

FCC RADIO TEST REPORT

FCC ID	:	TTUBEOPLAYEQL
Equipment	:	Bluetooth Earphone
Brand Name	:	Bang & Olufsen
Model Name	:	EQ Earbud L
Applicant	:	Bang & Olufsen A/S Bang og Olufsen Allé 1, 7600 Struer, Denmark
Manufacturer	:	Bang & Olufsen A/S
		Bang og Olufsen Allé 1, 7600 Struer, Denmark
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Oct. 23, 2020 and testing was started from Nov. 26, 2020 and completed on Jan. 05, 2021. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

Hist	tory o	of this test report	3
Sur	nmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	9
	2.5	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	18
	3.4	20dB and 99% Bandwidth Measurement	20
	3.5	Output Power Measurement	31
	3.6	Conducted Band Edges Measurement	32
	3.7	Conducted Spurious Emission Measurement	39
	3.8	Radiated Band Edges and Spurious Emission Measurement	49
	3.9	Antenna Requirements	54
4	List	of Measuring Equipment	55
5	Unce	rtainty of Evaluation	56
App	pendi	x A. Conducted Test Results	
App	pendi	x B. Radiated Spurious Emission	
Арр	pendi	x C. Radiated Spurious Emission Plots	
App	endi :	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR090315-01A	01	Initial issue of report	Jan. 07, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 10.82 dB at 713.850 MHz
	15.207	AC Conducted Emission	Not Required	-
3.9	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Ruby Zou

1 General Description

1.1 Product Feature of Equipment Under Test

D 1	
Bl	uetooth

Product Specification subjective to this standard				
Antenna Type Bluetooth: PIFA Antenna				
Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi) -0.6 dBi			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

Specification of Accessory			
Charging Case	Brand Name	Bang & Olufsen	
Charging Case	Model Name	EQ Charging case	
Bluete eth Ferrik ene (B)	Brand Name	Bang & Olufsen	
Bluetooth Earphone (R)	Model Name	EQ Earbud R	

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
Test one No.	TH05-HY	
Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
Test Site Test Site Location		
	Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

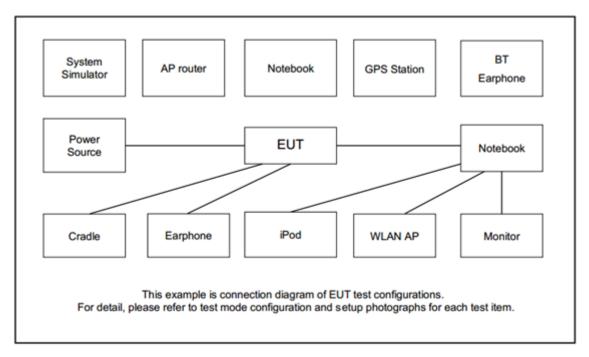
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
2400-2483.5 MHz	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases				
Test Item	Data Rate / Modulation			
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK	
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz	
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz	
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz	
	Bluetooth EDR 3Mbps 8-DPSK			
Radiated	Mode 1: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz			
Remark: For radiated test cases, the worst mode data rate 3Mbps was reported only since the				
highest RF output power in the preliminary tests. The conducted spurious emissions and				
conducted band edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.				
no otne	er significantly frequencies fo	ouna in conducted spurious	emission.	

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

The RF test items, utility "Blue Test3(3.3.2.368)" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

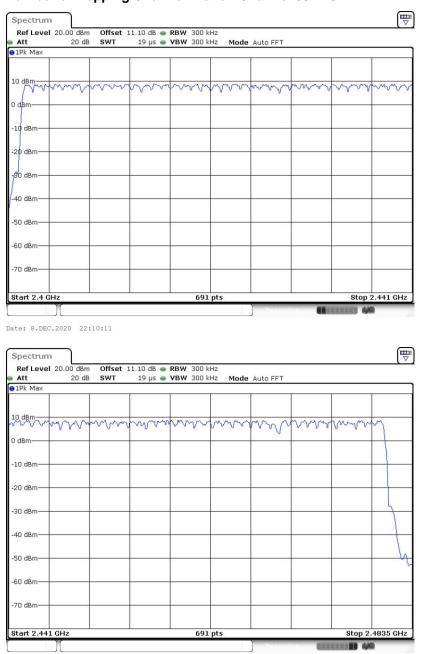
3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


Spectrum Analyzer

EUT

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

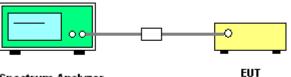
Number of Hopping Channel Plot on Channel 00 - 78

Date: 8.DEC.2020 22:10:29

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

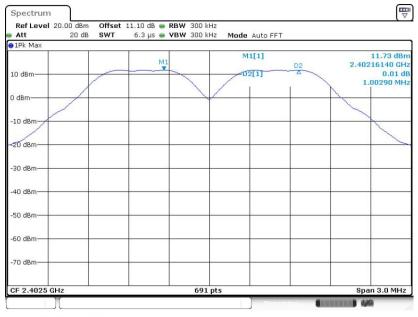
See list of measuring equipment of this test report.

3.2.3 Test Procedures

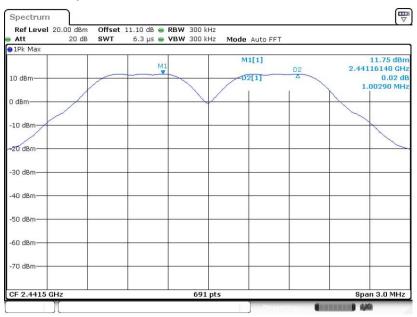
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

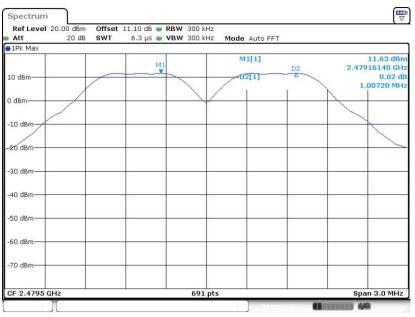
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

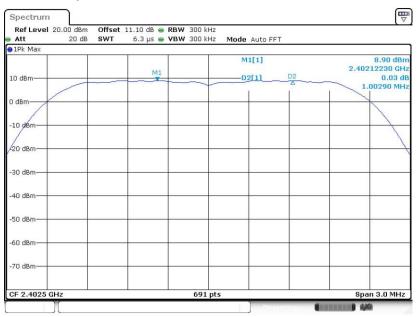

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 8.DEC.2020 23:21:57

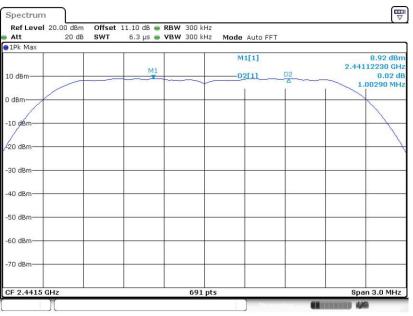
Channel Separation Plot on Channel 39 - 40

Date: 8.DEC.2020 23:09:18



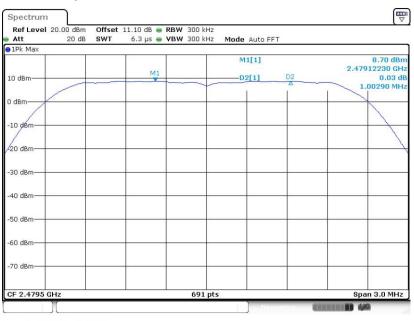
Channel Separation Plot on Channel 77 - 78

Date: 8.DEC.2020 23:29:15


<2Mbps>

Channel Separation Plot on Channel 00 - 01

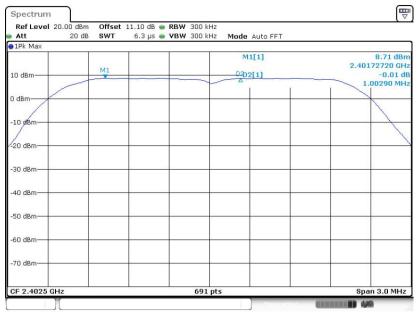
Date: 8.DEC.2020 23:00:35



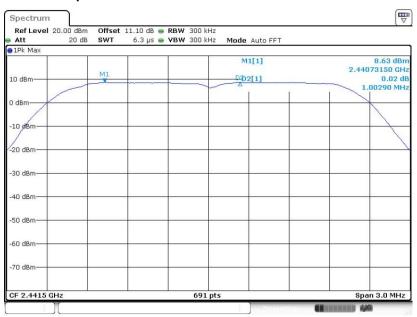
Channel Separation Plot on Channel 39 - 40

Date: 8.DEC.2020 23:07:29

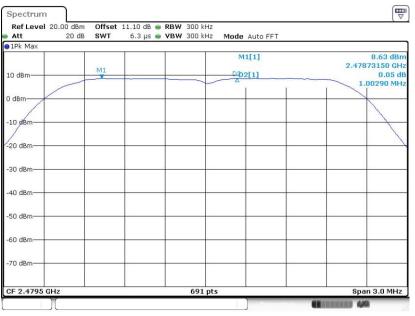
Channel Separation Plot on Channel 77 - 78



Date: 8.DEC.2020 22:50:24


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 8.DEC.2020 22:09:22

Channel Separation Plot on Channel 39 - 40

Date: 8.DEC.2020 22:04:08

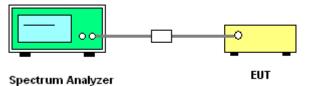
Channel Separation Plot on Channel 77 - 78

Date: 8.DEC.2020 22:18:21

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

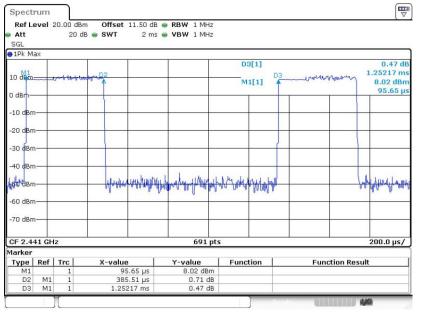
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 26.NOV.2020 16:36:24

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

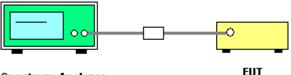
3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL : 886-3-327-3456	Page Number	: 19 of 56
FAX : 886-3-328-4978	Issued Date	: Jan. 07, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

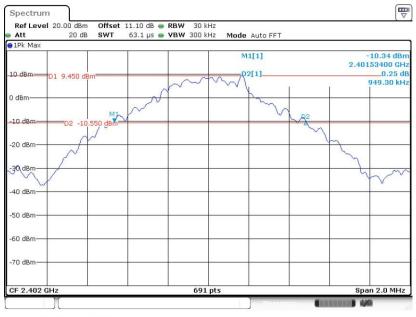
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

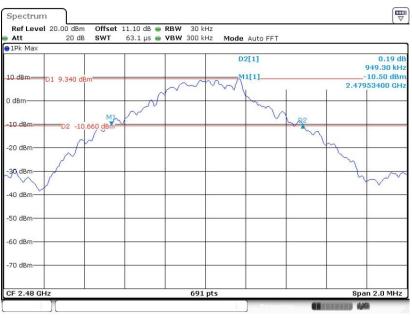
Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

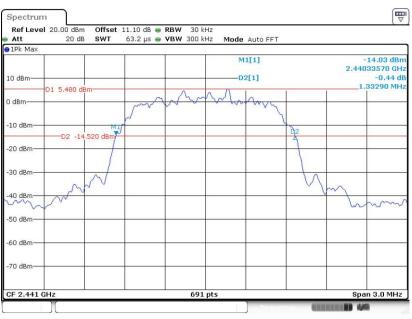
20 dB Bandwidth Plot on Channel 00


Date: 8.DEC.2020 23:13:52

Date: 8.DEC.2020 23:10:24

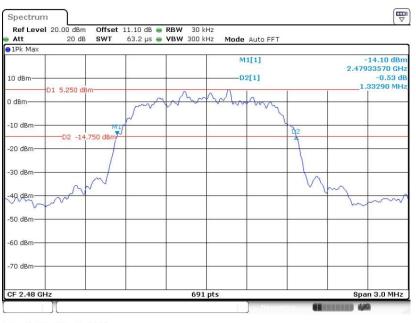
20 dB Bandwidth Plot on Channel 78

Date: 8.DEC.2020 23:31:46


<2Mbps>

20 dB Bandwidth Plot on Channel 00

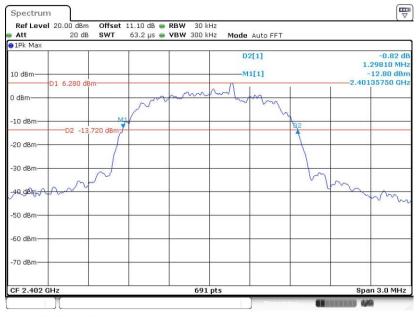
Date: 8.DEC.2020 22:53:56



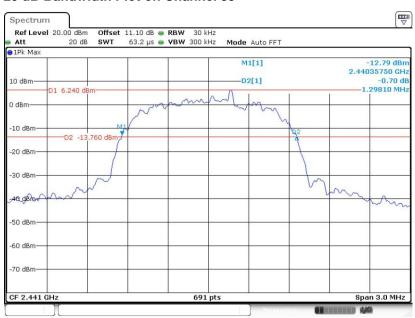
20 dB Bandwidth Plot on Channel 39

Date: 8.DEC.2020 23:01:52

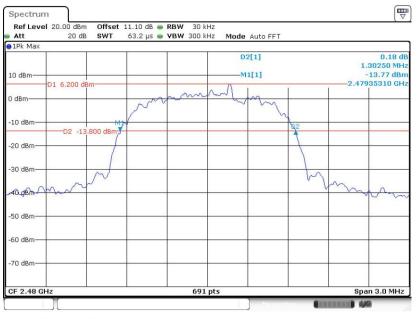
20 dB Bandwidth Plot on Channel 78



Date: 8.DEC.2020 22:44:10


<3Mbps>

20 dB Bandwidth Plot on Channel 00

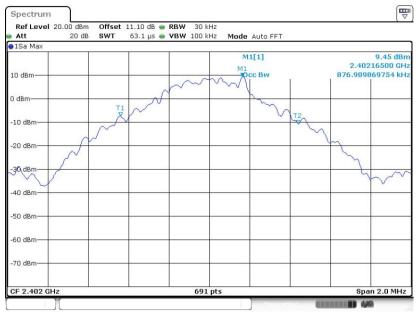

Date: 8.DEC.2020 22:05:33

20 dB Bandwidth Plot on Channel 39

Date: 8.DEC.2020 22:00:19

20 dB Bandwidth Plot on Channel 78

Date: 8.DEC.2020 22:13:43

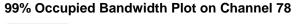


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

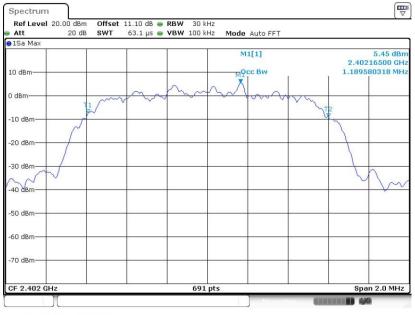
<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

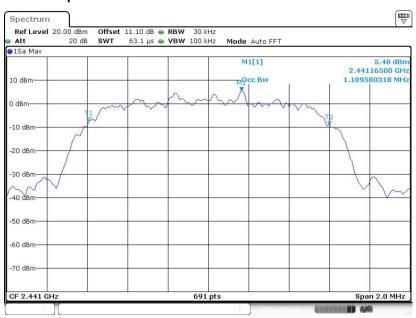

Date: 8.DEC.2020 23:14:58

99% Occupied Bandwidth Plot on Channel 39

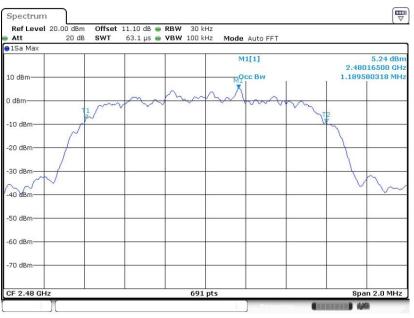
Date: 8.DEC.2020 23:10:58



Date: 8.DEC.2020 23:33:13

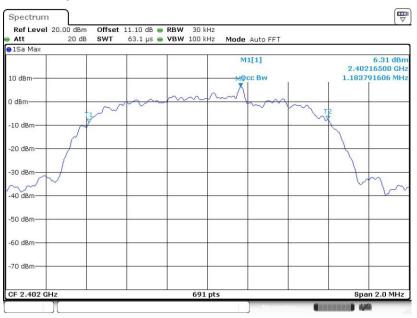

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 8.DEC.2020 22:54:52

99% Occupied Bandwidth Plot on Channel 39

Date: 8.DEC.2020 23:02:26

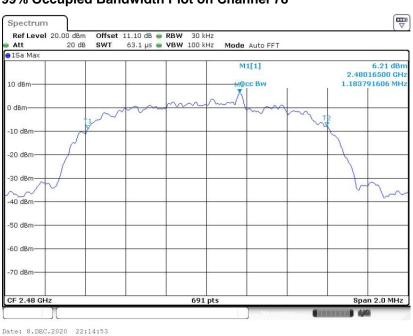


99% Occupied Bandwidth Plot on Channel 78

Date: 8.DEC.2020 22:45:04

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 8.DEC.2020 22:06:28

99% Occupied Bandwidth Plot on Channel 39

Date: 8.DEC.2020 22:01:06

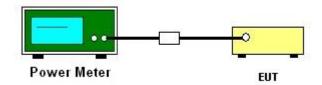
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

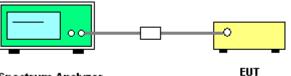
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

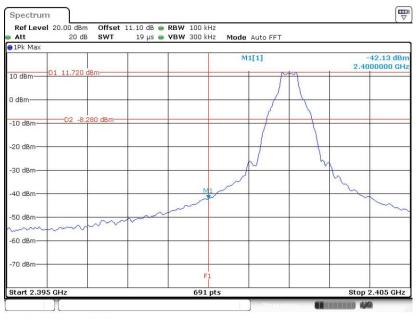

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

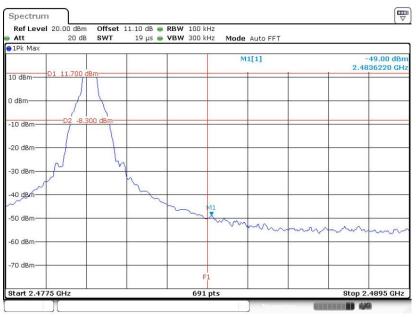
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

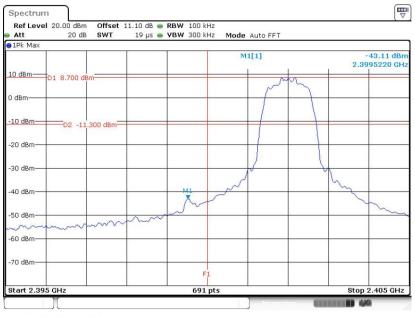
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

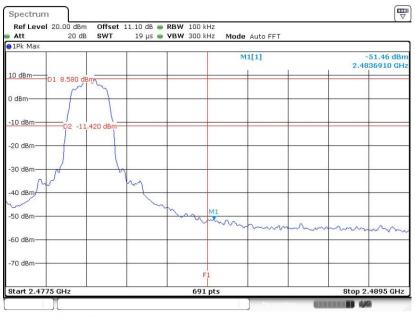
Low Band Edge Plot on Channel 00

Date: 8.DEC.2020 23:14:13

High Band Edge Plot on Channel 78



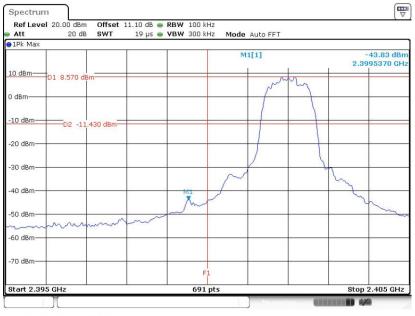
Date: 8.DEC.2020 23:32:08


<2Mbps>

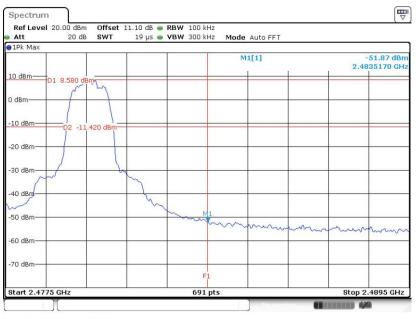
Low Band Edge Plot on Channel 00

Date: 8.DEC.2020 22:54:18

High Band Edge Plot on Channel 78



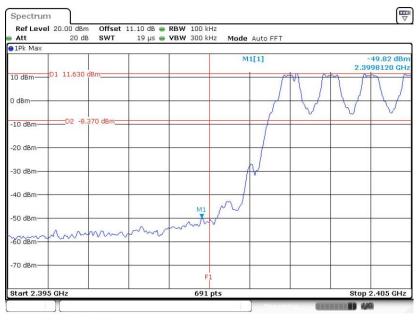
Date: 8.DEC.2020 22:44:29


<3Mbps>

Low Band Edge Plot on Channel 00

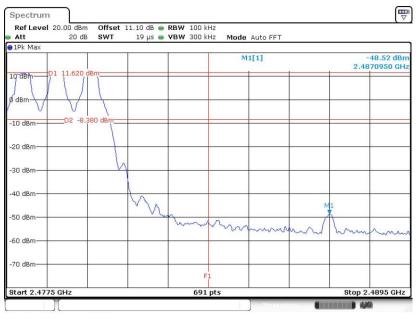
Date: 8.DEC.2020 22:05:52

High Band Edge Plot on Channel 78



Date: 8.DEC.2020 22:14:16

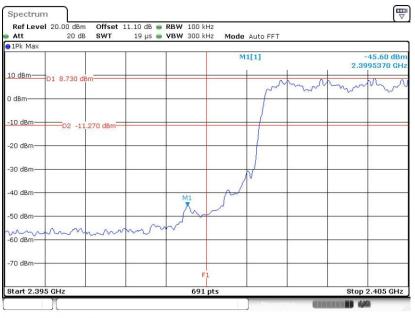
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

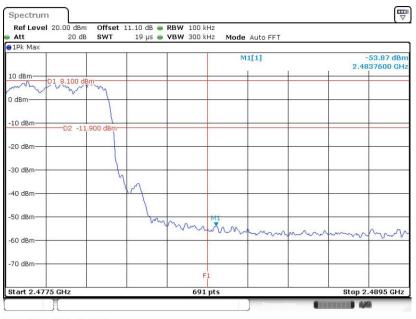
Hopping Mode Low Band Edge Plot

Date: 8.DEC.2020 23:23:24

Hopping Mode High Band Edge Plot



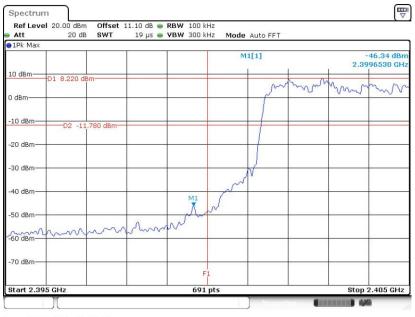
Date: 8.DEC.2020 23:24:20


<2Mbps>

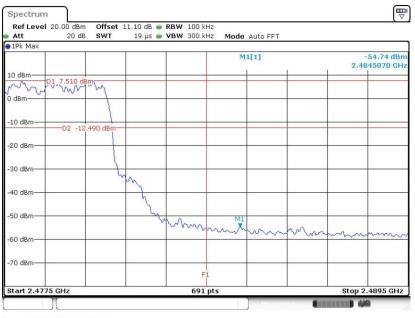
Hopping Mode Low Band Edge Plot

Date: 8.DEC.2020 22:52:35

Hopping Mode High Band Edge Plot



Date: 8.DEC.2020 22:52:17


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 8.DEC.2020 22:09:45

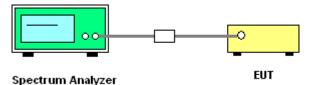
Hopping Mode High Band Edge Plot

Date: 8.DEC.2020 22:10:45

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

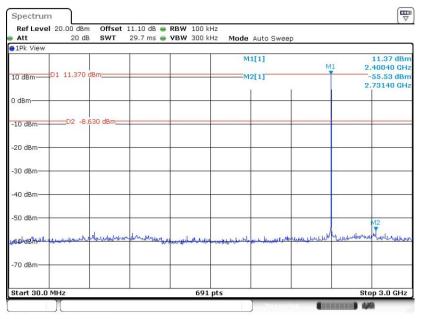

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

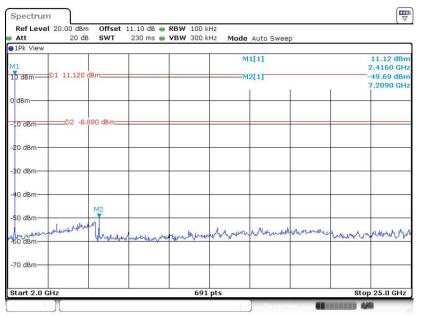
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on CH 00 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 23:19:11

CSE Plot on CH 00 between 2 GHz ~ 25 GHz

Date: 8.DEC.2020 23:19:42

1Pk View 0 dBm D1 11.380 dBm	M1		M1	11.38 dBn 2.43910 GH -53.95 dBn 2.56800 GH
l dBm-			M1	2.43910 GH -53.95 dBn
l dBm-	M2	[1]	Ţ	-53.95 dBr
	+ +		1	2.56800 GH
	-			
	1 1			
10 dBmD2 -8.620 dBm				
20 dBm				
30 dBm-				
40 dBm				
50 dBm			M2	
601 11 marsher berever which have and a per bearing	I have a state of the	and a substant water	structure terret	weller and Marchart
Ser dBm	entre-dentify & construction	Proposition in the second		
70 dBm				
Start 30.0 MHz 69	91 pts			Stop 3.0 GHz

CSE Plot on CH 39 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 23:11:40

CSE Plot on CH 39 between 2 GHz ~ 25 GHz

Ref Level 20.00 Att 2	O dB SWT	1.10 dB 👄 RBW 230 ms 👄 VBW		Auto Sweep		
1Pk View						
M1			N	11[1]		10.71 dBn 2.4490 GH
	710 dBm=		N	12[1]		-51.37 dBr
				I I	T	4.8790 GH
dBm				-		-
	-9.290 dBm					
10 dBm D2	-9.290 UBIII					
20 dBm-						
30 dBm						-
40 dBm						-
50 dBm						
al de	when 1		Sec. Sec. Los	the loop		
60 dBm	hitmeneous	Whaypohrandrudel	munthat	and maken to a	manas Approved	Margaret 1
70 dBm						+
Start 2.0 GHz		500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500	691 pts	AG 50	Ste	op 25.0 GHz

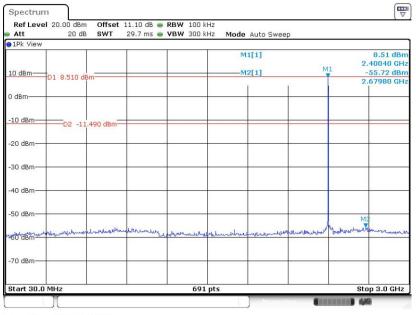
Date: 8.DEC.2020 23:12:16

Ref Level Att	20 di		11.10 dB 👄 29.7 ms 👄	VBW 300 k		Auto Sweep	5		
1Pk View									
					M	11[1]		M1	11.54 dBr 2.48210 GH
10 dBm-0	1 11.540	dBm			N	12[1]		-	-56.06 dBr
									2.63250 GH
0 dBm			_						
-10 dBm	D2 -8.	460 dBm-							
-20 dBm		-							
-30 dBm		-							+
-40 dBm									
-50 dBm									
								M	2
stordant-	mulumme	remanner	manning	Juneye Masse	handre der her	John margaret	hellowenew	red Wartness	intervening
-70 dBm			_						
Start 30.0 M					pts	1.5			top 3.0 GHz

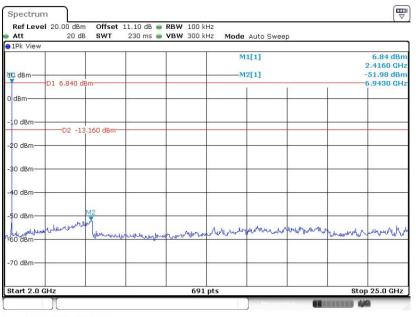
CSE Plot on CH 78 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 23:34:53

CSE Plot on CH 78 between 2 GHz ~ 25 GHz


Ref Level Att	20.00 dBm 20 dB		11.10 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	р		
1Pk View			,						
M1					м	1[1]			11.00 dBn 2.4830 GH
	1 11.000 c	lBm:			M	2[1]			-50.39 dBn
						I	Ē	T	4.9460 GH
0 dBm			-						-
-10 dBm	D2 -9.0	100 dBm							
-10 aBm									
-20 dBm									
-30 dBm			-						
-40 dBm									
-O dBm	M2	102	-						-
-60 dBm	ulmonra	1	of light we append	to the second	A.K. MUN	1 American	yoh welle		A theread
-60 dBm		Whitendy	rhibble	and so at	An	~ 0~		Canentral all.	des de se de co
70.40									
-70 dBm									
Start 2.0 GF	-			691	nte			Cto	p 25.0 GHz
otart 2.0 Gr	17			091	pes			310	p 20.0 GH2

Date: 8.DEC.2020 23:35:35


<2Mbps>

CSE Plot on CH 00 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 22:58:50

CSE Plot on CH 00 between 2 GHz ~ 25 GHz

Date: 8.DEC.2020 22:59:19

Att 1Pk View	20 dB	SWT	29.7 ms 🖷	VBW 300	Mode	Auto Sweep)			
DIAK AIGM					M	1[1]			8.08 2.43910	
10 dBm—	D1 8.080 dBn	0			M2[1]			M1 -56.17 dB		
	01 0.000 000					1			2.11670	GH
0 dBm										
-10 dBm—	D2 -11.9	20 dBm-		-						
20 dBm—	<u>e</u>									
-30 dBm—				-						
40 dBm—										
-50 dBm—						M	2			
	10 all line wanter	AL-LAND LANDA PLU	Hundler h	a methore a		u les pourse	manual in M	Mush	Manderen	lub r d
60vernin-	White Party Control of the		T	and the stand of t	a Hugana Palathan	are the mail to a deal	- And Ithou			100,00-71
-70 dBm—										
Start 30.	DMHz		10 C	691	pts				Stop 3.0	GHz

CSE Plot on CH 39 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 23:05:18

CSE Plot on CH 39 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB		11.10 dB 👄 230 ms 👄	VBW 300		Auto Swee	р			
1Pk View				1						
					M	1[1]		8.25 dBr 2.4490 GH		
dBm—	D1 8.250 dB	300-			M2[1]				-50.45 dBn	
	D1 0.200 4					I	Ê	Ĩ.	6.8760 GH	
dBm	-									
10 dBm—	D2 -11	.750 dBm-								
20 dBm—				-					-	
30 dBm—									-	
40 dBm—										
40 aBm—										
50 dBm-		M2					-		-	
A. A.	www.www.ww	Nº .	manunde		A. K. M. MILM	na wanter and	month	Marine aske de	hun hand	
60 dBm—		waller	inversion de	white was	100 0 10 00			Source on me		
70 /0										
70 dBm—										
Start 2.0					pts				p 25.0 GHz	

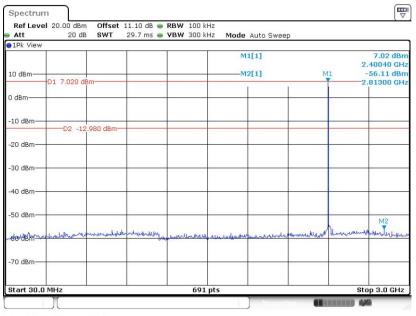
Date: 8.DEC.2020 23:05:57

1Pk View	D1 7.710 dBm					11[1] 12[1]		7.71 2.48210 M1 -55.86 2.83450		
) dBm									2.00100 011	
10 dBm	D2 -12.29	90 dBm—								
20 dBm							-			
-30 dBm							-			
40 dBm							~			
50 dBm									M2	
60-08nt-	ehr grien rolm friken	nuberthe	manuly	a hall	والمرجلين _{مح} طع	understanderstandel	ulannus	will have	harmentaling	
70 dBm-							72			

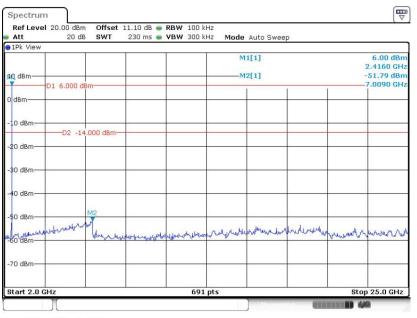
CSE Plot on CH 78 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 22:46:38

CSE Plot on CH 78 between 2 GHz ~ 25 GHz


Att	el 20.00 dBm 20 dB	SWT	11.10 dB 🖷 230 ms 🖷	VBW 300 k		Auto Swee	p		
1Pk View	2								
					М	1[1]			6.91 dBn 2.4830 GH
dBm-					M	2[1]			-51.88 dBn
	D1 6.910 dBr	n					1	1	6.6770 GH
0 dBm									
-10 dBm-									
	D2 -13.0	190 dBm-		-					
20 dBm—					-				22
-30 dBm-									
- <mark>4</mark> 0 dBm—				-					
CO 40	M2								
-30 aBm	1 - here there	1				A.A. 1. 1			
60 dBm-	en between the	hunderly	an warmy whom	monthal	man	an wither	Mr. S. Comerce	where where the	hand
-70 dBm—							-		
Start 2.0	CH2			601	pts			Sto	p 25.0 GHz
oture 210	une .			0,51	pes	1			p 2010 dille

Date: 8.DEC.2020 22:47:25


<3Mbps>

CSE Plot on CH 00 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 22:07:48

CSE Plot on CH 00 between 2 GHz ~ 25 GHz

Date: 8.DEC.2020 22:08:20

Att 1Pk View	20 dB	SWT	29.7 ms 👄	VBW 300 k	Hz Mode	Auto Sweep)			
10 dBm—	-D1 7.490 dB					1[1] 2[1]		7.49 de 2.43910 G M1 -55.00 de		
0 dBm	01 7.490 00						-	-	2.42620 GH	
-10 dBm—	D2 -12	510 dBm								
20 dBm—	-									
30 dBm—										
40 dBm—										
50 dBm—		Lashr						ME	internation .	
	Under and an and and and and and and and and	- france (film from	upun Orally	<u>اللالحين أديماً منازمة متركم ا</u> ل	Kallenned style All reads	and souther	an a	water	whenter	
70 dBm—										
Start 30.0	0 MHz			691	nts			-	Stop 3.0 GHz	

CSE Plot on CH 39 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 22:01:59

CSE Plot on CH 39 between 2 GHz ~ 25 GHz

Ref Level Att	20.00 dBm 20 dB	SWT		RBW 100 k		Auto Swee	р			
1Pk View			1	-						
					M1[1]			7.42 dBr 2.4490 GH		
dBm-		199			M	2[1]			-51.66 dBn	
1	1 7.420 dB	Im				I	Ê	Ĩ.	6.9760 GH	
dBm			-	+				+		
10 dBm-	D2 -12	.580 dBm-							-	
20 dBm										
30 dBm										
40 dBm			-		-		-			
50 dBm		M2		-	-			-	-	
50 dBm	Marring	ahand	Murah h	Munder Multin	a Moral months	out my hered	upplese when	manunh	mungy	
60 dBm		0.0 1	A A A A A A A A A A A A A A A A A A A							
70 dBm										
JO UBIII										
								Sto		

Date: 8.DEC.2020 22:02:40

1Pk View	20 dB	SWT	29.7 ms 👄	VDW 300 K	mode	Auto Sweep)			
10 dbm	D1 8.430 dBm				M		8.43 dB 2.48210 Gl M1 -55.40 dB 2.44770 Gl			
0 dBm							2	-	2.44	770 GH
-10 dBm	D2 -11.57	70 dBm								
-20 dBm										
30 dBm										
40 dBm										
50 dBm								M2		
oo'oo'oo	- manual al	undala	Marinhoned	ALL AND DATE	al managed and the most of the second s	and a stand the second	knowskihla	and Yer	or him when	manushi
70 dBm										
Start 30.0	MUT			601	pts				Ston	3.0 GHz

CSE Plot on CH 78 between 30 MHz ~ 3 GHz

Date: 8.DEC.2020 22:15:27

CSE Plot on CH 78 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB		11.10 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	D		
1Pk View									
					M	1[1]			6.94 dBn 2.4830 GH
dBm-		100			M	2[1]			51.08 dBn
1 I	D1 6.940 di	3m-	-			1	<u> </u>	1	5.9760 GH
0 dBm	-		-						
-10 dBm									
-10 aBm-	D2 -13	.060 dBm-			-				
-20 dBm									2
-30 dBm—			-						
-40 dBm			-						
do dom									
50 dBm—		M2	-				-		0
Me Mudaha	nerburner	un el	munin	e an timed	howwww	a moundar	whethere	Ann. 1914	mana
60 dBm-		an lot	mandiner	Concer of a w				Quan - W	
70 dBm—									
70 GDIII									
Start 2.0				691	L				25.0 GHz

Date: 8.DEC.2020 22:16:43

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

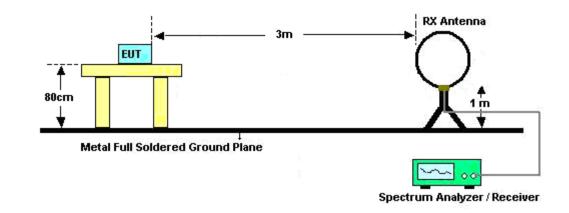
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

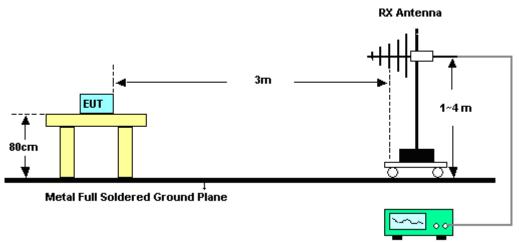
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

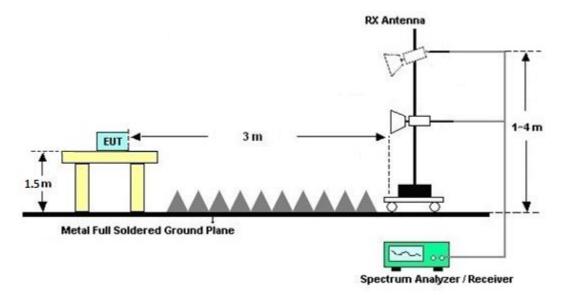
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



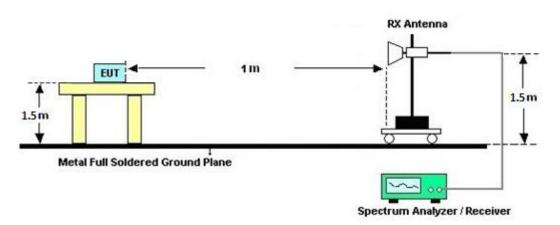
3.8.4 Test Setup

For radiated test below 30MHz

For radiated test from 30MHz to 1GHz



Spectrum Analyzer / Receiver


TEL : 886-3-327-3456	Page Number	: 51 of 56
FAX : 886-3-328-4978	Issued Date	: Jan. 07, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.9 Antenna Requirements

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	Nov. 26, 2020~ Dec. 08, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2019	Nov. 26, 2020~ Dec. 08, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2019	Nov. 26, 2020~ Dec. 08, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	Nov. 26, 2020~ Dec. 08, 2020	Jul. 21, 2021	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2020	Nov. 26, 2020~ Dec. 08, 2020	Mar. 16, 2021	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Dec. 31, 2020~ Jan. 05, 2021	Jul. 13, 2021	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01 N-06	47020 & 06	30MHz to 1GHz	Oct. 11, 2020	Dec. 31, 2020~ Jan. 05, 2021	Oct. 10, 2021	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Sep. 30, 2020	Dec. 31, 2020~ Jan. 05, 2021	Sep. 29, 2021	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-152 2	1G~18GHz	Sep. 29, 2020	Dec. 31, 2020~ Jan. 05, 2021	Sep. 28, 2021	Radiation (03CH16-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0054001	1GHz~18GHz	Sep. 04, 2020	Dec. 31, 2020~ Jan. 05, 2021	Sep. 03, 2021	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz ~40GHz	May 22, 2020	Dec. 31, 2020~ Jan. 05, 2021	May 21, 2021	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY532702 64	1GHz~26.5GHz	Dec. 10, 2020	Dec. 31, 2020~ Jan. 05, 2021	Dec. 09, 2021	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY572901 11	3Hz~26.5GHz	Dec. 11, 2020	Dec. 31, 2020~ Jan. 05, 2021	Dec. 10, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/ 4PE	NA	Aug. 29, 2020	Dec. 31, 2020~ Jan. 05, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/ 4PE	NA	Aug. 29, 2020	Dec. 31, 2020~ Jan. 05, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300 -5757	NA	Aug. 29, 2020	Dec. 31, 2020~ Jan. 05, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
Hygrometer	TECPEL	DTM-303B	TP200881	QA-3-031	Oct. 22, 2020	Dec. 31, 2020~ Jan. 05, 2021	Oct. 21, 2021	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Dec. 31, 2020~ Jan. 05, 2021	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Dec. 31, 2020~ Jan. 05, 2021	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Dec. 31, 2020~ Jan. 05, 2021	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Dec. 31, 2020~ Jan. 05, 2021	N/A	Radiation (03CH16-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5
of 95% (U = 2Uc(y))	4.5

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.2
of 95% (U = 2Uc(y))	6.3

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7
of 95% (U = 2Uc(y))	4.7

Report Number : FR090315-01A

Appendix A. Test Result of Conducted Test Items

est Er	ngineer:	Kathy Chen / Kai Liao		Kathy Chen / Kai Liao Temperature: 2		21.	.8~23.9 °C			
Fest Da	ate:			2020/11	/26 ~2020/1	2/8	Relative Humidity:	54	l~55.7	%
			20dB	and 99	% Occup		SULTS DATA Ith and Hopping	Channel Separ	ation	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.949	0.877	1.003	0.6329	Pass	
DH	1Mbps	1	39	2441	0.949	0.880	1.003	0.6329	Pass	
DH	1Mbps	1	78	2480	0.949	0.877	1.007	0.6329	Pass	
2DH	2Mbps	1	0	2402	1.333	1.190	1.003	0.8886	Pass	
2DH	2Mbps	1	39	2441	1.333	1.190	1.003	0.8886	Pass	
2DH	2Mbps	1	78	2480	1.333	1.190	1.003	0.8886	Pass	
3DH	3Mbps	1	0	2402	1.298	1.184	1.003	0.8654	Pass	
3DH	3Mbps	1	39	2441	1.298	1.184	1.003	0.8654	Pass	
3DH	3Mbps	1	78	2480	1.303	1.184	1.003	0.8683	Pass	

<u>TEST RESULTS DATA</u> Dwell Time								
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail		
Nomal	79	106.67	2.88	0.31	0.4	Pass		
AFH	20	53.33	2.88	0.15	0.4	Pass		

TEST RESULTS DATA Peak Power Table								
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result			
	0	1	12.20	20.97	Pass			
DH5	39	1	12.16	20.97	Pass			
	78	1	12.13	20.97	Pass			
	0	1	11.98	20.97	Pass			
2DH5	39	1	11.97	20.97	Pass			
	78	1	11.87	20.97	Pass			
	0	1	12.45	20.97	Pass			
3DH5	39	1	12.43	20.97	Pass			
Γ	78	1	12.34	20.97	Pass			

				Ave	ST RESULTS DATA erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	12.19	1.14	
DH5	39	1	12.12	1.14	
	78	1	12.10	1.14	
	0	1	9.27	1.14	
2DH5	39	1	9.24	1.14	
	78	1	9.17	1.14	
	0	1	9.30	1.14	1
3DH5	39	1	9.28	1.14	
	78	1	9.24	1.14	

		<u>TEST RE</u> Number of He	SULTS DA	
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

Appendix B. Radiated Spurious Emission

Test Engineer :	Karl Hou, Caster Liao and Andy Yang	Temperature :	20~25°C
rest Engineer.	Kan Hou, Caster Liao and Andy Tang	Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2374.05	46.97	-27.03	74	41.07	27.66	8.53	30.29	105	54	Ρ	Н
		2374.05	22.21	-31.79	54	-	-	-	-	-	-	А	Н
	*	2402	86.22	-	-	80.42	27.5	8.58	30.28	105	54	Ρ	Н
DT	*	2402	61.46	-	-	-	-	-	-	-	-	А	Н
BT CH00													Н
2402MHz		2362.185	47.5	-26.5	74	41.55	27.73	8.51	30.29	366	112	Ρ	V
240210112		2362.185	22.74	-31.26	54	-	-	-	-	-	-	А	V
	*	2402	81.03	-	-	75.23	27.5	8.58	30.28	366	112	Ρ	V
	*	2402	56.27	-	-	-	-	-	-	-	-	А	V
													V
		2334.64	46.89	-27.11	74	40.9	27.83	8.46	30.3	106	50	Р	Н
		2334.64	22.13	-31.87	54	-	-	-	-	-	-	А	Н
	*	2441	89.13	-	-	83.32	27.42	8.66	30.27	106	50	Ρ	Н
	*	2441	64.37	-	-	-	-	-	-	-	-	А	Н
		2484.95	47.91	-26.09	74	42.01	27.4	8.75	30.25	106	50	Ρ	Н
ВТ СН 39		2484.95	23.15	-30.85	54	-	-	-	-	-	-	А	Н
сп зэ 2441MHz		2351.86	47.65	-26.35	74	41.66	27.79	8.49	30.29	400	103	Ρ	V
244110112		2351.86	22.89	-31.11	54	-	-	-	-	-	-	А	V
	*	2441	84.35	-	-	78.54	27.42	8.66	30.27	400	103	Р	V
	*	2441	59.59	-	-	-	-	-	-	-	-	А	V
		2493.35	46.93	-27.07	74	41.02	27.4	8.76	30.25	400	103	Ρ	V
		2493.35	22.17	-31.83	54	-	-	-	-	-	-	А	V

	*	2480	89.93	-	-	84.05	27.4	8.74	30.26	131	36	Р	Н
		2480	65.17	-	-	-	-	-	-	-	-	А	Н
		2497.12	47.48	-26.52	74	41.56	27.4	8.77	30.25	131	36	Ρ	Н
		2497.12	22.72	-31.28	54	-	-	-	-	-	-	А	Н
57													Н
ВТ СН 78													Н
СП 78 2480MHz	*	2480	86.18	-	-	80.3	27.4	8.74	30.26	387	100	Ρ	V
24001112		2480	61.42	-	-	-	-	-	-	-	-	А	V
		2483.8	46.58	-27.42	74	40.69	27.4	8.74	30.25	387	100	Р	V
		2483.8	21.82	-32.18	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and .	Average lir	nit line.							

	[ſ					-						
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	ļ			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	44.24	-29.76	74	59.25	31.11	13.36	59.48	100	0	Р	Н
		4804	19.48	-34.52	54	-	-	-	-	-	-	А	Н
вт		17949	57.9	-16.1	74	15.69	48.23	24.9	30.92	100	0	Ρ	Н
ВТ СН 00		17949	33.14	-20.86	54	-	-	-	-	-	-	А	Н
2402MHz		4804	39.27	-34.73	74	54.28	31.11	13.36	59.48	100	0	Ρ	V
240210112		4804	14.51	-39.49	54	-	-	-	-	-	-	А	V
		17983	58.08	-15.92	74	15.14	48.94	24.91	30.91	100	0	Ρ	V
		17983	33.32	-20.68	54	-	-	-	-	-	-	А	V
		4882	44.37	-29.63	74	59.4	31.14	13.36	59.53	100	0	Р	Н
		4882	19.61	-34.39	54	-	-	-	-	-	-	А	Н
		7323	44.53	-29.47	74	51.24	36.45	16.19	59.35	100	0	Ρ	Н
		7323	19.77	-34.23	54	-	-	-	-	-	-	А	Н
57		17966	58.19	-15.81	74	15.61	48.59	24.91	30.92	100	0	Ρ	Н
BT		17966	33.43	-20.57	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	40.41	-33.59	74	55.44	31.14	13.36	59.53	100	0	Ρ	V
244110112		4882	15.65	-38.35	54	-	-	-	-	-	-	А	V
		7323	43.67	-30.33	74	50.38	36.45	16.19	59.35	100	0	Ρ	V
		7323	18.91	-35.09	54	-	-	-	-	-	-	А	V
		17932	57.67	-16.33	74	15.83	47.87	24.9	30.93	100	0	Ρ	V
		17932	32.91	-21.09	54	-	-	-	-	-	-	А	V

BT (Harmonic @ 3m)

	4960	46.35	-27.65	74	61.23	31.34	13.36	59.58	100	0	Р	н
	4960	21.59	-32.41	54	-	-	-	-	-	-	А	н
	7440	44.15	-29.85	74	50.54	36.4	16.39	59.18	100	0	Ρ	Н
	7440	19.39	-34.61	54	-	-	-	-	-	-	А	Н
	17949	57.84	-16.16	74	15.63	48.23	24.9	30.92	100	0	Ρ	Н
BT	17949	33.08	-20.92	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz	4960	41.93	-32.07	74	56.81	31.34	13.36	59.58	100	0	Ρ	V
240010112	4960	17.17	-36.83	54	-	-	-	-	-	-	А	V
	7440	44.36	-29.64	74	50.75	36.4	16.39	59.18	100	0	Ρ	V
	7440	19.6	-34.4	54	-	-	-	-	-	-	А	V
	17949	57.84	-16.16	74	15.63	48.23	24.9	30.92	100	0	Ρ	V
	17949	33.08	-20.92	54	-	-	-	-	-	-	А	V
Remark	er spurious ults are PAS		Peak and	Average lim	it line.							

Emission above 18GHz

					2.4GHz	BT (SHF	F)						
ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		23691	42.44	-31.56	74	43.17	39.97	12.6	53.3	100	0	Р	Н
													н
													н
													Н
													Н
													Н
													Н
													н
													н
													H
2.4GHz													Н
вт													Н
SHF		20954	40.98	-33.02	74	44.81	38.36	11.22	53.41	100	0	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark		o other spuriou results are PA		mit line.	1		1				I	1	

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		146.4	17.25	-26.25	43.5	30.59	17.47	1.93	32.74	-	-	Р	Н
		182.29	19.85	-23.65	43.5	35.4	15.09	2.22	32.86	-	-	Р	Н
		314.21	19.11	-26.89	46	29.19	19.46	2.98	32.52	-	-	Р	Н
		481.05	24.98	-21.02	46	30.06	23.82	3.71	32.61	-	-	Ρ	Н
		638.19	28.65	-17.35	46	30.42	26.46	4.34	32.57	-	-	Р	Н
		801.15	32.22	-13.78	46	32.06	28.07	4.94	32.85	100	0	Ρ	Н
													н
													Н
													Н
													Н
													н
2.4GHz													н
BT LF		54.25	24.92	-15.08	40	44.04	12.68	1.03	32.83	-	-	Р	V
		62.01	24.24	-15.76	40	43.96	11.93	1.14	32.79	-	-	Ρ	V
		181.32	21.4	-22.1	43.5	36.92	15.12	2.21	32.85	-	-	Ρ	V
		268.62	21.15	-24.85	46	31.66	19.39	2.76	32.66	-	-	Р	V
		558.65	27.55	-18.45	46	29.99	26.19	4.04	32.67	-	-	Ρ	V
		713.85	35.18	-10.82	46	36.1	26.92	4.62	32.46	100	0	Р	V
													V
													V
													V
													V
													V
													V

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

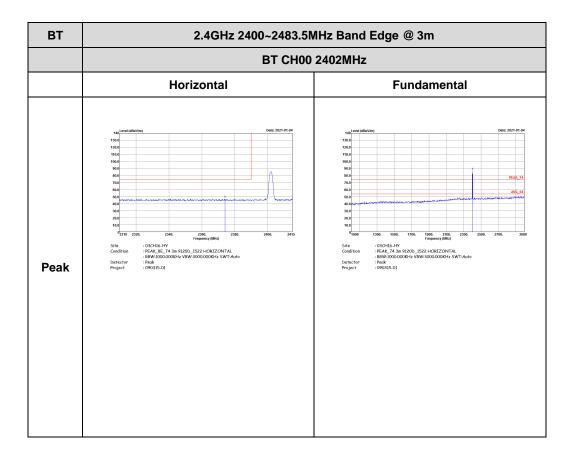
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

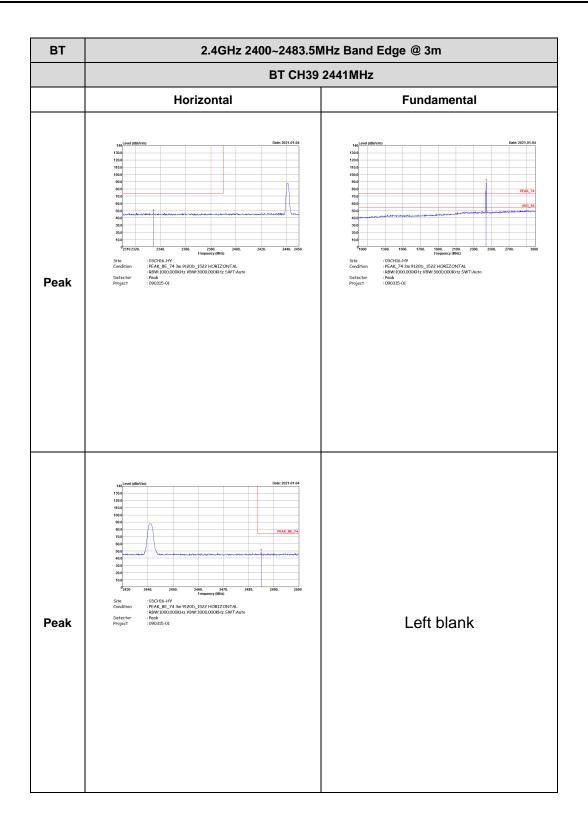
Both peak and average measured complies with the limit line, so test result is "PASS".

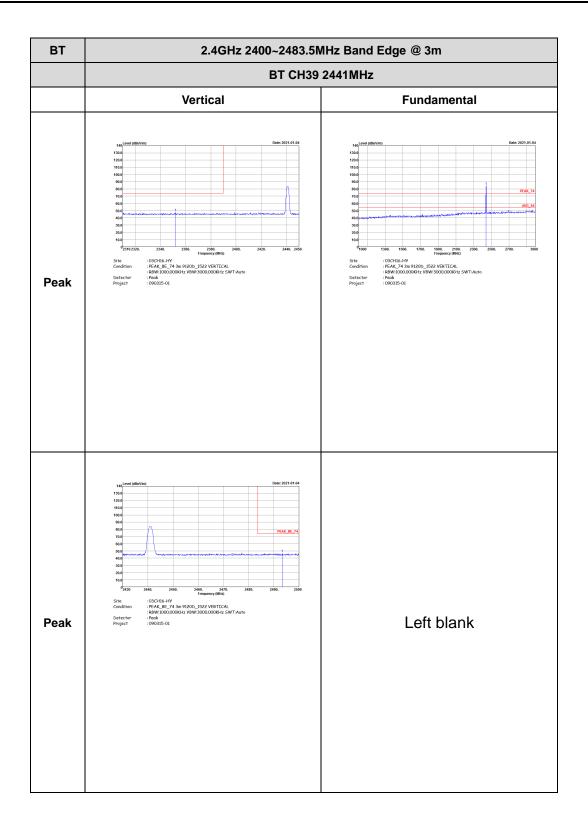


Appendix C. Radiated Spurious Emission Plots

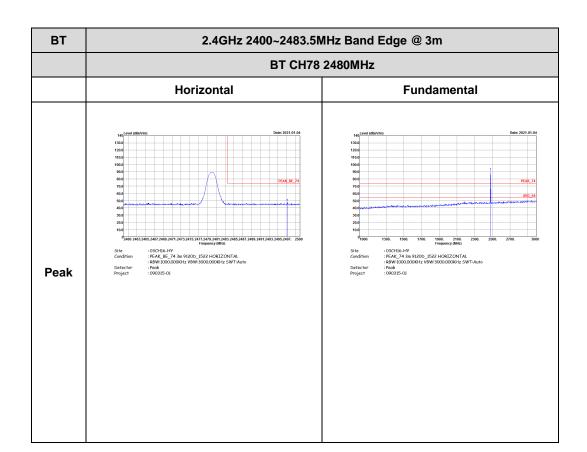
Test Engineer	Karl Hou, Caster Liao and Andy Yang	Temperature :	20~25°C
Test Engineer :		Relative Humidity :	50~60%

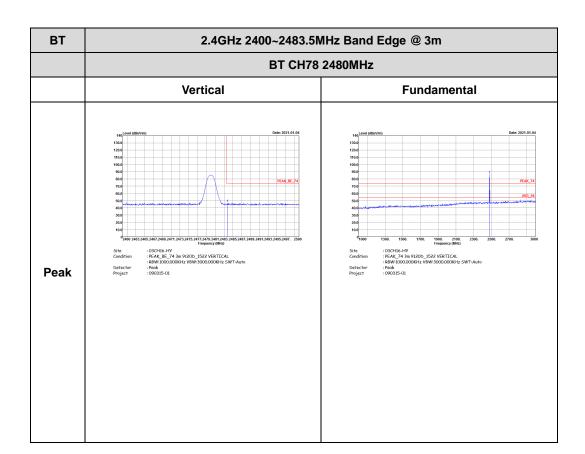
2.4GHz 2400~2483.5MHz

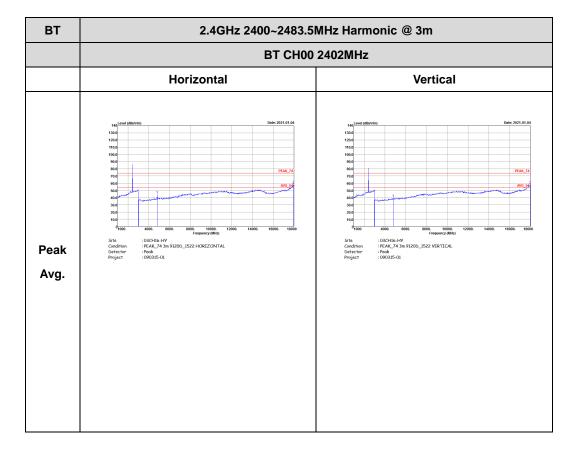

BT (Band Edge @ 3m)

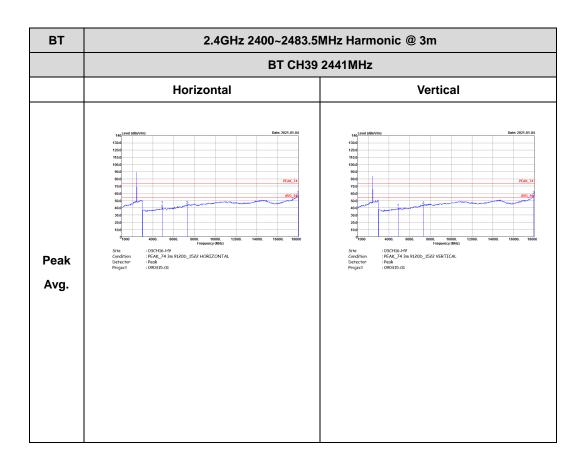


BT	2.4GHz 2400~2483.5MHz Band Edge @ 3m										
	BT CH00 2	2402MHz									
	Vertical	Fundamental									
Peak	Image: state	1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>									

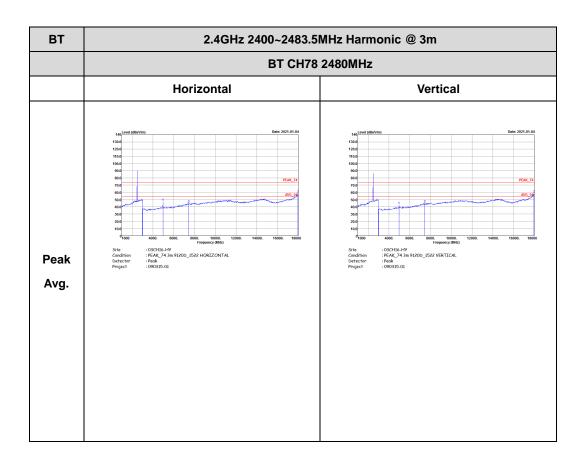


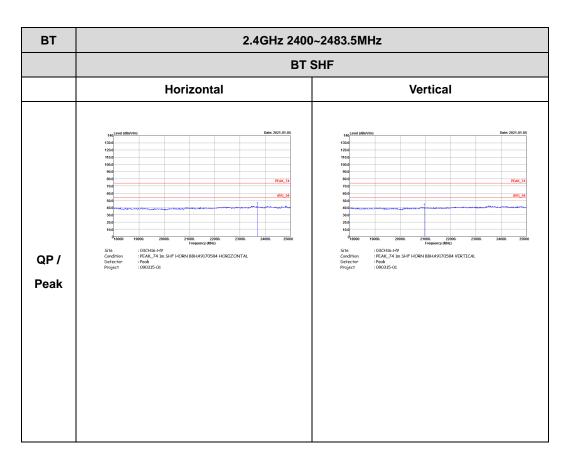


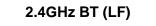


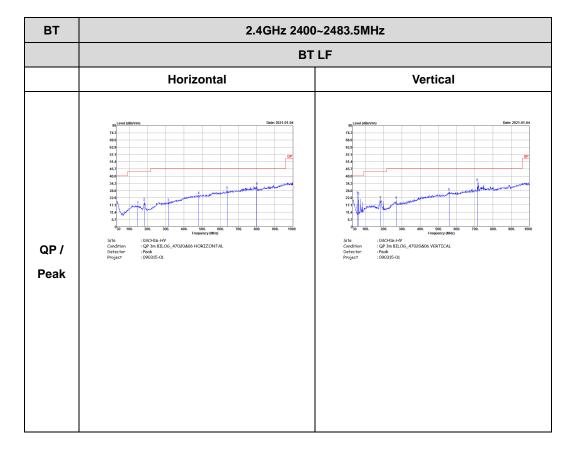


2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)




Emission above 18GHz



2.4GHz BT (SHF)

Emission below 1GHz

Appendix D. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Chanr	nel 39	on time (Count Pulses) Plot on Channel 39					
Koppet Spectrum Analyzer, Sweet SA Schnicz Int 10-31.20 AH Jan 64, 2021 B.R. 6F 50.00 mS 10-31.20 AH Jan 64, 2021 Marker 3 ∆ 3.75000 ms Trig: Free Run IF GelmLow Trig: Free Run Atten: 10 dB Schnicz Int Marker 3 ∑ 7500 ms Trig: Free Run IF GelmLow Atten: 10 dB Add R 73, 27.50 ms	Marker Select Marker	Keepid Section Andree: Send SA SENSE IN1 10:39+32 At 3er 04, 2021 TraceDetector RL VP Sense In1 10:39+32 At 3er 04, 2021 TraceDetector Sweep Time 100.0 ms FRO: Fast +++ Frig: Free Run Free Run Select TraceDetector MEE PRO: Fast +++ Frig: Free Run Select TraceDetector Select TraceDetector Mkt 17 6-40 ms Mkt 17 6-40 ms Select TraceDetector Select TraceDetector					
0. dBdd/v Ref 106.99 dBμV -0.063 dB 970	Normal	10 dBldiv Ref 106.99 dBµV 69.29 dBµV Clear Writ					
	Delta						
	Fixed⊳	870 Max Hol 870 Max Hol					
Senter 2: A41000000 GHz Span 0 Hz Span 0 Hz kes BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts) xx Y Falcetox 1, 42, 1 t (Δ) 2,899 ms (Δ) - 0,307 dB	Off						
2 F t 1.280 ms 68.752 dBµV 3 Δ4 t t Δ 5.750 ms (Δ) -0.056 dB 4 F t 1.280 ms 68.752 dBµV 6 4 F t 1.280 ms 68.752 dBµV 6 7 - - - - -	Properties►	27.0 View Blank Trace On					
	More 1 of 2	Mon Center 2.441000000 GHz Span 0 Hz 1 of Res BW 1.0 MHz \$weep 100.0 ms (1001 pts) 100.0 ms (2001 pts)					
555 (FTATUS							

Note:

1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %

- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$