

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4pR^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

22.8	dBm	From test report's measured radiated power.
------	-----	---

+2.1

24.9 dBm EIRP

Maximum peak output power at antenna input terminal:	<u>24.9</u> (dBm)
Maximum peak output power at antenna input terminal:	0.309 (W)
Antenna gain(typical):	<u>-1.00</u> (dBi)
Maximum antenna gain:	0.79 (numeric)
Prediction distance:	<u>20.00</u> (cm)
Prediction frequency:	<u>824.70</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u>1.00</u> (mW/cm^2)
Power density at prediction frequency:	0.049 (mW/cm^2)
Maximum allowable antenna gain:	42.11 (dBi)
Margin of Compliance:	13.1 dB

Therefore the power density at 20 cm is $490/4/PI/20^2 = 0.049 \text{ mW/cm}^2$