ATTACHMENT

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 13.63 dBm + 2.87 dBi	P = Power input to the antenna (mW)
EIRP = 16.50 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
5 - 1 G/(4R / R)	S = Maximum power density (mW/cm2)
$S = (23.07*1.94) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0089 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

P. F(DG (4 m)	Where,
$R = \sqrt{(PG/4\pi)}$	P = Power input to the antenna (mW)
$R = \sqrt{(23.07*1.94/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 1.89 Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (0.2 / 10)$$

$$G = 1.94$$