

The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, MI 48109-2122
Tel: (734) 764-0500
Fax: (734) 647-2106

Measured Radio Frequency Emissions
From

Lear Automotive (EEDS) Spain Transmitter
FCC ID: TTRFEMLR01
IC: 6276A-FEMLR01

Test Report No. 417124-603
April 26, 2011

Copyright © 2011

For:

Lear Automotive (EEDS) Spain, SL
Fusters, 54-56, PO Box 23, Valls 43800 Spain
Contact: Alberto Alvaro
AVallsgadea@lear.com
Phone: +34 977 617925
Fax: +34 977 617925

Measurements made by: Joseph D. Brunett

Testing supervised by:
Report Approved by:

A handwritten signature in black ink that reads "Valdis V. Liepa".

Valdis V. Liepa
Research Scientist

Summary

Tests for compliance with FCC Regulations, CFR 47, Part 15 and with Industry Canada RSS-210/Gen, were performed on a Lear Spain, FCC ID: TTRFEMLR01, IC: 6276A-FEMLR01. This device under test (DUT) is subject to the rules and regulations as a Transmitter.

In testing completed on April 25, 2011, the DUT tested met the allowed specifications for radiated emissions by 26.5 dB. Conducted emissions are not subject to regulation as the DUT is powered by a 12 VDC automotive power system.

Table of Contents

1.	Introduction.....	3
2.	Equipment Used.....	3
3.	Device Under Test	4
3.1	Description & Block Diagram	4
3.2	Samples & Variants	4
3.3	Modes of Operation	4
3.4	Exemptions	4
3.5	EMC Relevant Modifications	4
4.	Emissions Limits.....	5
4.1	Radiated Emissions Limits.....	5
5.	Measurement Procedures	6
5.1	Semi-Anechoic Chamber Radiated Emissions.....	6
5.2	Outdoor Radiated Emissions.....	6
5.3	Radiated Field Computations.....	6
5.4	Indoor Power Line Conducted Emissions.....	7
5.5	Supply Voltage Variation.....	7
6.	Test Results.....	7
6.1	Radiated Emissions	7
6.1.1	Correction for Pulse Operation	7
6.1.2	Emission Spectrum	7
6.1.3	Emission Bandwidth	7
6.1.4	Supply Voltage and Supply Voltage Variation	8
6.2	Conducted Emissions.....	8

1. Introduction

This Lear Spain Transmitter was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 7, June 2007. Tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

2. Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1. Except where indicated as a pre-test, monitoring, or support device; all equipment listed below is a part of the University of Michigan Radiation Laboratory (UMRL) quality system. This quality system has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

Table 2.1 Test Equipment.

Test Instrument	Used	Manufacturer/Model	Q Number
Spectrum Analyzer (9kHz-26GHz)	<input checked="" type="checkbox"/>	Hewlett-Packard 8593E, SN: 3412A01131	HP8593E1
Spectrum Analyzer (9kHz-6.5GHz)	<input checked="" type="checkbox"/>	Hewlett-Packard 8595E, SN: 3543A01546	JDB8595E
Power Meter	<input type="checkbox"/>	Hewlett-Packard, 432A	HP432A1
Harmonic Mixer (26-40 GHz)	<input type="checkbox"/>	Hewlett-Packard 11970A, SN: 3003A08327	HP11970A1
Harmonic Mixer (40-60 GHz)	<input type="checkbox"/>	Hewlett-Packard 11970U, SN: 2332A00500	HP11970U1
Harmonic Mixer (75-110 GHz)	<input type="checkbox"/>	Hewlett-Packard 11970W, SN: 2521A00179	HP11970W1
Harmonic Mixer (140-220 GHz)	<input type="checkbox"/>	Pacific Millimeter Prod., GMA, SN: 26	PMPGMA1
S-Band Std. Gain Horn	<input type="checkbox"/>	S/A, Model SGH-2.6	SBAND1
C-Band Std. Gain Horn	<input type="checkbox"/>	University of Michigan, NRL design	CBAND1
XN-Band Std. Gain Horn	<input type="checkbox"/>	University of Michigan, NRL design	XNBAND1
X-Band Std. Gain Horn	<input type="checkbox"/>	S/A, Model 12-8.2	XBAND1
X-band horn (8.2- 12.4 GHz)	<input type="checkbox"/>	Narda 640	XBAND2
X-band horn (8.2- 12.4 GHz)	<input type="checkbox"/>	Scientific Atlanta , 12-8.2, SN: 730	XBAND3
K-band horn (18-26.5 GHz)	<input type="checkbox"/>	FXR, Inc., K638KF	KBAND1
Ka-band horn (26.5-40 GHz)	<input type="checkbox"/>	FXR, Inc., U638A	KABAND1
U-band horn (40-60 GHz)	<input type="checkbox"/>	Custom Microwave, HO19	UBAND1
W-band horn(75-110 GHz)	<input type="checkbox"/>	Custom Microwave, HO10	WBAND1
G-band horn (140-220 GHz)	<input type="checkbox"/>	Custom Microwave, HO5R	GBAND1
Bicone Antenna (30-250 MHz)	<input checked="" type="checkbox"/>	University of Michigan, RLBC-1	LBBIC1
Bicone Antenna (200-1000 MHz)	<input checked="" type="checkbox"/>	University of Michigan, RLBC-2	HBBIC1
Dipole Antenna Set (30-1000 MHz)	<input type="checkbox"/>	University of Michigan, RLDP-1,-2,-3	UMDIP1
Dipole Antenna Set (30-1000 MHz)	<input type="checkbox"/>	EMCO 3121C, SN: 992 (Ref. Antennas)	EMDIP1
Active Rod Antenna (30 Hz-50 MHz)	<input type="checkbox"/>	EMCO 3301B, SN: 3223	EMROD1
Active Loop Antenna (30 Hz-50 MHz)	<input checked="" type="checkbox"/>	EMCO 6502, SN:2855	EMLOOP1
Ridge-horn Antenna (300-5000 MHz)	<input checked="" type="checkbox"/>	University of Michigan	UMRH1
Amplifier (5-1000 MHz)	<input checked="" type="checkbox"/>	Avantek, A11-1, A25-1S	AVAMP1
Amplifier (5-4500 MHz)	<input checked="" type="checkbox"/>	Avantek	AVAMP2
Amplifier (4.5-13 GHz)	<input type="checkbox"/>	Avantek, AFT-12665	AVAMP3
Amplifier (6-16 GHz)	<input type="checkbox"/>	Trek	TRAMP1
Amplifier (16-26 GHz)	<input type="checkbox"/>	Avantek	AVAMP4
LISN Box	<input type="checkbox"/>	University of Michigan	UMLISN1
Signal Generator	<input type="checkbox"/>	Hewlett-Packard 8657B	HPSG1

3. Device Under Test

3.1 Description & Block Diagram

The DUT is a 125 kHz Transmitter designed for automotive/vehicular applications, and as such it is powered by a 12 VDC vehicular system. The device is housed in a plastic case approximately 30 x 16 x 5 cm in dimension. For testing, a generic harness was provided by the manufacturer. The DUT is designed and manufactured by Lear Automotive (EEDS) Spain, SL, Fusters, 54-56, PO Box 23, Valls Spain 43800.

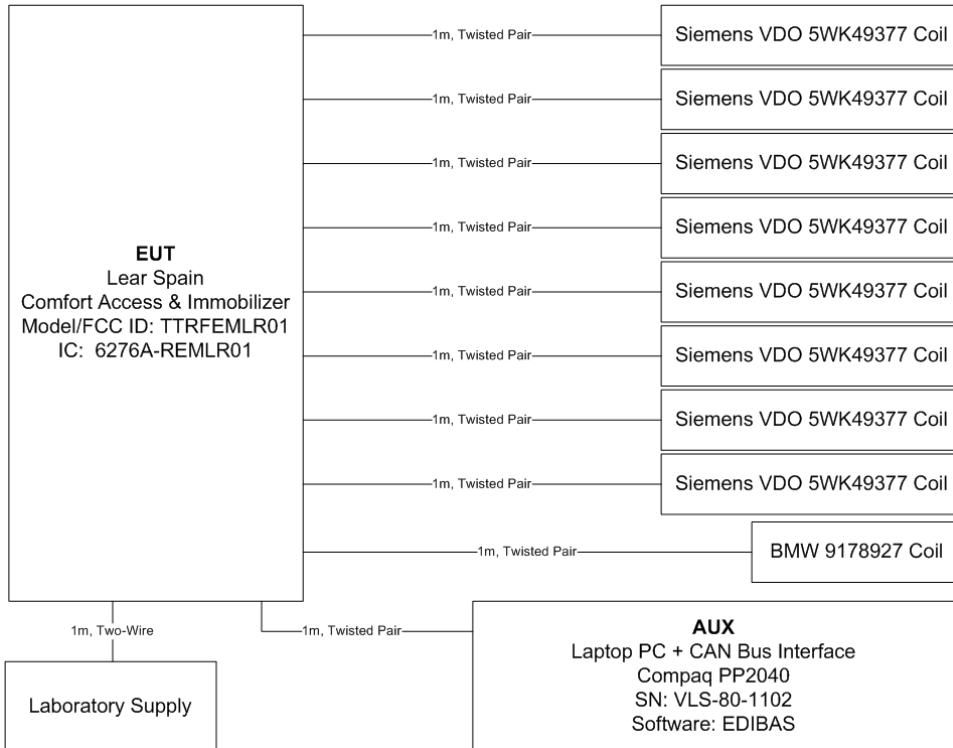


Figure 3.1 Block Diagram

3.2 Samples & Variants

Two samples were provided for testing, one unit modified for CW transmission and one normal operating unit controlled by a laptop computer over the vehicle CAN bus. Worst case LF emissions were observed from the CW module and are reported herein. The normal operating unit was employed to determine emission bandwidth and modulation. Only a single variant of the DUT was provided for testing.

3.3 Modes of Operation

The DUT is capable of two principle modes of operation. First, as a manually activated LF transmitter used to excite a keyless entry device (Comfort Entry) using eight sequentially fired Siemens coil antennas. Second, as an LF ignition immobilizer transmitter that authenticates a passive RFID coil for vehicle start (Comfort Go) using a BMW immobilizer coil.

3.4 Exemptions

The DUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt (per FCC 15.103(a) and IC correspondence on ICES-003) from regulation.

3.5 EMC Relevant Modifications

No EMI Relevant Modifications were performed by this test laboratory.

4. Emissions Limits

4.1 Radiated Emissions Limits

The DUT tested falls under the category of an Intentional Radiator. The applicable testing frequencies and corresponding emission limits set by both the FCC and IC are given in Tables 4.1 and 4.2 below.

Table 4.1. Transmitter Radiated Emission Limits (FCC: 15.205, 15.35; IC: RSS-210, 2.6 Tab. 1,3)

Frequency (MHz)		Fundamental and Spurious* (μ V/m)
0.009-0.490		2400/F(kHz), 300m
0.490-1.705		24,000/F(kHz), 30m
0.090-0.110	8.291-8.294	
0.49-0.51	8.37625 - 8.38675	
2.1735-2.190	8.41425 - 8.41475	
3.020-3.026 (IC)	12.29 - 12.293	
4.125-4.128	12.51975 - 12.52025	
4.17725-4.17775	12.57675 - 12.57725	
4.20725-4.20775	13.36 - 13.41	Restricted Bands
5.677-5.683 (IC)	16.42 - 16.423	
6.215-6.218	16.69475 - 16.69525	
6.26775-6.26825	16.80425 - 16.80475	
6.31175-6.31225	25.5 - 25.67	

* Harmonics must be below the fundamental. To translate measurements to the 300/30 m distance, we refer to the journal paper: "Extrapolating Near-Field Emissions of Low-Frequency Loop Transmitters," J. D. Brunett, V. V. Liepa, D. L. Sengupta, IEEE Trans. EMC, Vol. 47, No. 3, August 2005. The extrapolation factors derived and measured in this paper were collected at the OATS in question.

Table 4.2. Spurious Emission Limits (FCC: 15.33, .35, .109/209; IC: RSS-210 2.7, T2)

Freq. (MHz)	E_{lim} (3m) μ V/m	E_{lim} dB(μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW), Quasi-Peak readings apply to 1000 MHz (120 kHz RBW), PRF of intentional emissions > 20 Hz for QPK to apply.

4.2 Power Line Conducted Emissions Limits

Table 4.3 Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 T2).

Frequency (MHz)	Class A (dB μ V)		Class B (dB μ V)	
	Quasi-peak	Average	Quasi-peak	Average
.150 - 0.50	79	66	66 - 56*	56 - 46*
0.50 - 5	73	60	56	46
5 - 30	73	60	60	50

Notes:

1. The lower limit shall apply at the transition frequency
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:

$$\text{*Class B Quasi-peak: } \text{dB}\mu\text{V} = 50.25 - 19.12 \log(f)$$

$$\text{*Class B Average: } \text{dB}\mu\text{V} = 40.25 - 19.12 \log(f)$$
3. 9 kHz RBW

5. Measurement Procedures

5.1 Semi-Anechoic Chamber Radiated Emissions

To become familiar with the radiated emission behavior of the DUT, the device is first studied and measured in our shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

The DUT is laid on the test table as shown in the included block diagram and/or photographs. A shielded loop antenna is employed when studying emissions from 9 kHz to 30 MHz. Above 30 MHz and below 250 MHz a biconical antenna is employed. Above 250 MHz a ridge or standard gain horn antennas are used. The spectrum analyzer resolution and video bandwidths are set so as to measure the DUT emission without decreasing the emission bandwidth (EBW) of the device. Emissions are studied for all orientations (3-axes) of the DUT and all test antenna polarizations. In the chamber, spectrum and modulation characteristics of intentional carriers are recorded. Receiver spurious emissions are measured with an appropriate carrier signal applied. Associated test data is presented in subsequent sections.

5.2 Outdoor Radiated Emissions

After measurements are performed indoors, emissions on our outdoor 3-meter Open Area Test Site (OATS) are made, when applicable. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. Any intentionally radiating elements are placed on the test table flat, on their side, and on their end (3-axes) and worst case emissions are recorded. For each configuration the DUT is rotated 360 degrees about its azimuth and the receive antenna is raised and lowered between 1 and 4 meters to maximize radiated emissions from the device. Receiver spurious emissions are measured with an appropriate carrier signal applied. For devices with intentional emissions below 30 MHz, our shielded loop antenna at a 1 meter receive height is used. Low frequency field extrapolation to the regulatory limit distance is employed as needed. Emissions between 30 MHz and 1 GHz are measured using tuned dipoles and/or biconical antennas. Care is taken to ensure that the RBW and VBW used meet the regulatory requirements, and that the EBW of the DUT is not reduced. The Photographs included in this report show the Test Setup.

5.3 Radiated Field Computations

To convert the dBm values measured on the spectrum analyzer to dB(μ V/m), we use expression

$$E3(\text{dB}\mu\text{V/m}) = 107 + \text{PR} + \text{KA} - \text{KG} + \text{KE} - \text{CF}$$

where

PR	= power recorded on spectrum analyzer, dBm, measured at 3 m
KA	= antenna factor, dB/m
KG	= pre-amplifier gain, including cable loss, dB
KE	= duty correction factor, dB
CF	= distance conversion (employed only if limits are specified at alternate distance), dB

When presenting the data at each frequency, the highest measured emission under all of the possible DUT orientations (3-axes) is given.

5.4 Indoor Power Line Conducted Emissions

When applicable, power line conducted emissions are measured in our semi-anechoic chamber. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration.

The conducted emissions measured with the spectrum analyzer and recorded (in dB μ V) from 0-2 MHz and 2-30 MHz for both the ungrounded (Hi) and grounded (Lo) conductors. The spectrum analyzer is set to peak-hold mode in order to record the highest peak throughout the course of functional operation. Only when the emission exceeds or is near the limit are quasi-peak and average detection used.

5.5 Supply Voltage Variation

Measurements of the variation in the fundamental radiated emission were performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value. For battery operated equipment, tests were performed using a new battery, and worst case emissions are re-checked employing a new battery.

6. Test Results

6.1 Radiated Emissions

6.1.1 Correction for Pulse Operation

When the transmitter is activated by the user for Comfort Entry (lift of door handle or button press), it can, in the worst case, transmit a single 52 ms frame, consisting of one 17.55 ms pulse and followed by eight LF pulses (one from each antenna) over a total of 27.00 ms. See Figure 6.1. Computing the duty factor results in:

$$K_{E-CE} = (17.55 \text{ ms} + 27.00 \text{ ms}) / 100 \text{ ms} = 0.446 \text{ or } \mathbf{-7.0 \text{ dB}}.$$

When the transmitter is activated by the user for Comfort Go (ignition button press), it can, in the worst case, transmit repeated frame for 9.975 seconds. Each frame contains three 31.25 ms pulses followed by one 51.25 ms pulse. In the worst case, one of each of these pulses may occur within any given 100 ms window. See Figure 6.1. Computing the duty factor results in:

$$K_{E-CG} = (31.25 \text{ ms} + 51.25 \text{ ms}) / 100 \text{ ms} = 0.825 \text{ or } \mathbf{-1.7 \text{ dB}}.$$

6.2 Emission Spectrum

The relative DUT emission spectrum is recorded and is shown in Figure 6.2.

6.2.1 Emission Bandwidth

The emission bandwidth of the signal is shown in Figure 6.3. From the plot we see that the 99% worst case bandwidth is 20.00 kHz in the Comfort Go mode and 8.81 kHz in the Comfort Entry mode. The DUT emission is 37.59 dBc in the 110 kHz restricted band in the Comfort Go mode.

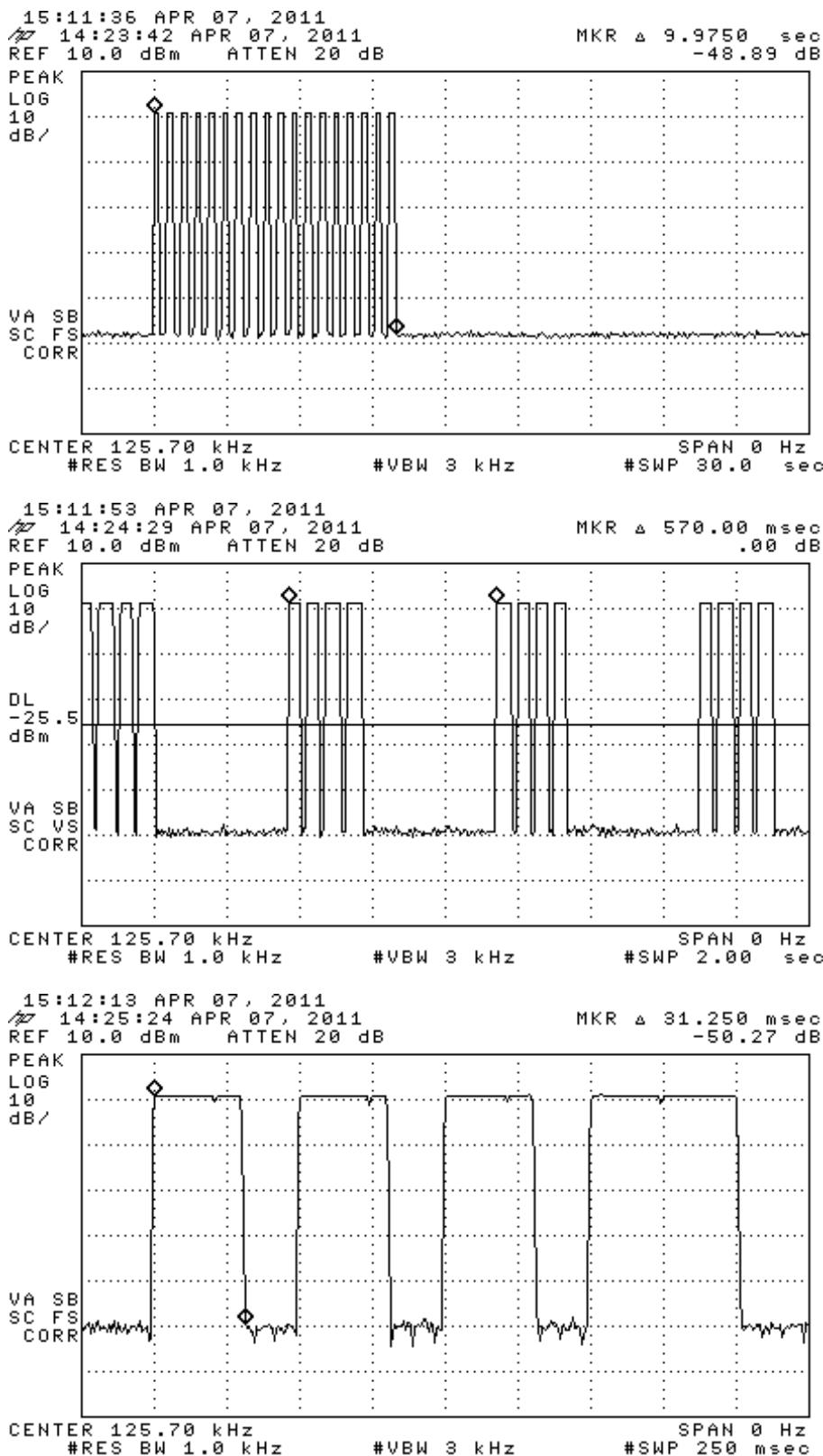
The DUT emission is 19.66 dBc in the 110 kHz restricted band in the Comfort Entry mode. The first null of the frequency domain sinc function generated in the Confort Entry mode appears at 122.2 kHz, indicating that the emissions in the 110 kHz restricted band are unintentional emissions (not subject to the 26 dBc requirement).

6.2.2 Supply Voltage and Supply Voltage Variation

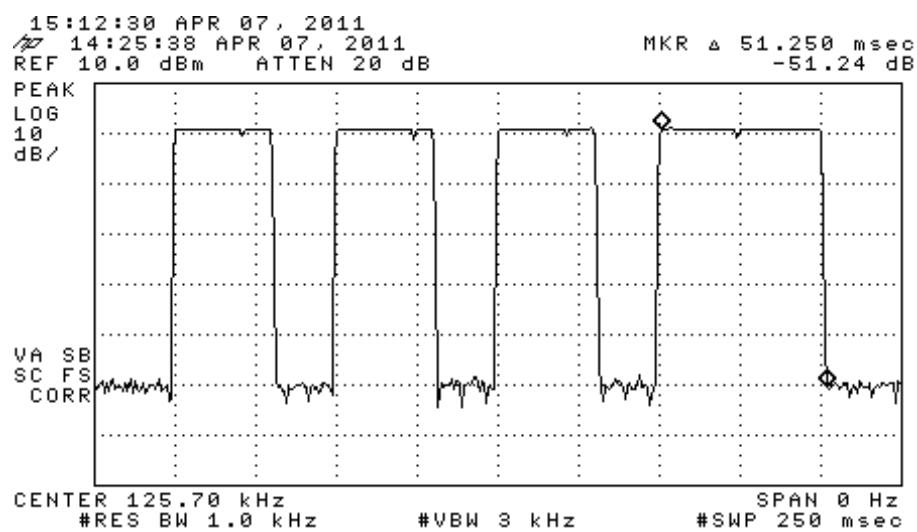
The DUT has been designed to be powered by a 12 VDC battery. For this test, relative radiated power was measured at the fundamental as the voltage was varied from 6.0 to 18.0 volts. The emission variation is shown in Figure 6.4.

Supply Voltage	V = 12.0 V
Current	I = 500 mA (cw)

6.3 Conducted Emissions


These tests do not apply, since the DUT is powered from a 12 VDC system.

The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, MI 48109-2122
Tel: (734) 764-0500
Fax: (734) 647-2106


University of Michigan Radiation Laboratory
FCC Part 15, IC RSS-210/Gen - Test Report No. 417124-603

Radiated Emission - LF											Lear Spain; FCC/IC	
#	Freq. kHz	Ant. Used	Ant. Orien.	Pr, 3m dBm	Det. Used	Ka dB/m	Kg dB	Conv.** 3/30/300 m	E* dB μ V/m	Elim dB μ V/m	Pass dB	Comments
1	Comfort Go Mode											
2	125.0	Loop	V/perp	-35.5	Pk	9.9	0.0	114.8	-35.1	25.7	60.8	loop perp. (axis in dir. of prop.)
3	125.0	Loop	V/par	-39.3	Pk	9.9	0.0	114.8	-38.9	25.7	64.6	loop paral. (loop in dir. of prop.)
4	125.0	Loop	H	-35.9	Pk	9.9	0.0	114.8	-35.5	25.7	61.2	loop horiz. (loop in horiz. plane)
5	250.0	Loop	V/perp	-71.3	Pk	9.8	0.0	110.4	-66.6	19.6	86.2	loop perp. (noise)
6	250.0	Loop	V/par	-74.7	Pk	9.8	0.0	110.4	-70.0	19.6	89.6	loop paral. (noise)
7	250.0	Loop	H	-66.7	Pk	9.8	0.0	110.4	-62.0	19.6	81.6	loop horiz. (background)
8	375.0	Loop	All	-68.0	Pk	9.8	0.0	104.5	-57.4	16.1	73.5	background
9	500.0	Loop	All	-74.7	Pk	9.8	0.0	56.3	-14.2	33.6	47.8	noise
10	625.0	Loop	All	-62.3	Pk	9.8	0.0	56.1	-1.6	31.7	33.3	background
11	750.0	Loop	All	-61.9	Pk	9.8	0.0	55.9	-1.0	30.1	31.1	background
12	875.0	Loop	All	-75.7	Pk	9.8	0.0	55.6	-14.5	28.8	43.3	noise
13	1000.0	Loop	All	-79.4	Pk	9.8	0.0	55.4	-18.0	27.6	45.6	noise
14	1125.0	Loop	All	-64.3	Pk	9.8	0.0	55.1	-2.6	26.6	29.2	noise
15	1250.0	Loop	All	-62.9	Pk	9.8	0.0	54.8	-0.9	25.7	26.5	background
16												
17	Comfort Entry Mode											
18	125.0	Loop	V/perp	-19.5	Pk	9.9	0.0	114.8	-24.4	25.7	50.1	loop perp. (axis in dir. of prop.)
19	125.0	Loop	V/par	-24.9	Pk	9.9	0.0	114.8	-29.8	25.7	55.5	loop paral. (loop in dir. of prop.)
20	125.0	Loop	H	-21.8	Pk	9.9	0.0	114.8	-26.7	25.7	52.4	loop horiz. (loop in horiz. plane)
21	250.0	Loop	V/perp	-66.9	Pk	9.8	0.0	110.4	-67.5	19.6	87.1	loop perp. (background)
22	250.0	Loop	V/par	-68.5	Pk	9.8	0.0	110.4	-69.1	19.6	88.7	loop paral. (noise)
23	250.0	Loop	H	-67.3	Pk	9.8	0.0	110.4	-67.9	19.6	87.5	loop horiz. (noise)
24	375.0	Loop	All	-68.6	Pk	9.8	0.0	104.5	-63.3	16.1	79.4	background
25	500.0	Loop	All	-70.9	Pk	9.8	0.0	56.3	-10.4	33.6	44.0	noise
26	625.0	Loop	All	-64.7	Pk	9.8	0.0	56.1	-4.0	31.7	35.7	background
27	750.0	Loop	All	-59.8	Pk	9.8	0.0	55.9	1.1	30.1	29.0	background
28	875.0	Loop	All	-82.4	Pk	9.8	0.0	55.6	-21.2	28.8	50.0	noise
29	1000.0	Loop	All	-77.1	Pk	9.8	0.0	55.4	-15.7	27.6	43.3	noise
30	1125.0	Loop	All	-64.0	Pk	9.8	0.0	55.1	-2.3	26.6	28.9	noise
31	1250.0	Loop	All	-72.8	Pk	9.8	0.0	54.8	-10.8	25.7	36.4	noise
32												
33	* Averaging applies up to 490 kHz, 1.7 dB for Comfort Go, 7 dB for Comfort Entry in this case											
34	Limit at 300m for f<0.490MHz; 30m for f>0.490MHz											
35	Measurements made at 3 m, see Test Report for extrapolation reference.											
36	9 kHz RBW for f >= 150 kHz, 200 Hz for f < 150 kHz											
37	** Represents the worst case conversion factor for all possible orientations and ground materials.											
Digital Radiated Emissions*												
#	Freq. kHz	Ant. Used	Ant. Pol.	Pr dBm	Det. Used	Ka dB/m	Kg dB		E3 dB μ V/m	E3lim dB μ V/m	Pass dB	Comments
38												
39	* For devices used in transportation vehicles, digital emissions are exempt from FCC regulations per FCC 15.103(a)											

University of Michigan Radiation Laboratory
FCC Part 15, IC RSS-210/Gen - Test Report No. 417124-603

Figure 6.1(a). Comfort Go - Transmission modulation characteristics. (top) complete transmission, (center) expanded transmission, (bottom) single frame short pulse length.

Figure 6.1(b). Comfort Go - Transmission modulation characteristics. (top) single frame long pulse length.

University of Michigan Radiation Laboratory
 FCC Part 15, IC RSS-210/Gen - Test Report No. 417124-603

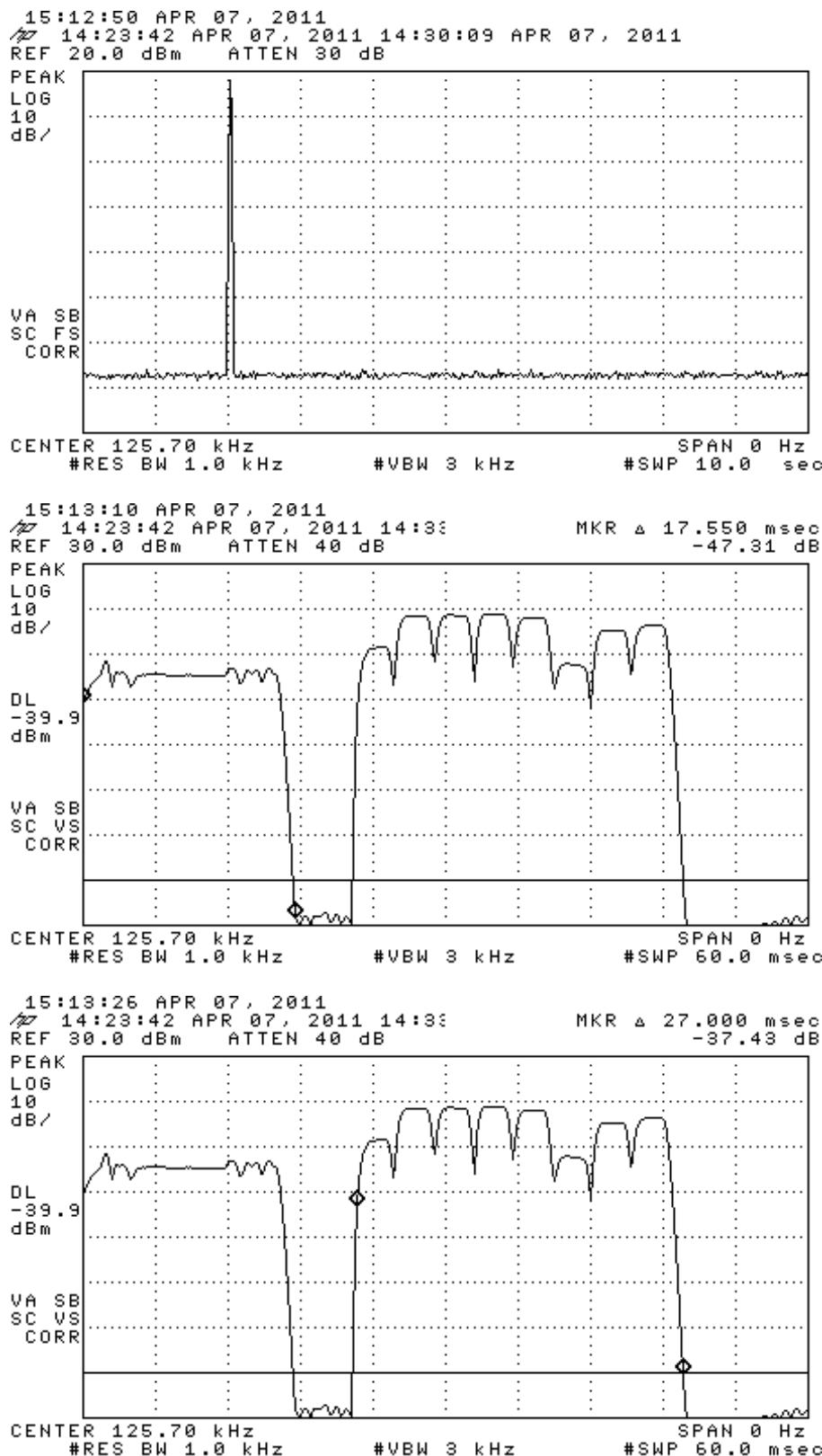
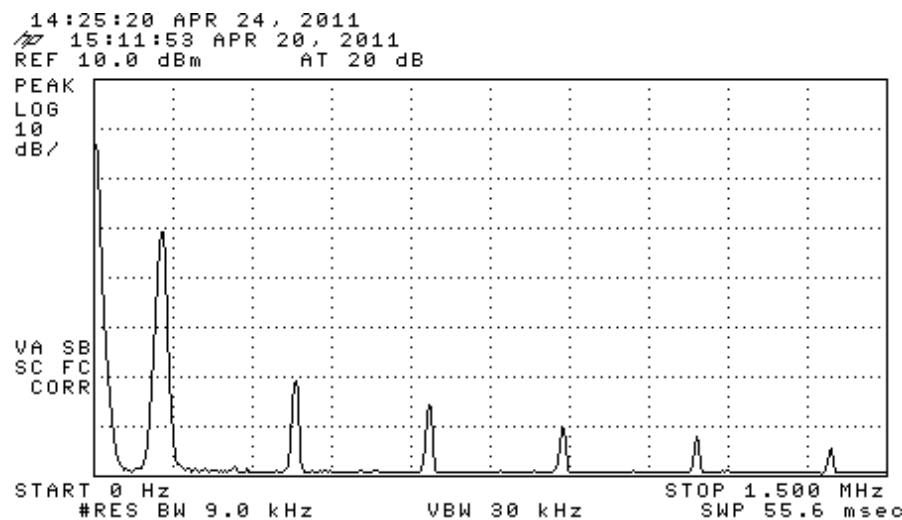
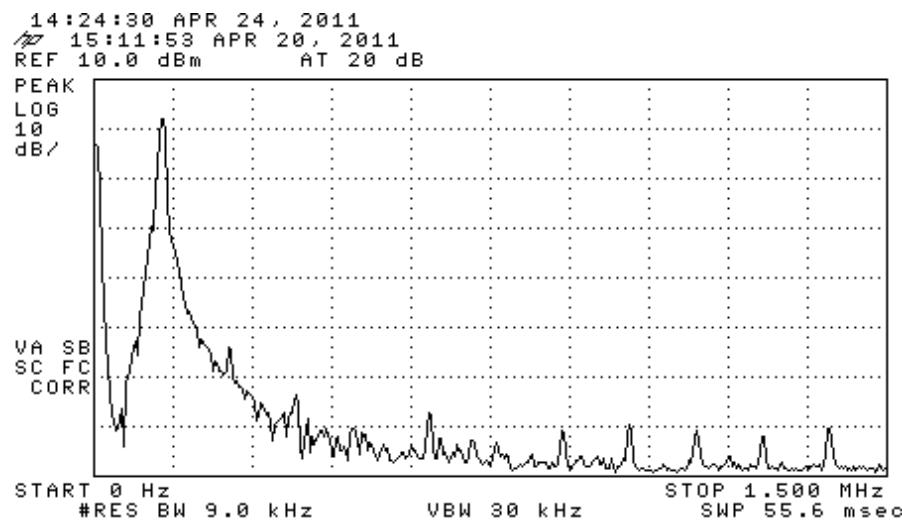
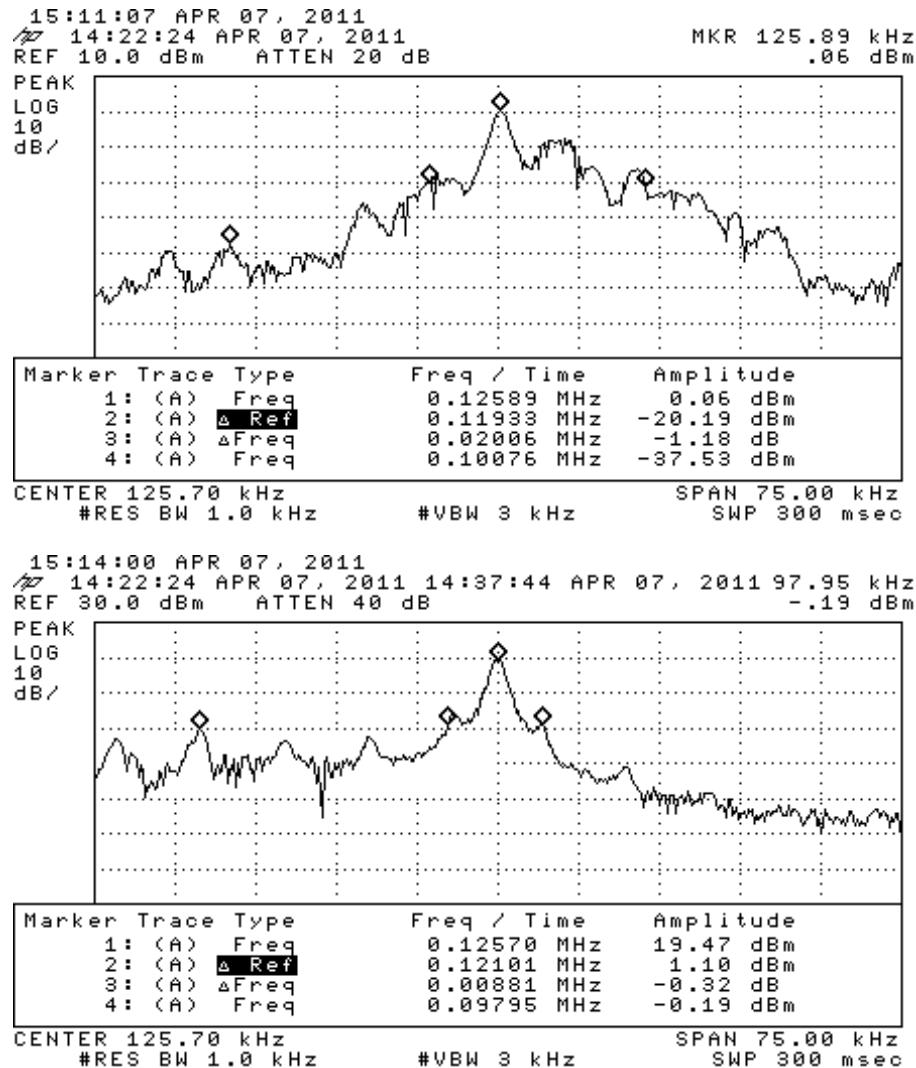
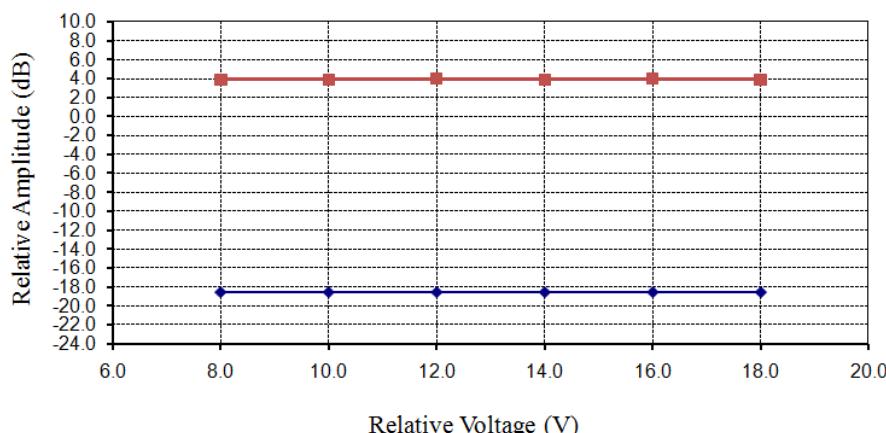





Figure 6.1(c). Comfort Entry - Transmission modulation characteristics. (top) complete transmission, (center) frame lead pulse, (bottom) sequential pulses, one from each coil.



**Figure 6.2. Emission spectrum of the DUT (pulsed emission). Amplitudes are only indicative (not calibrated).
(top) Comfort Entry mode, (bottom) Comfort Go mode**

University of Michigan Radiation Laboratory
FCC Part 15, IC RSS-210/Gen - Test Report No. 417124-603

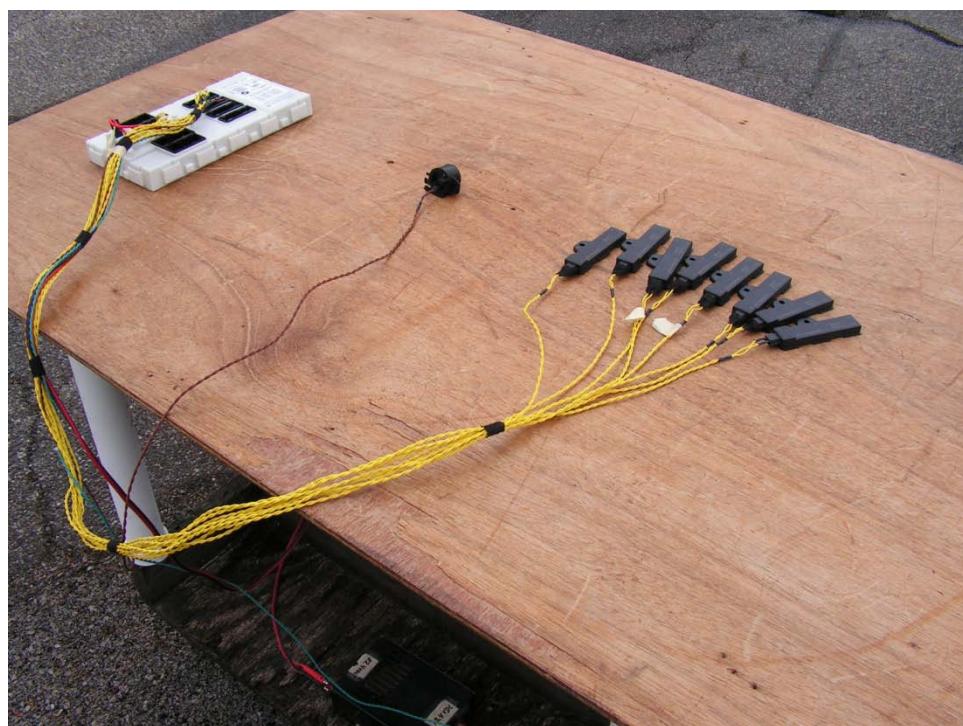

Figure 6.3. Measured emission bandwidth of the DUT (pulsed). (top) Comfort Go – Immobilizer , (bottom) Comfort Entry – multiple coil transmission.

Figure 6.4. Relative emission at fundamental vs. supply voltage (pulsed).

Photograph 6.5. DUT on OATS (one of three axes tested)

Photograph 6.6. Close-up of DUT on OATS (one of three axes tested)