

Test Report Serial Number: Test Report Date: Project Number: 45461710 R2.0 13 April 2022 1566

EMC Test Repo	EMC Test Report - New Filing				
Applicant:					
SENDUM					
Sendum Wireless Corporation 4500 Beedie St. Burnaby, BC V5J 5L2					
Canada					
FCC ID:	IC Registration Number				
TS5-OM500B	6234A-OM500B				
Product Model Number / HVIN	Product Name / PMN				
OM500B	OM500B				

In Accordance With:

FCC 47 CFR Part 15 Subpart B

Unintentional Radiators

RSS-Gen, ICES-003

Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2022 Celltech Labs Inc,

Table of Contents

1.0 REVISION HISTORY	
2.0 CLIENT AND DUT INFORMATION	5
3.0 SCOPE	6
4.0 TEST RESULT SUMMARY	7
5.0 NORMATIVE REFERENCES	8
6.0 FACILITIES AND ACCREDITATIONS	9
7.0 ANTENNA PORT CONDUCTED EMISSIONS	
8.0 RADIATED RX EMISSIONS	
9.0 LINE CONDUCTED EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	

Table of Figures

Figure A.1 – Setup – Antenna Port Conducted Emissions	41
Figure A.2 – Test Setup Radiated Emissions Measurements 30 – 1000MHz	
Figure A.3 – Test Setup Radiated Emissions Measurements 30 – 1000MHz w/ Signal Substitution	43
Figure A.4 – Test Setup Radiated Emissions Measurements 1 – 18GHz	43
Figure A.5 – Setup – Line Conducted Emissions	44

Table of Plots

Plot 7.1 – Conducted Emissions, Channel Power	11
Plot 7.2 – Conducted Emissions, 1 – 3GHz.	12
Plot 7.3 – Conducted Emissions, 3 - 10GHz.	13
Plot 7.4 – Conducted Emissions, 10 – 13.6GHz.	14
Plot 7.5 – Conducted Emissions, 13.6 - 18GHz	15
Plot 7.6 – Conducted Emissions, 18 - 25GHz	16
Plot 8.1 – Radiated Rx Emissions, 9kHz – 30MHz, Front	19
Plot 8.2 – Radiated Rx Emissions, 9kHz – 30MHz, Side	20
Plot 8.3 – Radiated Rx Emissions, 30 – 1000MHz, Horizontal	21
Plot 8.4 – Radiated Rx Emissions, 30 – 1000MHz, Vertical	22
Plot 8.5 – Radiated Rx Emissions, 1 – 3GHz, Horizontal	23
Plot 8.6 – Radiated Rx Emissions, 1 – 3GHz, Vertical	
Plot 8.7 – Radiated Rx Emissions, 3 - 10GHz, Horizontal	
Plot 8.8 – Radiated Rx Emissions, 3 - 10GHz, Vertical	
Plot 8.9 – Radiated Rx Emissions, 10 – 13.6GHz, Horizontal	
Plot 8.10 – Radiated Rx Emissions, 10 – 13.6GHz, Vertical	28
Plot 8.11 – Radiated Rx Emissions, 13.6 - 18GHz, Horizontal	29
Plot 8.12 – Radiated Rx Emissions, 13.6 - 18GHz, Vertical	30
Plot 8.13 – Radiated Rx Emissions, 18 - 22GHz, Horizontal	
Plot 8.14 – Radiated Rx Emissions, 18 - 22GHz, Vertical	32
Plot 8.15 – Radiated Rx Emissions, 12 - 25GHz, Horizontal	
Plot 8.16 – Radiated Rx Emissions, 12 - 25GHz, Vertical	
Plot 9.1 – Line Conducted Emissions, L1	
Plot 9.2 – Line Conducted Emissions, L2	38

Table of Tables

Table 7.1 – Summary of Conducted Spurious Emissions Measurements	17
Table 8.1 – Summary of Radiated Rx Emissions	
Table 9.1 – Summary of Power Line Conducted Emissions, L1	39
Table 9.2 – Summary of Power Line Conducted Emissions, L2	40
Table A.1 – Setup – Antenna Port Conducted Emissions Equipment	41
Table A.2 – Setup - Radiated Emissions Equipment	42
Table A.3 – Setup – Line Conducted Emissions Equipment	44

1.0 REVISION HISTORY

	Revision History					
Samples Tested By: Art Voss, P.Eng. Date(s) of Evaluation:		e(s) of Evaluation:	14 Jan - 20 Jan, 2022			
Rep	Report Prepared By: Art Voss, P.Eng. Report Reviewed By:		Ben Hewson			
Report Description of Revision		Revised	Revised	Revision Date		
Revision	Description of Revision on		Section	Ву	Revision Date	
0.1	Draft		n/a	Art Voss	8 March 2022	
1.0	Initial Release		n/a	Art Voss	23 March 2022	
2.0	Revised RE Rx Data		8.0	Art Voss	13 April 2022	

2.0 CLIENT AND DUT INFORMATION

Client Information				
Applicant Name (FCC)	Sendum Wireless Corporation			
	4500 Beedie St.			
Applicant Address (FCC)	Burnaby, BC, V5J 5L2			
	Canada			
Applicant Name (ISED)	Sendum Wireless Corporation			
	4500 Beedie St.			
Applicant Address (ISED)	Burnaby, BC, V5J 5L2			
	Canada			
DUT (Host) Information				
Device Identifier(s):	FCC ID: TS5-OM500B			
Device identifier (S).	ISED ID: 6234A-OM500B			
Device Type:	Asset Tracking Device			
Host Device Model(s) / HVIN:	PT300D			
Host Marketing Name / HMN:	PT300D			
Host Firmware Version ID Number / FVIN:	-			
Test Sample Serial No.:	OTA: 90000157, Conducted: 90000195			
Antenna Make and Model:	n/a			
Antenna Type and Gain:	n/a			
DUT Power Source:	120VAC			
DUT Dimensions (mm)	L x W x D: 165mm x 95mm x 50mm			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

Integrated Module Information				
Module Manufacturer:	u-blox AG	u-blox AG		
Device Identifier(s):	FCC ID:	XPYNINAW13		
Device identifier (5).	IC ID:	8595A-NINAW13		
Device Type:	WiFi Modul	e		
Module Device Model(s) / HVIN:	NINA-W131			
Module Product Marketing Name / PMN:	NINA-W131			
Module Firmware Version ID Number / FVIN:	V1.0			
Equipment Class (FCC):	Digital Transmission System (DTS)			
Equipment Class (ISED):*	WLAN			
Transmit Frequency Range:	2412 - 2462			
Test Channels:	n/a			
Manuf. Max. Rated Output Power:	0.0363W			

* As Listed on the ISED REL

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of:

Sendum Wireless Corporation

,(the '*Applicant*"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the *Equipment* tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Device / Equipment Description:

The OM500B is an offender's monitoring device. The OM500B integrates the follow certified transceiver module and contains no other transmitters.

WiFi Module FCC ID: **XPYNINAW13** IC ID: **8595A-NINAW13** u-blox AG Model/HVIN: NINA-W131

Certification Requirement:

As per 47CFR Part 2 Subpart J and ISED RSP-100, Verification (SDoC) is required to 47 CFR Part 15 Subpart B, ISED RSS-Gen and ISED ICES-003.

Application:

This is an application for a new SDoC.

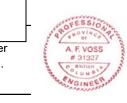
Scope:

The scope of this investigation is to evaluate this *Equipment* to the requirements of the standards and procedures identified in this report but only so far as to verify that this *Equipment* operates within the limits of modular grants.

4.0 TEST RESULT SUMMARY

	TEST SUMMARY						
Section	Description of Test	Procedure Reference	Applicable Rule Part(s) FCC	Applicable Rule Part(s) ISED	Test Date	Result	
7.0	Radiated Rx Spurious Emissions	ANSI C63.4-2014	§15.109	ICES-003 (6.2)	14 Jan 2022	Pass	
8.0	Conducted Spurious Emissions Intermodulation Products	ANSI C63.4-2014	§15.109	ICES-003 (6.2)	20 Jan 2022	Pass	
9.0	Pow erline Conducted Spurious Emissions	ANSI C63.4-2014	§15.107	ICES-003 (6.1)	20 Jan 2022	Pass	

Test Station Day Log					
	Ambient	Ambient Relative		Test	Tests
Date	Temp	Humidity	Pressure	Station	Performed
	(°C)	(%)	(kPa)		Section(s)
14 Jan 2022	2.0	77	101.0	OATS	8.0
20 Jan 2022	20.6	16	101.6	EMC	7.0
20 Jan 2022	12.0	67	101.6	LISN	9.0
EMC - EMC Test Bench S			SAC - Semi-Ar	nechoic Ch	namber


OATS - Open Area Test Site LISN - LISN Test Area IMM - Immunity Test Area

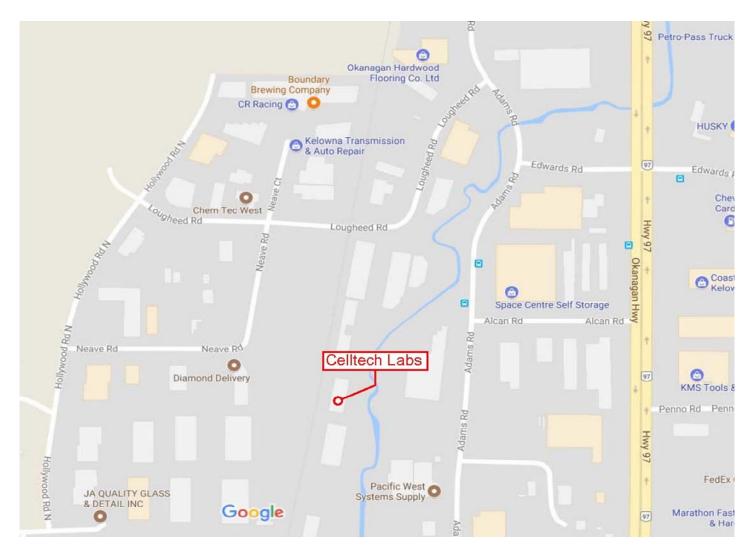
TC - Temperature Chamber

ESD - ESD Test Bench

RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

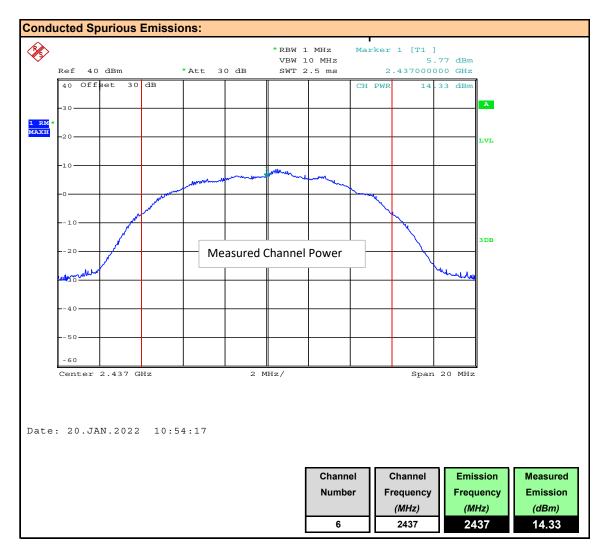
5.0 NORMATIVE REFERENCES


		Normative References
ISO/I	EC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI	C63.4-2014	American National Standard of Procedures for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
ISED		Innovation, Science and Economic Development Canada
	RSS-Gen Issue 5A1:	Spectrum Management and Telecommunications Radio Standards Specification
	March 2019	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
	ICES-003 Issue 6:	Information Technology Equipment (Including Digital Apparatus) —
	Jan 2016	Limits and Methods of Measurement

6.0 FACILITIES AND ACCREDITATIONS

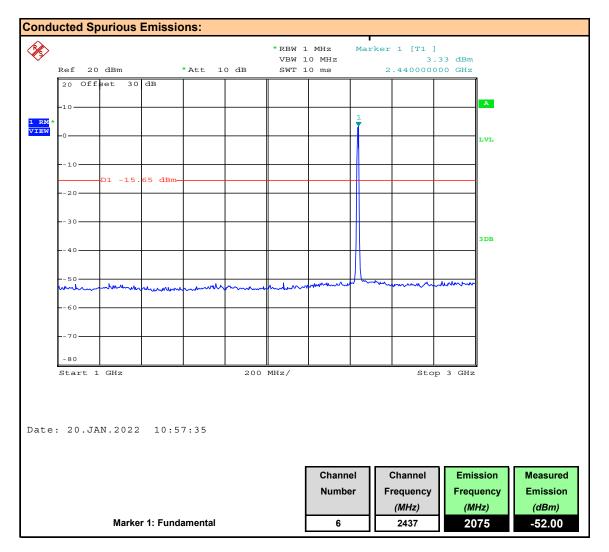
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X 7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

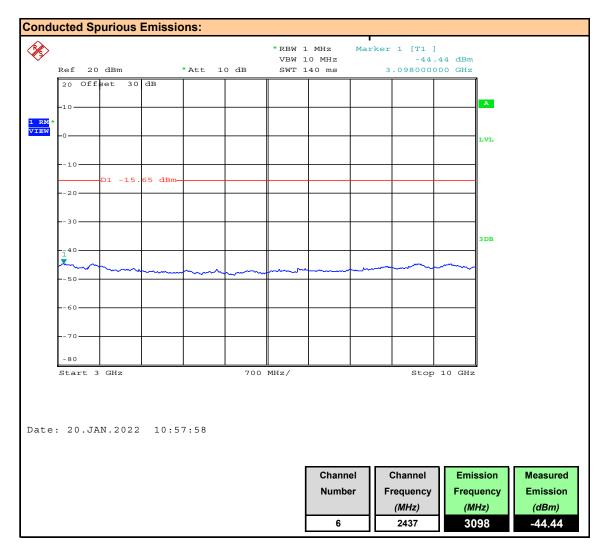


7.0 ANTENNA PORT CONDUCTED EMISSIONS

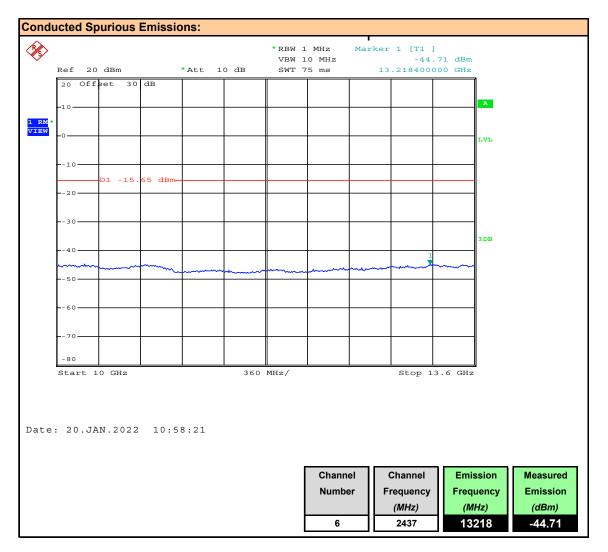
Test Procedure		
Normative	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),	
Reference	KDB 558074 (8.5), ANSI C63.10 (11.11.3)	
Limits		
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.	
RSS-247 (5.5)	5.5 Unwanted emissions	
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.	
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).	
	As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.	



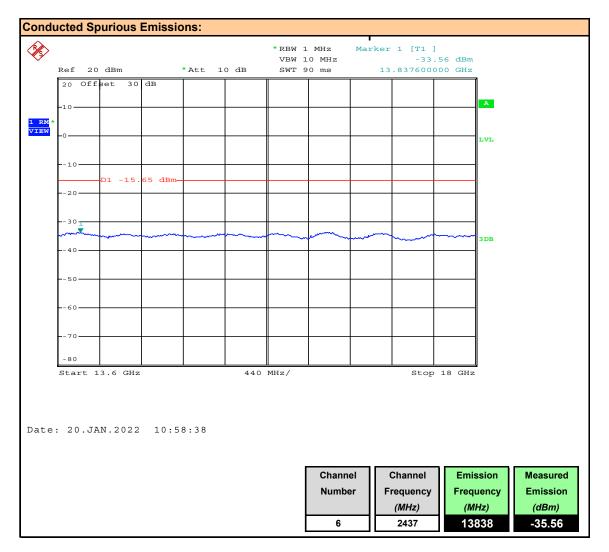
Plot 7.1 – Conducted Emissions, Channel Power



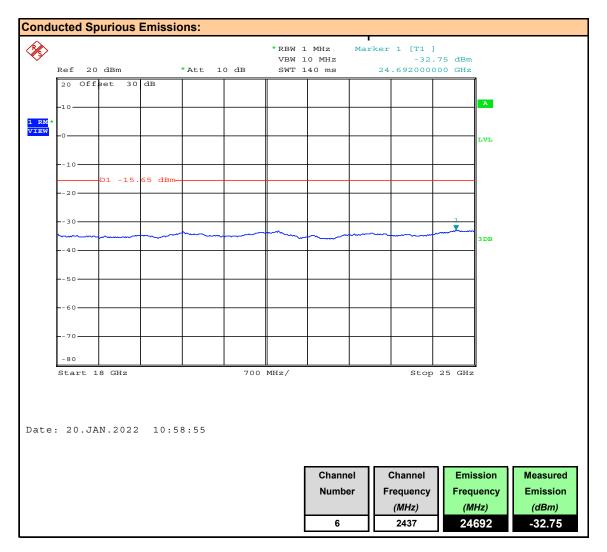
Plot 7.2 – Conducted Emissions, 1 – 3GHz



Plot 7.3 – Conducted Emissions, 3 - 10GHz



Plot 7.4 – Conducted Emissions, 10 – 13.6GHz

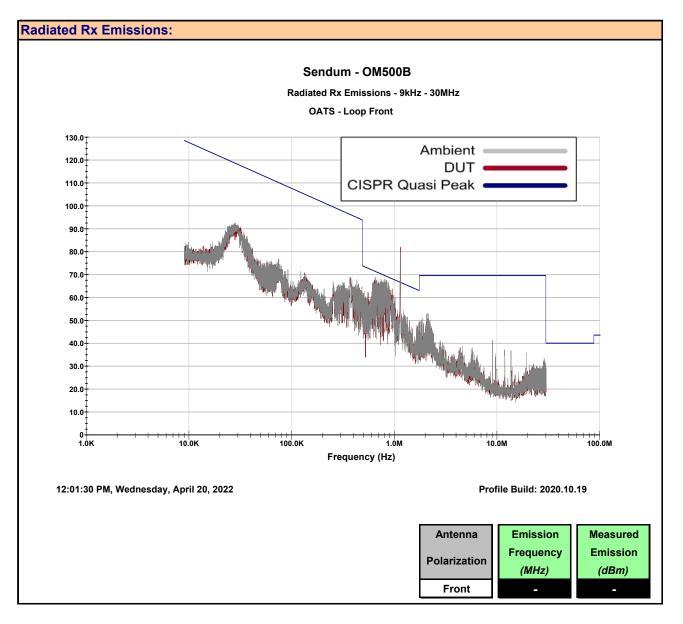


Plot 7.5 – Conducted Emissions, 13.6 - 18GHz

Plot 7.6 – Conducted Emissions, 18 - 25GHz

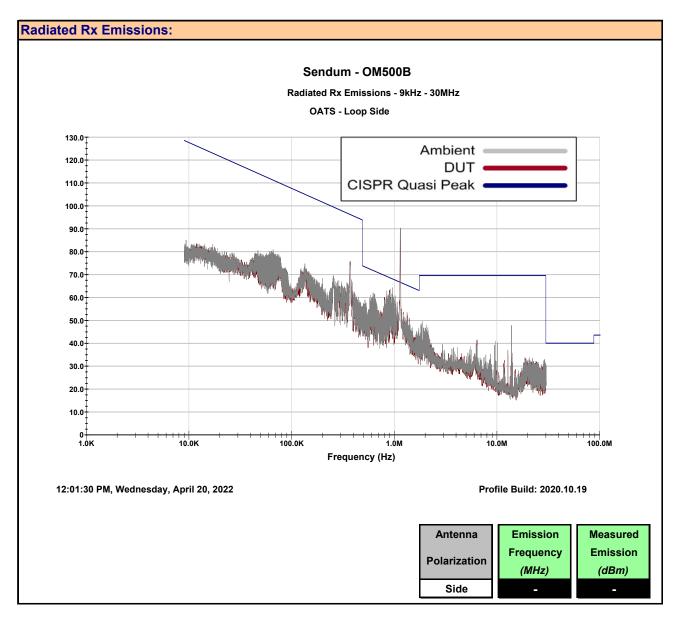
Table 7.1 – Summary of Conducted Spurious Emissions Measurements

Conduct	Conducted Spurious Emissons Measurement Results:						
Channel	Frequency	Fundamental Power	Emission Frequency	Measured Emission	Attenuation	Limit	Margin
Number		[P _{Fund}]	riequency	[P _{Meas}]	[Att]		
Number	(MHz)	(dBm)	(MHz)	(dBm)	(dBm)	(dB)	(dB)
			2437.0	14.33	-		-
	2437.0	14.33	2075.0	-52.00	66.33		36.3
6			3098.0	-44.44	58.77	30.0	28.8
Ŭ	2407.0	14.00	13218.0	-44.71	59.04	00.0	29.0
			13838.0	-35.56	49.89		19.9
			24692.0	-32.75	47.08		17.1
							Complies

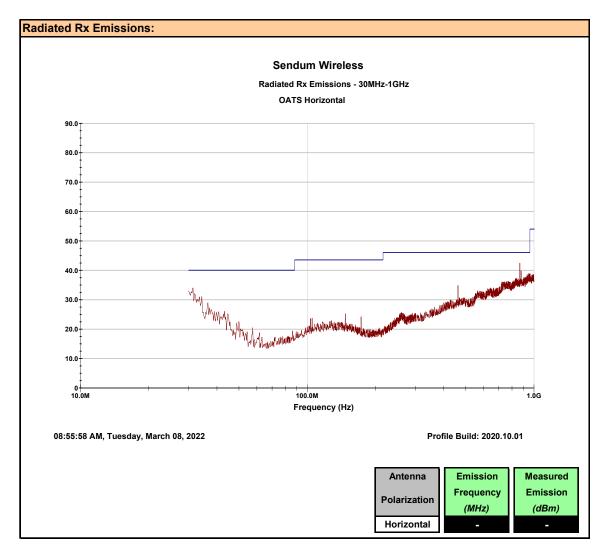


8.0 RADIATED RX EMISSIONS

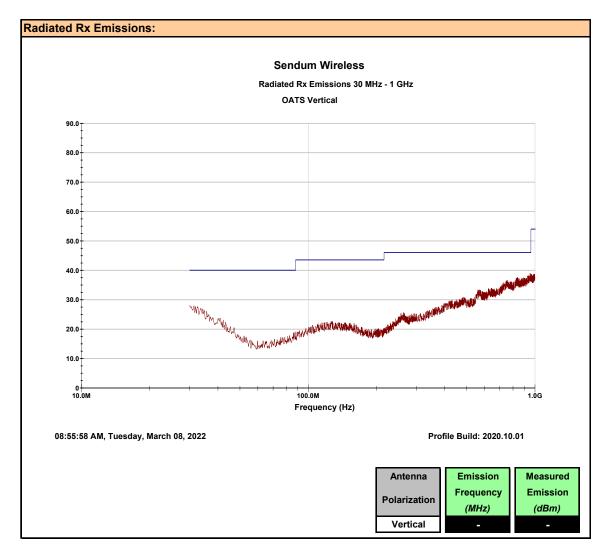
Normative Reference	FCC 47 CFR §15.109, ICES-003(6.2) ANSI C64.4-2014
Limits	
47 CFR §15.109	(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: 30-88MHz: 40dBuV/m
	88-216MHz: 43.5dBuV/m
	216-960MHz: 46dBuV/m > 960MHz: 54dBuV/m
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limits Below 1 GHz Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 5 determined at a distance of 3 metres.
	30-88MHz: 40dBuV/m 88-216MHz: 43.5dBuV/m 216-960MHz: 46dBuV/m > 960MHz: 54dBuV/m
Test Setup	Appendix A Figure A.1
Measurement Proced	ure



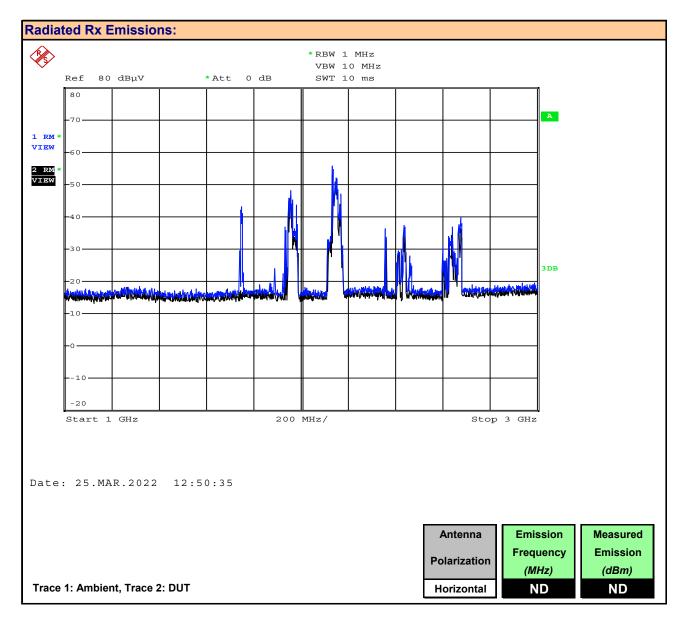
Plot 8.1 – Radiated Rx Emissions, 9kHz – 30MHz, Front



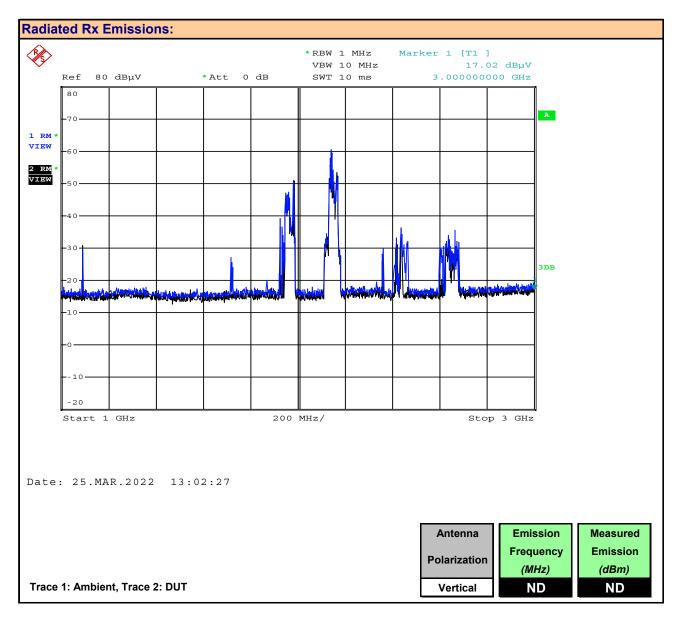
Plot 8.2 - Radiated Rx Emissions, 9kHz - 30MHz, Side



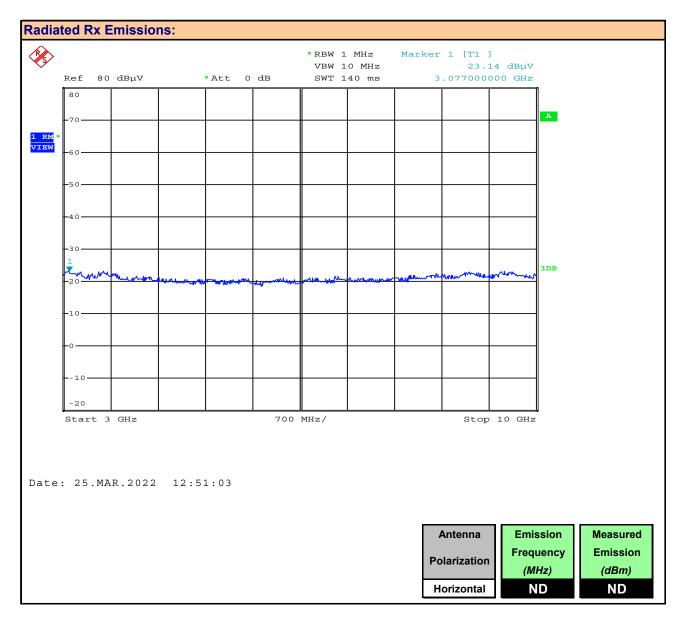
Plot 8.3 – Radiated Rx Emissions, 30 – 1000MHz, Horizontal



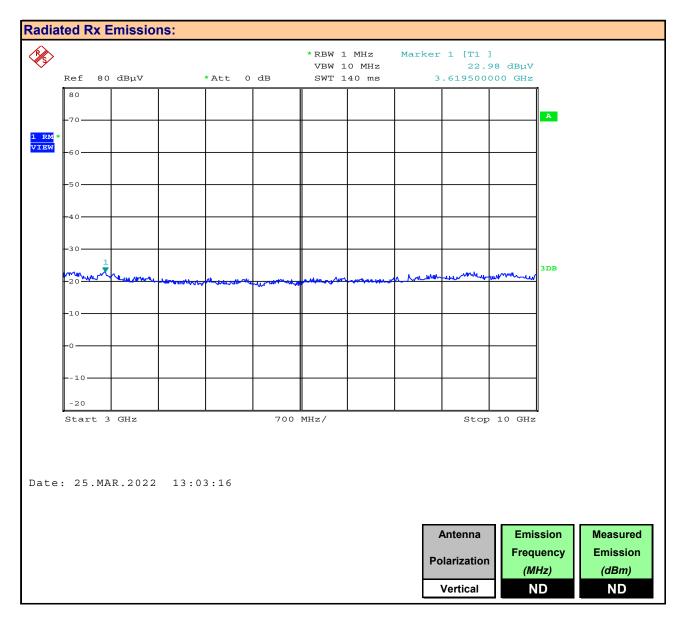
Plot 8.4 – Radiated Rx Emissions, 30 – 1000MHz, Vertical



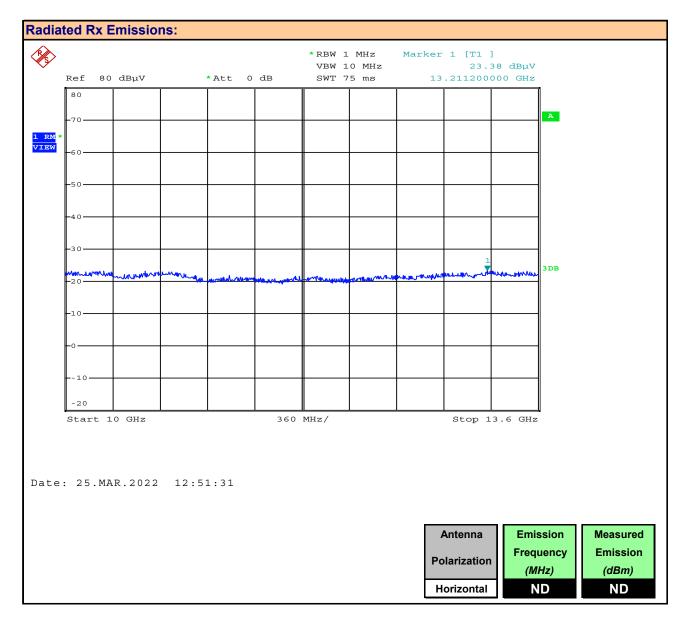
Plot 8.5 – Radiated Rx Emissions, 1 – 3GHz, Horizontal



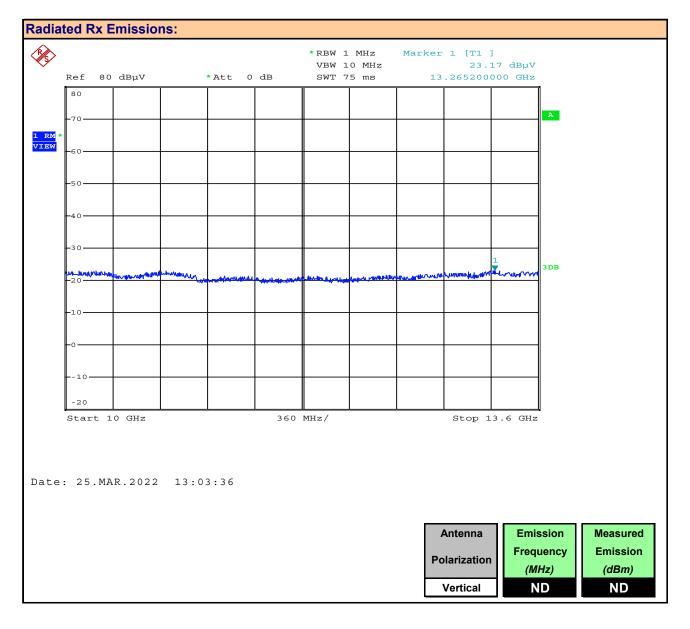
Plot 8.6 - Radiated Rx Emissions, 1 - 3GHz, Vertical



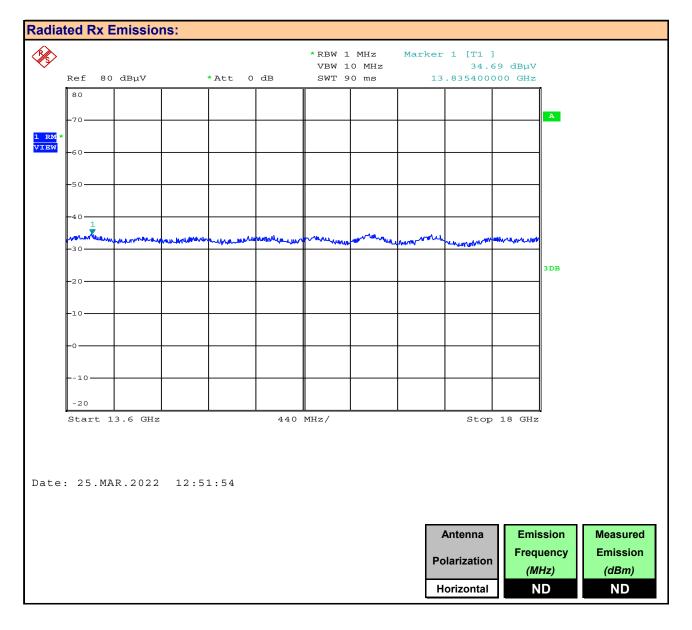
Plot 8.7 – Radiated Rx Emissions, 3 - 10GHz, Horizontal



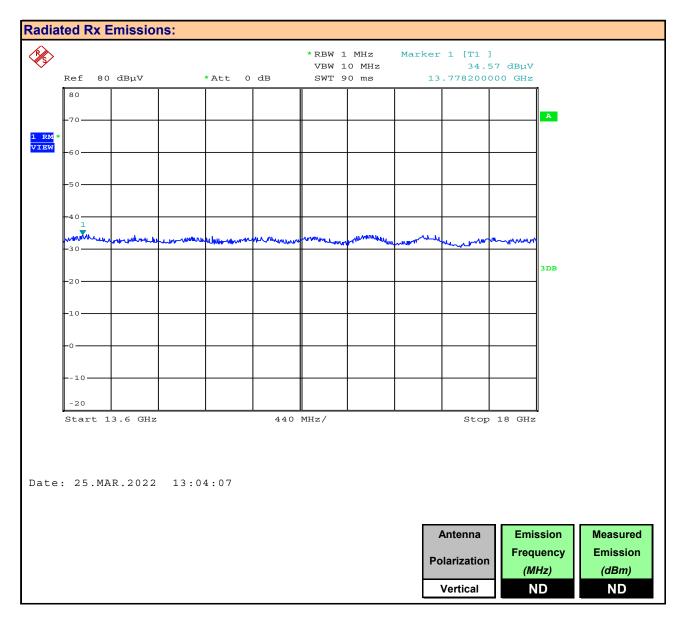
Plot 8.8 - Radiated Rx Emissions, 3 - 10GHz, Vertical



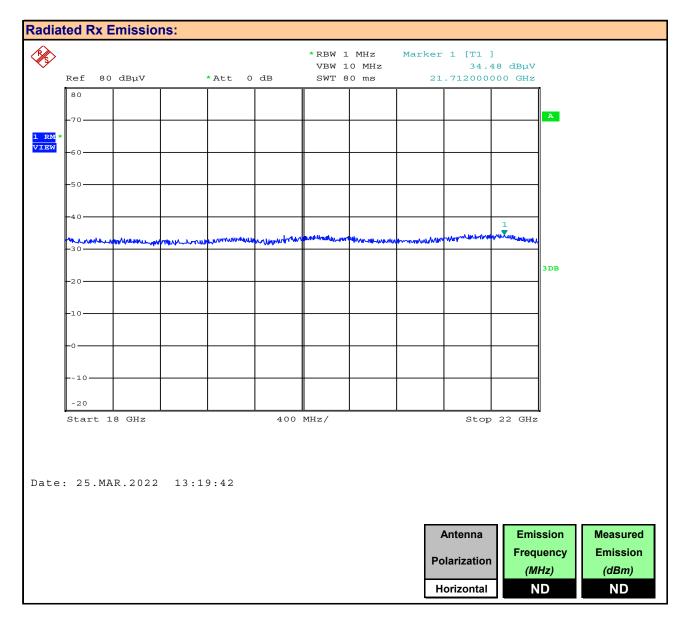
Plot 8.9 - Radiated Rx Emissions, 10 - 13.6GHz, Horizontal



Plot 8.10 - Radiated Rx Emissions, 10 - 13.6GHz, Vertical

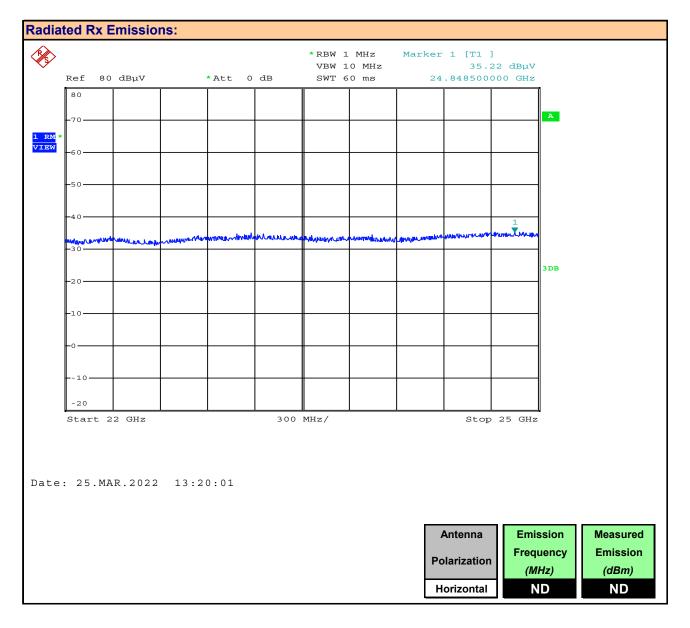


Plot 8.11 - Radiated Rx Emissions, 13.6 - 18GHz, Horizontal



Plot 8.12 - Radiated Rx Emissions, 13.6 - 18GHz, Vertical

Plot 8.13 - Radiated Rx Emissions, 18 - 22GHz, Horizontal



Plot 8.14 - Radiated Rx Emissions, 18 - 22GHz, Vertical

Plot 8.15 - Radiated Rx Emissions, 12 - 25GHz, Horizontal

Plot 8.16 - Radiated Rx Emissions, 12 - 25GHz, Vertical

Table 8.1 – Summary of Radiated Rx Emissions

Measured	- radiator	d Rx Emiss			Measu	red	Antenna	Cable	Ampli	fier	Correc	ted		
Frequency	Channel	Antenna	Emissi	on	Emissi		ACF	Loss	Gai		Emissi		Limit	Margin
Range	Frequency	Polarization	Freque	ncy	[E _{Meas}	-	[ACF]	[L _c]	[G,		[E _{Corr}	-	Luur	margin
(MHz)	(MHz)			-	(dBu\	/)	(dB)	(dB)	(dE	5)	(dBuV/	m)	(dBuV)	(dB)
9kHz - 30MHz	2437	Front	ND	MHz	ND	(1)			0.00	(3)		(2)		n/a
9kHz - 30MHz	2437	Side	ND	MHz	ND	(1)			0.00	(3)		(2)		n/a
30-1000MHz	2437	Horizontal	31.35	MHz	12.7		23.00	0.67	0.00	(3)	36.3	(2)	40.0	3.7
30-1000MHz	2437	Horizontal	462.40	MHz	11.3		22.50	1.91	0.00	(3)	35.7	(2)	46.0	10.3
30-1000MHz	2437	Horizontal	867.00	MHz	10.4		29.40	2.78	0.00	(3)	42.5	(2)	46.0	3.5
30-1000MHz	2437	Vertical	ND	MHz	ND	(1)			0.00	(3)		(2)	46.0	n/a
1-25GHz	2437	Horizontal	ND	MHz	ND	(1)			0.00	(3)		(2)	46.0	n/a
1-25GHz	2437	Vertical	ND	MHz	ND	(1)			0.00	(3)		(2)	46.0	n/a
Results:					Com	plies								

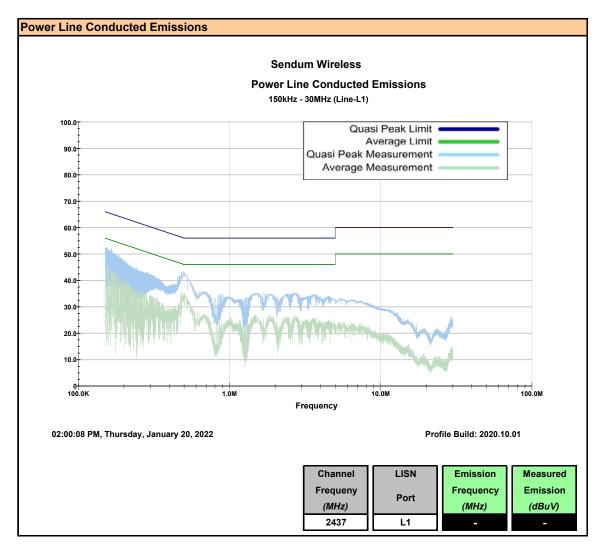
(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

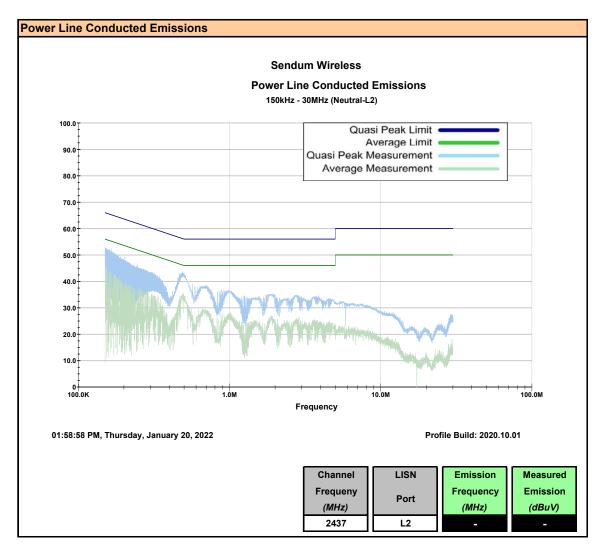
 $E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$ Where ACF^{E} is the Electric Antenna Correction Factor

* Without Manufacturer's Accessories, ** With Manufacturer's Accessories


9.0 LINE CONDUCTED EMISSIONS

the radio frequency w frequencies within the measured using a 50 based on the measur the power terminal. T 0.15 - 0.5 MHz: 79 d 0.5 - 30.0 MHz: 73 d ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	ital device that is designed to be connected to the public utility (AC) power line oltage that is conducted back onto the AC power line on any frequency or e band 150 kHz to 30 MHz shall not exceed the limits in the following table, as 0 µH/50 ohms LISN. Compliance with the provisions of this paragraph shall be rement of the radio frequency voltage between each power line and ground at The lower limit applies at the boundary between the frequency ranges.
Limits 47 CFR §15.107 (b) For a Class A dig the radio frequency w frequencies within the measured using a 50 based on the measur the power terminal. T 0.15 - 0.5 MHz: 79 dl 0.5 - 30.0 MHz: 73 dl ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	oltage that is conducted back onto the AC power line on any frequency or e band 150 kHz to 30 MHz shall not exceed the limits in the following table, as) µH/50 ohms LISN. Compliance with the provisions of this paragraph shall be rement of the radio frequency voltage between each power line and ground at
47 CFR §15.107 (b) For a Class A dig the radio frequency w frequencies within the measured using a 50 based on the measur the power terminal. T 0.15 - 0.5 MHz: 79 dl 0.5 - 30.0 MHz: 73 dl ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	oltage that is conducted back onto the AC power line on any frequency or e band 150 kHz to 30 MHz shall not exceed the limits in the following table, as) µH/50 ohms LISN. Compliance with the provisions of this paragraph shall be rement of the radio frequency voltage between each power line and ground at
the radio frequency w frequencies within the measured using a 50 based on the measur the power terminal. T 0.15 - 0.5 MHz: 79 d 0.5 - 30.0 MHz: 73 d ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	oltage that is conducted back onto the AC power line on any frequency or e band 150 kHz to 30 MHz shall not exceed the limits in the following table, as) µH/50 ohms LISN. Compliance with the provisions of this paragraph shall be rement of the radio frequency voltage between each power line and ground at
0.5 - 30.0 MHz: 73 d ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	The lower limit applies at the boundary between the frequency ranges.
ICES-003(6.1) 6.1 - AC Power Line Class A: ITE that me	BuV Quasi Peak, 66 dBuV Average
Class A: ITE that me	BuV Quasi Peak, 60 dBuV Average
	Conducted Emissions Limits
	ets the conditions for Class A operation defined in Section 2.2 shall comply ducted limits set out below in Table 1.
0.15 - 0.5 MHz: 79 d	BuV Quasi Peak, 66 dBuV Average
0.5 - 30.0 MHz: 73 d	
Test Setup Appendix A	BuV Quasi Peak, 60 dBuV Average

The device was connected to the LISN as shown in Appendix A. The input power supply was connected to a 208VAC, 1PH power source. The AC Line Conducted emissions were measured from 150kHz to 30MHz on both Lines L1 and L2 while the DUT was set to maximum output power.



Plot 9.1 – Line Conducted Emissions, L1

Plot 9.2 – Line Conducted Emissions, L2

Table 9.1 – Summary of Power Line Conducted Emissions, L1

Summary of F	Power Line	Conducted T	x Emissions								
Measured	Channel	LISN	Emission	Measured		Insertion	Cable	Amplifier	Corrected		
Frequency	onumer	LISIN	Frequency	Emission	Detector*	Loss	Loss	Gain	Emission	Limit	Margin
Range	Frequency	Port	[f _{Emm}]	[E _{Meas}]		[L _{lisn}]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	(MHz)			(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
	2437.0	L1	165.24 kHz	51.57	Peak	0.40	0.25	0.00 (3)	52.22 (2)	65.6	13.4
150kHz - 30MHz			465.88 kHz	42.85		0.30	0.26		43.41 (2)	56.6	13.2
130KI IZ - 30IVII IZ	2437.0		152.27 kHz	44.14	Average	0.40	0.26		44.80 (2)	56.3	11.5
			478.44 kHz	35.35	Average	0.30	0.26		35.91 (2)	46.4	10.5
	Results:								Comp	olies	

* In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $\mathsf{E}_{\mathsf{Corr}} = \mathsf{E}_{\mathsf{Meas}} + \mathsf{L}_{\mathsf{LISN}} + \mathsf{L}_{\mathsf{C}} - \mathsf{G}_{\mathsf{A}}$

Class B QP Limit = 56 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class B Avg Limit = 46 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

Table 9.2 – Summary of Power Line Conducted Emissions, L2

Measured			Emissio	n	Measured		Insertion	Cable	Amplifier	Corrected		
Frequency	Channel	LISN	Frequenc	сy	Emission	Detector*	Loss	Loss	Gain	Emission	Limi	t Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBu	/) (dB)
			150.97	kHz	52.16	Peak	0.40	0.25	0.00 (3)	52.81 (2) 66.4	13.6
150kHz - 30MHz	2437.0	L2	489.73	kHz	42.95	reak	0.30	0.26		43.51 (2) 56.2	12.7
	2437.0	LZ	153.89	kHz	43.94	Average	0.40	0.26		44.60 (2) 56.2	11.6
			496.60	kHz	35.04		0.30	0.27		35.61 (2) 46.1	10.5
Results:								s: C	omplies			

* In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

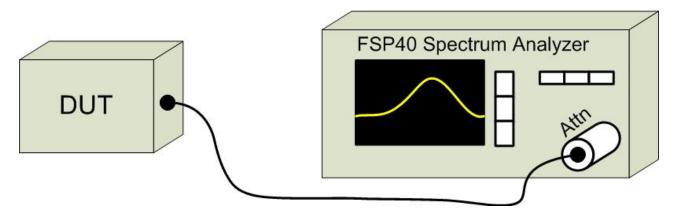
 $\mathsf{E}_{\mathsf{Corr}} = \mathsf{E}_{\mathsf{Meas}} + \mathsf{L}_{\mathsf{LISN}} + \mathsf{L}_{\mathsf{C}} - \mathsf{G}_{\mathsf{A}}$

Class B QP Limit = 56 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class B Avg Limit = 46 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz


Margin = Limit - E_{corr}

APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 – Setup – Antenna Port Conducted Emissions Equipment

Figure A.1 – Setup – Antenna Port Conducted Emissions

Table A.2 – Setup - Radiated Emissions Equipment

Equipm	ent List		
Asset Number	Manufacturer	Model Number	Description
00051	HP	8566B	Spectrum Analyzer
00049	HP	85650A	Quasi-peak Adapter
00047	HP	85685A	RF Preselector
00072	EMCO	2075	Mini-mast
00073	EMCO	2080	Turn Table
00071	EMCO	2090	Multi-Device Controller
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier
00241	R&S	FSU40	Spectrum Analyzer
00050	Chase	CBL-6111A	Bilog Antenna
00275	Coaxis	LMR400	25m Cable
00276	Coaxis	LMR400	4m Cable
00278	TILE	34G3	TILE Test Software
00034	ETS	3115	Double Ridged Guide Horn

CNR: Calibration Not Required

COU: Calibrate On Use

Figure A.2 – Test Setup Radiated Emissions Measurements 30 – 1000MHz

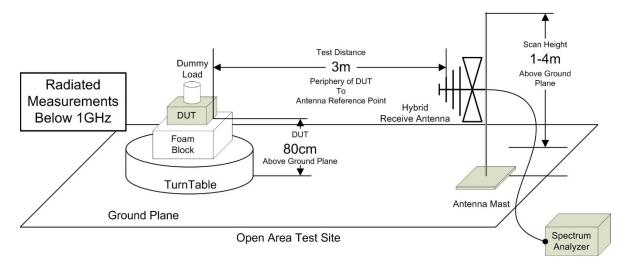
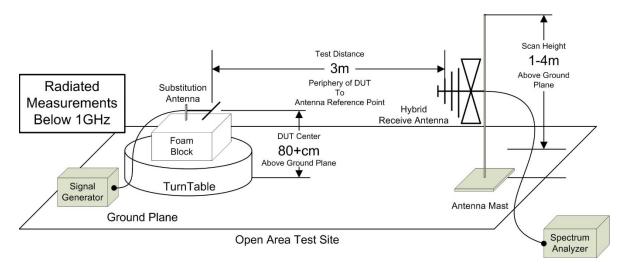



Figure A.3 – Test Setup Radiated Emissions Measurements 30 – 1000MHz w/ Signal Substitution

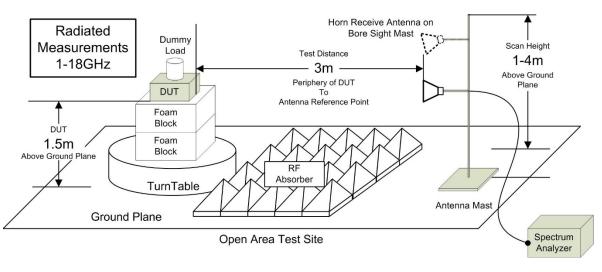


Table A.3 – Setup – Line Conducted Emissions Equipment

Figure A.5 – Setup – Line Conducted Emissions

APPENDIX B – EQUIPMENT LIST AND CALIBRATION

Asset	Manufacturer	Model	Serial	Description	Last	Calibration	Calibration
lumber	Manufacturer	Number	Number	Description	Calibrated	Interval	Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 202
00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 202
00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 202
00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 202
00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NC
00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NC
00163	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NC
00164	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NC
00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NC
00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NC
00167	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NC
00168	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NC
00341	HP	11970k	3003A02959	Harmonic Mixer 18-26.5GHz	COU	n/a	CC
00342	Dorado	GH-42	0000/ 02000	Standard Gain Horn 18-26GHz	NCR	n/a	NC
00342	HP	11970A	3003A04090	Harmonic Mixer 26.5-40GHz	COU	n/a	CO
00343		GH-28	3003A04090	Standard Gain Horn 26.5-40GHz	NCR		NC
00344	Dorado HP	11970U	2332A00174	Harmonic Mixer 40-60GHz	COU	n/a n/a	CO
			2332A00174				
00346	Dorado	GH-19	0504404047	Standard Gain Horn 40-60GHz	NCR	n/a	NC
00347	HP	11970V	2521A01347	Harmonic Mixer 50-75GHz	COU	n/a	CC
00348	Dorado	GH-15	99005	Standard Gain Horn 50-75GHz	NCR	n/a	NC
00349	HP	11970W	2521A01604	Harmonic Mixer 75-110GHz	COU	n/a	CC
00350	Dorado	GH-10	99001	Standard Gain Horn 75-110GHz	NCR	n/a	NC
00351	CMT	RA42-K-F-4B-C	961418-002	Waveguide Adapter 18-26GHz	NCR	n/a	NC
00352	CMT	RA28-K-F-4B-C	960452-004	Waveguide Adapter 26-40GHz	NCR	n/a	NC
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 202
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 202
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 202
00223	HP	8901A	3749A07154	Modulation Analyzer	10 Dec 2020	Triennial	10 Dec 202
00224	HP	8903B	3729A18691	Audio Analyzer	11 Dec 2020	Triennial	11 Dec 202
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 202
00005	HP	8648D	3847A00611	Signal Generator	23 Jun 2020	Triennial	23 Jun 202
00006	R&S	SMR20	100104	Signal Generator	11 Aug 2020	Triennial	11 Aug 202
00243	Rigol	DS1102E	DS1ET150502164	Oscilloscope	10 Nov 2020	Triennial	10 Nov 202
00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a	NC
00110	Gigatronics	8652A	1875801	Power Meter	26 Mar 2019	Triennial	26 Mar 202
00237	Gigatronics	80334A	1837001	Power Sensor	26 Mar 2019	Triennial	26 Mar 202
00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	27 Jan 2021	Triennial	27 Jan 202
00003	HP	53181A	3736A05175	Frequency Counter	23 Jun 2020	Triennial	23 Jun 202
00257	Com-Power	LI-215A	191934	LISN	27 Dec 2021	Triennial	27 Dec 202
00250	Circuit Test	DMR-1800	TE182	Digital Multi-Meter - DVM	23 Jun 2020	Triennial	23 Jun 202
00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a	NC
00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a	NC
00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a	NC
00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a	CO
00203	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n
00071	EMCO	2030	0001-2277	Mini-mast	n/a	n/a	n
00072	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n
00073	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CN
00081	WR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	Ne
00234	HP	E3611A	KR83015294	DC Power Supply	COU	n/a	CC
				11.7			
00236	Nokia Export ESD	- A4001	236	ESD Table	NCR	n/a	NC
00255	Expert ESD		A4001-155	ESD Target	COU	n/a	CC
00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a	CC
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	CC
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	CC
00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	CC
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	CC
00276	TMS	LMR400	n/a	4m Cable	COU	n/a	CC
00277	TMS	LMR400	n/a	4m Cable	COU	n/a	CC
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NC
00270							

NCR: No Calibration Required COU: Calibrate On Use

APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (ULAB)
Th	is uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2
	Radiated Emissions 30MHz - 200MHz
	$U_{LAB} = 5.14 dB$ $U_{CISPR} = 6.3 dB$
	Radiated Emissions 200MHz - 1000MHz
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$
	Radiated Emissions 1GHz - 6GHz
	$U_{LAB} = 4.80 dB$ $U_{CISPR} = 5.2 dB$
	Radiated Emissions 6GHz - 18GHz
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$
	Power Line Conducted Emissions 9kHz to 150kHz
	$U_{LAB} = 2.96 dB$ $U_{CISPR} = 3.8 dB$
	Power Line Conducted Emissions 150kHz to 30MHz
	$U_{LAB} = 3.12 dB$ $U_{CISPR} = 3.4 dB$
	If the calculated uncertainty U _{lab} is less than U_{CISPR} then:
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit
	If the calculated uncertainty U_{lab} is greater than U_{CISPR} then :
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit

Other Measurement Uncertainties (ULAB)
RF Conducted Emissions 9kHz - 40GHz
$U_{LAB} = 1.0 dB$ $U_{CISPR} = n/a$
Frequency/Bandwidth 9kHz - 40GHz
U _{LAB} = 0.1ppm U _{CISPR} = n/a
Temperature
$U_{LAB} = 1^{O}C$ $U_{CISPR} = n/a$

END OF REPORT