. : FR490411

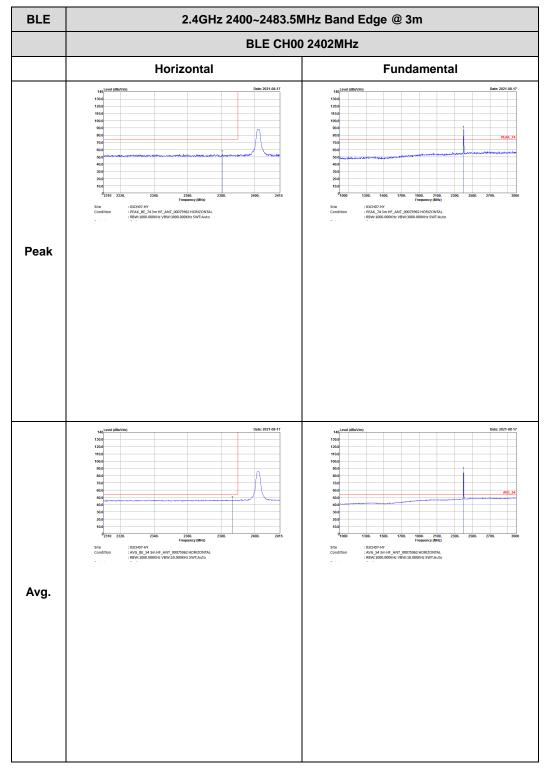
BLE SHF Horizontal Vertical | Control | Con

TEL: 886-3-327-3456 Page Number: D13 of D27

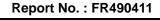
Emission below 1GHz 2.4GHz BLE (LF)

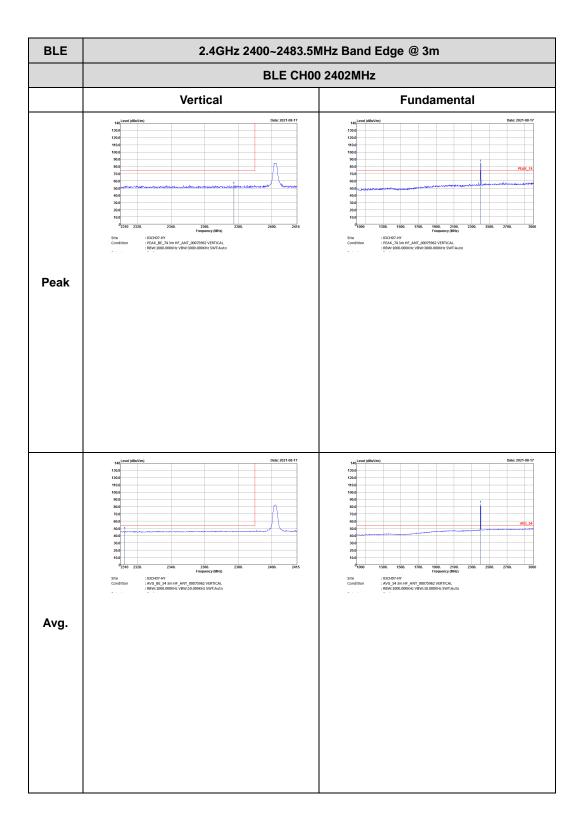
Report No. : FR490411

TEL: 886-3-327-3456 Page Number : D14 of D27

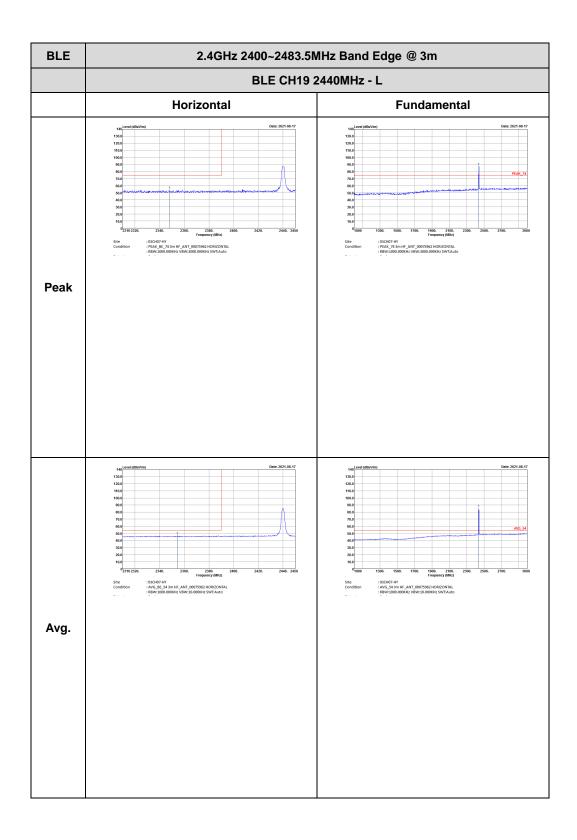

IN LAB. 1 00 17 1D10 1 E01 11E1 011

<2Mbps>


2.4GHz 2400~2483.5MHz

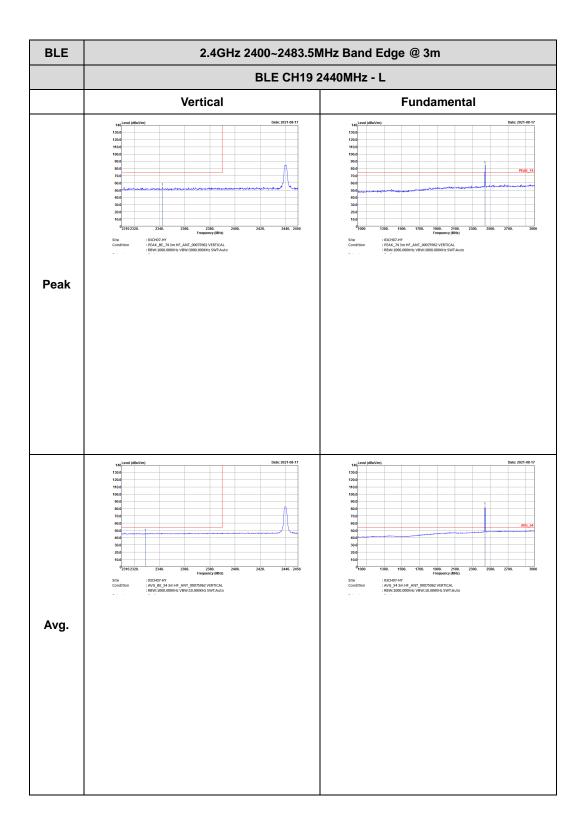

Report No.: FR490411

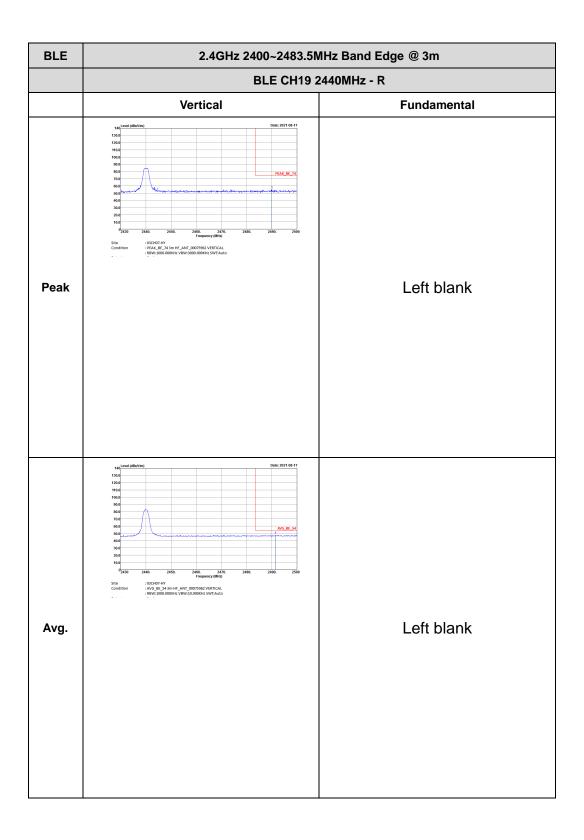
BLE (Band Edge @ 3m)



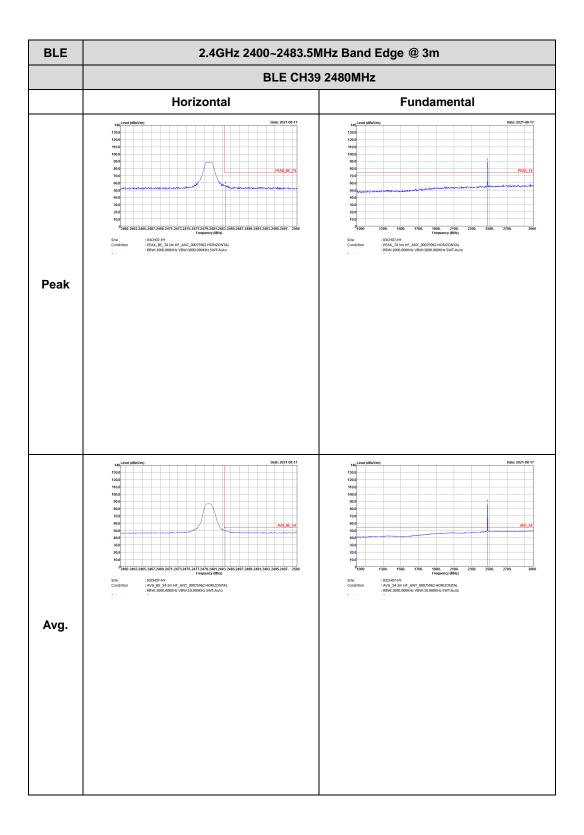
TEL: 886-3-327-3456 Page Number: D15 of D27

TEL: 886-3-327-3456 Page Number : D16 of D27

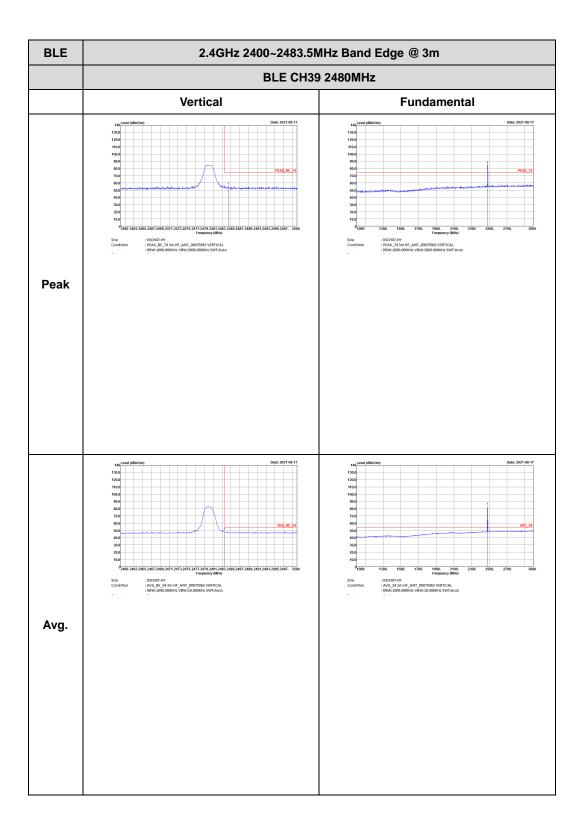

TEL: 886-3-327-3456 Page Number: D17 of D27


BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - R Horizontal **Fundamental** Left blank Peak : 03CH07-HY : AVG_BE_543m HF_ANT_00075962 HORIZONTAL : RBW:1000.000KHz VBW:10.000KHz SWT:Auto Left blank Avg.

Report No.: FR490411

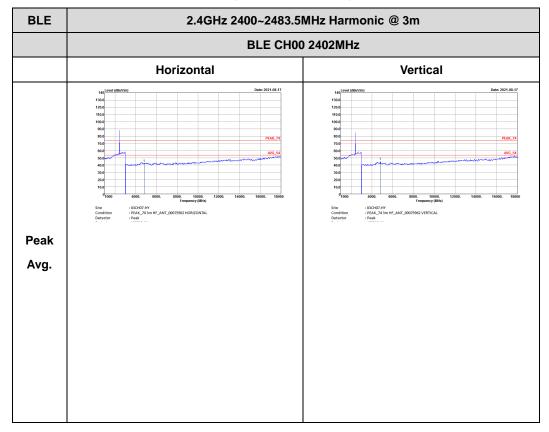

TEL: 886-3-327-3456 Page Number : D18 of D27

TEL: 886-3-327-3456 Page Number: D19 of D27


TEL: 886-3-327-3456 Page Number : D20 of D27

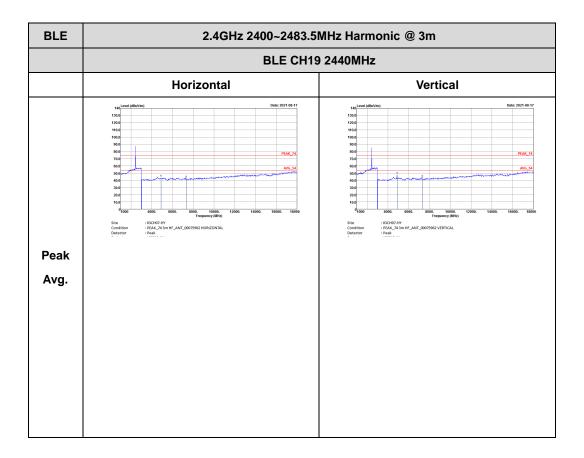
TEL: 886-3-327-3456 Page Number : D21 of D27

C RADIO TEST REPORT Report No. : FR490411

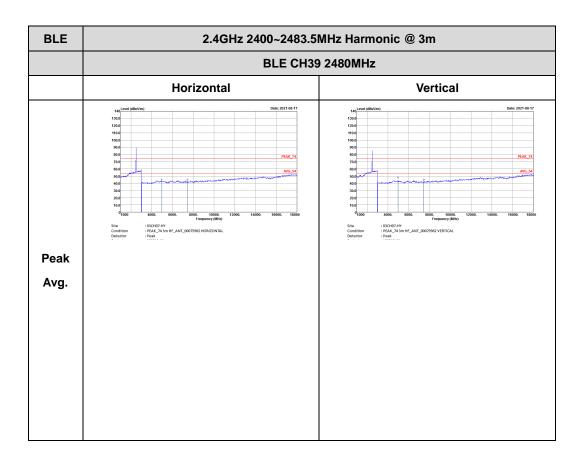


TEL: 886-3-327-3456 Page Number: D22 of D27

2.4GHz 2400~2483.5MHz


Report No.: FR490411

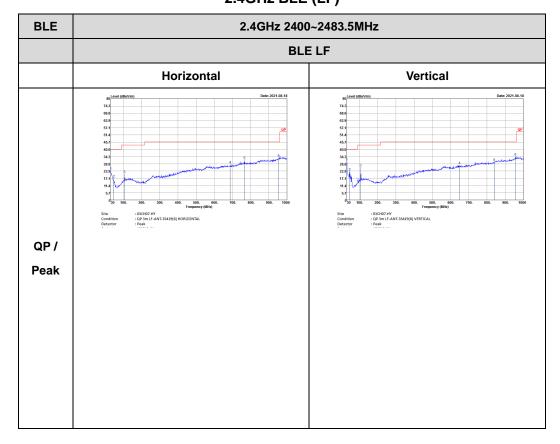
BLE (Harmonic @ 3m)


TEL: 886-3-327-3456 Page Number : D23 of D27

TEL: 886-3-327-3456 : D24 of D27 Page Number

TEL: 886-3-327-3456 : D25 of D27 Page Number

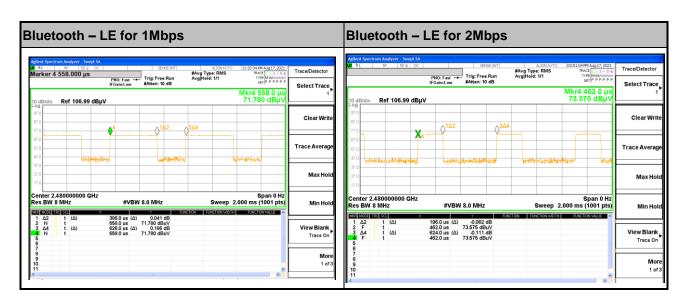
Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No.: FR490411

TEL: 886-3-327-3456 Page Number : D26 of D27

Emission below 1GHz 2.4GHz BLE (LF)

Report No. : FR490411



TEL: 886-3-327-3456 Page Number : D27 of D27

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE for 1Mbps	61.66	386	2.59	3kHz
Bluetooth –LE for 2Mbps	31.41	196	5.10	10kHz

Report No. : FR490411

——THE END——

TEL: 886-3-327-3456 Page Number : E1 of E1