NF-TA-R050024

NEX1 Future Co., Ltd.

FCC TEST REPORT

The Reputation of LG Defense Industry Continues with NEX1 Future.

Locations & Offices

NEX1 GUMI

133 Gongdan-dong, Gumi, Gyongsangbuk-do, 730-030, Korea

Tel: +82-54-469-8213
Fax: +82-54-469-8065

December 14, 2005

NEX 1 Future Co., Ltd.

Revision No: 1.1 Page: 1 of 1

NF-TA-R050024

NEX1 Future Co., Ltd.

TEST REPORT CERTIFICATION

Applicant : Enustech Inc.

Adderss : JnJ Bldg,5th Yeoksam 2-dong,785-12, Gangnam_gu, Seoul,

Republic of Korea

EUT Name : Bluetooth HandsFree

Model No. : BHF-100

Serial No. : Engineering Sample
FCCID : TT2EBHF100N0005
Testing location : LG-Nortel Co. Ltd.

299, Gongdan-Dong, Gumi-City, Gyeongsangbuk-Do, 730-030,

R.O.K

Applied : FCC Part 15

specification

Test result : The above mentioned test item passed.

Test Date December 14, 2005 Review Date December 14, 2005

Tested by Hyo-Jeung, Cho Reviewed by Jeong-Hi, Jin

Title Engineer Title EMC Manager

Signature // Signature

I HEREBY CERTIFY THAT the data shown in this report were made in accordance with the procedures given in the applied specification and I assume full responsibility for accuracy and completeness of these data.

Note: This test report relates to the a. m. test item. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark on this or similar products.

Revision No: 1.1 Page: 2 of 2

NF-TA-R050024

NEX1 Future Co., Ltd.

Contents

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION	5
1.2 Project data	5
1.3 APPLICANT	5
1.4 MANUFACTURER	5
2. EUT INFORMATION	6
2.1 GENERAL EUT INFORMATION	6
2.2 CENTER FREQUENCY OF TESTED CHANNEL	6
2.3 TEST ENVIRONMENT	6
2.4 ACCESSORIES AND ANCILLARY EQUIPMENT	6
3. TESTING FACILITIES	7
4. EUT DESCRIPTION AND OPERATIONAL DESCRIPTION	7
5. Test Set-up	8
5.1 Principle of configuration	8
5.2 OPERATIONAL MODES	8
5.3 APPLIED SPECIFICATION	8
6. TEST REPORT SUMMARY	9
7. TEST RESULTS	10
7.1 ANTENNA CONNECTOR REQUIREMENTS	10
7.2 AC CONNECTED EMISSION	11
7.3 CARRIER FREQUENCY SEPARATION	
7.4 TIME OF OCCUPANCY(DWELL TIME)	14
7.5 20dB Bandwidth	16
7.6 NUMBER OF HOPPING FREQUENCIES REQUIREMENTS	20
7.7 PSEUDORANDOM FHS AND EQUAL HOPPING FREQUENCY USE REQUIREMENTS	22
7.8 RECEIVER INPUT BANDWIDTH REQUIREMENTS	23

NF-TA-R050024

NEX1 Future Co., Ltd.

7.9 PEAK OUTPUT POWER	24
7.10 BAND-EDGE COMPLIANCE	28
7.11 Spurious Conducted emissions	32
7.12 Spurious Radiated emissions	43
8. LIST OF TEST AND MEASUREMENT INSTRUMENTS	46

Revision No : 1.1 Page: 4 of 4

NF-TA-R050024

NEX1 Future Co., Ltd.

1. General Information

1.1 Product Description

Product Name : Bluetooth HandsFree

Product ID : BHF-100 Serial No. : Prototype

FCC ID : TT2EBHF100N0005

1.2 Project data

Receipt of EUT : December 9, 2005

Date of Test : December 14, 2005

Data of report : December 14, 2005

1.3 Applicant

Company Name : Enustech,.Inc

Address : JnJ Bldg,5th Yeoksam 2-dong,785-12,Gangnam_gu,Seoul,

Republic of Korea

Contact Person : Mr. Hyo-Tae, Kim

1.4 Manufacturer

Company Name : Enustech,.Inc

Address : JnJ Bldg,5th Yeoksam 2-dong,785-12,Gangnam_gu,Seoul,

Republic of Korea

Contact Person : Mr. Hyo-Tae, Kim

Revision No: 1.1 Page: 5 of 5

NF-TA-R050024

NEX1 Future Co., Ltd.

2. EUT Information

2.1 General EUT Information

Туре	Transmitter	Receiver	
FCC Classification	FHSS Sequence Spread	FHSS Sequence Spread	
	Spectrum (FHSS)	Spectrum (FHSS)	
Operating frequency range	2402 – 2480 MHz	2402 – 2480 MHz	
Bands of operation	2.400 – 2.4835 GHz	2.400 - 2.4835 GHz	
Number of Channels	79	79	
Channel Separation	1MHz	1MHz	
Type of Antenna	PCB Pattern Antenna	PCB Pattern Antenna	
Power Supply	DC 3.7 V Lithium Ion	DC 3.7 V Lithium Ion	

2.2 Center Frequency of Tested Channel

Frequency	Tx (MHz)	Rx (MHz)
Lowest	2402	2402
Middle	2441	2441
Highest	2480	2480

2.3 Test Environment

Temperature	25°C	
Relative Humidity	30 ~ 60%	
Voltage	DC 3.7V	

2.4 Accessories and Ancillary Equipment

Equipment	Model No.	Serial Number	Maker
Laptop PC	PS428L-OE142	30014068J	Toshiba

Revision No: 1.1 Page: 6 of 6

NF-TA-R050024

NEX1 Future Co., Ltd.

3. Testing Facilities

LG-Nortel Co. Ltd.

299, Gongdan-Dong, Gumi-City, Gyeongsangbuk-Do, 730-030, R.O.K

4. EUT Description and Operational Description

BHF-100 is designed for safety and comfort. It is a solution whereby the Bluetooth Hands-free Car kit recognizes the mobile phone and connects it without a cable or phone holder, enabling the user to control calls without touching the phone and keeping hands free for driving. Noise and acoustic echo are suppressed by the dedicated digital signal processor BHF-100 isn't need to wearing and so very comfortable and easier than other wearing headset. There are two microphone, two LED and loud speaker and then it can use without difficult to wear, dangerous to wear while driving, pain on ear area because of being worn for a long time.

Noise and acoustic echo are canceling with two microphone from loud speaker, loud speaker and two LED indicate several state in BHF-100, i.e. Making a call, Incoming a call, Ending a call, Low Battery, etc.,

BHF-100 use rechargeable Li-ion Battery, gives you up to 10hours of continuous talk time and 300hours of stand-by time with full charge.

- 1. Bluetooth spec: class2, Max +4dBm Tx output Power
- 2. Full Duplex DSP
- 3. Noise Suppression & Echo cancellation
- 4. Charging Current: 500 mA
- 5. Li-ion 1150mAh
- 6. Voltage: DC 3.3V regulated7. Charging Time : 2 ~ 2.5 Hour
- 8. StandBy: 300 hours9. Talking Time: 10 hours
- 10. Sensitivity (RF/MIC): -80 dBm / -42dB
- 11. Output Power: Max 2mW
- 12. Operating Range: Max.10M (30 feet)
- 13. Weight: 100g
- 14. Volume Control: 10 Steps
- 15. Power saving in Stand-by Mode
- 16. Bluetooth v1.2 or higher compliant

Revision No: 1.1 Page: 7 of 7

NF-TA-R050024

NEX1 Future Co., Ltd.

5. Test Set-up

5.1 Principle of configuration

Conducted: The equipment under test (EUT) was configured with a temporary SMA Connector and EUT transmits the related packet type with PRBS 9 as payload.

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes and test settings were adapted accordingly in reference to the instructions for use.

For details, please refer to the Operation mode in chapter 7.

5.2 Operational Modes

Page Scan,

Inquiry Scan

Hopping Mode

Fixed mode (2402Mhz, 2441Mhz and 2480Mhz)

5.3 Applied Specification

FCC Part 15

Revision No: 1.1 Page: 8 of 8

NF-TA-R050024

NEX1 Future Co., Ltd.

6. Test Report Summary

Related	Test Cases	FCC Part	Result
Clause		Sections	(Note1)
7.1	Antenna Connector Requirements	15.203	С
		15.204	
7.2	AC Connected Emission	15.207	N/A
7.3	Carrier Frequency Separation	15.247	Pass
7.4	Time of Occupancy(Dwell time)	15.247	Pass
7.5	20dB Bandwidth	15.247	Pass
7.6	Number of Hopping Frequencies	15.247	С
	Requirements		
7.7	Pseudorandom Frequency Hopping	15.247	С
	Sequence and Equal Hopping		
	Frequency use Requirements		
7.8	Receiver Input Bandwidth	15.247	С
	Requirements		
7.9	Peak Output Power	15.247	Pass
7.10	Band-edge Compliance	15.247	Pass
7.11	Spurious Conducted emissions	15.247	Pass
7.12	Spurious Radiated emissions	15.247	Pass

^{*} Note1: C: Complies, Pass: Passed, Fail : Failed and NA : Not Applicable

Revision No: 1.1 Page: 9 of 9

NF-TA-R050024

NEX1 Future Co., Ltd.

7. Test Results

7.1 Antenna Connector Requirements

Requirements

Subclause 15.203 and 15.204(c)

According to the Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. And according to the Part 15.204(c), only the antenna with which an intentional radiator is authorized may be used with the intentional radiator.

Test results

RESULT: Complies

The antenna is permanently attached on the PCB.

The EUT has a PCB Pattern Antenna printed on he circuit board.

For more information on the antenna:

Antenna gain : 0 dBi
Manufacturer : N/A
Model No. : N/A

Type : PCB Pattern Antenna

Revision No: 1.1 Page: 10 of 10

NF-TA-R050024

NEX1 Future Co., Ltd.

7.2 AC Connected Emission

Test Mode and conditions

The power is supplied by a DC 3.7 V Lithium Ion and it does not operate during the charging.

Requirements

Subclause15.207(a)

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50$ ohms line impedance stabilization network (LISN).

Frequency of Emission (M	Conducted Limit (dBµV)		
Hz)	Quasi-peak Average		
0.15-0.5	66-56* 56-46*		
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

Test results

N/A.

Revision No: 1.1 Page: 11 of 11

NF-TA-R050024

NEX1 Future Co., Ltd.

7.3 Carrier Frequency Separation

Test Mode and conditions

Mode of operation : Tx mode (hopping on), DH1 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

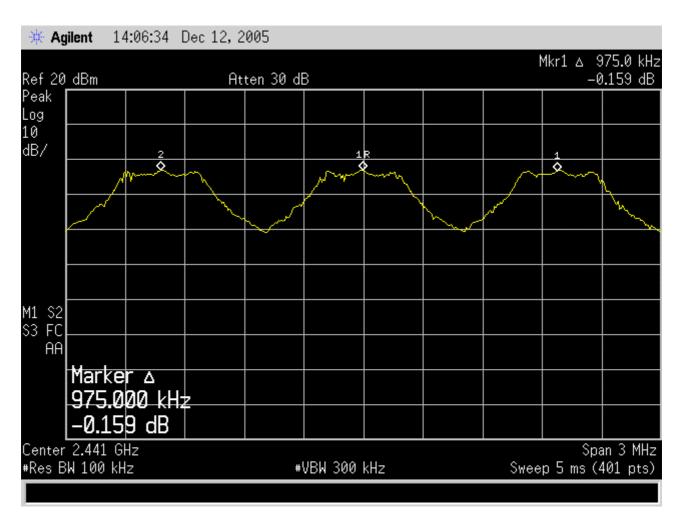
RBW/VBW : 100kHz/300kHz

Requirements

Subclause 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Test results


Reference frequency	Channel Separation	Limit	Results
(MHz)	(kHz)		
2441.000	975	Minimum of 25kHz or	Pass
		the 20dB bandwidth	

Revision No: 1.1 Page: 12 of 12

NF-TA-R050024

NEX1 Future Co., Ltd.

Carrier Frequency Separation Plot

Revision No: 1.1 Page: 13 of 13

NF-TA-R050024

NEX1 Future Co., Ltd.

7.4 Time of Occupancy(Dwell time)

Test Mode and conditions

Mode of operation : Hopping on , DH5 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 1MHz/300kHz

Requirements

Subclause 15.247(a)(1)(iii)

Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 75 hopping frequencies. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

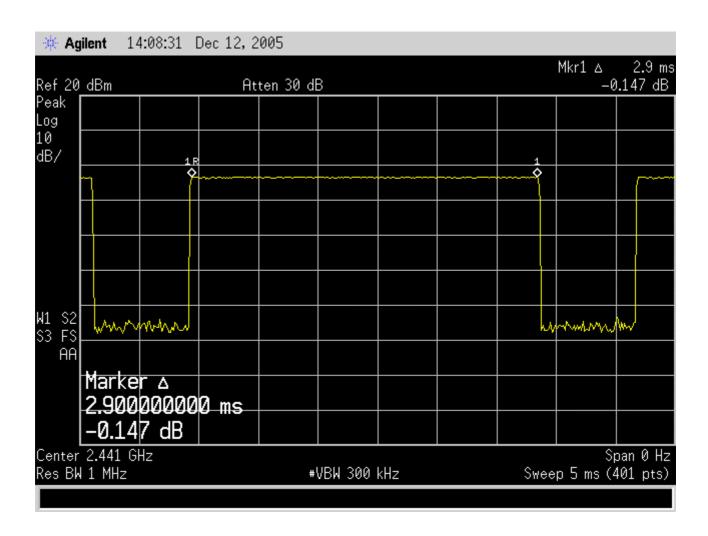
Test results

The system makes 1600 hops per second or has a length of 625us.

Let take DH5 packet in worst case. A DH5 packet has 5 slots for transmitting and 1 slot for receiving. It means it can have maximum 266.67 (=1600/6) hops per second.

Therefore it has 3.38 hops(=266.67/79) per second for each channel.

And it has 106.81hops appearance for 31.6 seconds (= 0.4x79channels).


Length per	Number slots	Dwell Time	Limit	Results
slot(L)	(N)	(=L*N)		
2.900 ms	106.81	309.749ms	0.4 seconds	Pass

Revision No: 1.1 Page: 14 of 14

NF-TA-R050024

NEX1 Future Co., Ltd.

Time of Occupancy Plot

Revision No: 1.1 Page: 15 of 15

NF-TA-R050024

NEX1 Future Co., Ltd.

7.5 20dB Bandwidth

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH5 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

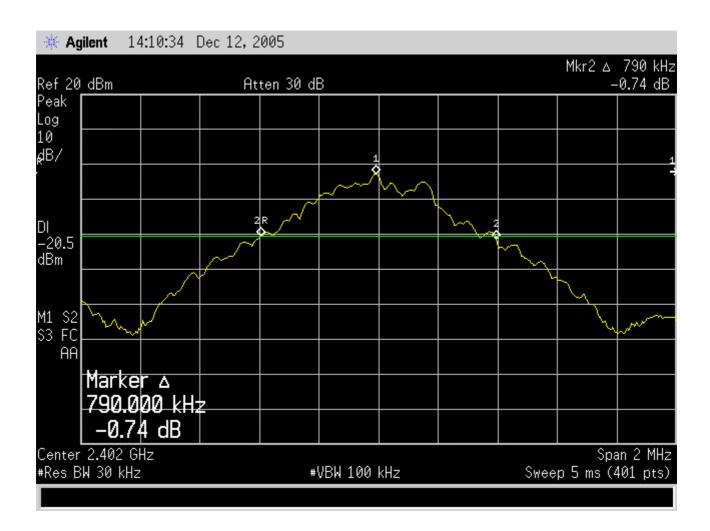
Trace : Max hold

RBW/VBW : 30kHz/100kHz

Requirements Subclause 15.247(a)(1)

It is mentioned implicitly as the maximum 20dB bandwidth of the hopping channel is 1Mhz.

Test results

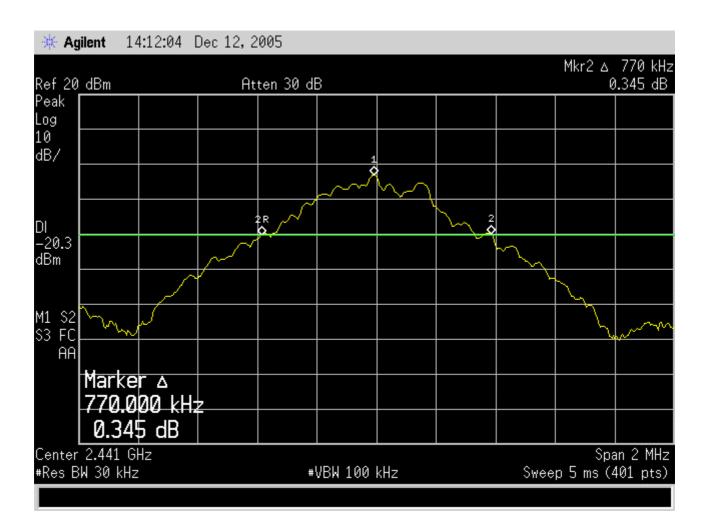

Operating frequency (MHz)	20dB Bandwidth (MHz)	Limit	Results
2402	0.790	< 1 Mhz	Pass
2441	0.770	< 1 Mhz	Pass
2480	0.910	< 1 Mhz	Pass

Revision No: 1.1 Page: 16 of 16

NF-TA-R050024

NEX1 Future Co., Ltd.

20dB Bandwidth Plot - 2402Mhz

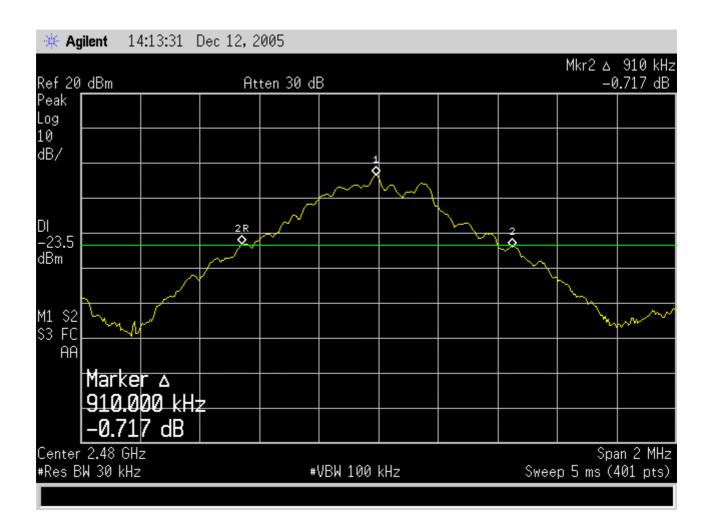


Revision No: 1.1 Page: 17 of 17

NF-TA-R050024

NEX1 Future Co., Ltd.

<u>20dB Bandwidth Plot – 2441Mhz</u>



Revision No: 1.1 Page: 18 of 18

NF-TA-R050024

NEX1 Future Co., Ltd.

20dB Bandwidth Plot - 2480Mhz

Revision No: 1.1 Page: 19 of 19

NF-TA-R050024

NEX1 Future Co., Ltd.

7.6 Number of Hopping Frequencies Requirements

Test Mode and conditions

Mode of operation : Hopping, DH1 with PRBS9 payload

Measurement Method: Conducted

Detector : PK

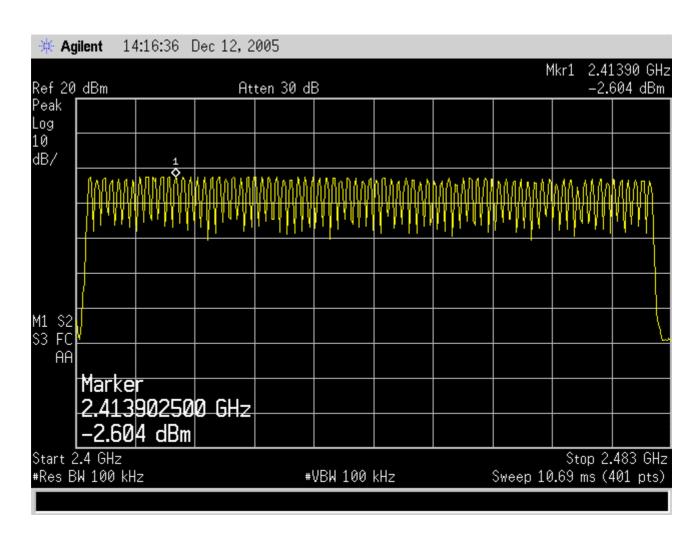
Trace : Max hold

RBW/VBW : 100kHz/100kHz

Requirements 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 Mhz band shall use at least 15 non-overlapping Channels.

Test results


Operating frequency (MHz)	Number of Hopping	Limit	Results
2402~2480	79	≥ 15	Pass

Revision No: 1.1 Page: 20 of 20

NF-TA-R050024

NEX1 Future Co., Ltd.

Number of Hopping Frequencies Plot

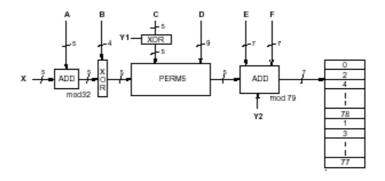
Revision No: 1.1 Page: 21 of 21

NF-TA-R050024

NEX1 Future Co., Ltd.

7.7 Pseudorandom FHS and Equal Hopping Frequency use Requirements

Requirements


Subclause 15.247 (a)(1)

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter.

<u>RESULT</u> Complies

The channel is represented by a pseudo-random hopping sequence hopping throug h the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master. For details, refer to the figure 1. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master transmission. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto thehop frequencies.

The algorism in the Bluetooth specifications shows the each of its hoping channels Is used equally on average also.

< Figure 1 : Block diagram of hop selection kernel for 79 hop system >

Revision No: 1.1 Page: 22 of 22

NF-TA-R050024

NEX1 Future Co., Ltd.

7.8 Receiver Input Bandwidth Requirements

Requirements

Subclause 15.247 (a)(1)

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in the synchronization with the transmitted signals.

<u>RESULT</u> Complies

The receiver bandwidth is equal to the receiver bandwidth in the 79 hopping channel mode, which is 1 MHz. The receiver bandwidth is indirectly verified during Bluetooth RF conformance testing.

Revision No: 1.1 Page: 23 of 23

NF-TA-R050024

NEX1 Future Co., Ltd.

7.9 Peak Output Power

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH1 packet with PRBS 9 payload

Measurement Method: Conducted

Detector : PK

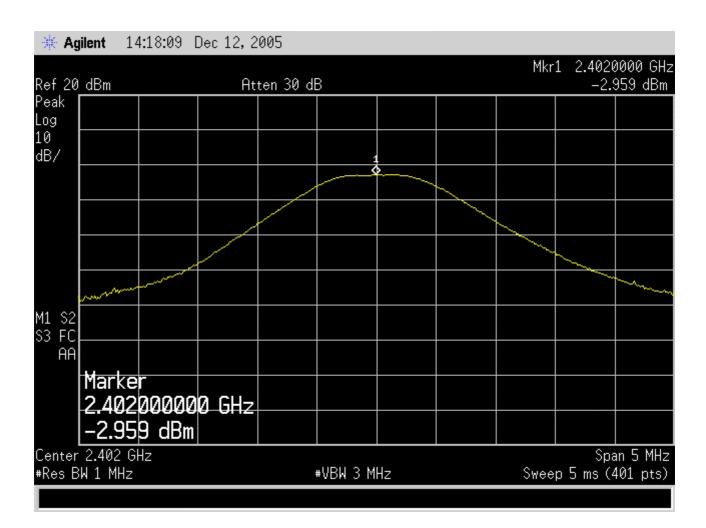
Trace : Max hold RBW/VBW : 1MHz/3MHz

Requirements

Subclause 15.247(b)(1)

For frequency hopping systems operating in the 2400~2483.5 Mhz band employing at least 75hopping channels, the maximum output power of the intentional radiator shall not exceeded 1 watt.

Test results

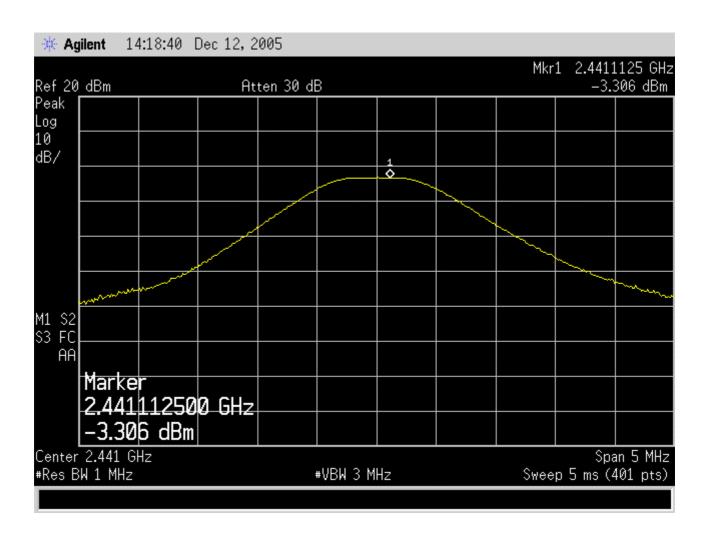

Operating	Reading	Cable	Actual	Limit	Results
Frequency	(dBm)	attenuation	Value	(W)	
(MHz)		(dB)	(W)		
2402	-2.959	1.80	0.000765773	<1.0	Pass
2441	-3.306	1.83	0.000711900	<1.0	Pass
2480	-3.735	1.85	0.000647888	<1.0	Pass

Revision No: 1.1 Page: 24 of 24

NF-TA-R050024

NEX1 Future Co., Ltd.

Peak Output Power Plot - 2402

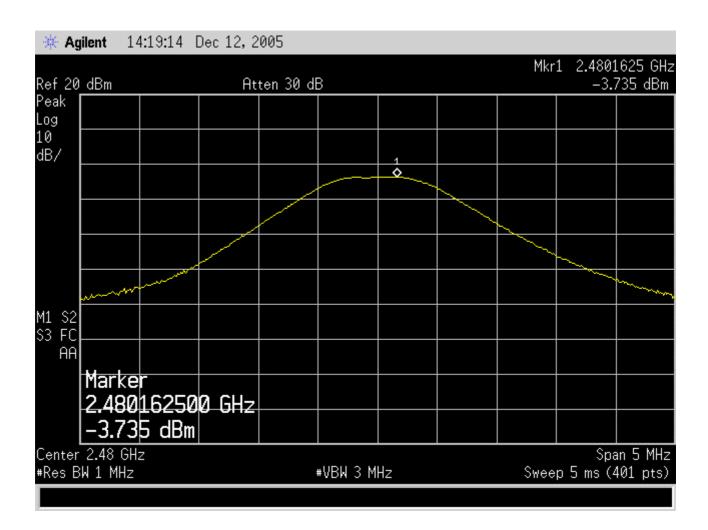


Revision No: 1.1 Page: 25 of 25

NF-TA-R050024

NEX1 Future Co., Ltd.

Peak Output Power Plot - 2441



Revision No: 1.1 Page: 26 of 26

NF-TA-R050024

NEX1 Future Co., Ltd.

Peak Output Power Plot - 2480

Revision No: 1.1 Page: 27 of 27

NF-TA-R050024

NEX1 Future Co., Ltd.

7.10 Band-edge Compliance

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz), DH1 packet

Measurement Method: Conducted

Detector : PK

Trace : Max hold

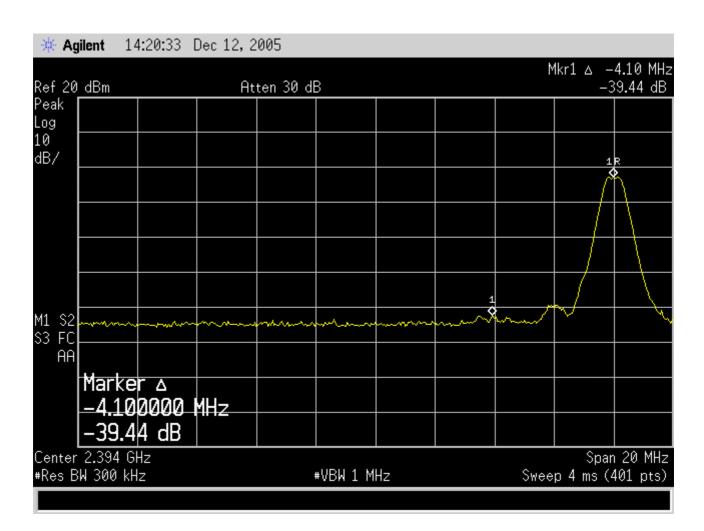
RBW/VBW : 300kHz/1.0MHz

Requirements Subclause 15.247(c)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100k Hz bandwidth within the band that contains the highest level of the desired power, b ased on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Test results

There is no peak found outside any 100kHz bandwidth of the operating frequency band in the three transmit frequency.

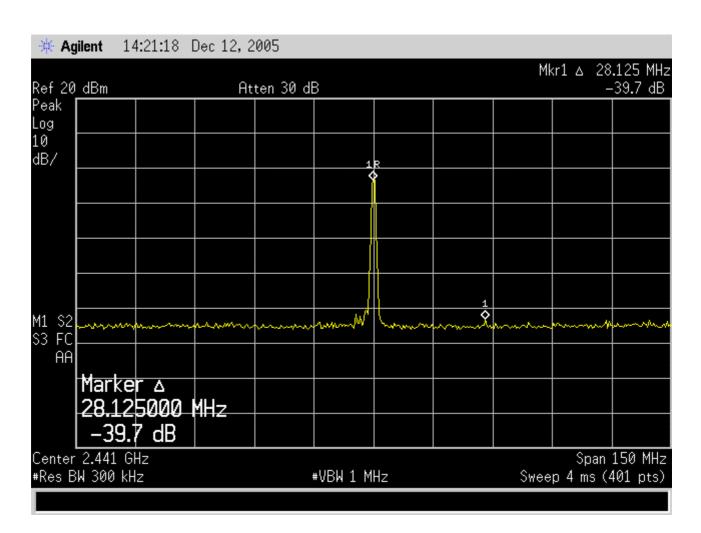

Tx Frequency (MHz)	RF power outside 100kHz BW (MHz)	Limit	Results
2402	No peak above 20dB	20dB below	Pass
2441 No peak above 20dB		20dB below	Pass
2480 No peak above 20dB		20dB below	Pass

Revision No: 1.1 Page: 28 of 28

NF-TA-R050024

NEX1 Future Co., Ltd.

Band-edge Compliance Plot - 2402

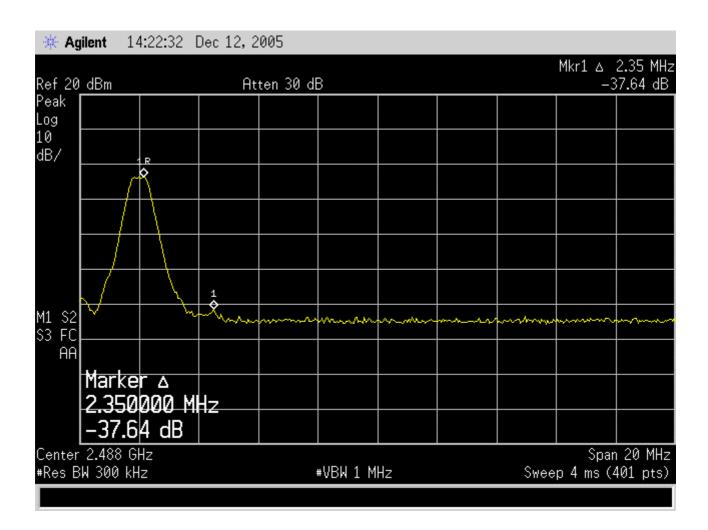


Revision No: 1.1 Page: 29 of 29

NF-TA-R050024

NEX1 Future Co., Ltd.

Band-edge Compliance Plot - 2441



Revision No: 1.1 Page: 30 of 30

NF-TA-R050024

NEX1 Future Co., Ltd.

Band-edge Compliance Plot - 2480

Revision No: 1.1 Page: 31 of 31

NF-TA-R050024

NEX1 Future Co., Ltd.

7.11 Spurious Conducted emissions

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz), DH1 packet

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 100kHz/300kHz

Requirements Subclause 15.247(c)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100k Hz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Test results

Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)
	(Operating frequ	iency : 2402M	Hz	
6710	-42.65	3.4	-39.25	-22.959	16.291
13475	-43.62	6.0	-37.62	-22.959	14.661
24637.5	-42.33	6.7	-35.63	-22.959	12.671

Revision No: 1.1 Page: 32 of 32

NF-TA-R050024

NEX1 Future Co., Ltd.

Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)
	(Operating frequ	iency : 2441Mi	Hz	
6934	-45.03	3.4	-41.63	-23.306	18.32
14125	-44.34	6.0	-38.34	-23.306	15.034
24650	-43.56	6.7	-36.86	-23.306	13.554

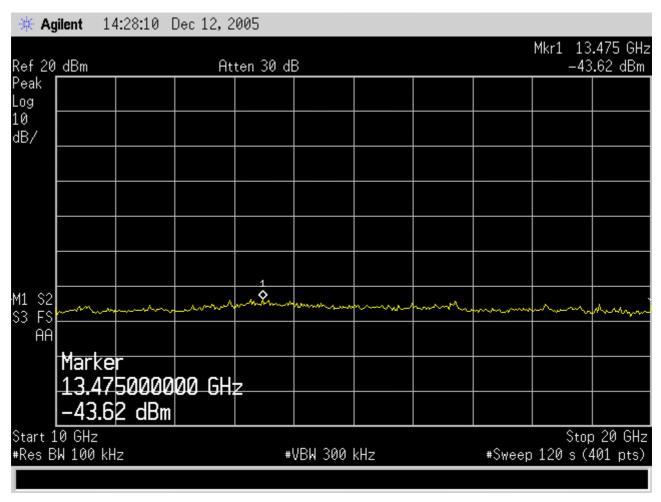
Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)
	(Operating frequ	iency : 2480Mi	Hz	
6959	-46.92	3.4	-43.52	-23.735	19.785
11650	-43.54	6.0	-37.54	-23.735	13.805
24637.5	-43.47	6.7	-36.77	-23.735	13.035

Revision No : 1.1 Page: 33 of 33

NF-TA-R050024

NEX1 Future Co., Ltd.

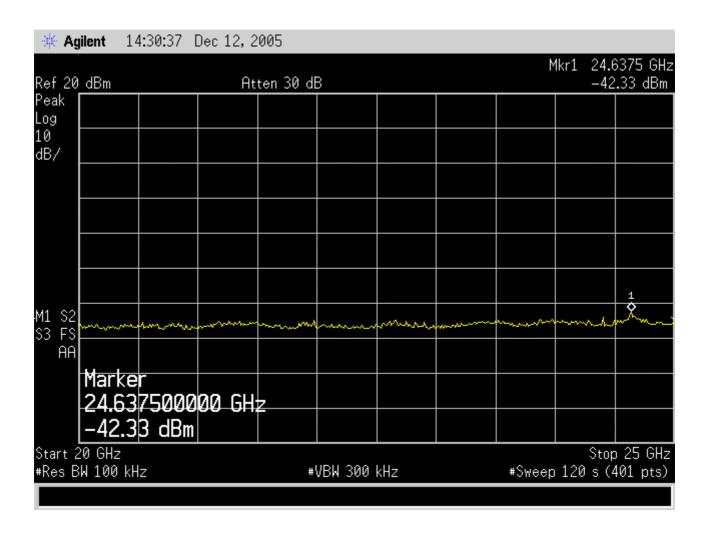
Spurious Conducted emissions plot- 2402 (30MHz~10GHz)


Revision No: 1.1 Page: 34 of 34

NF-TA-R050024

NEX1 Future Co., Ltd.

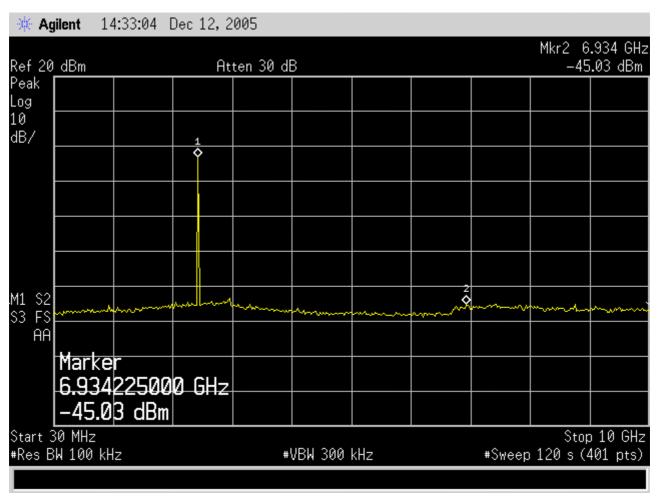
Spurious Conducted emissions plot- 2402 (10GHz~20GHz)


Revision No: 1.1 Page: 35 of 35

NF-TA-R050024

NEX1 Future Co., Ltd.

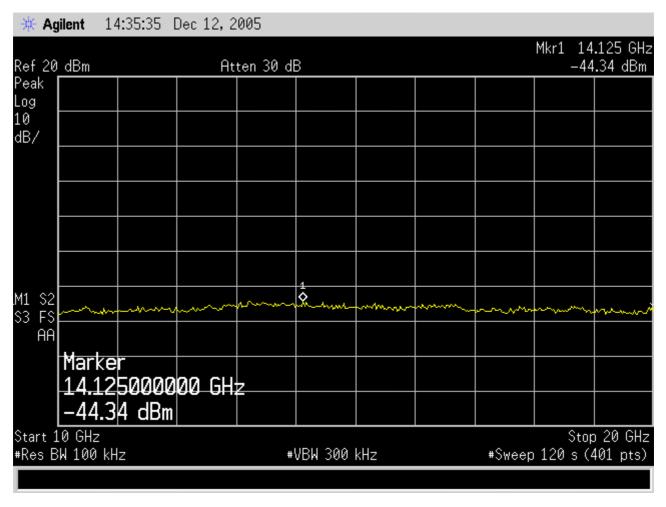
Spurious Conducted emissions plot- 2402 (20GHz~25GHz)


Revision No: 1.1 Page: 36 of 36

NF-TA-R050024

NEX1 Future Co., Ltd.

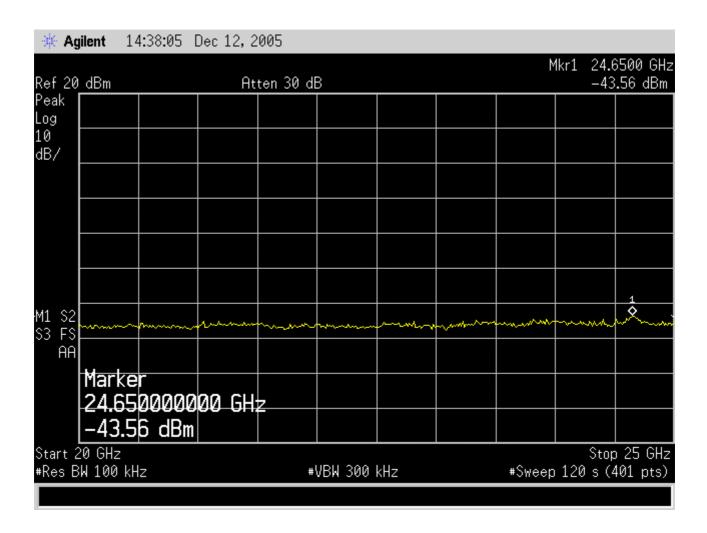
Spurious Conducted emissions plot- 2441 (30MHz~10GHz)


Revision No: 1.1 Page: 37 of 37

NF-TA-R050024

NEX1 Future Co., Ltd.

Spurious Conducted emissions plot- 2441 (10GHz~20GHz)


Revision No: 1.1 Page: 38 of 38

NF-TA-R050024

NEX1 Future Co., Ltd.

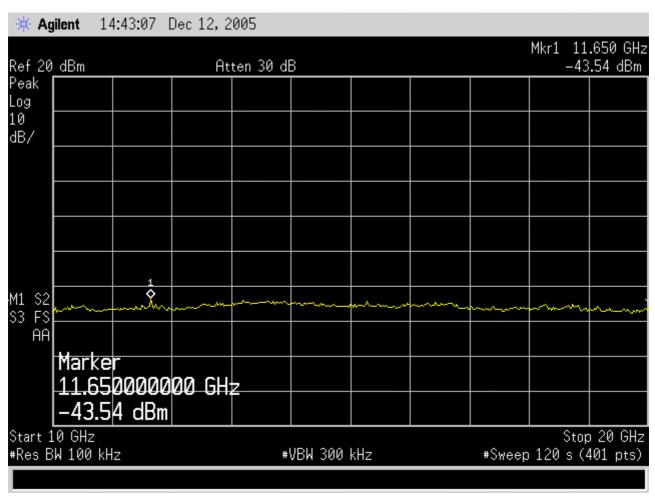
Spurious Conducted emissions plot- 2441 (20GHz~25GHz)

Revision No: 1.1 Page: 39 of 39

NF-TA-R050024

NEX1 Future Co., Ltd.

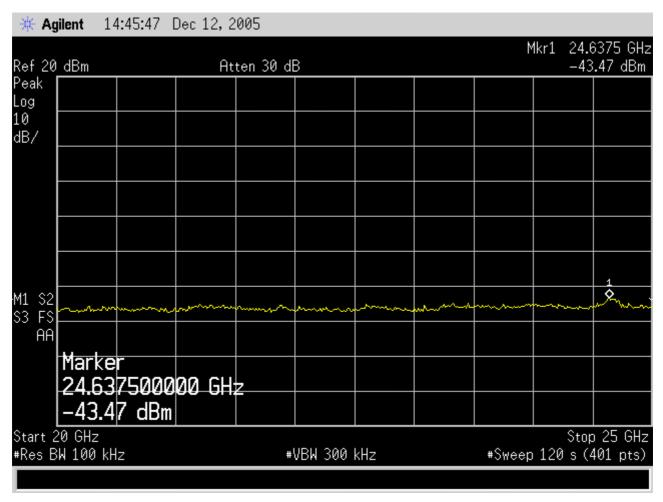
Spurious Conducted emissions plot- 2480 (30MHz~10GHz)


Revision No: 1.1 Page: 40 of 40

NF-TA-R050024

NEX1 Future Co., Ltd.

Spurious Conducted emissions plot- 2480 (10GHz~20GHz)


Revision No: 1.1 Page: 41 of 41

NF-TA-R050024

NEX1 Future Co., Ltd.

Spurious Conducted emissions plot- 2480 (20GHz~25GHz)

Revision No: 1.1 Page: 42 of 42

NF-TA-R050024

NEX1 Future Co., Ltd.

7.12 Spurious Radiated emissions

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH1 packet

Detector : PK

Trace : Max hold

Measurement Method : Radiated- Enclosure

Measurement Distance: 3m

Measurement BW : 1 MHz for $f \ge 1$ GHz, 100kHz for f < 1 GHz

Requirements

Subclause 15.247(c)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to Section 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field strength	Field strength	Measurement
(MHz)	(microvolts/meter)	(dBμV/m)	distance
			(meters)
30-88	100**	$20*\log(100) = 40.0$	3
88-216	150**	$20*\log(150) = 43.5$	3
216-960	200	20*log(200) = 46.0	3
960-2500	500	$20*\log(500) = 54.0$	3

^{**} Except as provided in paragraph(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72Mhz, 76-88Mhz, 174-216Mhz or 470-806Mhz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241. According to section 15.35(b), on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission

Revision No: 1.1 Page: 43 of 43

NF-TA-R050024

NEX1 Future Co., Ltd.

measurements are specified in this part, including emission measurements below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit for the frequency being investigated

Test results

Frequ-	Polariz-	Corr.	Re	sult	Lir	nit	Mai	rgin	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	Α	Р	Α	Р	Α	Р	(Deg.)	(m)
		(ng fred	uency	: 240	2Mhz			
1313	V	-1.3	27.7	43.6	54	74	26.3	30.4	270	1.25
4800	V	10.8	34.0	46.0	54	74	20.0	28.0	270	1.25
4810	Н	10.8	33.8	45.7	54	74	20.2	28.3	0	1.45

Frequ-	Polariz-	Corr.	Re	sult	Lir	nit	Mai	rgin	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	Α	Р	Α	Р	Α	Р	(Deg.)	(m)
		(Operati	ng fred	quency	: 244	1Mhz			
4880	V	10.8	33.1	46.1	54	74	20.9	27.9	270	1.25
										·

Revision No: 1.1 Page: 44 of 44

NF-TA-R050024

NEX1 Future Co., Ltd.

Frequ-	Polariz-	Corr.		sult		mit	Mai	•	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	Α	Р	Α	Р	Α	Р	(Deg.)	(m)
		(Operati		quency	: 248	0Mhz			
1095	V	-1.8	25.0	40.0	54	74	29.0	34.0	270	1.25
4960	Η	11.6	34.7	46.0	54	74	19.3	28.0	0	1.45
	· · · · · · · · · · · · · · · · · · ·									

* Note:

- 1. Remark "*" means that the emission frequency is produced by local oscillator.
- 2. Remark"- " means that the emission level is too low to be measured.
- 3. The measurement uncertainty of the radiated emission test is $\pm 3dB$
- 4. "A" and "P" mean average and peak measurement respectively.
- 5. There are no spurious emissions found between the lowest internal oscillating frequency and 30 MHz.

Revision No: 1.1 Page: 45 of 45

NF-TA-R050024

NEX1 Future Co., Ltd.

8. List of Test and Measurement Instruments

Kind of Equipment	Туре	Manufacturer	S/N
EMI Test Receiver	ESI26	R/S	8340.0010.02
Spectrum Analyzer	FSP30	R/S	1093.4495.30
Tracking Generator	ESMI-B1	R/S	1033.3240.52
Spectrum Analyzer	8566B	HP	3638A0857E
Spectrum Analyzer	E4407B	HP	MY41310181
Wave Dipole Antenn a	HZ-12	R/S	842006/0012
Wave Dipole Antenn a	HZ-12	R/S	846556/0004
Biconical Antenna	3104C	EMCO	9408-4667
Biconical Antenna	3109	EMCO	9405-2812
Log-Periodic Antenna	3146A	EMCO	1064
Biconilog Antenna	HLP2603	EMC	080100
		Automaion	
V-Network	ESH3-Z5	R/S	847265/030
V-Network	ESH3-Z6	R/S	847250/016
T-Network	E-Z10	R/S	84480/011
LISN	3825/2	EMCO	9502-2334
Turn Table	2081	EMCO	
Antenna Tower	1072-5	EMCO	9202-1651
Positioning Controller	1090	EMCO	
Printer	C4569A	HP	SG78K1H1FS
Absorbing Clamp	MDS 21	R/S	847905/005
Signal Generator	2023	MARCONI	112246067
Swept Signal Genera	83620B	HP	3722A00549
tor			
10dB Attenuator	23-10-34	Weinschel co	BD4316
10dB Attenuator	33-10-34	Weinschel co	BB9784
Antenna	3142	EMCO	9710-1220
Antenna	3115	EMCO	9202-3820
Antenna	3160-08	EMCO	1168

Revision No: 1.1 Page: 46 of 46

NF-TA-R050024

NEX1 Future Co., Ltd.

	Antenna	3160-09	EMCO	1304
	Amplifier	HP8447F	HP	3113A06911
\boxtimes	Amplifier	HP83006	HP	3104A00611
\boxtimes	Amplifier	HP8449B	HP	3008A00859
	EMI test receiver	ESCS30	R&S	839809/003
\boxtimes	Artificial mains netwo	ESH2-Z5	R&S	829991/009
	rk			
	Artificial hand	FCC-AH-1	Fischer custo	2008
			m communicat	
			ions Inc.	

Revision No : 1.1 Page: 47 of 47