

Applicant: Sendum Wireless Corp.

Test Report S/N: 45461449-R2.0

 FCC ID:
 TS5-WP76-OM500

 ISED ID
 6234A-WP76OM500

EXHIBIT 8 – EMC TEST REPORT

Test Report Serial Number: Test Report Date: Project Number: 45461449R2.0 4 September 2018 1415

Applicant:

SENDUM

tration Number
VP76OM500
Name / PMN
ink OM500
li

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.247), Part 27

Digital Transmission System (DTS), Miscellaneous Wireless Communications Services

RSS-Gen, RSS-247 Issue 2, RSS-130 Issue 1, RSS-139 Issue 3

Digital Transmission Systems (DTSs) Mobile Broadband Services (MBS) Equipment, Advanced Wireless Services (AWS) Equipment

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2016 Celltech Labs Inc,

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST SUMMARY	8
5.0 NORMATIVE REFERENCES	
6.0 FACILITIES AND ACCREDITATIONS	
7.0 CONDUCTED POWER - WLAN	
8.0 DTS BANDWIDTH	
9.0 OCCUPIED BANDWIDTH	
10.0 POWER SPECTRAL DENSITY	
11.0 CONDUCTED POWER - LTE	
12.0 OCCUPIED BANDWIDTH - LTE	
13.0 SIMULTANEOUS TRANSMISSION CONDUCTED SPURIOUS EMISSIONS	76
14.0 SIMULTANEOUS TRANSMISSION RADIATED SPURIOUS EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
APPENDIX D – ORIGINAL FCC REPORT – RS9113SB – FCC ID:XF6-RS9113SB	
APPENDIX E – ORIGINAL ISED REPORT – RS9113SB – ISED ID: 8407A-RS9113SB	
APPENDIX F – ORIGINAL FCC/ISED REPORT – WP76A – FCC ID:N7NWP76A, ISED ID:2417C-WP76A	

Table of Figures

Figure A.1 – Test Setup – Conducted Measurements	92
Figure A.2 – Test Setup Radiated Measurements 30MHz – 1GHz	
Figure A.3 – Test Setup Radiated Measurements 1 - 18GHz	94

Table of Plots

Plot 7.1 – Conducted Power WLAN Channel 1 Plot 7.2 – Conducted Power WLAN Channel 7 Plot 7.3 – Conducted Power WLAN Channel 11	20
Plot 8.1 – 6dB DTS Bandwidth 2412MHz Plot 8.2 – 6dB DTS Bandwidth 2442MHz Plot 8.3 – 6dB DTS Bandwidth 2462MHz	25
Plot 9.1 – Occupied Bandwidth 2412MHz Plot 9.2 – Occupied Bandwidth 2442MHz Plot 9.3 – Occupied Bandwidth 2462MHz	
Plot 10.1 – Power Spectral Density 2412MHz Plot 10.2 – Power Spectral Density 2442MHz Plot 10.3 – Power Spectral Density 2462MHz	
Plot 11.1 – Conducted Power B4- Channel 19957 - QPSK Plot 11.2 – Conducted Power B4- Channel 20393 – 16QAM Plot 11.3 – Conducted Power B4- Channel 20385 - QPSK	41 42
Plot 11.4 – Conducted Power B4- Channel 19965 – 16QAM Plot 11.5 – Conducted Power B4- Channel 20375 - QPSK Plot 11.6 – Conducted Power B4- Channel 19975 – 16QAM Plot 11.7 – Conducted Power B4- Channel 20175 - QPSK	44 45
Plot 11.8 – Conducted Power B4- Channel 20000 – 16QAM Plot 11.9 – Conducted Power B4- Channel 20325 - QPSK Plot 11.10 – Conducted Power B4- Channel 20325 – 16QAM Plot 11.11 – Conducted Power B4- Channel 20050 - QPSK	
Plot 11.12 – Conducted Power B4- Channel 20175 – 16QAM Plot 11.13 – Conducted Power B13- Channel 23255 – QPSK Plot 11.14 – Conducted Power B13- Channel 23255 – 16QAM	51 52 53
Plot 11.15 – Conducted Power B13- Channel 23230 – QPSK Plot 11.16 – Conducted Power B13- Channel 23230 – 16QAM Plot 12.1 – Occupied Bandwidth – LTE B4 – Channel 19957 – QPSK – 1.4MHz BW	55 59
Plot 12.2 – Occupied Bandwidth – LTE B4 – Channel 20393 -16QAM – 1.4MHz BW Plot 12.3 – Occupied Bandwidth – LTE B4 – Channel 20385 – QPSK – 3MHz BW Plot 12.4 – Occupied Bandwidth – LTE B4 – Channel 19965 – 16QAM – 3MHz BW Plot 12.5 – Occupied Bandwidth – LTE B4 – Channel 20375 – QPSK – 5MHz BW	61 62
Plot 12.6 – Occupied Bandwidth – LTE B4 – Channel 19975 – 16QAM – 5MHz BW Plot 12.7 – Occupied Bandwidth – LTE B4 – Channel 20175 – QPSK – 10MHz BW Plot 12.8 – Occupied Bandwidth – LTE B4 – Channel 20000 – 16QAM – 10MHz BW Plot 12.9 – Occupied Bandwidth – LTE B4 – Channel 20325 – QPSK – 15MHz BW	
Plot 12.10 – Occupied Bandwidth – LTE B4 – Channel 20325 – 16QAM – 15MHz BW Plot 12.11 – Occupied Bandwidth – LTE B4 – Channel 20050 – QPSK – 20MHz BW Plot 12.12 – Occupied Bandwidth – LTE B4 – Channel 20175 – 16QAM – 20MHz BW	
Plot 12.13 – Occupied Bandwidth – LTE B13 – Channel 23255 – QPSK – 5MHz BW Plot 12.14 – Occupied Bandwidth – LTE B13 – Channel 23255 – 16QAM – 5MHz BW Plot 12.15 – Occupied Bandwidth – LTE B13 – Channel 23230 – QPSK – 10MHz BW Plot 12.16 – Occupied Bandwidth – LTE B13 – Channel 23230 – 16QAM – 10MHz BW	
Plot 13.1 – Simultaneous Transmission Conducted Spurious Emissions – 30 to 1000MHz Plot 13.2 – Simultaneous Transmission Conducted Spurious Emissions – 700 to 3000MHz Plot 13.3 – Simultaneous Transmission Conducted Spurious Emissions – 3 to 13GHz	77 78
Plot 13.4 – Simultaneous Transmission Conducted Spurious Emissions – 3 to 15GHz Plot 13.4 – Simultaneous Transmission Conducted Spurious Emissions – 13 to 25GHz	

Plot 14.3 – Simultaneous Transmission Radiated Spurious Emissions – 700 to 3000MHz - Horizontal85Plot 14.4 – Simultaneous Transmission Radiated Spurious Emissions – 3 to 13GHz - Horizontal86Plot 14.5 – Simultaneous Transmission Radiated Spurious Emissions – 700 to 3000MHz - Vertical87Plot 14.6 – Simultaneous Transmission Radiated Spurious Emissions – 3 to 13GHz - Vertical88Plot 14.7 – Simultaneous Transmission Radiated Spurious Emissions – 30 – 1000MHz - Vertical89Plot 14.8 – Simultaneous Transmission Radiated Spurious Emissions – 30 – 1000MHz - Vertical89

Table of Tables

Table 4.4 Event Tast Summary of DS0442SD ECC	0
Table 4.1 – Excerpt - Test Summary of RS9113SB - FCC	ð
Table 4.2 – Excerpt - Test Summary of RS9113SB - ISED	
Table 4.3 – Excerpt - Test Summary of WP76A - FCC	.10
Table 4.4 – Excerpt - Test Summary of WP76A - ISED	11
Table 4.5 – Test Summary of OM500 - DTS	. 12
Table 4.6 – Test Summary of OM500 - LTE	
Table 4.7 – Composite Test Summary of OM500 - DTS	14
Table 4.8 – Composite Test Summary of OM500 - LTE	
Table 7.1 – Summary of Conducted Power Measurements	22
Table 8.1 – Summary of 6dB DTS Bandwidth Measurements	27
Table 9.1 – Summary of Occupied Bandwidth Measurements	.32
Table 10.1 – Summary of Power Spectral Density Measurements	37
Table 11.1 – Summary of Conducted Power Measurements - LTE	56
Table 12.1 – Summary of Occupied Bandwidth - LTE	75
Table 13.1 – Summary of Simultaneous Transmission Conducted Spurious Emissions	81
Table 14.1 – Summary of Simultaneous Transmission Radiated Spurious Emissions	91
Table A.1 – Conducted Measurement Setup and Environmental	.92
Table A.2 – Radiated Emissions Measurement Equipment and Environmental	

1.0 DOCUMENT CONTROL

	Revision History						
Sam	ples Tested By:	Art Voss, P.Eng.	Date(s) of Evaluation:		2 August - 13 August, 2018		
Report Prepared By:		Art Voss, P.Eng.	Report Reviewed By:		Ben Hewson		
Report	t Description of Revision		Revised	Revised	Revision Date		
Revision	Desc		Section	Ву	Revision Date		
1.0	Initial Release		n/a	Art Voss	13 August 2018		
2.0	Revised per TCB Response		n/a	Art Voss	4 September 2018		

2.0 CLIENT AND DUT INFORMATION

	Client Information				
Applicant Name	Sendum W	Sendum Wireless Corporation			
	4500 Beedie St.				
Applicant Address	Burnaby, B	C, V5J 5L2			
	Canada				
	DU	T Information			
Device Identifier(s):	FCC ID:	TS5-WP76-OM500			
Device identifier(S).	ISED ID:	6234A-WP76-OM500			
Type of Equipment:	Portable Di	gital Offender Monitor Anklet Transceiver			
Device Model(s) / HVIN:	OM500				
Device Marketing Name / PMN:	Omnilink O	M500			
Firmware Version ID Number / FVIN:	-				
Host Marketing Name / HMN:	Omnilink O	M500			
Test Sample Serial No.:	T/A Sample	e - Identical Prototype			
	WiFi: 2412 - 2462MHz				
Transmit Frequency Range:	LTE Band 4: 1710 - 1755MHz				
	LTE Band 13: 777 - 787MHz				
Number of Channels:	WiFi: 1 - 11, LTE Band 4 and 13: Per EARFCN				
	WiFi: 0.046	9W (16.7dBm) Conducted			
Manuf. Max. Rated Output Power:	LTE Band 4: 0.216W (23.3dBm) Conducted				
	LTE Band 13: 0.242W (23.8dBm) Conducted				
	WiFi: 20MH	z, 54Mbps			
Manuf. Max. Rated BW/Data Rate:	LTE Band 4	4: 1.4, 3, 5, 10, 15, 20 MHz			
	LTE Band 13: 5, 10MHz				
Antenna Type and Gain:	Flex Foil: -2.15dBi LTE B4, 0.6dBi LTE B13, -2.65 DTS				
Modulation:	QPSK, 16QAM, 64QAM				
Mode:	n/a				
DUT Power Source:	3.7VDC, 3400mAh, Li-Ion Battery				
DUT Dimensions [HxWxD] (mm)	H xW xD: 100mm x65mm x35mm				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

3.0 SCOPE

This Certification Report was prepared on behalf of:

Sendum Wireless Corporation

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC CFR 47 Part §2.1091 and §2.1093 and Health Canada Safety Code 6, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

Application:

This application is for a new certification of a composite host consisting of two previously certified modules with no other transmitters. Application is being sought as per FCC KDB 996369 D01v02 (IX), FCC KDB 996369 D02v01 (1)(a) and RSP-100. As such, the original test reports for these modules are included in this report in their entirety as indicated below:

FCC ID: N7NWP76A IC ID: 2417C-WP76A Manufacturer: Sierra Wireless Inc. Model/HVIN: WP7601 Test Report Number (FCC): B17W00380-FCC-RF Test Report Number (ISED): B17W00380-FCC-RF FCC ID: XF6-RS9113SB IC ID: 8407A-RS9113SB Manufacturer: Redpine Signals Inc. Model/HVIN: RS9113SB Test Report Number (FCC): 19660127 001 Test Report Number (ISED): 19660137 001

Scope of Evaluation:

The scope of this investigation is to perform conducted and radiated measurements on certain channels, bandwidths and modulations to ensure the test results from the original filings for each module are representative and applicable to this filing. Additionally, as conditions exists whereby both transmitters can simultaneously transmit, measurements are made to ensure that any additional conducted or radiated spurious emissions are non-existent or are below the applicable limits. RF Exposure evaluations will appear in an additional separate exhibit with this filing.

Although there are different model variants of the modules cited above, and the emissions of these different variants are indicated on their respective grants, ONLY the emissions from the variants integrated into the OM500 will be considered and reported. It is important to note that since the certification of the above modules, certain standards or procedures have changed. Where applicable, references to outdated or obsolete standards or procedures will be re-referenced to current standards or procedures for the purposes of this filing.

4.0 TEST SUMMARY

Table 4.1 – Excerpt - Test Summary of RS9113SB - FCC

	FCC §15.247 TEST SUMMARY ***						
	FCC ID: XF6-RS9113S	В		Test Report ID:	19660127 001		
		Cited	Cited	Applicable	Applicable		
Page	Description of Test	Procedure	Rule	Procedure	Rule	Note	Result
		Reference	Part(s)	Reference	Part(s)		
8	Maximum Average Conducted	KDB 558074	§15.247(b)(3)	KDB 558074	§15.247(b)(3)	1	Pass
	Output Pow er	D01v03r02	310.247 (5)(6)	D01v04	§13.247(b)(3)		1 235
26	Maximum Pow er Spectral Density	KDB 558074	§15.247(e)	KDB 558074	§15.247(a)(2)	2	Pass
20		D01v03r02		D01v04			1 400
44	6dB Bandw idth	KDB 558074	§15.247(a)(2)	KDB 558074	§15.247(e)	3	Pass
		D01v03r02	310.247(0)(2)	D01v04			1 400
76	Band-Edge Compliance	KDB 558074	§15.247(d)	KDB 558074	§15.247(d)	4	Pass
10		D01v03r02	310.247(0)	D01v04	310.247(0)	-	1 4 3 5
106	Spurious Radiated Emissions and ANSI C63.4-2009	§15.209	ANSI C63.4-2014	§15.209	5	Pass	
100	Restricted Bands of Operation	7.1.101 000.4-2000	§15.205	7.1.101 000.4-2014	§15.205	J	1 000
114	Conducted Emissions Test on AC Pow er Line	ANSI C63.4-2009	§15.207	ANSI C63.4-2014	§15.207	6	Pass

*** The above information is an excerpt from the original test report indicated for FCC ID: XF6-RS9113SB. Some of the cited procedures and rule parts have been superceded by applicable procedures and rule parts. The comparison of those procedures and rule parts are explained in the Notes below. Appendix D for complete report.

	Notes
1	The measurement method AVGSA-1 was used during the original evaluation. The method AVGSA-1 described in KDB 558074 D01v03r02 9.2.2.2 is identical to the method AVGSA-1 described in KDB 558074 D01v04 9.2.2.2. The requirements of §15.247(b)(3) has remained unchanged since the original evaluation.
2	The measurement method AVGPSD-1 was used during the original evaluation. The method AVGPSD-1 described in KDB 558074 D01v03r02 10.3 is identical to the method AVGPSD-1 described in KDB 558074 D01v04 10.3. The requirements of §15.247(e) has remained unchanged since the original evaluation.
3	The measurement method DTS Bandwidth Option1 was used during the original evaluation. The method DTS Bandwidth Option1 described in KDB 558074 D01v03r02 8.1 is identical to the method DTS Bandwidth Option1 described in KDB 558074 D01v04 8.1. The requirements of §15.247(a)(2) has remained unchanged since the original evaluation.
4	The requirements of §15.247(d) has remained unchanged since the original evaluation.
5	The test facility requirments and test methods described in ANSI C63.4-2009 are the same as those described in ANSI C63.4-2014 with regards to this measurement. The requirements of §15.205 and §15.205 have remained unchanged since the original evaluation.
6	The test facility requirments and test methods described in ANSI C63.4-2009 are the same as those described in ANSI C63.4-2014 with regards to this measurement. The requirements of §15.207 has remained unchanged since the original evaluation.

Table 4.2 – Excerpt - Test Summary of RS9113SB - ISED

	ISED RSS-247 TEST SUMMARY ***						
	IC ID: 8407A-RS9113SB Test Report ID: 19660137 001						
Page	Description of Test	Cited Procedure Reference	Cited Rule Part(s)	Applicable Procedure Reference	Applicable Rule Part(s)	Note	Result
8	Maximum Average Conducted Output Pow er	KDB 558074 D01v03r02	RSS-210 lss 8 A8.4 (4)	KDB 558074 D01v04	RSS-247 lss 2 5.4(d)	1	Pass
26	Maximum Pow er Spectral Density	KDB 558074 D01v03r02	RSS-210 lss 8 A8.2 (b)	KDB 558074 D01v04	RSS-247 lss 2 5.2(d)	2	Pass
44	6dB Bandw idth	KDB 558074 D01v03r02	RSS-210 lss 8 A8.2 (a)	KDB 558074 D01v04	RSS-247 lss 2 5.2(a)	3	Pass
76	Band-Edge Compliance	KDB 558074 D01v03r02	RSS-210 lss 8 A8.5	KDB 558074 D01v04	RSS-247 lss 2 5.5	4	Pass
106	Spurious Radiated Emissions and Restricted Bands of Operation	ANSI C63.4-2009	RSS-Gen lss 4 8.9 & 8.10	ANSI C63.4-2014	RSS-Gen lss 5 8.9 & 8.10	5	Pass
114	Conducted Emissions Test on AC Pow er Line	ANSI C63.4-2009	RSS-Gen lss 4 8.8	ANSI C63.4-2014	RSS-Gen lss 5 8.8	6	Pass

*** The above information is an excerpt from the original test report indicated for IC ID: 8407A-RS9113SB. Some of the cited procedures and rule parts have been superceded by applicable procedures and rule parts. The comparison of those procedures and rule parts are explained in the Notes below. Appendix E for complete report.

	Notes
1	The measurement method AVGSA-1 was used during the original evaluation. The method AVGSA-1 described in KDB 558074 D01v03r02 9.2.2.2 is identical to the method AVGSA-1 described in KDB 558074 D01v04 9.2.2.2. The requirements of RSS-210 A8.4(4) are the same as RSS-247 5.4(d).
2	The measurement method AVGPSD-1 was used during the original evaluation. The method AVGPSD-1 described in KDB 558074 D01v03r02 10.3 is identical to the method AVGPSD-1 described in KDB 558074 D01v04 10.3. The requirements of RSS-210 A8.2(b) are the same as RSS-247 5.2(b) with respect to this measurement between 2400 and 2483.5MHz.
3	The measurement method DTS Bandwidth Option1 was used during the original evaluation. The method DTS Bandwidth Option1 described in KDB 558074 D01v03r02 8.1 is identical to the method DTS Bandwidth Option1 described in KDB 558074 D01v04 8.1. The requirements of RSS-210 A8.2(a) are the same as RSS-247 5.2(a) with respect to this measurement between 2400 and 2483.5MHz.
4	The requirements of RSS-210 A8.5 are the same as RSS-247 5.5
5	The test facility requirments and test methods described in ANSI C63.4-2009 are the same as those described in ANSI C63.4-2014 with regards to this measurement. The requirements of RSS-Gen lss 4 8.9 and 8.10 are the same as RSS-Gen lss 5 8.9 and 8.10.
6	The test facility requirments and test methods described in ANSI C63.4-2009 are the same as those described in ANSI C63.4-2014 with regards to this measurement. The requirements of RSS-Gen lss 4 8.8 are the same as RSS-Gen lss 5 8.8.

Table 4.3 – Excerpt - Test Summary of WP76A - FCC

	FCC §27 Subpart C TEST SUMMARY ***								
	FCC ID: N7NWP76A		Те	st Report ID: B1	7W00380-FCC	-RF			
Page	Description of Test	Cited Procedure	Cited Rule	Applicable Procedure	Applicable Rule	Note	Result		
		Reference	Part(s)	Reference	Part(s)				
11	Conducted RF Pow er Output		§2.1046		§2.1046		Pass		
			§27.50(b)		§27.50(b)				
21	Occupied Bandw idth		§2.1049		§2.1049		*Note1		
31	Conducted Courieurs Erriceiene		§2.1051		§2.1051		Daaa		
31	Conducted Spurious Emissions		§27.53		§27.53		Pass		
45	Radiated Spurious Emissions	ANSI/TIA-603-D	§2.1053	ANSI/TIA-603-E	§2.1053	1	Pass		
45		2.2.13	§27.53	2.2.13	§27.53		Fa55		
56	Band Edge	ANSI/TIA-603-D	§2.1051	ANSI/TIA-603-E	§2.1051	2	Pass		
50	Dand Luge	2.2.12	§27.53	2.2.12	§27.53	2	1 433		
98	Frequency Stability of Temperature		§2.1055		§2.1055		Pass		
30	Variation		§27.54		§27.54				
99	Frequency Stability of Voltage		§2.1055		§2.1055		Pass		
	Variation		§27.54		§27.54		1 4 3 3		
100	Peak to Average Ratio		§27.50		§27.50		Pass		
*Note1	No Applicable performance cri	teria				1	1		

*** The above information is an excerpt from the original test report indicated for FCC ID: N7NWP76A. Some of the cited procedures and rule parts have been superceded by applicable procedures and rule parts. The comparison of those procedures and rule parts are explained in the Notes below. See Appendix F for complete report.

		Notes							
ĺ	1	The measurement method for Radiated Spurious Emissions described in ANSI/TIA-603-D 2.2.13 is identical to the measurement method for Radiated Spurious Emissions described in ANSI/TIA-603-E 2.2.13							
	2	The measurement method for Conducted Spurious Emissions described in ANSI/TIA-603-D 2.2.12 is identical to the measurement method for Conducted Spurious Emissions described in ANSI/TIA-603-E 2.2.12							

Table 4.4 – Excerpt - Test Summary of WP76A - ISED

	ISED R	SS-130, RSS	-139 TEST \$	SUMMARY ***			
	IC ID: 2147C-WP76A		Те	st Report ID: B1	7W00380-FCC	-RF	
Page	Description of Test	Cited Procedure Reference	Cited Rule Part(s)	Applicable Procedure Reference	Applicable Rule Part(s)	Note	Result
11	Conducted RF Pow er Output		RSS-130 4.4 RSS-139 6.5		RSS-130 4.4 RSS-139 6.5		Pass
21	Occupied Bandw idth		RSS-Gen 6.6		RSS-Gen	1	*Note1
31	Conducted Spurious Emissions		RSS-130 4.4 RSS-139 6.5		RSS-130 4.4 RSS-139 6.5		Pass
45	Radiated Spurious Emissions	ANSI/TIA-603-D 2.2.13	RSS-130 4.4 RSS-139 6.5	ANSI/TIA-603-E 2.2.13	RSS-130 4.4 RSS-139 6.5	2	Pass
56	Band Edge	ANSI/TIA-603-D 2.2.12	RSS-130 4.4 RSS-139 6.5	ANSI/TIA-603-E 2.2.12	RSS-130 4.4 RSS-139 6.5	3	Pass
98	Frequency Stability of Temperature Variation		RSS-130 4.4 RSS-139 6.5		RSS-130 4.4 RSS-139 6.5		Pass
99	Frequency Stability of Voltage Variation		RSS-130 4.4 RSS-139 6.5		RSS-130 4.4 RSS-139 6.5		Pass
100	Peak to Average Ratio		RSS-130 4.4		RSS-130 4.4		Pass
*Note1	No Applicable performance cri	teria				•	· · · · · · · · · · · · · · · · · · ·

*** The above information is an excerpt from the original test report indicated for IC ID: 2147C-WP76A. Some of the cited procedures and rule parts have been superceded by applicable procedures and rule parts. The comparison of those procedures and rule parts are explained in the Notes below. See Appendix J for complete report.

		Notes							
ſ	1	The requirements of RSS-Gen lss 4 6.6 are the same as RSS-Gen lss 5 6.7.							
	2	The measurement method for Radiated Spurious Emissions described in ANSI/TIA-603-D 2.2.13 is identical to the measurement method for Radiated Spurious Emissions described in ANSI/TIA-603-E 2.2.13							

Table 4.5 – Test Summary of OM500 - DTS

	FCC §15.247, RSS-247 VERIFICATION SUMMARY ***									
	FCC ID: TS5-WP76-OM	500	IC	ID: 6123A-WP76	6OM500					
Section	Description of Test	Procedure Procedure		Applicable Rule	Test	Result				
Section	Description of Test	Reference	Part(s) FCC	Part(s) ISED	Date	Result				
7.0	Conducted Pow er (Fundemental)	ANSI C63.10-2013	§2.1046	RSS-Gen	2 Aug 2018	Pass				
1.0	conducted row er (rundemental)	KDB 558074 D01v04	§15.247(b)(3)	RSS-247 (5.4)(d)	2 Aug 2010	Fa33				
8.0	6dB Bandw idth	ANSI C63.10-2013	§2.1049	RSS-Gen	2 Aug 2018	Pass				
0.0		KDB 558074 D01v04	§15.247(a)(2)	RSS-247 (5.2)(a)	2 Aug 2010	1 433				
9.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen	2 Aug 2018	Pass				
5.0	Occupied bandwidth	KDB 558074 D01v04	§15.247(a)(2)	RSS-247 (5.2)(a)	2 Aug 2010	1 433				
10.0	Pow er Spectral Density	ANSI C63.10-2013	§15.247(e)	RSS-247 (5.2)(b)	2 Aug 2018	Pass				
10.0	Tow of opeoural benaity	KDB 558074 D01v04	910.247(C)	100-247 (0.2)(0)	2 Aug 2010	1 8 5				
13.0	Conducted TX Spurious Emissions	ANSI/TIA-603-E	§15.31(k)	RSS-Gen	9 Aug 2018	Pass				
13.0	Simultaneous Transmission		§2.947(f)	RSP-100	5 Aug 2010	1 4 3 3				
14.0	Radiated TX Spurious Emissions	ANSI C63.4-2014	§15.31(k)	RSS-Gen	9 Aug 2018	Pass				
14.0	Simultaneous Transmission	ANO 000.4-2014	§2.947(f)	RSP-100	5 Aug 2010	rass				

*** The above summary represents measurements of the OM500 Host Device during the course of THIS evaluation. This data is used for the comparison of the measurement data indicated on the original reports filed for each module. Only certain tests and measurements were made on certain test channels, bandwidths and modulations for the purposes of this comparison. Where possible, the the channels and configurations which produced the highest output or worst case results from the original evaluation were evaluated. A "Pass" shown in the Results column demostrates that the measurement results accurately represent those of the original filings. Additionally, sample measurements were taken during simultaneous transmission configurations for the purposes of demostrating compliance to simultaneous transmission conditions of a composite system.

Table 4.6 – Test Summary of OM500 - LTE

FCC §27, RSS-130, RSS-139 VERIFICATION SUMMARY ***									
	FCC ID: TS5-WP76-OM	500	IC	ID: 6123A-WP76	6OM500				
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result			
Section	Description of rest	Reference	Part(s) FCC	Part(s) ISED	Date	Result			
11.0	Conducted Pow er (Fundemental)	ANSI/TIA-603-E	§2.1046	RSS-130 4.4	9 Aug 2018	Pass			
11.0		ANS/TA-003-L	§27.50(b)	RSS-139 6.5	9 Aug 2010	1 4 5 5			
12.0	Occupied Bandw idth	ANSI/TIA-603-E	§2.1049	RSS-Gen	9 Aug 2018	Pass			
12.0		ANS/ 1A-003-E	92.1049	RSS-247 (5.2)(a)	9 Aug 2016				
13.0	Conducted TX Spurious Emissions	ANSI/TIA-603-E	§15.31(k)	RSS-Gen	9 Aug 2018	Pass			
13.0	Simultaneous Transmission	ANGI IA-003-L	§2.947(f)	RSP-100	3 Aug 2010	Fass			
14.0	Radiated TX Spurious Emissions	ANSI C63.4-2014	§15.31(k) RSS-Gen		0.4.00.2018	Pass			
14.0	Simultaneous Transmission	ANSI 003.4-2014	§2.947(f)	RSP-100	9 Aug 2018	rass			

*** The above summary represents measurements of the OM500 Host Device during the course of THIS evaluation. This data is used for the comparison of the measurement data indicated on the original reports filed for each module. Only certain tests and measurements were made on certain test channels, bandwidths and modulations for the purposes of this comparison. Where possible, the the channels and configurations which produced the highest output or worst case results from the original evaluation were evaluated. A "Pass" shown in the Results column demostrates that the measuremenet results accurately represent those of the original filings. Additionally, sample measurements were taken during simultaneous transmission configurations for the purposes of demostrating compliance to simultaneous transmission conditions of a composite system.

Table 4.7 – Composite Test Summary of OM500 - DTS

FCC §15.247, RSS-247 COMPOSITE TEST SUMMARY ***								
FCC ID: TS5-WP7	6-OM500	IC ID: 6123A-WP76OM500						
Description of Test	Procedure	Applicable Rule	Applicable Rule	Result				
Description of rest	Reference	Part(s) FCC	Part(s) ISED	Result				
Maximum Average Conducted	KDB 558074	§15.247(b)(3)	RSS-247 lss 2	Pass				
Output Pow er	D01v04	§13.247(b)(3)	5.4(d)	1 8 3 3				
Maximum Pow er Spectral Density	KDB 558074	§15.247(a)(2)	RSS-247 lss 2	Pass				
Waxindin ow er Spectral Density	D01v04	§15.247(a)(2)	5.2(d)	F055				
6dB Bandwidth	KDB 558074	§15.247(e)	RSS-247 lss 2	Pass				
	D01v04	§15.247(e)	5.2(a)					
Band-Edge Compliance	KDB 558074	§15.247(d)	RSS-247 lss 2	Pass				
Band-Luge Compliance	D01v04	915.247(d)	5.5					
Spurious Radiated Emissions and	ANSI C63.4-2014	§15.209	RSS-Gen lss 5	Pass				
Restricted Bands of Operation		§15.205	8.9 & 8.10					
Conducted Emissions Test on AC	ANSI C63.4-2014	§15.207	RSS-Gen lss 5	Pass				
Pow er Line		915.207	8.8	Fa55				
Conducted TX Spurious Emissions	ANSI/TIA-603-E	§15.31(k)	RSS-Gen	Pass				
Simultaneous Transmission	AN3/ 1A-003-E	§2.947(f)	RSP-100	Pass				
Radiated TX Spurious Emissions	ANSI C63.4-2014	§15.31(k)	RSS-Gen	Pass				
Simultaneous Transmission	71101 000.4-2014	§2.947(f)	RSP-100	Fa33				

*** From the Verification Data, when compared to the data of the original test report data of the module, it is deemed that the test result data from the original module filing is representative of the OM500 Composite Host and therefore the OM500 meets all of the requirements of the standards cited therein.

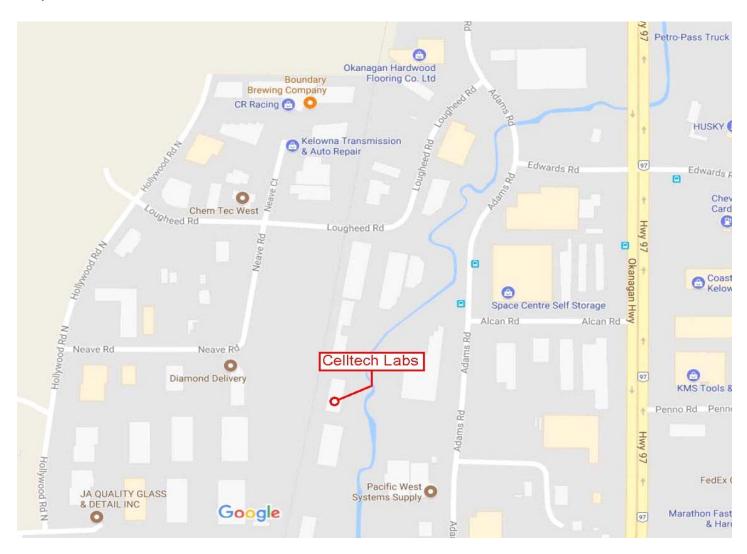
Table 4.8 – Composite Test Summary of OM500 - LTE

FCC §27, RSS-130, RSS-139 COMPOSITE TEST SUMMARY ***								
FCC ID: TS5-WP7	6-OM500	IC ID: 6	123A-WP76OM50	0				
Description of Test	Procedure	Applicable Rule	Applicable Rule	Result				
Description of rest	Reference	Part(s) FCC	Part(s) ISED	Result				
Conducted RF Pow er Output		§2.1046	RSS-130 4.4	Pass				
		§27.50(b)	RSS-139 6.5	1 433				
Occupied Bandw idth		§2.1049	RSS-Gen	Pass				
Conducted Coursions Ensines		§2.1051	RSS-130 4.4	Dees				
Conducted Spurious Emissions		§27.53	RSS-139 6.5	Pass				
Radiated Spurious Emissions	ANSI/TIA-603-E	§2.1053	RSS-130 4.4	Pass				
Radiated Spurious Erissions	2.2.13	§27.53	RSS-139 6.5					
Band Edge	ANSI/TIA-603-E	§2.1051	RSS-130 4.4	Pass				
Dana Luge	2.2.12	§27.53	RSS-139 6.5	1 833				
Frequency Stability of Temperature		§2.1055	RSS-130 4.4	Pass				
Variation		§27.54	RSS-139 6.5	1 433				
Frequency Stability of Voltage		§2.1055	RSS-130 4.4	Pass				
Variation		§27.54	RSS-139 6.5	1 433				
Peak to Average Ratio		§27.50	RSS-130 4.4	Pass				
Conducted TX Spurious Emissions	ANSI/TIA-603-E	§15.31(k)	RSS-Gen	Pass				
Simultaneous Transmission	ANO/ 1A-000-E	§2.947(f)	RSP-100	Fa55				
Radiated TX Spurious Emissions	ANSI C63.4-2014	§15.31(k)	RSS-Gen	Pass				
Simultaneous Transmission	ANOI 000.4-2014	§2.947(f)	RSP-100	Pass				

*** From the Verification Data, when compared to the data of the original test report data of the module, it is deemed that the test result data from the original module filing is representative of the OM500 Composite Host and therefore the OM500 meets all of the requirements of the standards cited therein.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement
Instrument Uncertainty; that all tests and measurements were performed in accordance with
accepted practices or procedures; and that all tests and measurements were performed by me or
by trained personnel under my direct supervision. The results of this investigation are based
solely on the test sample(s) provided by the client w hich were not adjusted, modified or altered in
any manner w hatsoever, except as required to carry out specific tests or measurements. This
test report has been completed in accordance with ISO/IEC 17025.

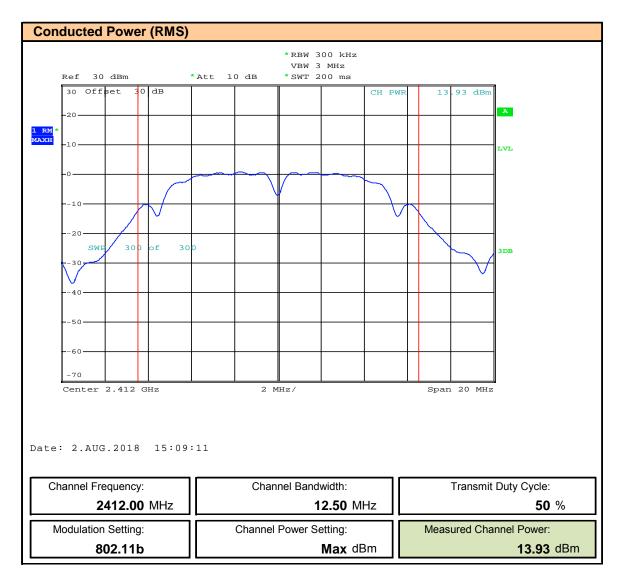
5.0 NORMATIVE REFERENCES


		Normative References
ISO/IEC	17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C6	3.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
ANSI C6	3.4-2014	American National Standard of Procedures for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
ANSI/TIA	л-603-Е	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
		(Revision of TIA-603-D)
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
Si	ub Part C (15.247)	Intentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart A:	General
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 27:	Miscellaneous Wireless Communications Services
	Sub Part C:	Technical Standards
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
I	RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-247 Issue 2:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
		and Licensed-Exempt Local Area Network (LE_LAN) Devices
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-130 Issue 1:	Mobile Broadband Services (MBS) Equipment Operating in the
		Frequency Bands 698-756 MHz and 777-787 MHz
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	RSS-139 Issue 3:	Advanced Wireless Services (AWS) Equipment Operating in the Bands
		1710-1780 MHz and 2110-2180 MHz
FCC KDB	3	OET Major Guidance Publications, Knowledge Data Base
	558074 D01v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)
		Operating Under Section 15.247

6.0 FACILITIES AND ACCREDITATIONS

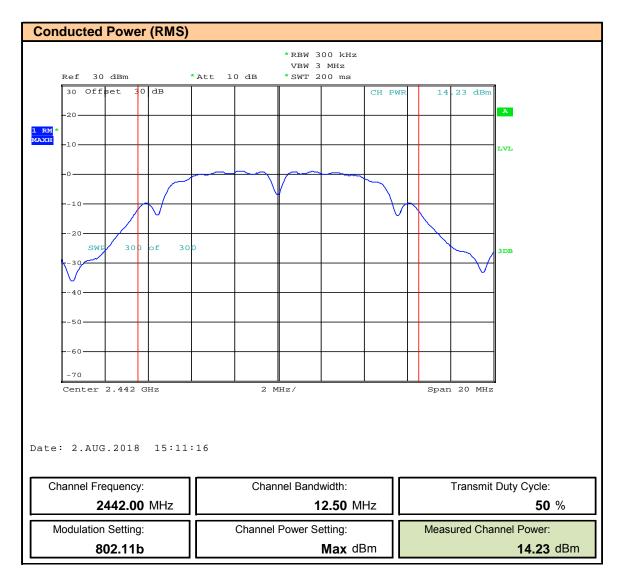
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X 7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.


7.0 CONDUCTED POWER - WLAN

	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Normative Reference	KDB 558074 (9.2.2.2), ANSI C63.10 (11.9.2.2.2)
Limits	
47 CFR §15.247(b)(3)	 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Wa limit can be based on a measurement of the maximum conducted output power.
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements
	Devices shall comply with the following requirements, where applicable:
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
	As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.
KDB 558074 (9.2.1)	9.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
KDB 558074 (9.2.2.6)	Method AVGSA-3 (RMS detection across on- and off-times of the EUT with max hold)
C63.10 (11.9.2.2.6)	a) Set span to at least 1.5 X OBW.
	b) Set sweep trigger to "free run".
	c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
	d) Set VBW ≥ 3 X RBW
	e) Number of points in sweep ≥ 2 X span / RBW.
	f) Sweep time \leq (number of points in sweep) X T,
	g) Detector = RMS.
	h) Trace mode = max hold.
	i) Allow max hold to run for at least 60 s, or longer as needed to allow the trace to stabilize.
	h) Compute power by integrating the spectrum across the OBW of the signal using the instrument band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW.
Test Setup	Appendix A Figure A.1
Measurement Proced	ure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points \geq 2 X Span / RBW = 2 X (20MHz / 300kHz) = 133, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting. The Channel Power measurement instrument function was set to measure the channel power with the Channel Bandwidth set to the measured 99% Occupied Bandwidth (See Section 9.0). The Band Channel Power was measured and recorded.



Plot 7.1 – Conducted Power WLAN Channel 1

Plot 7.2 – Conducted Power WLAN Channel 7

Plot 7.3 – Conducted Power WLAN Channel 11

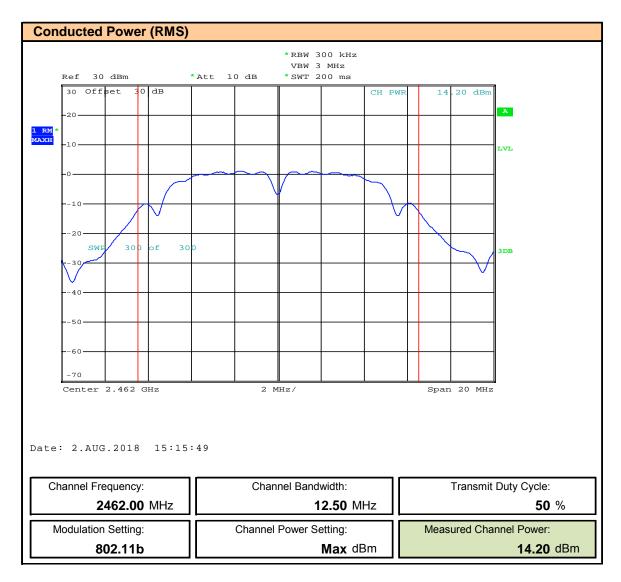


Table 7.1 – Summary of Conducted Power Measurements

§15.247(b	§15.247(b)(3), RSS-247 (5.4)(d) Channel Output Power (RMS)									
Frequency	BW	Modulation	Power	Measured Power	Measured Power	Original ⁽¹⁾ Power	Original ⁽¹⁾ Power	Limit	Margin	
			Setting				[E _{Meas}]			
(MHz)	(MHz)		(dBm)	(dBm)	(W)	(dBm)	(W)	(W)	(dB)	
2412.0				13.93	0.025	12.05	0.016		18.0	
2442.0	12.5	802.11b	Max	14.23	0.026	16.62	0.046	1.0	13.4	
2462.0				14.20	0.026	12.25	0.017		17.8	
							R	esults: Co	mplies	

(1) As reported in the original module report $% \left(\left({{{\mathbf{x}}_{i}}} \right) \right) = \left({{{\mathbf{x}}_{i}}} \right) \left({{{\mathbf{x}}_{i}}} \right)$

Margin = 10*Log(Limit / E_{meas})

8.0 DTS BANDWIDTH

	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a), KDB 558074 (8.2), ANSI C63.10 (11.8.2)				
Normative Reference					
Limits					
47 CFR §15.247(a)(2)	(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:				
	(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.				
RSS-247 (5.2)(a)	5.2 Digital transmission systems				
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MH and 2400 - 2483.5 MHz: a) The minimum 6 dB bandwidth shall be 500 kHz.				
KDB 558074 (8.2)	8.2 Option 2				
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.				
Test Setup	Appendix A Figure A.1				
Measurement Proced	ure				

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device.

Plot 8.1 – 6dB DTS Bandwidth 2412MHz



Plot 8.2 – 6dB DTS Bandwidth 2442MHz

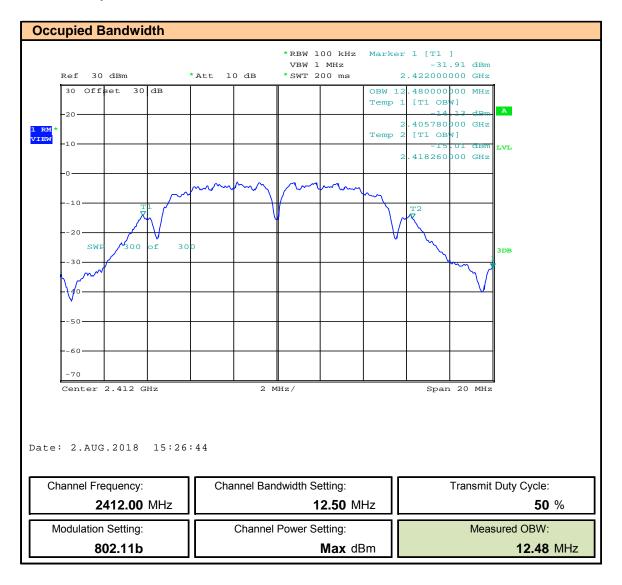
Plot 8.3 – 6dB DTS Bandwidth 2462MHz

Table 8.1 – Summary of 6dB DTS Bandwidth Measurements

6dB DTS Bandwidth Measurement Results						
Freqency	Bandwidth Setting	Modulation	Measured 6dB BW	Original ⁽¹⁾ 6dB BW [BW]	Minimum 6dB BW [MBW]	Margin
(MHz)	(MHz)		(MHz)	(MHz)	(MHz)	(MHz)
2412.00			9.88	10.76		10.26
2442.00	12.5	802.11b	9.88	10.76	0.5	10.26
2462.00			9.88	10.76		10.26
Result:					Complies	

(1) As reported in the original module report

Margin = BW - MBW


9.0 OCCUPIED BANDWIDTH

Normative Reference	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),				
Normative Reference	KDB 558074 (9.2.1), ANSI C63.10 (6.9.3)				
Limits					
KDB 558074 (9.2.1)	9.2.1 General				
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limi When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.				
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure				
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.				
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.				
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.				
	d) Step a) through step c) might require iteration to adjust within the specified range.				
	 e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured 				
	bandwidth.				
Test Setup	Appendix A Figure A.1				
Measurement Proced	ure				

was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels. The 99% Occupied Bandwidth was measured and recorded and used for the basis for measuring the Conducted Output Power (See Section 7.0) and Power Spectral Density (See Section 10.0).

Plot 9.1 – Occupied Bandwidth 2412MHz



Plot 9.2 – Occupied Bandwidth 2442MHz

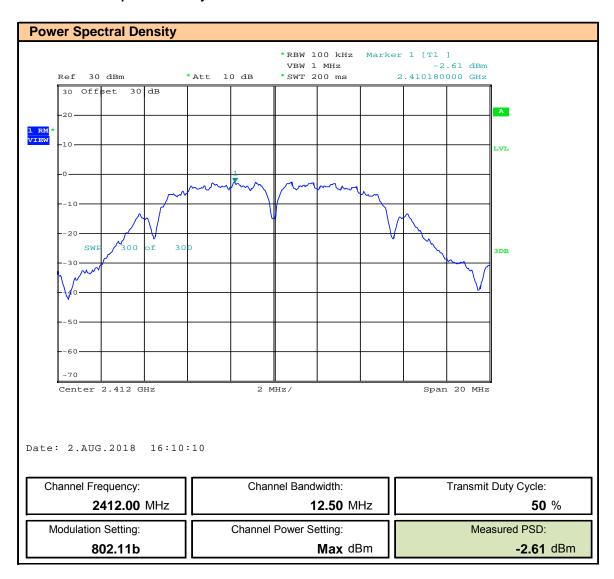
Plot 9.3 – Occupied Bandwidth 2462MHz

Table 9.1 – Summary of Occupied Bandwidth Measurements

Summary of Occupied Bandwidth Measurement				
	Bandwidth		Measured	Original ⁽¹⁾
Frequency	Setting	Modulation	Occupied	Occupied
			BW	[BW]
(MHz)	(MHz)		(MHz)	(MHz)
2412.00			12.48	12.03
2442.00	12.5	802.11b	12.50	12.22
2462.00			12.48	12.03
			Result:	Complies

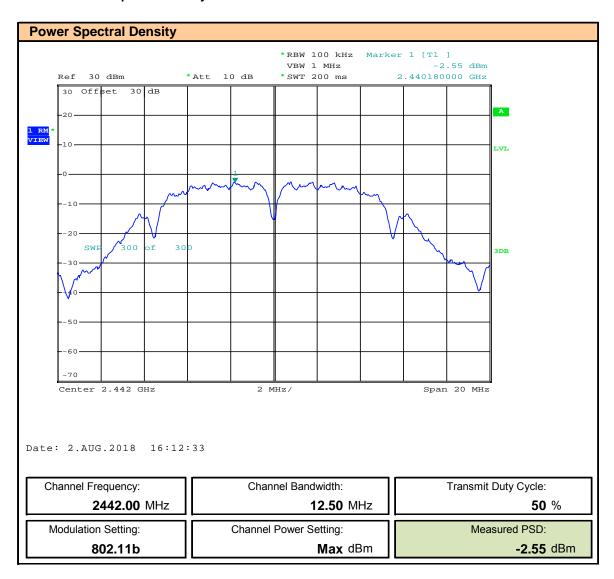
(1) As reported in the original module report

Margin = BW - MBW

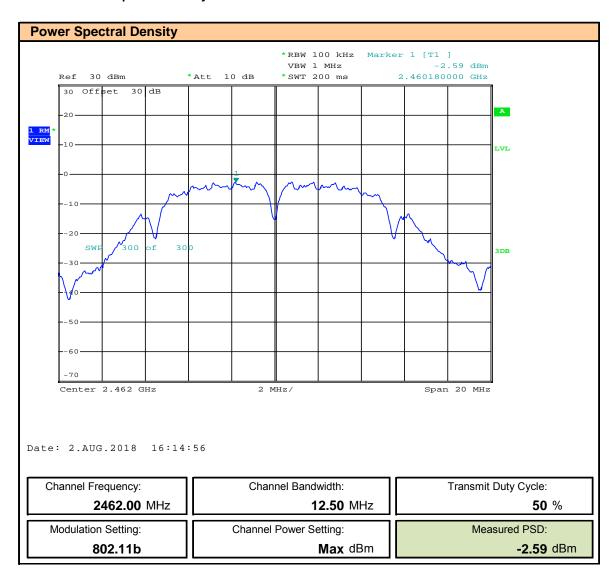

10.0 POWER SPECTRAL DENSITY

	FCC 47 CFR §15.247(e), RSS-247 (5.2)(b),					
Normative Reference	KDB 558074 (10.3), ANSI C63.10 (11.10.3)					
Limits						
47 CFR §15.247(e)	(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.					
RSS-247 (5.2)(b)	b) The transmitter power spectral density conducted from the transmitter to the antenna shall not to greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e the power spectral density shall be determined using the same method as is used to determine the conducted output power).					
KDB 558074 (10.7)	Method AVGPSD-3 (trace averaging with EUT transmitting at full power throughout each sweep)					
C63.10 (11.10.7)	This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., dut cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level and when the transmission duty cycle is no constant (i.e., duty cycle variations exceed ± 2 %): a) Set the instrument span to a minimum of 1.5 X OBW.					
	b) Set sweep trigger to "free run".					
	c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.					
	d) Set VBW ≥ 3 X RBW.					
	e) Number of points in sweep \geq 2 Span / RBW.					
	f) Sweep time \leq (number of points in sweep) X T					
	g) Detector = RMS.					
	h) Trace mode = max hold.					
	i) Allow max hold to run for at least 60 s, or longer as needed to allow the trace to stabilize.					
	j) Use the peak marker function to determine the maximum PSD level.					
	k) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this m require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).					
Test Setup	Appendix A Figure A.1					
Measurement Proced						

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points ≥ 2 X Span / RBW = 2 X (20MHz / 300kHz) = 133, the SA was configured for 1001 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The Power Spectral Density was measured and recorded.



Plot 10.1 – Power Spectral Density 2412MHz



Plot 10.2 – Power Spectral Density 2442MHz

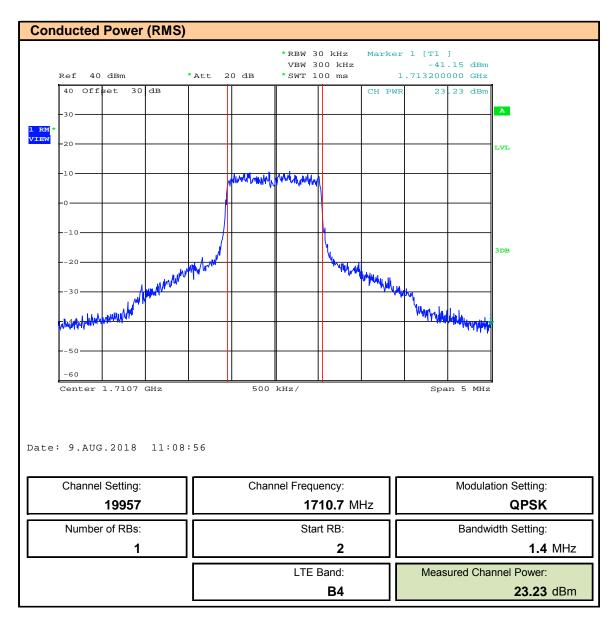
Plot 10.3 – Power Spectral Density 2462MHz

Table 10.1 – Summary of Power Spectral Density Measurements

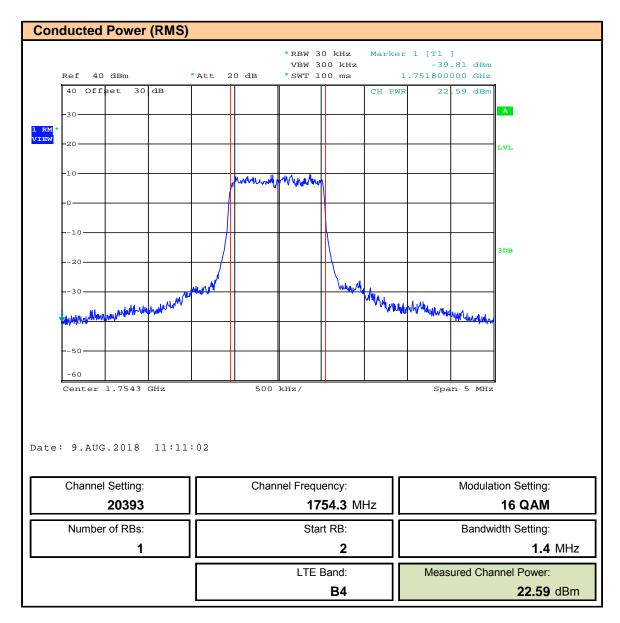
Power Spectral Density Measurement Results								
				Transmit	Measured	Original ⁽¹⁾		
Frequency	BW	Modulation	Power	Duty	PSD	PSD	Limit	Margin
			Setting	Cycle		[PSD _{Meas}]		
(MHz)	(MHz)		(dBm)	(%)	(dBm)	(dBm)	(dBm)	(dB)
2412.0					-2.61	-5.51		13.5
2442.0	12.5	802.11b	Max	50	-2.55	-1.53	8.0	9.5
2462.0					-2.59	-5.92		13.9
					Results:		Com	plies

(1) As reported in the original module report Margin = Limit - PSD_{meas}

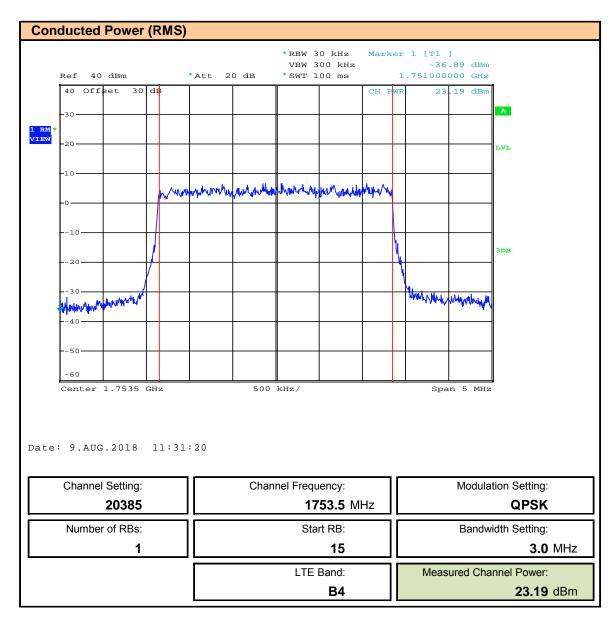
11.0 CONDUCTED POWER - LTE


Test Procedure	
Normative Reference	FCC 47 CFR §2.1046, §27.50(b)(10), §27.50(d)(4), KDB 971168 D01v02r02
Normative Reference	RSS-130 4.4, RS139 6.5
Limits	
47 CFR §27.50(b)(10)	§ 27.50 Power limits and duty cycle.
	(b) The following power and antenna height limits apply to transmitters operating in the 746–763 MHz, 775–793 MHz and 805–806 MHz bands:
	(10)Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP
47 CFR §27.50(d)(4)	§ 27.50 Power limits and duty cycle.
	(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:
	(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP
RSS-130 4.4	4.4 Transmitter Output Power and Equivalent Isotropic Radiated Power (e.i.r.p.)
	The e.i.r.p. shall not exceed 50 watts for mobile equipment or for outdoor fixed subscriber equipment, nor shall it exceed 5 watts for portable equipment or for indoor fixed subscriber equipment.
RSS-139 6.5	6.5 Transmitter Output Power
	The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt. The e.i.r.p. for fixed and base stations in the band 1710-1780 MHz shall not exceed one watt.
KDB 971168 5.2.1	5.2 Average power measurements
	The EUT is considered to transmit continuously if it can be configured to transmit at a burst duty cycle of greater than or equal to 98% throughout the duration of the measurement. If this condition can be achieved, then the following procedure can be used to measure the average output power of the EUT.
	a) Set the instrument span to a minimum of 1.5 X OBW.
	b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
	c) Set VBW ≥ 3 X RBW.
	d) Set number of points in sweep ≥ 2 X span / RBW.
	e) Sweep time = auto-couple.
	f) Sweep time \leq (number of points in sweep) X T
	g) Detector = RMS (power averaging).
	h) Trace mode = max hold.
	i) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges.

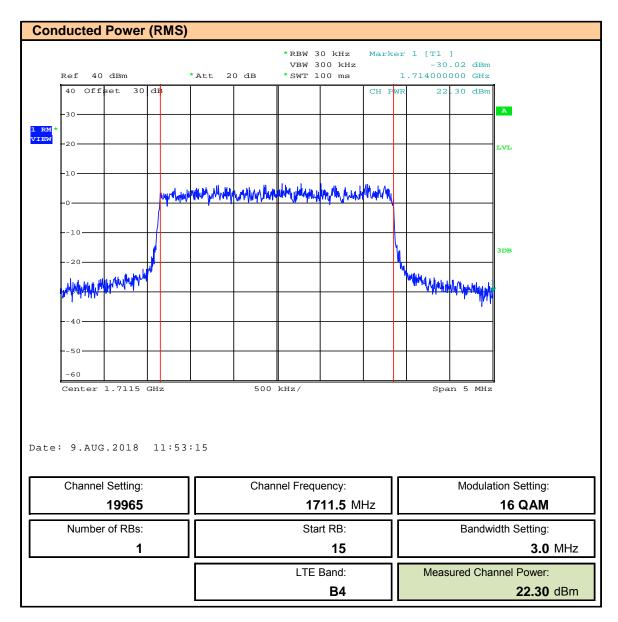
Test Procedure								
Normative Reference	FCC 47 CFR §2.1046, §27.50(b)(10), §27.50(d)(4), KDB 971168 D01v02r02							
Normative Reference	RSS-130 4.4, RS139 6.5							
Test Setup	Appendix A	Figure A.1						
Measurement Proced	ure							
The SA Detector was se	t to Max Peak with t	yzer (SA) via a 30dB attenuator connected to the DUT's antenna port. he RBW set to ≥ the OBW of the DUT. The output power of the DUT was g for each modulation type and to the center frequency of each						



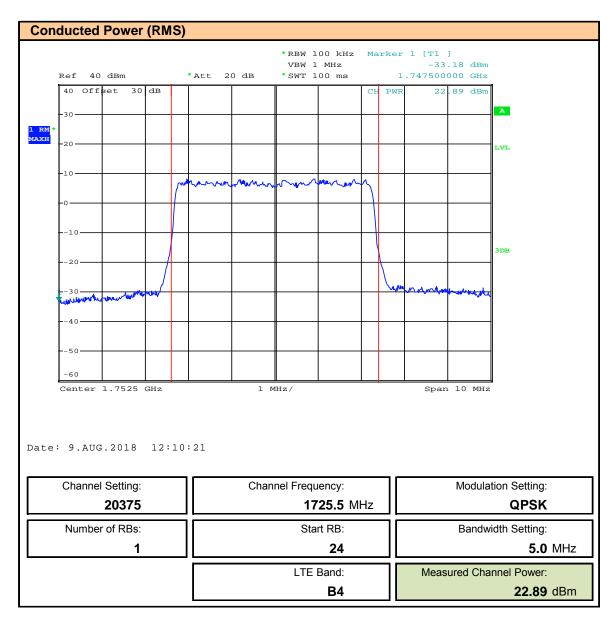
Plot 11.1 – Conducted Power B4- Channel 19957 - QPSK



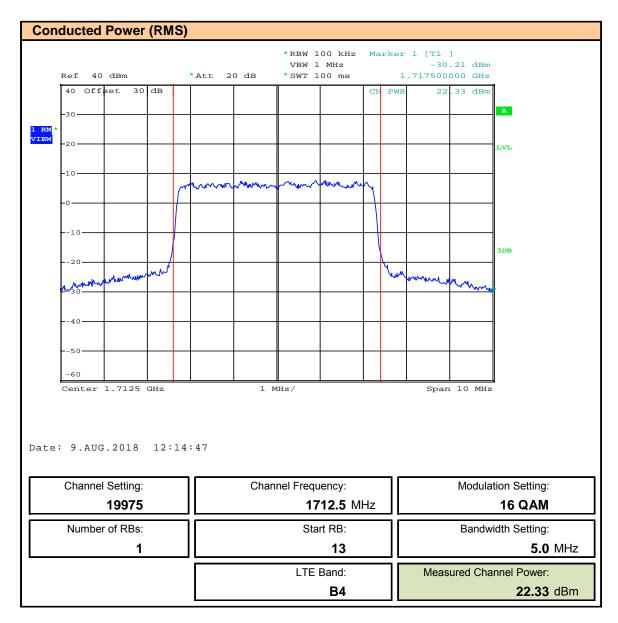
Plot 11.2 - Conducted Power B4- Channel 20393 - 16QAM



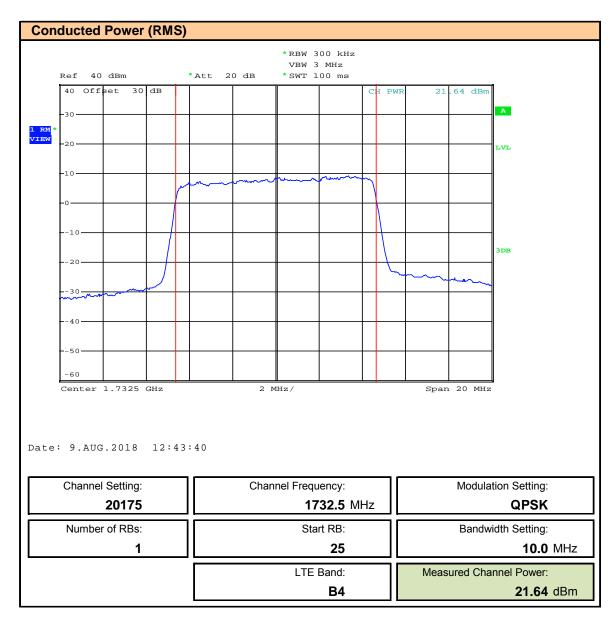
Plot 11.3 – Conducted Power B4- Channel 20385 - QPSK



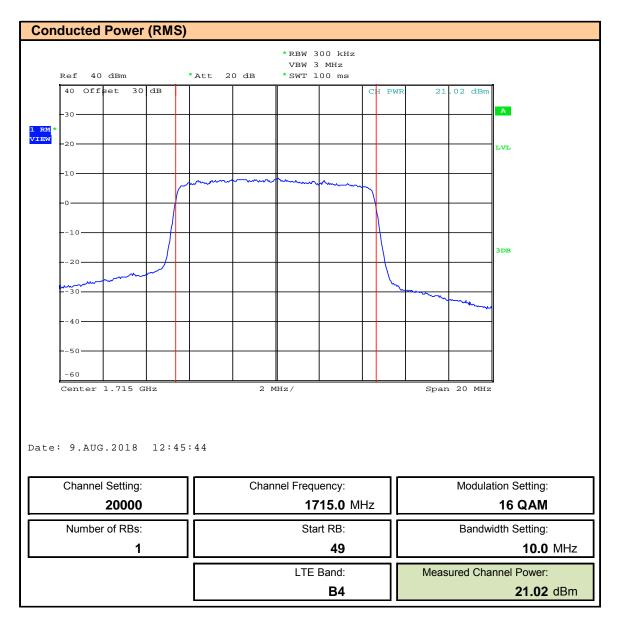
Plot 11.4 – Conducted Power B4- Channel 19965 – 16QAM



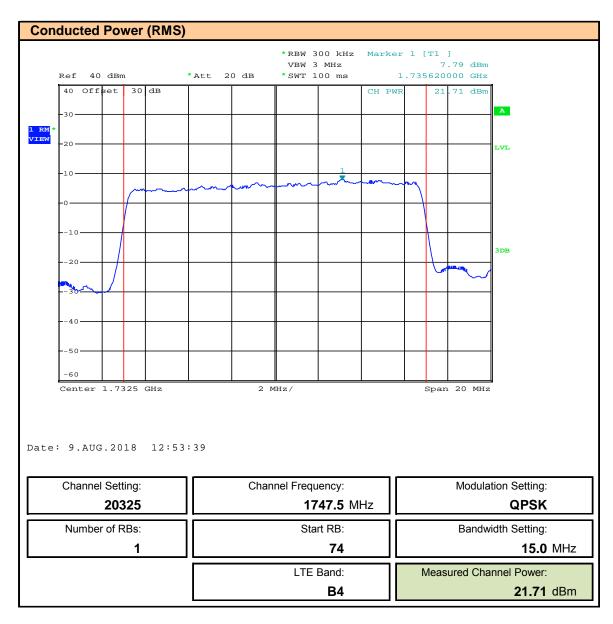
Plot 11.5 – Conducted Power B4- Channel 20375 - QPSK



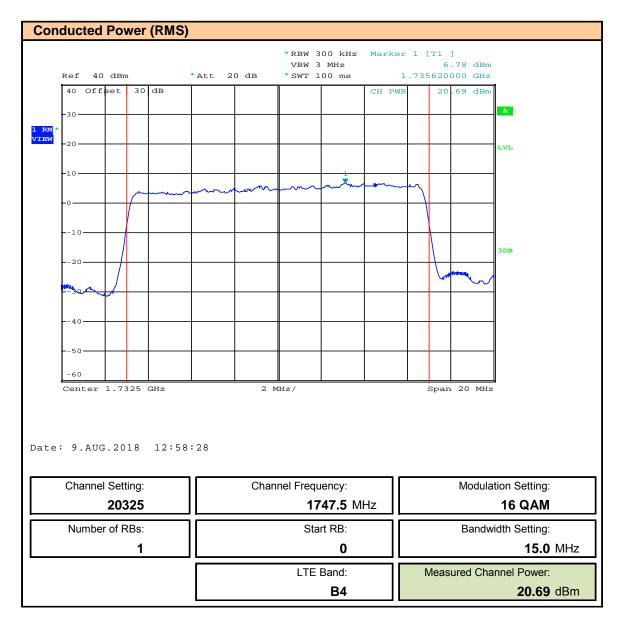
Plot 11.6 - Conducted Power B4- Channel 19975 - 16QAM



Plot 11.7 – Conducted Power B4- Channel 20175 - QPSK

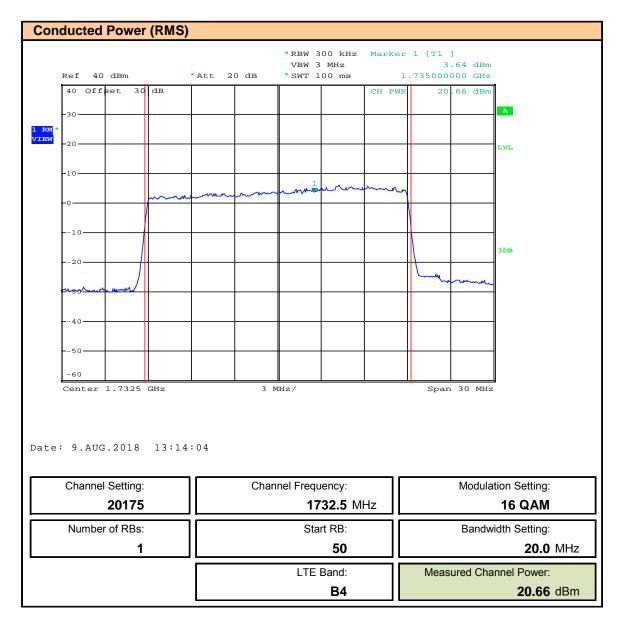


Plot 11.8 - Conducted Power B4- Channel 20000 - 16QAM

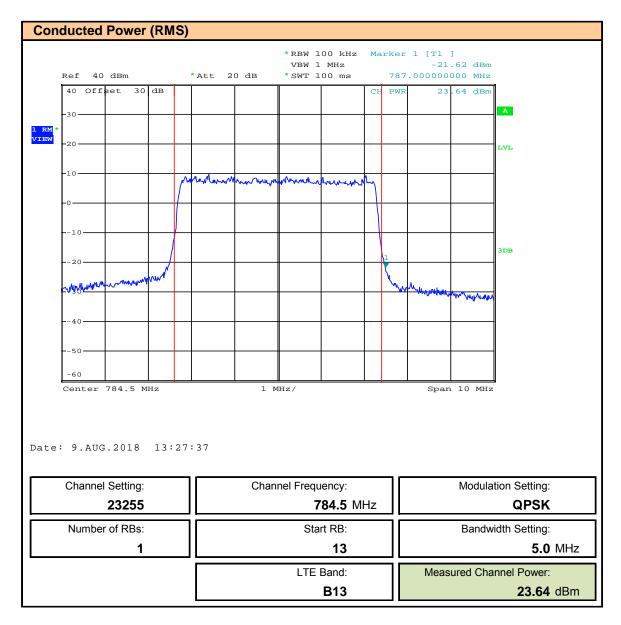


Plot 11.9 – Conducted Power B4- Channel 20325 - QPSK

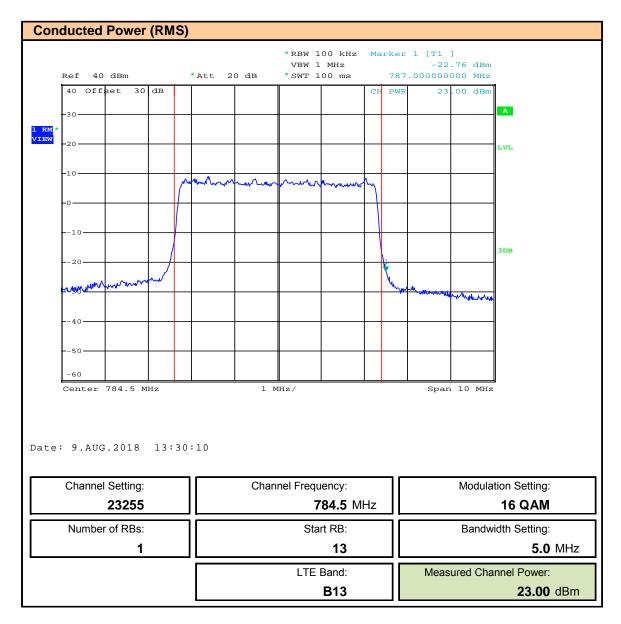
Plot 11.10 – Conducted Power B4- Channel 20325 – 16QAM



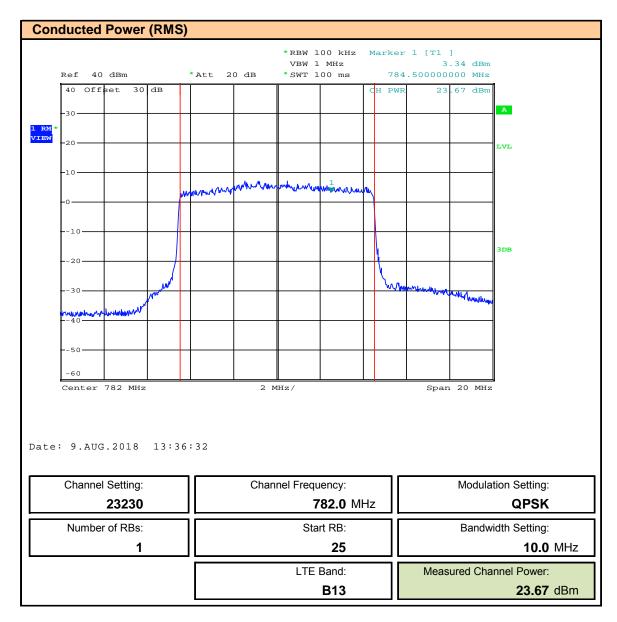
Plot 11.11 – Conducted Power B4- Channel 20050 - QPSK



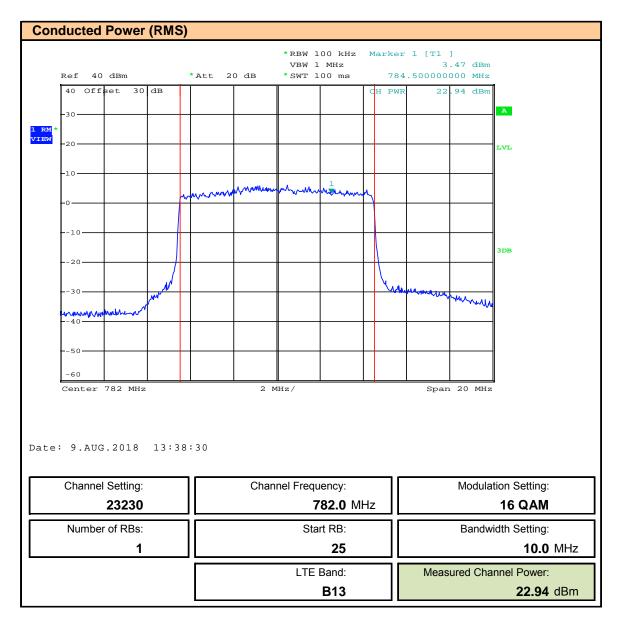
Plot 11.12 – Conducted Power B4- Channel 20175 – 16QAM



Plot 11.13 – Conducted Power B13- Channel 23255 – QPSK



Plot 11.14 – Conducted Power B13- Channel 23255 – 16QAM



Plot 11.15 – Conducted Power B13- Channel 23230 – QPSK

Plot 11.16 - Conducted Power B13- Channel 23230 - 16QAM

Channel	Frequency	LTE	BW	Modulation	Power	Number of	Resource Block	Measured Power	Measured Power	Original ⁽¹⁾ Power	Original ⁽¹⁾ Power	Antenna Gain*	ERP	EIRP	Limit (W)		Margin (dB)	
Number	(MHz)	Band	(MHz)		Setting (dBm)	Resource Blocks	Start	(dBm)	(W)	[E _{Meas}] (dBm)	(W)	[G _⊤] (dBi)	(W)	(W)	FCC ERP	ISED EIRP	FCC	ISED
19957	1710.7		1.4	QPSK		1	2	23.23	0.210	23.28	0.213		0.130 0.112 0.125 0.107 0.127 0.110	0.130			8.9	8.9
20393	17534.3		1.4	16 QAM		1	2	22.59	0.182	22.63	0.183			0.112			9.5	9.5
20385	1753.5		3	QPSK		1	15	23.19	0.208	23.11	0.205			0.125			9.0	9.0
19965	1711.5		5	16 QAM		1	15	22.30	0.170	22.44	0.175			0.107			9.7	9.7
20375	1752.5		5	QPSK		1	24	22.89	0.195	23.20	0.209			1		9.0	9.0	
19975	1712.5	B4	5	16 QAM		1	13	22.33	0.171	22.56	0.180	-2.2		0.110	1.0		9.6	9.6
20175	1732.5	54	10	QPSK	Max	1	25	21.64	0.146	23.32	0.215	L .L		0.131			8.8	8.8
20000	1715.0		10	16 QAM		1	49	21.02	0.126	22.54	0.179			0.109		[9.6
20325	1747.5		15	QPSK		1	74	23.28	0.213	23.28	0.213			0.130			8.9	8.9
20325	1747.5		10	16 QAM		1	0	20.69	0.117	22.58	0.181			0.110			9.6	9.6
20050	1720.0		20	QPSK		1	0	21.87	0.154	23.34	0.216		0.132				8.8	8.8
20175	1732.5		20	16 QAM		1	50	20.66	0.116	23.11	0.205			0.125			9.0	9.0
23255	784.5		5	QPSK		1	13	23.64	0.231	23.83	0.242	0.6	0.169	0.277	3.0		12.5	12.6
23255	784.5	B13	10	16 QAM		1	13	23.00	0.200	23.03	0.201		0.141	0.231		5.0	13.3	13.4
23230	782.0	210		QPSK		1	25	23.67	0.233	23.71	0.235		0.164	0.270	0.0	0.0	12.6	12.7
23230	782.0		10	16 QAM		1	25	22.94	0.197	23.03	0.201		0.141	0.231		l	13.3	13.4

(1) As reported in the original module report

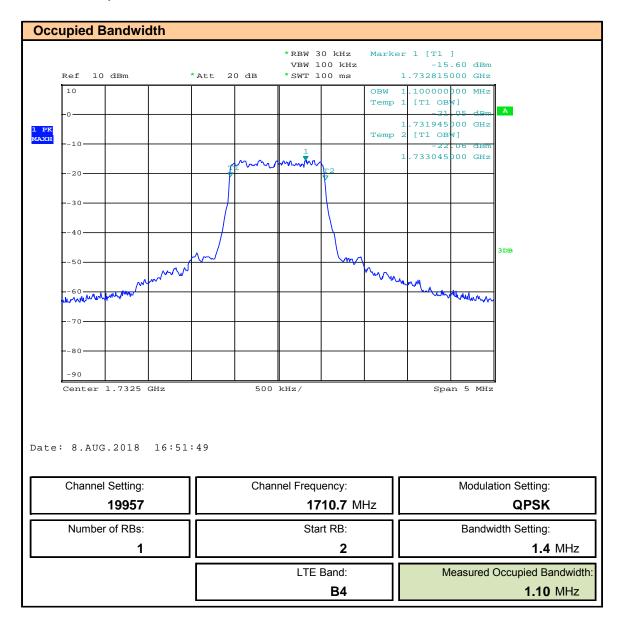
Margin = 10*Log(Limit / E_{meas})

* Maximum Gain in Each Band

EIRP = E_{Meas} + G_T (dBi) Converted to Watts, F > 1GHz

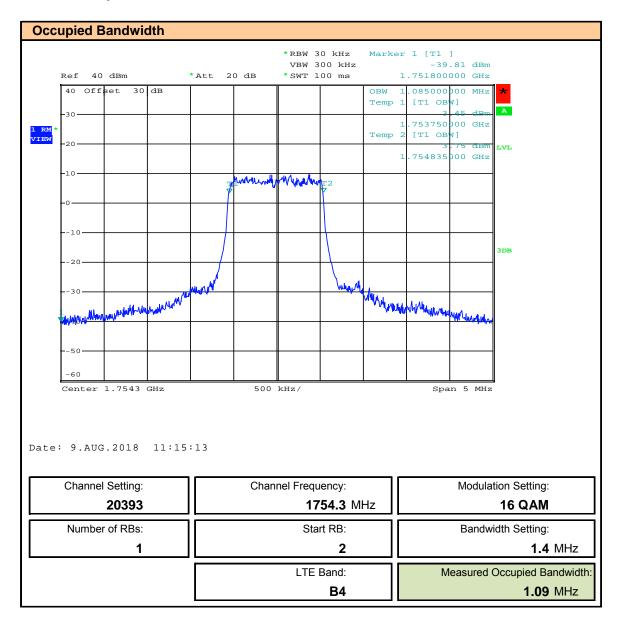
ERP = E_{Meas} + $G_T(dBi)$ - 2.15dB Converted to Watts, F < 1GHz

Blank Page

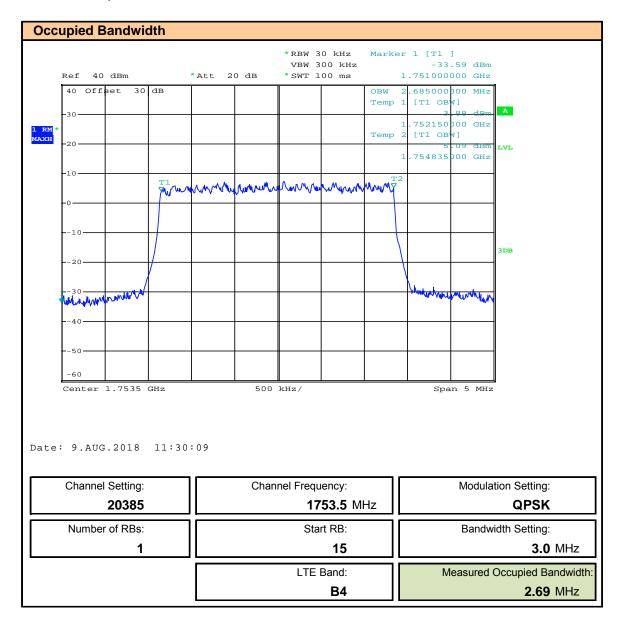

12.0 OCCUPIED BANDWIDTH - LTE

Normative Reference	FCC 47 CFR §2.1046, RSS-Gen (6.1.2) KDB 558074 (9.2.1), ANSI C63.10 (6.9.3)							
Limits								
KDB 558074 (9.2.1)	9.2.1 General							
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limi When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.							
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure							
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.							
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.							
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall b more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.							
	d) Step a) through step c) might require iteration to adjust within the specified range.							
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.							
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.							
Test Setup	Appendix A Figure A.1							
Measurement Proced	ure							

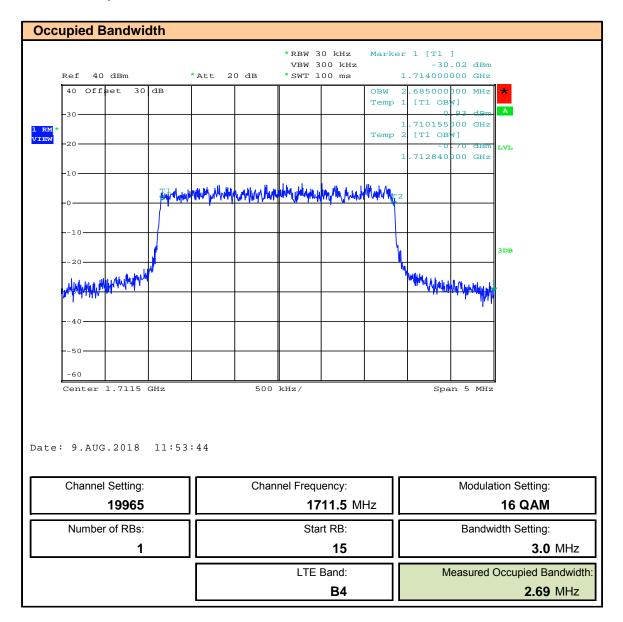
was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting. The 99% Occupied Bandwidth was measured and recorded on each channel, channel bandwidth and modulation used for measuring the Conducted Output Power (See Section 11.0).



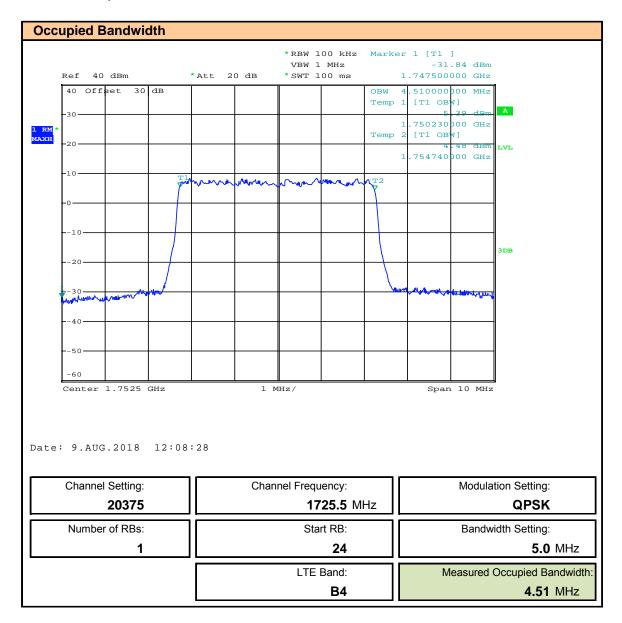
Plot 12.1 – Occupied Bandwidth – LTE B4 – Channel 19957 – QPSK – 1.4MHz BW



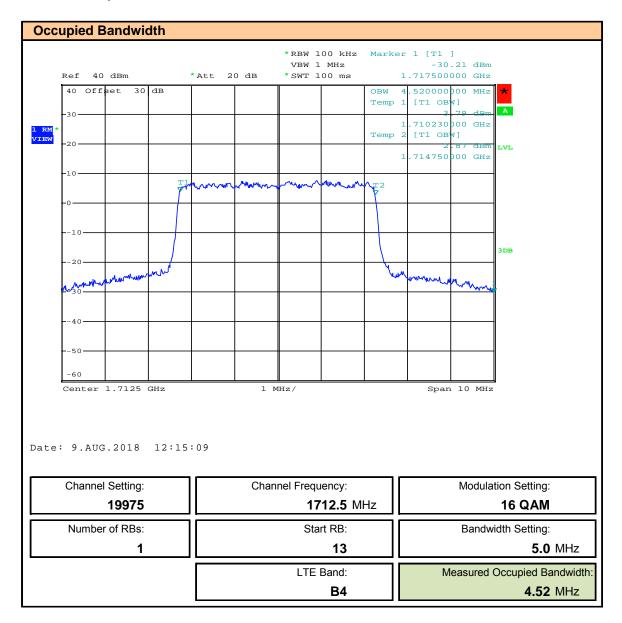
Plot 12.2 - Occupied Bandwidth - LTE B4 - Channel 20393 -16QAM - 1.4MHz BW



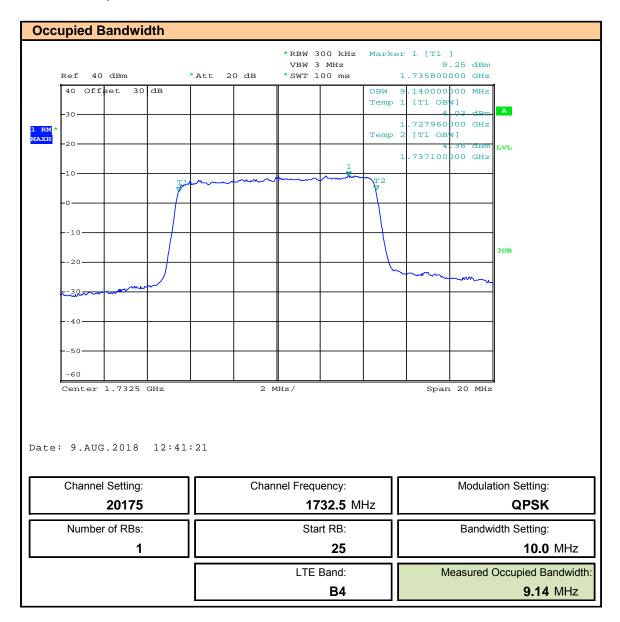
Plot 12.3 - Occupied Bandwidth - LTE B4 - Channel 20385 - QPSK - 3MHz BW



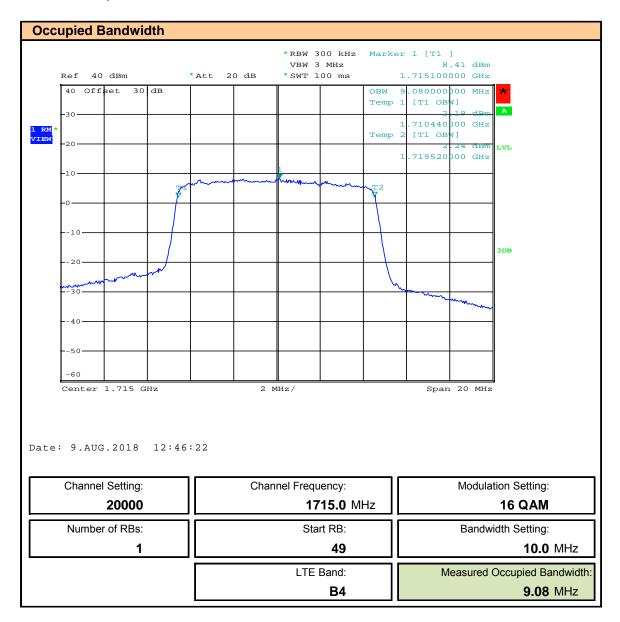
Plot 12.4 - Occupied Bandwidth - LTE B4 - Channel 19965 - 16QAM - 3MHz BW



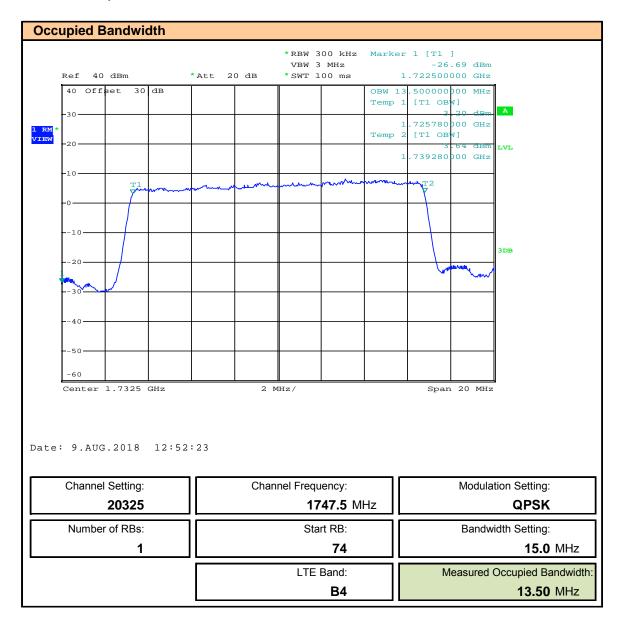
Plot 12.5 - Occupied Bandwidth - LTE B4 - Channel 20375 - QPSK - 5MHz BW



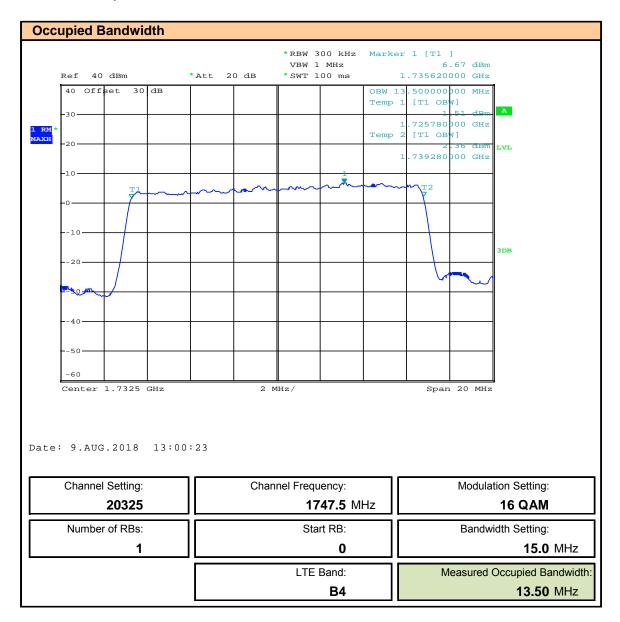
Plot 12.6 - Occupied Bandwidth - LTE B4 - Channel 19975 - 16QAM - 5MHz BW



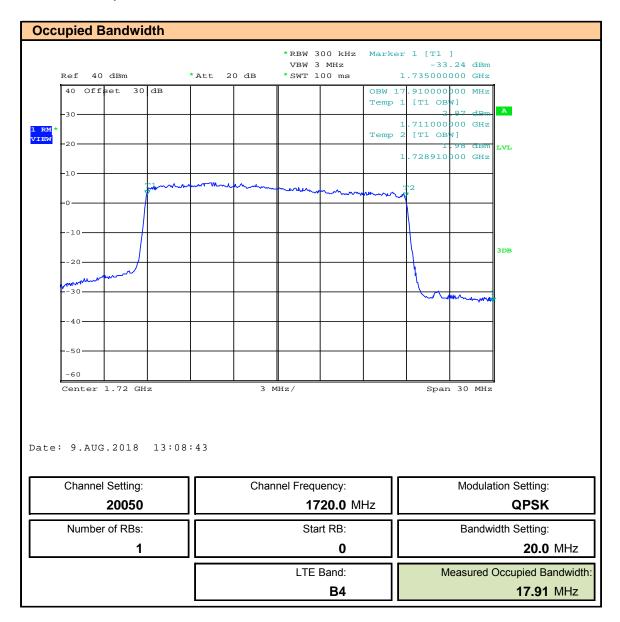
Plot 12.7 - Occupied Bandwidth - LTE B4 - Channel 20175 - QPSK - 10MHz BW



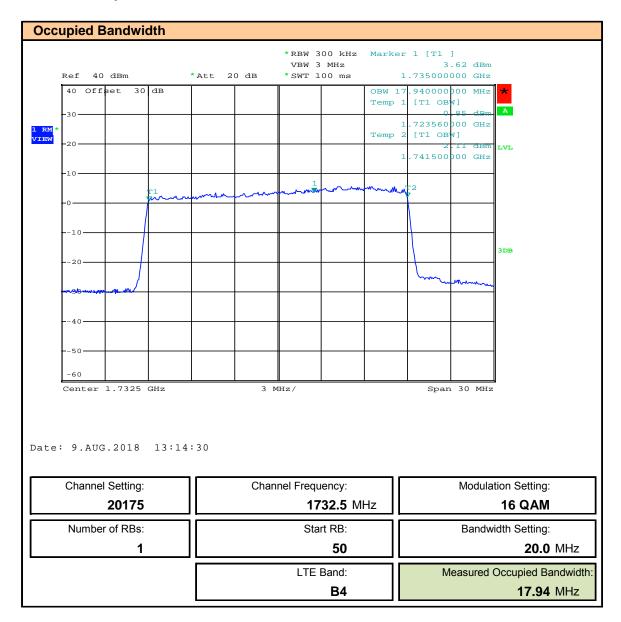
Plot 12.8 - Occupied Bandwidth - LTE B4 - Channel 20000 - 16QAM - 10MHz BW



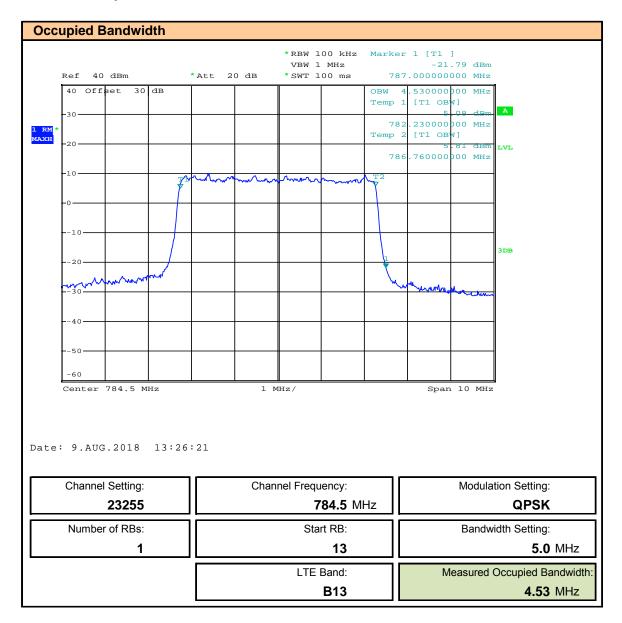
Plot 12.9 - Occupied Bandwidth - LTE B4 - Channel 20325 - QPSK - 15MHz BW



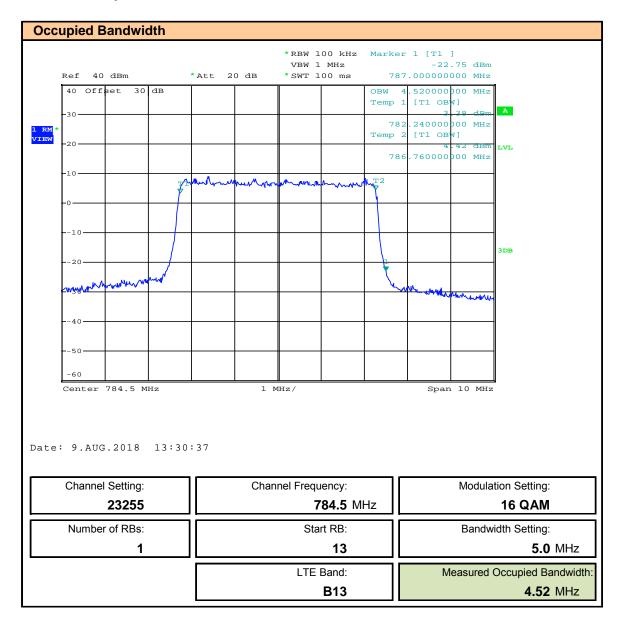
Plot 12.10 - Occupied Bandwidth - LTE B4 - Channel 20325 - 16QAM - 15MHz BW



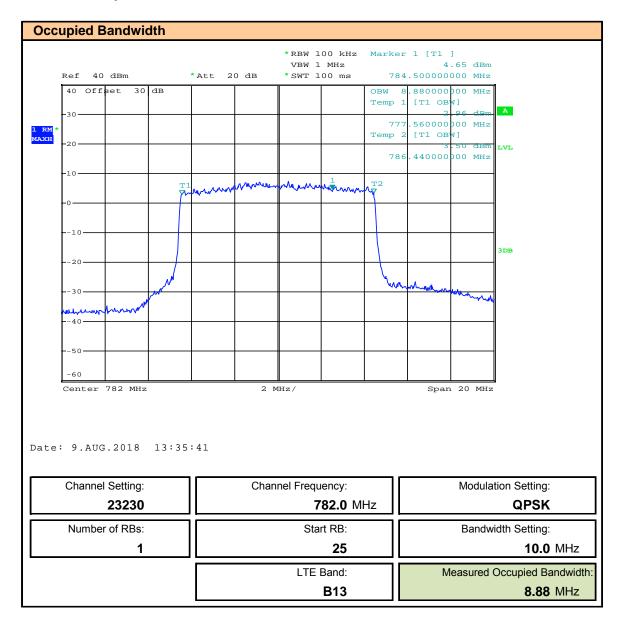
Plot 12.11 - Occupied Bandwidth - LTE B4 - Channel 20050 - QPSK - 20MHz BW



Plot 12.12 - Occupied Bandwidth - LTE B4 - Channel 20175 - 16QAM - 20MHz BW



Plot 12.13 - Occupied Bandwidth - LTE B13 - Channel 23255 - QPSK - 5MHz BW



Plot 12.14 - Occupied Bandwidth - LTE B13 - Channel 23255 - 16QAM - 5MHz BW

Plot 12.15 - Occupied Bandwidth - LTE B13 - Channel 23230 - QPSK - 10MHz BW

Plot 12.16 - Occupied Bandwidth - LTE B13 - Channel 23230 - 16QAM - 10MHz BW

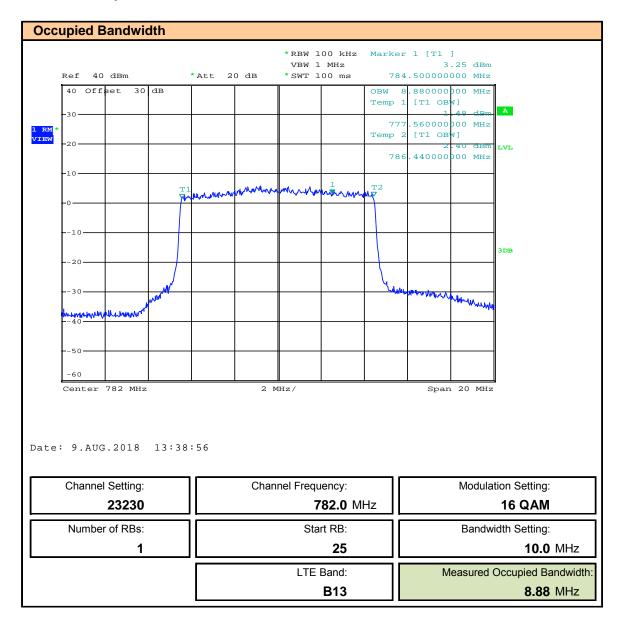
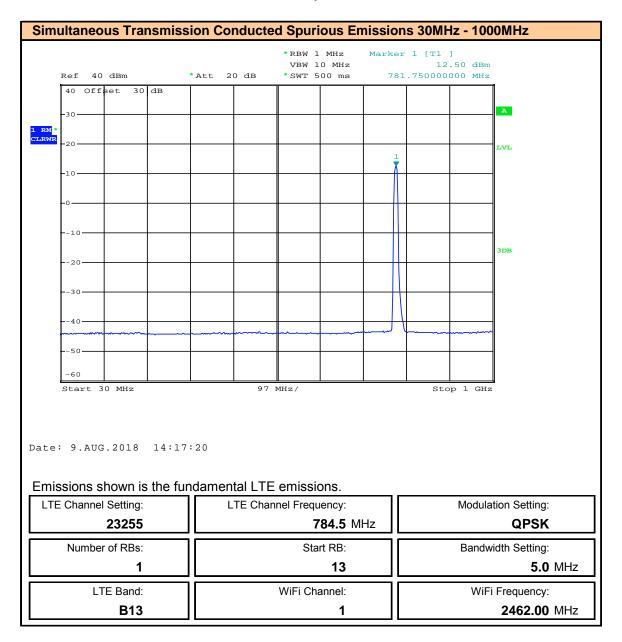


Table 12.1 – Summary of Occupied Bandwidth - LTE

99% Occ	upied Ban	dwidt	h					
Channel Number	Frequency (MHz)	LTE Band	BW (MHz)	Modulation	Power Setting (dBm)	Number of Resource Blocks	Resource Block Start	Measured Occupied BW (MHz)
19957	1710.7		1.4	QPSK		1	2	1.10
20393	17534.3		1.4	16 QAM		1	2	1.09
20385	1753.5		3	QPSK		1	15	2.69
19965	1711.5		5	16 QAM		1	15	2.69
20375	1752.5		5	QPSK	Max	1	24	4.51
19975	1712.5	B4		16 QAM		1	13	4.52
20175	1732.5	В4	10	QPSK		1	25	9.14
20000	1715.0		10	16 QAM		1	49	9.08
20325	1747.5		15	QPSK		1	74	13.50
20325	1747.5		15	16 QAM		1	0	13.50
20050	1720.0		20	QPSK		1	0	17.91
20175	1732.5		20	16 QAM		1	50	17.94
23255	784.5		5	QPSK		1	13	4.53
23255	784.5	B13	5	16 QAM		1	13	4.52
23230	782.0	613	10	QPSK		1	25	8.88
23230	782.0		10	16 QAM		1	25	8.88
					Results:		Complies	

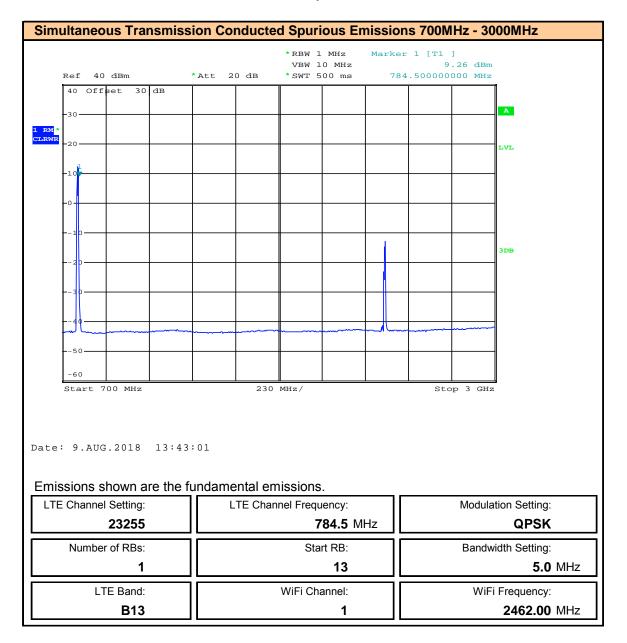
(1) As reported in the original module report

Margin = 10*Log(Limit / E_{meas})

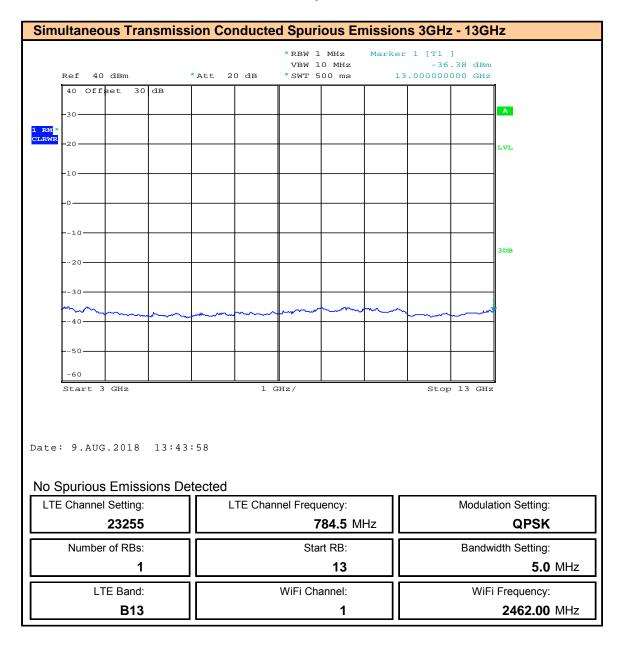


13.0 SIMULTANEOUS TRANSMISSION CONDUCTED SPURIOUS EMISSIONS

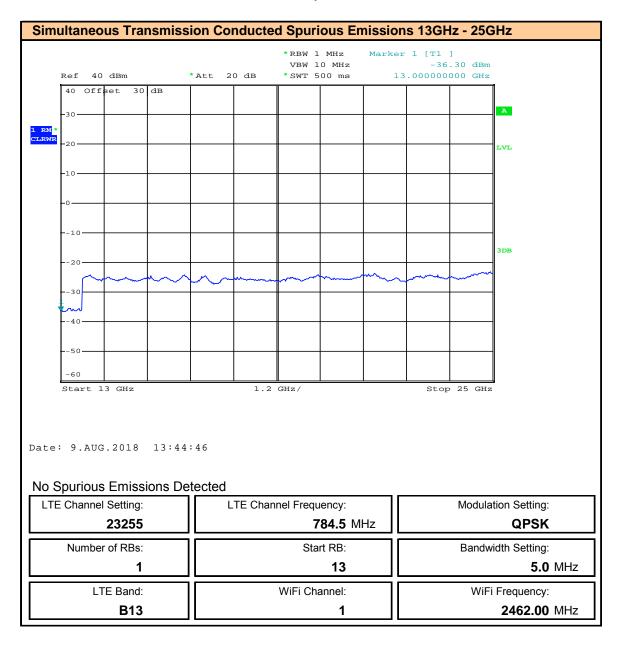
Test Conditions	
	FCC 47 CFR §2.1046, §27.53(c), §27.53(h), §15.31(k), §2.947(f), KDB 971168 D01v03r01
Normative Reference	RSS-130 4.6, RSS-139 6.6, RSS-Gen 8.10
Limits	
47 CFR §27.53(c)	§ 27.53 Emission limits
	(c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
	(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(2) On any frequency outside the 779-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
47 CFR §27.53(h)	§ 27.53(h) AWS Emission limits
	(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
RSS-130 4.6	4.6 Transmitter Unwanted Emissions
	4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.
	4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:
	(a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
	(i) 76 + 10 log10 p(watts), dB, for base and fixed equipment, and
	(ii) 65 + 10 log10 p(watts), dB, for mobile and portable equipment.
RSS-139 6.6	6.6 Transmitter Unwanted Emissions
	(i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block,2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.
	 (ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.



Plot 13.1 – Simultaneous Transmission Conducted Spurious Emissions – 30 to 1000MHz



Plot 13.2 – Simultaneous Transmission Conducted Spurious Emissions – 700 to 3000MHz

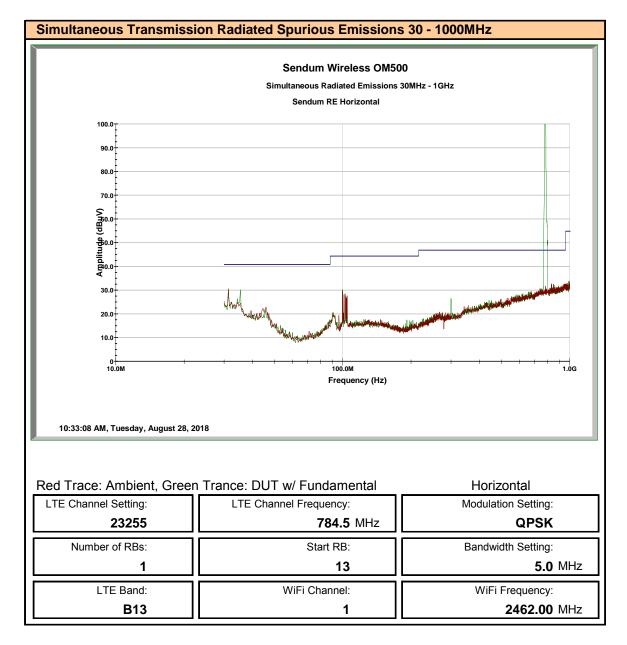


Plot 13.3 – Simultaneous Transmission Conducted Spurious Emissions – 3 to 13GHz

Plot 13.4 – Simultaneous Transmission Conducted Spurious Emissions – 13 to 25GHz

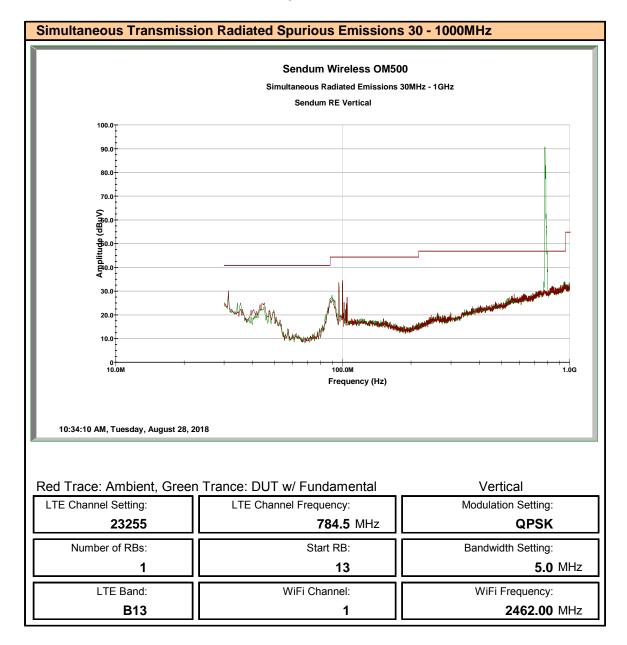
Table 13.1 – Summary of Simultaneous Transmission Conducted Spurious Emissions

Channel Frequency	Frequency Range	Frequency of	ission Cond Bandwidth Setting	Modulation	Tx Power Setting	Spurious Emission	Attenuation	Limit	Margin
(MHz)	(MHz)	Emission (MHz)	(kHz)		[P _{chan}] (dBm)	[P _{Spur}] (dBc)	[A] (dB)	(dBm)	(dB)
(MHZ) (MHZ) (KHZ) (dBm) (dBc) (dB) (dBm) (dB) There were no spurious emissions observed as a result of simultaneous transmission. Attenuation [A] = [P _{chan}] - [P _{Spur}]									
Iargin = Attenuation [A] - Limit									
	Result: Complies								

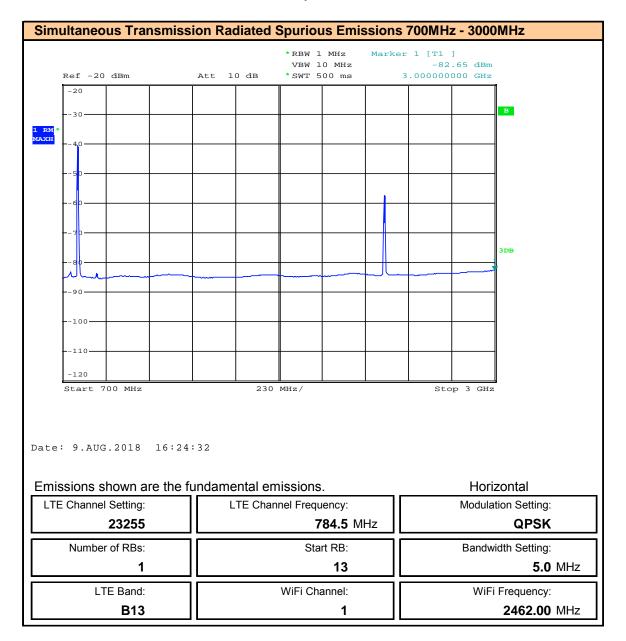


14.0 SIMULTANEOUS TRANSMISSION RADIATED SPURIOUS EMISSIONS

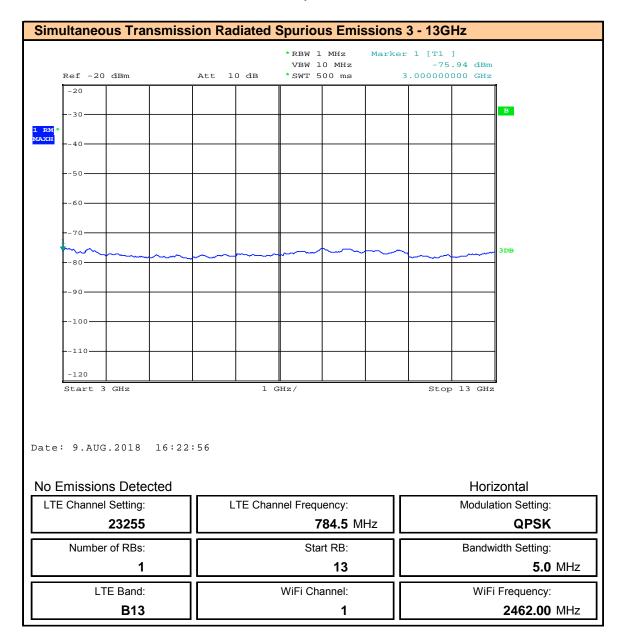
Test Conditions	
Normative Reference	FCC 47 CFR §2.1046, §27.53(c), §27.53(h), §15.31(k), §2.947(f), KDB 971168 D01v03r01
Normative Reference	RSS-130 4.6, RSS-139 6.6, RSS-Gen 8.10
Limits	
47 CFR §27.53(c)	§ 27.53 Emission limits
	(c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
	(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(2) On any frequency outside the 779-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
	(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
47 CFR §27.53(h)	§ 27.53(h) AWS Emission limits
	(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
RSS-130 4.6	4.6 Transmitter Unwanted Emissions
	4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.
	4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:
	(a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
	(i) 76 + 10 log10 p(watts), dB, for base and fixed equipment, and
	(ii) 65 + 10 log10 p(watts), dB, for mobile and portable equipment.
RSS-139 6.6	6.6 Transmitter Unwanted Emissions
	(i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block,2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.
	 (ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.



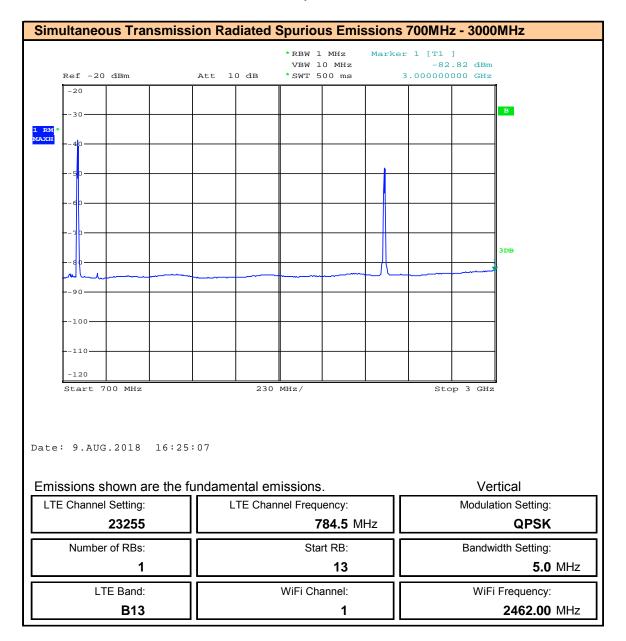
Plot 14.1 - Simultaneous Transmission Radiated Spurious Emissions - 30 - 1000MHz - Horizontal



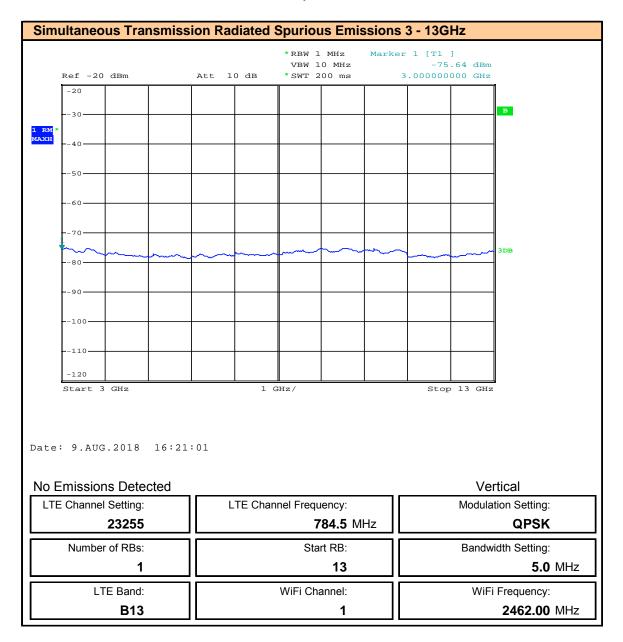
Plot 14.2 - Simultaneous Transmission Radiated Spurious Emissions - 30 - 1000MHz - Vertical



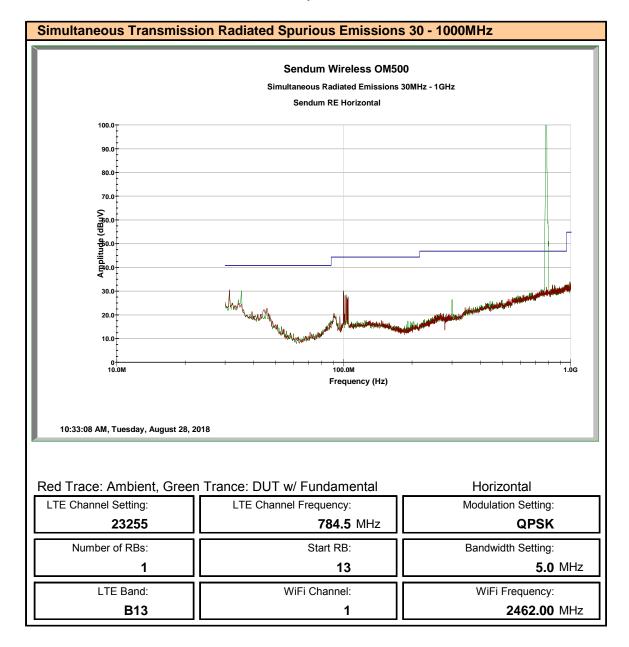
Plot 14.3 – Simultaneous Transmission Radiated Spurious Emissions – 700 to 3000MHz - Horizontal



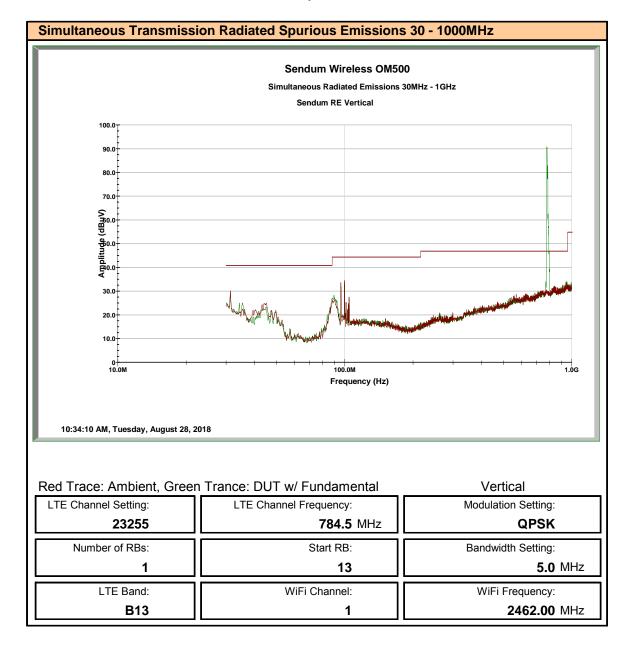
Plot 14.4 – Simultaneous Transmission Radiated Spurious Emissions – 3 to 13GHz - Horizontal



Plot 14.5 - Simultaneous Transmission Radiated Spurious Emissions - 700 to 3000MHz - Vertical



Plot 14.6 - Simultaneous Transmission Radiated Spurious Emissions - 3 to 13GHz - Vertical

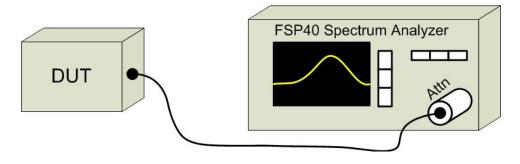


Plot 14.7 - Simultaneous Transmission Radiated Spurious Emissions - 30 - 1000MHz - Horizontal

Plot 14.8 – Simultaneous Transmission Radiated Spurious Emissions – 30 – 1000MHz - Vertical

Table 14.1 – Summary of Simultaneous Transmission Radiated Spurious Emissions

Channel Frequency	Frequency Range	Frequency of	Bandwidth Setting	Modulation	Tx Power Setting	Spurious Emission	Attenuation	Limit	Margin
		Emission			[P _{chan}]	[P _{Spur}]	[A]		
(MHz)	(MHz)	(MHz)	(kHz)		(dBm)	(dBc)	(dB)	(dBm)	(dB)
There were no spurious emissions observed within 20dB of the limit as a result of simultaneous transmission. Attenuation [A] = $[P_{chan}] - [P_{Spur}]$									
Margin = Attenuation [A] - Limit									
Margin – Allen									



APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS

Table A.1 – Conducted Measurement Setup and Environmental

	Environmental Conditions (Typical)						
Temperature		25°C					
Humidity		<60%					
Barome	tric Pressure	101 +/- 3kPa					
	Equipment List						
Asset	Manufacturer	Model	Description				
Number	manalaotarer	Number	Description				
00241	00241 R&S FSU40		Spectrum Analyzer				

Figure A.1 – Test Setup – Conducted Measurements

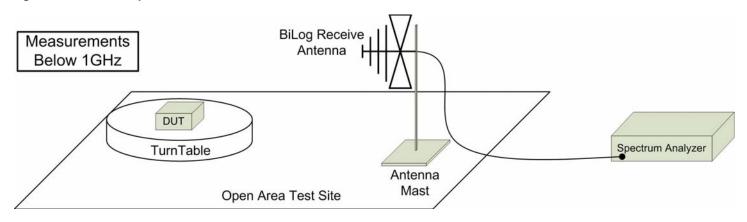


Table A.2 – Radiated Emissions Measurement Equipment and Environmental

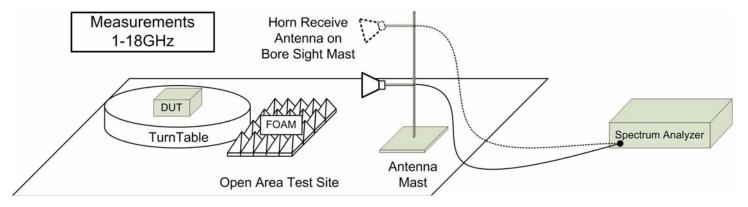

Environ	Environmental Conditions (Typical)							
Temper	ature	25°C						
Humidit	y	<60%						
Barome	tric Pressure	101 +/- 3kPa						
Equipm	ent List							
Asset Number	Manufacturer	Model Number	Description					
00051	HP	8566B	Spectrum Analyzer					
00049	HP	85650A	Quasi-peak Adapter					
00047	HP	85685A	RF Preselector					
00072	EMCO	2075	Mini-mast					
00073	EMCO	2080	Turn Table					
00071	EMCO	2090	Multi-Device Controller					
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier					
00241	R&S	FSU40	Spectrum Analyzer					
00050	Chase	CBL-6111A	Bilog Antenna					
00275	Coaxis	LMR400	25m Cable					
00276	Coaxis	LMR400	4m Cable					
00278	TILE	34G3	TILE Test Software					
00034	ETS	3115	Double Ridged Guide Horn					
00085	EMCO	6502	Loop Antenna					

Figure A.2 – Test Setup Radiated Measurements 30MHz – 1GHz

Figure A.3 – Test Setup Radiated Measurements 1 - 18GHz

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

	Asset		Model	Serial		Last	Calibration
(*)	Number	Manufacturer	Number	Number	Description	Calibrated	Interval
*	00050	Chase	CBL-6111A	1607	Bilog Antenna	23 Jun 2017	Triennial
*	00034	ETS	3115	6267	Double Ridged Guide Horn	02 Dec 2015	Triennial
	00035	ETS	3115	6276	Double Ridged Guide Horn	02 Dec 2015	Triennial
*	00085	EMCO	6502	9203-2724	Loop Antenna	8 Jun 2016	Triennial
*	00047	HP	85685A	2837A00826	RF Preselector	23 Jun 2017	Triennial
*	00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2017	Triennial
*	00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2017	Triennial
	00223	HP	8901A	3749A07154	Modulation Analyzer	27 Dec 2017	Triennial
	00224	HP	8903B	3729A18691	Audio Analyzer	28 Dec 2017	Triennial
*	00241	R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial
*	00005	HP	8648D	3847A00611	Signal Generator	21 Jun 2017	Triennial
	00006	R&S	SMR20	100104	Signal Generator	29 May 2017	Triennial
	00243	Rigol	DS1102E	DS1ET150502164	Oscilloscope	7 Nov 2017	Triennial
	00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a
_	00110	Gigatronics	8652A	1875801	Power Meter	29 Feb 2016	Triennial
	00237	Gigatronics	80334A	1837001	Power Sensor	23 Jun 2014	Triennial
	00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	18 Dec 2017	Triennial
	00003	HP	53181A	3736A05175	Frequency Counter	21 Jun 2017	Triennial
	00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial
	00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a
	00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a
	00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a
_	00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a
	00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a
*	00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a
*	00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a
	00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	CNR	n/a
	00234	VWR	61161-378	140320430	Temp/Humidity Meter	New	Triennial
	00236	Nokia	-	236	ESD Table	NCR	n/a
	00255	Expert ESD	A4001	A4001-155	ESD Target	COU	n/a
	00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a
	00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a
*	00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a
*	00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a
*	00275	TMS	LMR400	n/a	25m Cable	COU	n/a
\neg	00276	TMS	LMR400	n/a	4m Cable	COU	n/a
\neg	00277	TMS	LMR400	n/a	4m Cable	COU	n/a
*	00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a
Ren	ted Equi	pment				<u> </u>	

* Used during the course of this investigation

CNR: Calibration Not Required

COU: Calibrate On Use

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (ULAB)							
Thi	is uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2							
	30MHz - 200MHz							
	$U_{LAB} = 5.14 dB$ $U_{CISPR} = 6.3 dB$							
	200MHz - 1000MHz							
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$							
	1GHz - 6GHz							
	$U_{LAB} = 4.80 dB$ $U_{CISPR} = 5.2 dB$							
	6GHz - 18GHz							
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$							
	If the calculated uncertainty U _{lab} is less than U _{CISPR} then:							
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit							
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit							
	If the calculated uncertainty U _{lab} is greater than U_{CISPR} then:							
3	Compliance is deemed to occur if NO measured disturbance, increased by (Ulab - UCISPR), exceeds the disturbance limit							
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit							