

FCC COMPLIANCE TEST REPORT

Technical Statement of Conformity in accordance with 47 CFR Part 15 Subpart C

The product

Equipment Under Test	: Remote Control
Model Number	FAB-101R
Product Series	[:] FAB-100R; FAB-103R; FAB-104R; FAB-1XXR
Report Number	: HA170598-SARA
Issue Date	[:] 03-Aug-2017
Test Result	: Compliance

is produced by

Ruoey Lung Enterprise Corp.

No.17, Lu-Kung South 2 Road, Chang-Pin Industrial Park, Lu-Kang, Changhua, Taiwan

HongAn TECHNOLOGY CO., LTD.

NO.15-1, CWEISHUH KENG, CWEIPIN VILLAGE, LINKOU, TAIPEI COUNTY, TAIWAN, R. O. C.

BSMI Registration No.: SL2-IN-E-0023, SL2-A1-E-0023, SL2-IS-E-0023, SL2-R1-E-0023, SL2-R2-E-0023, SL2-L1-E-0023 TEL: +886-2-26030362 FAX: +886-2-26019259 E-mail: hatlab@ms19.hinet.net

FCC Designation No.: TW1071 TAF Accreditation No.: 1163 VCCI Registration No.: R-2156, C-2329, T-219 (and

Contents

1	General Description	6
1.1	Description of EUT	6
1.2	Test Instruments	7
1.3	Auxiliary Equipments	8
1.4	EUT SETUP	8
1.5	Identifying the Final Test Mode	8
1.6	Final Test Mode	9
1.7	Condition of Power Supply	9
1.8	EUT Configuration	9
1.9	Test Methodology	9
1.10	General Test Procedures	9
1.11	Modification	9
1.12	FCC Part 15.205 restricted bands of operations	10
1.13	Qualification of Test Facility	11
2	Power line Conducted Emission Measurement	12
2.1	Test Instruments	12
2.2	Test Arrangement and Procedure	12
2.3	Limit (§ 15.207)	12
2.4	Test Result	12
3	Radiated Emission Test	13
3.1	Test Instruments	13
3.2	Test Arrangement and Procedure	13
3.3	Limit (§ 15.205 & § 15.209)	14
3.4	Test Result	15
4	Out of Band Emission Test	26
4.1	Test Instruments	26
4.2	Test Arrangement and Procedure	26
4.3	Limit of Field Strength of Fundamental (§ 15.249(d))	26
4.4	Test Result	26
5	20 dB Bandwidth	31
5.1	Test Instruments	31
5.2	Test Arrangement and Procedure	31
5.3	Limit	31
5.4	Test Result	31

н	ongAn TECHNOLOGY CO., LTD.	Report No.: HA170598-SARA
6	Antenna requirement	35
6.1	Limit (§ 15.203)	35
6.2	Test Result	35
7	Information about the FHSS characteristics	36
7.1	Pseudorandom Frequency Hopping Sequence	36
7.2	Example of a 79 hopping sequence in data mode:	36
7.3	Equal Hopping Frequency Use	36
8	Photographs of the Tests	37
8.1	Radiated Disturbances Emission Test	37
9	Photographs of the EUT	38

Test Result Certification

Applicant	: Ruoey Lung Enterprise Corp.
Address of Applicant	No.17, Lu-Kung South 2 Road, Chang-Pin Industrial Park, Lu-Kang, Changhua, Taiwan
Manufacturer	: Ruoey Lung Enterprise Corp.
Address of Manufacturer	No.17, Lu-Kung South 2 Road, Chang-Pin Industrial Park, Lu-Kang, Changhua, Taiwan
Trade Name	: RUOEY LUNG
Equipment Under Test	: Remote Control
Model Number	: FAB-101R
Product Series	: FAB-100R; FAB-103R; FAB-104R; FAB-1XXR
FCC ID	: TRURC-D1-BLE
Filing Type	: Certification
Sample Received Date	: 27-Jul-2017
Test Standard	:

FCC Part 15 Subpart C §15.249

Deviations from standard test methods & any other specifications : NONE

Remark:

- 1. This report details the results of the test carried out on one sample.
- 2. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in both ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.203, 15.207, 15.209, 15.249.
- This report applies to the above sample only and shall not be reproduced in part without written approval of HongAn 3. Technology Co., Ltd.

Kaybarg

Documented by:

2017-08-01

2017-07-28

Kay Wang/ ADM. Dept Staff

Tested by:

Basan Alsieh

Eason Hsieh / ENG. Dept. Staff

Approved by:

Peter Chin / Section Manager

FCC Test Report

2017-08-03 Date:

Summary of Test Result

	Test Item	Applicable Standard	Test Result
1	Antenna Requirement	FCC part 15 subpart C §203	Compliance
2	Conducted Emission	FCC part 15 subpart C §207	N/A
2	Restricted Band of	FCC part 15 subpart C \$205	Compliance
3 Operatio	Operation	FCC part 15 subpart C §205	
4	Radiated Emission	FCC part 15 subpart C §209	Compliance
5	Field Strength	FCC part 15 subpart C §249(a)	Compliance
6	Out of Band Emission	FCC part 15 subpart C §249(d)	Compliance
7	20dB Bandwidth	FCC part 15 subpart C §215(c)	Compliance

HongAn TECHNOLOGY CO., LTD. 1

1.1 Description of EUT

Equipment Under Test	:	Remote	Remote Control						
Model Number of EUT	:	FAB-101	FAB-101R						
Product Series	:	FAB-100	R; FAB-1	03R; FA	B-104R;	FAB-1XX	(R		
		DC 4.5V							
Power Supply	:	AAA batt	tery *3						
Frequency Range	:	2402~24	80 MHz						
Number of Channels	:	40 Chanı	nels						
		00	2402	10	2422	20	2442	30	2462
		01	2404	11	2424	21	2444	31	2464
	:	02	2406	12	2426	22	2446	32	2466
		03	2408	13	2428	23	2448	33	2468
Carrier Frequency of		04	2410	14	2430	24	2450	34	2470
Each Channel		05	2412	15	2432	25	2452	35	2472
		06	2414	16	2434	26	2454	36	2474
		07	2416	17	2436	27	2456	37	2476
		08	2418	18	2438	28	2458	38	2478
		09	2420	19	2440	29	2460	39	2480
Antenna Specification	:	PCB Ant	enna/ Ga	in: 0.7 d	Bi				
		Bluetoot	h 4.0 BLE						
Modulation Technique	:	FHSS							
		Bluetooth : GFSK							
Transmit Data Rate	:	Bluetoot	Bluetooth : 1Mbps						
		Dimensi	ons :60	mm (L) 2	X 175 mn	n (W) X 2	20 mm (H)	
		Weight	: 110g						
Specification	:	Functio	n:The E	UT is a l	Bluetooth	Remote	Controlle	er.	
		% For m	ore detai	l specifi	ication, p	olease re	efer to the	e User N	lanual.

1.2 Test Instruments

HA2							
Instrument Name	Manufacture Mode	Model Number	Serial Number	Last Cal. Date	Next Cal. Date		
RF Amplifier	Schaffner	CPA9231A	0405	01-JUN-2017	31-MAY-2018		
EMI Receiver	R&S	ESCI	100931	25-JUL-2017	24-JUL-2018		
Spectrum Analyzer	R&S	FSV	101629	27-JAN-2017	26-JAN-2018		
Preamplifier	HD	HD17187	004	01-JUN-2017	31-MAY-2018		
Bilog Antenna	TESEQ	CBL6111D	38521	04-JUN-2017	03-JUN-2018		
Double-Ridged Waveguide Horn	EMCO	3115	9912-5992	01-JUN-2017	31-MAY-2018		
Temp. & Humidity Chamber	MALLIER	MCT-2X-M	13490413-001	15-DEC-2016	14-DEC-2017		
Horn Antenna (18-40GHz)	Com-Power	AH-840	101042	02-JUN-2017	01-JUN-2018		
Microwave Preamplifier	Com-Power	PAM-840	461269	04-JUN-2017	03-JUN-2018		
L.I.S.N.	Mess Tec	NNB-2/16Z	03/1006	22-FEB-2017	21-FEB-2018		
L.I.S.N.	EMCIS	3810/2NM	9702-1820	16-JUL-2017	15-JUL-2018		
WIDEBAND RADIO COMMUNICATION TESTER	ROHDE&SCH WARZ	CMW-500	141958	05-NOV-2016	04-NOV-2017		

% The test equipments used are calibrated and can be traced to National ITRI and International Standards.

No.

Data Cable

Power Cable

1.3 Auxiliary Equipments

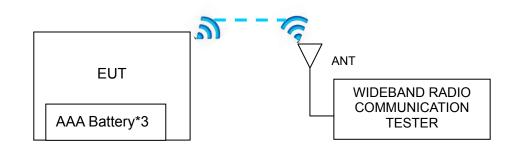
				EMC		Description	
No.	Equipment	Model No.	Serial No.	Approved	Brand	Data Cable	Power Cable
1.3.	1.3.2. Provided by the Manufacturer						
				FMC		Descr	iption

Brand

Approved

Serial No.

1.3.1. Provided by HongAn Technology Co., Ltd. for RF Test.


Model No.

1.4 EUT SETUP

Equipment

--

Note: Main Test Sample: FAB-101R

1.5 Identifying the Final Test Mode

- 1. Mode 1: TX BT BLE mode (1Mbps) CH 00.
- 2. Mode 2: TX BT BLE mode (1Mbps) CH 20.
- 3. Mode 3: TX BT BLE mode (1Mbps) CH 39.

Note :

- 1. After pre-test, we identified that the TX (Packet type DH5 and X axis) was most likely to cause maximum disturbance. Therefore, the Final Assessment was performed for the worst case.
- 2. The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.
- 3. Channel Low (2402 MHz), Mid (2442 MHz) and High (2480 MHz) were chosen for full testing.
- 4. According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.
- 5. New AAA batteries have been used during all hereafter testing.

1.6 Final Test Mode

Conducted Emission: N/A. Field Strength: All Mode. Radiated Emission (30~1000 MHz): Mode 2. Radiated Emission (1~26.5GHz): All Mode.

1.7 Condition of Power Supply

AAA Battery*3 DC 4.5V

1.8 EUT Configuration

- 1. Setup the EUT as shown in Sec.1.4 Block Diagram.
- 2. Turn on the power of all equipments.
- 3. Activate the selected Final Test Mode.

1.9 Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10 (2013) and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.203, 15.207, 15.209 and 15.249.

1.10 General Test Procedures

Conducted Emissions

The EUT is set according to the requirements in Section 6.2 of ANSI C63.10 (2013).

Radiated Emissions

The EUT is set according to the requirements in Section 6.3 of ANSI C63.10 (2013).

1.11 Modification

N/A

1.12 FCC Part 15.205 restricted bands of operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37635-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

1.13 Qualification of Test Facility

BSMI Certificate No.	SL2-IS-E-0023, SL2-IN-E-0023, SL2-R1-E-0023, SL2-R2-E-0023, SL2-A1-E-0023, SL2-L1-E-0023.
FCC Designation No.	: TW1071
TAF Accreditation No.	: 1163
VCCI Certificate No.	: R-2156, C-2329, T-219

2 **Power line Conducted Emission Measurement**

2.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

2.2 Test Arrangement and Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

2.3 Limit (§ 15.207)

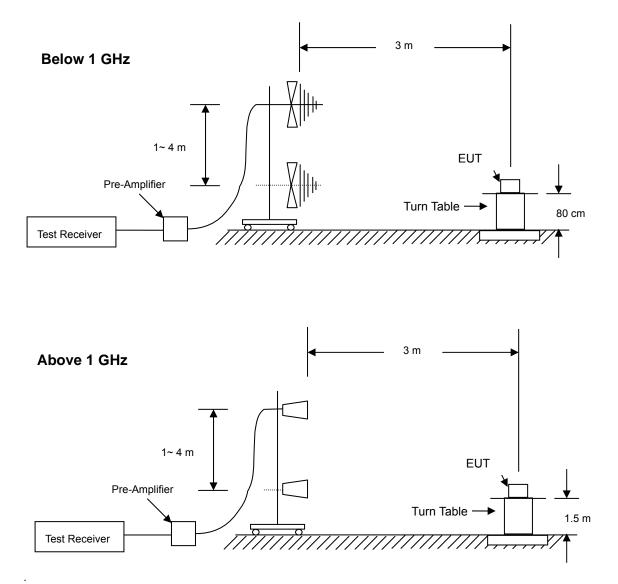
For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBuV)		
Frequency (MHz)	Q.P. (Quasi-Peak)	A.V. (Average)	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5.0	56	46	
5.0 to 30	60	50	

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

2.4 Test Result

N/A


The EUT applies 2 AA batteries as its power source.

3 Radiated Emission Test

3.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

3.2 Test Arrangement and Procedure

- 1. The EUT is placed on a turntable, which is 0.8 m (below 1GHz) and 1.5m (above 1GHz) above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maxium procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:(a) Below 1 GHz: RBW =100 kHz/ VBW = 1 MHz/ Sweep = AUTO.

- (b) Above 1 GHz: Peak: RBW = VBW = 1MHz/ Sweep = AUTO; Average: RBW = 1MHz/ VBW = 10Hz/ Sweep = AUTO.
- 7. Repeat above procedures until the meausreemnts for all frequencies are complete.

3.3 Limit (§ 15.205 & § 15.209)

3.3.1 Limit of Restricted Band of Operation (§ 15.205)

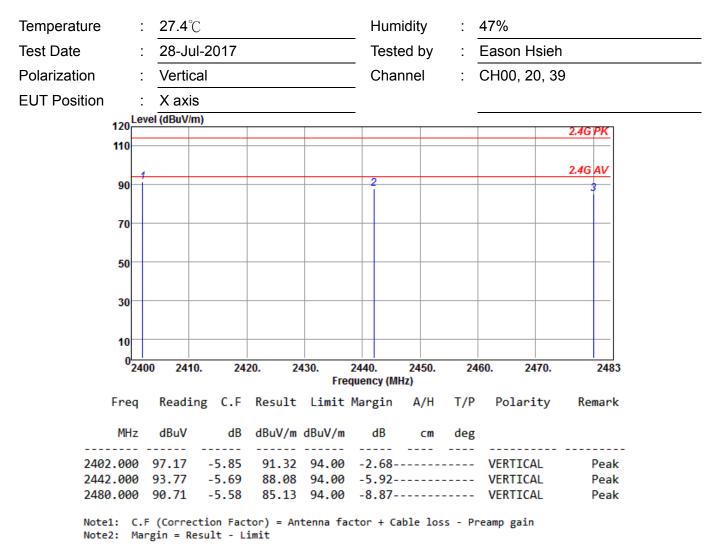
(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

	Frequency Band					
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4			
6.31175-6.31225	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400				
13.36-13.41						

3.3.2 Limit of Spurious Emission (§ 15.209)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is lesser attenuation.

Frequency	Field strength Measurement distance	
(MHz)	(microvolts/ meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

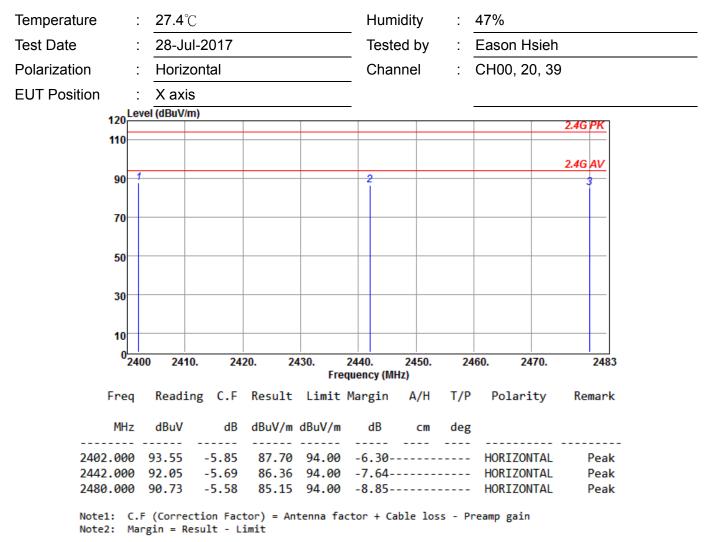

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g.§§ 15.231 and 15.241.

3.4 Test Result

Compliance

The final test data are shown on the following page(s).

Radiated Emission Test Data (Field Strength of Fundamental)

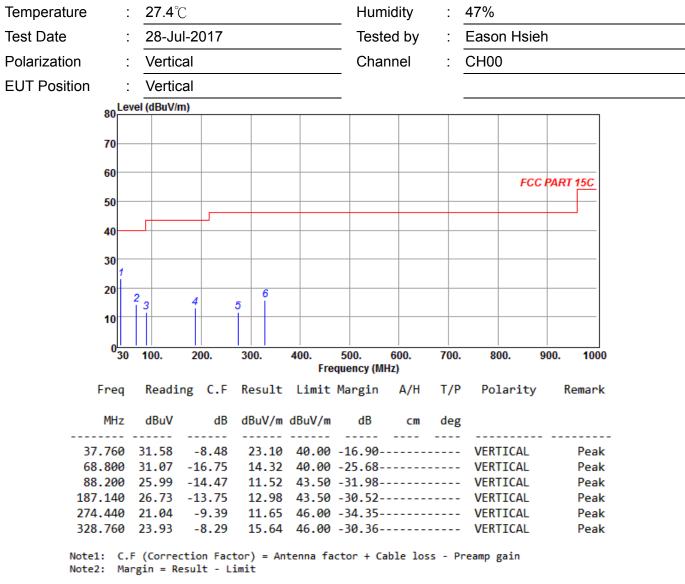


Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 3MHz, VBW =10MHz, Sweep = AUTO. Note: Because the 20 dB Bandwidth is over 1MHz, the RBW setting of measuring Field strength of Fundamental should be 3MHz, and VBW should be at 10 MHz.

Radiated Emission Test Data (Field Strength of Fundamental)

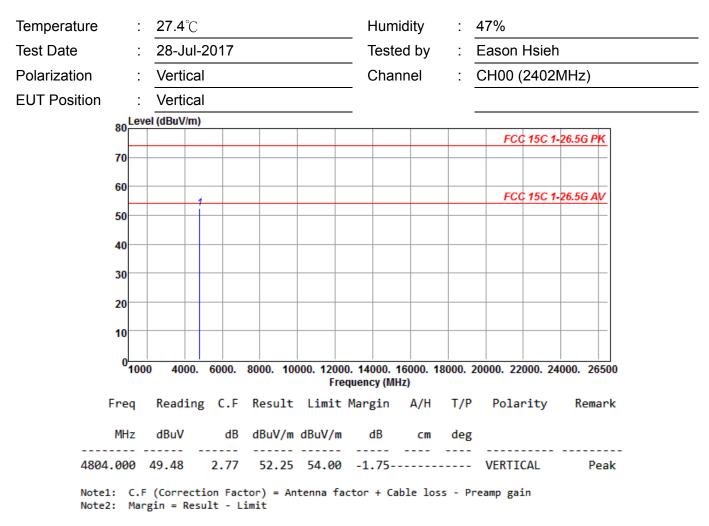


Remark :

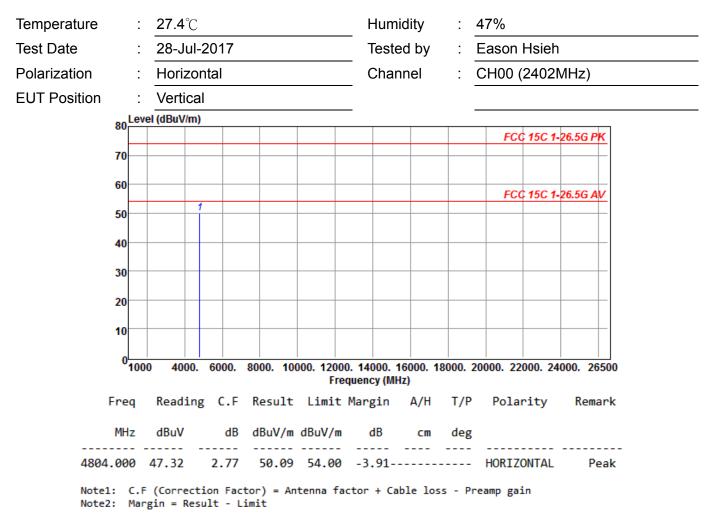
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 3MHz, VBW =10MHz, Sweep = AUTO. Note: Because the 20 dB Bandwidth is over 1MHz, the RBW setting of measuring Field strength of Fundamental should be 3MHz, and VBW should be at 10 MHz.

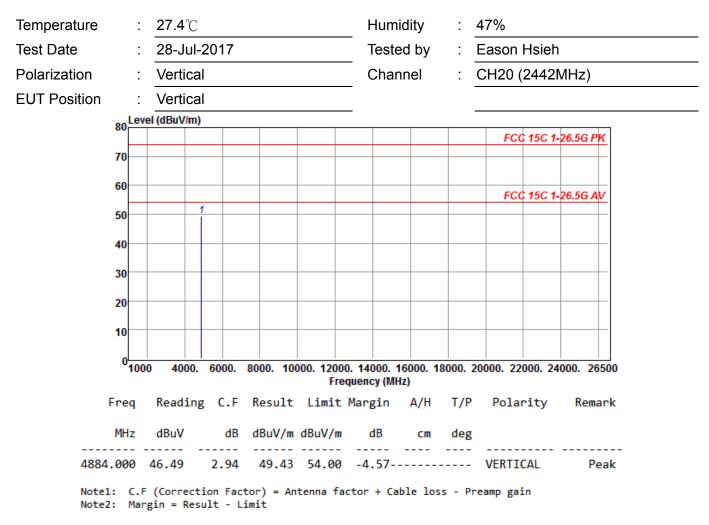
Radiated Emission Test Data (Below 1 GHz)

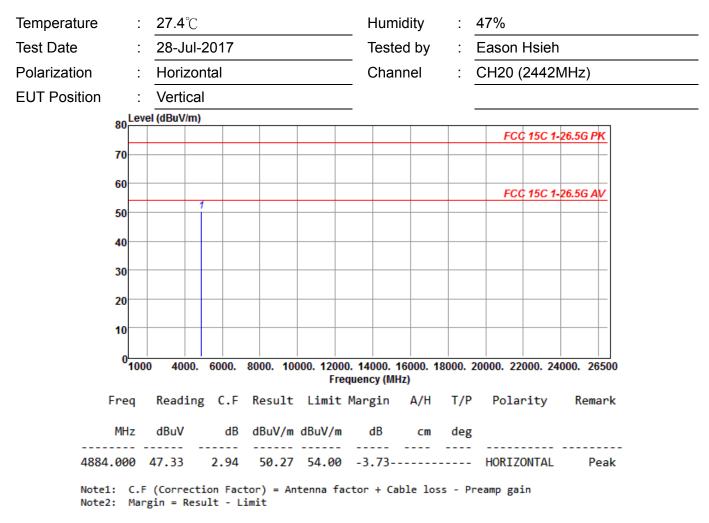


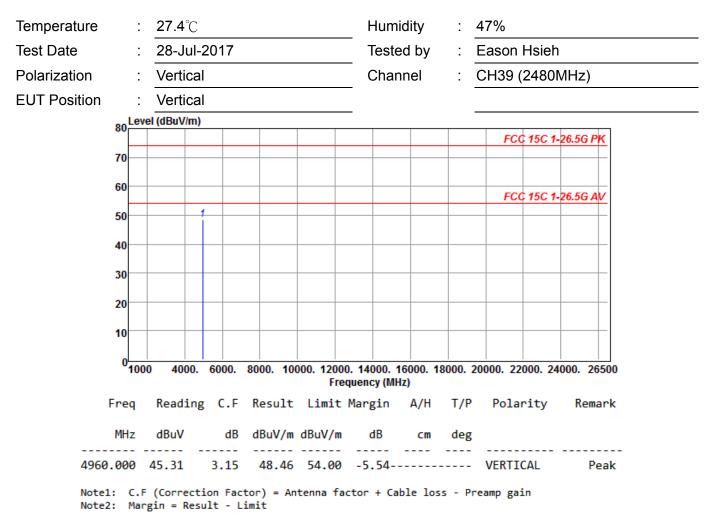
- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.

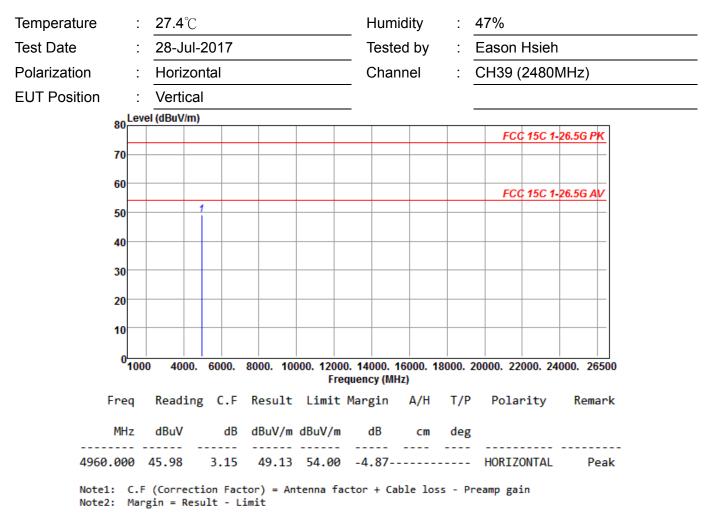


Radiated Emission Test Data (Below 1 GHz)


- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

4 Out of Band Emission Test

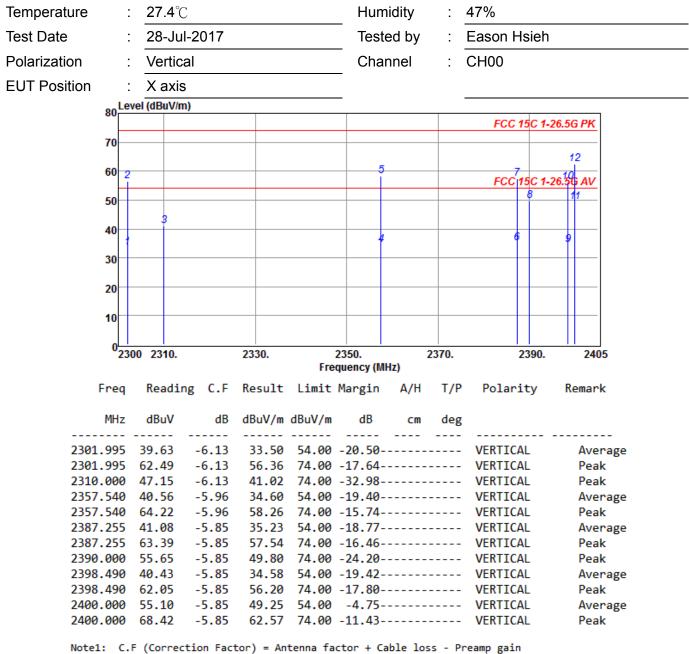
4.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

4.2 Test Arrangement and Procedure

Refer to Sec. 3.2.

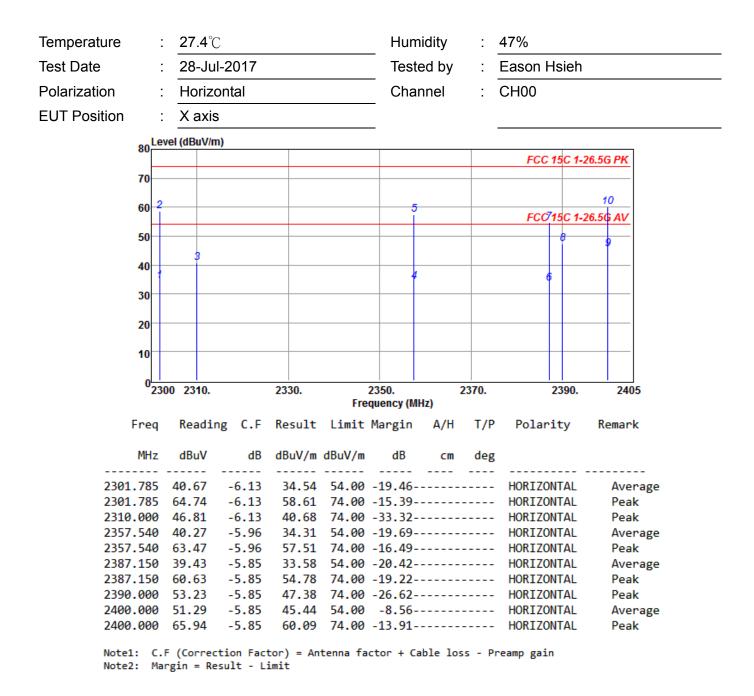
4.3 Limit of Field Strength of Fundamental (§ 15.249(d))


Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

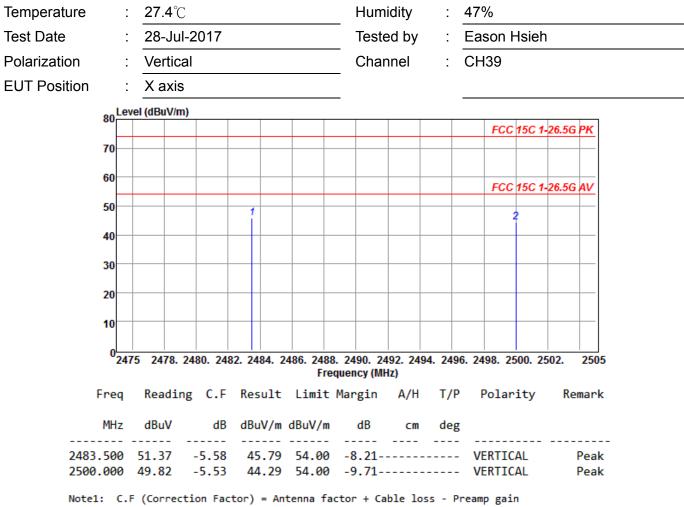
4.4 Test Result

Compliance

The final test data are shown on the following page(s).

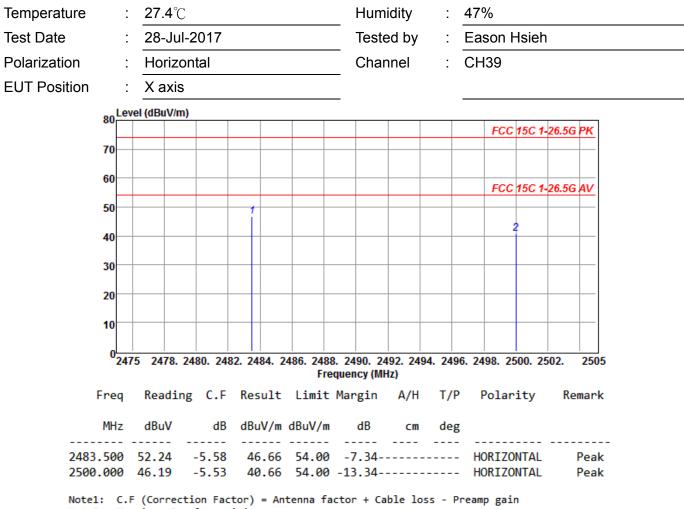

Band-Edge Test Data (Lower Edge)

Note2: Margin = Result - Limit


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.
 - (b) Average Setting 1GHz to 10th harmonics of fundamental,: RBW = 1MHz, VBW = 10Hz, Sweep = AUTO.

Band-Edge Test Data (Lower Edge)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.
 - (b) Average Setting 1GHz to 10th harmonics of fundamental,: RBW = 1MHz, VBW = 10Hz, Sweep = AUTO.


Band-Edge Test Data (Upper Edge)

Note2: Margin = Result - Limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.
 - (b) Average Setting 1GHz to 10th harmonics of fundamental,: RBW = 1MHz, VBW = 10Hz, Sweep = AUTO.

Band-Edge Test Data (Upper Edge)

Note2: Margin = Result - Limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10^{th} harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.
 - (b) Average Setting 1GHz to 10th harmonics of fundamental,: RBW = 1MHz, VBW = 10Hz, Sweep = AUTO.

5 20 dB Bandwidth

5.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

5.2 Test Arrangement and Procedure

- 1. The transmitter output was connected to a spectrum analyzer (through an attenuator, if it's necessary).
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. Measured the -20 dB bandwidth and plotted the graph.

5.3 Limit

None; For report purpose only.

5.4 Test Result

No non-compliance noted.

The final test data are shown on the following page(s).

Bluetooth 1 Mbps (DH5)	uetooth 1 Mbps (DH5)				
Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
Low	2402	1.2677			
Middle	2442	1.2243			
High	2480	1.233			

🖉 HongAn TEC	CHNOL	.OGY CO., LTD.				Report No.: HA170598-SAR
Temperature	:	27.4 °C		Humidity	:	47%
Test Date	:	28-Jul-2017		Tested by	:	Eason Hsieh
Test Mode	:	BT (1 Mbps) DH5		Channel	:	00
Spectrum)					
	dBm I dB	RB SWT 18.9 µs 👄 VB	W 100 kHz W 300 kHz M	Mode Auto FF	т	``
😑 1Pk Max						
				M1[1	1	-12.21 dBm 2.40174380 GHz
-10 dBm			M1			2.40174380 GHZ 20.00 dB
00 d0 m				BW		1.267700000 MHz
-20 dBm				Q fai	tor	
-30 dBm		TI				12
-40 dBm	-					
-50 dBm						
r-50 UB(1)						
-60 dBm						
-70 dBm						
-80 dBm						
-90 dBm						
CF 2.402 GHz			691	pts		Span 3.0 MHz
Marker						
Type Ref Tro		Stimulus	Response	Functio		Function Result
	1	2.4017438 GHz	-12.21 dBr			1.2677 MHz
	1	2.4013835 GHz 2.4026512 GHz	-32.21 dBr -32.18 dBr		idB tor	20.00 dB 1894.5
	- 1					asuring

Test Mode : BT (1 Mbps) DH5

Channel : 20

Spectrun	n					
Ref Level Att	0.00 dBm 20 dB	e RE SWT 18.9 μs e VE	3W 100 kHz 3W 300 kHz Mo	de Auto FFT		
●1Pk Max						
				M1[1]		-15.58 dBm
					2.44	173520 GHz
-10 dBm—			MI	ndB		20.00 dB
			1	BW	1.224	300000 MHz
-20 dBm—				Q factor		1994.4
-30 dBm—		TI			2	
		X			X	
-40 dBm						
-50 dBm						
\sim						
-60 dBm						
oo abiii						
-70 dBm						
-/0 4611						
-80 dBm—						
-90 dBm						
CF 2.442	GHz		691 pts	I	Sp	an 3.0 MHz
Marker					•	
Type Re	f Trc	Stimulus	Response	Function	Function Resu	lt l
M1	1	2.4417352 GHz	-15.58 dBm	ndB down	1 411041011 1054	1.2243 MHz
T1	1	2.4413835 GHz	-35.77 dBm	ndB		20.00 dB
T2	1	2.4426078 GHz	-35.68 dBm	Q factor		1994.4
	7					1.01
				Me	asuring 🚺 🚺 🖡	

Report No.: HA170598-SARA

🖌 HongA	n TECHNO	DLOGY CO., LTD.			R	eport No.: HA170598-S
est Mode	:	BT (1 Mbps) DH5	5	Channel :	39	
Spectrum						
Ref Level 0	1.00 dBm	🖷 R	BW 100 kHz			
Att	20 dB	SWT 18.9 µs 👄 V	BW 300 kHz Ma	ode Auto FFT		
)1Pk Max						
				M1[1]		-15.88 dB
						2.47974820 Gi
-10 dBm —			M1	ndB		20.00 0
			1 -	BW		1.233000000 Mi
-20 dBm —				Q factor		2011
				a local		
-30 dBm —		TI			× T2	
		T A			No.	
-40 dBm						
50 dBm						mm
oo abiii	1					
60 dBm						
OU GDIN						
-70 dBm						
•80 dBm						
-90 dBm						
CF 2.48 GHz	2	1 1	691 pt	s	I	Span 3.0 MH
1arker						
Type Ref	Trc	Stimulus	Response	Function	Fu	Inction Result
M1	1	2.4797482 GHz	-15.88 dBm	ndB down		1.233 MH:
T1	1	2.4793748 GHz	-36.02 dBm	ndB		20.00 di
T2	1	2.4806078 GHz	-35.93 dBm	Q factor		2011.2
	2					

6 Antenna requirement

6.1 Limit (§ 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a uniue coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.2 Test Result

Compliance.

The EUT applies a PCB antenna.

7 Information about the FHSS characteristics

7.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels.

The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master.

The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s.

7.2 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10,43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

7.3 Equal Hopping Frequency Use

Due to each the GFSK, π /4-DQPSK and 8-DPSK modulation of hopping frequency will be transmitted in accordance to the frequency tables described above, there is no any frequency will be able to hop more times than other. Therefore each frequency will be used equally.

End of Test Report —