

TABLE OF CONTENTS LIST

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440

TEST REPORT CONTAINING:

PAGE 1.....TEST EQUIPMENT LIST
PAGE 2.....TEST PROCEDURE
PAGE 3-4....RADIATION INTERFERENCE TEST DATA
PAGE 5.....38 dB Rejection Ratio

EXHIBITS CONTAINING:

STATEMENT PER 15.121(a)
BLOCK DIAGRAMS
SCHEMATICS
INSTRUCTION MANUAL
SAMPLE OF FCC ID LABEL AND SKETCH OF LOCATION
RADIATED TEST SETUP PHOTOGRAPH
EXTERNAL PHOTOS
INTERNAL PHOTOS

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc
PAGE: 1 of 6

TEST EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
Tan Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 9/23/03	9/23/05
Tan Tower RF Preselector	HP	85685A	3221A01400	CAL 9/23/03	9/23/05
Tan Tower Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 9/23/03	9/23/05
Tan Tower Preamplifier	HP	8449B-H02	3008A00372	CAL 9/23/03	9/23/05
Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/29/05	4/29/07
Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 8/26/04	8/26/06
Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 12/29/04	12/29/06
LISN	Electro-Metrics	ANS-25/2	2604	CAL 8/27/04	8/27/06
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 7/16/04	7/16/06
Oscilloscope System One	Tektronix	2230	300572	CAL 7/3/03	7/3/05
	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
Temperature Chamber	Tenney	TTRC	11717-7	CHAR 1/22/02	1/22/04
Digital Multimeter	Engineering Fluke	77	35053830	CAL 8/1/05	8/1/07
Peak Power Meter	HP	8900C	2131A00545	CAL 7/2/03	7/2/05
Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 7/2/03	7/2/05
Power Meter	HP	432A	1141A07655	CAL 4/11/05	4/11/07
Digital Thermometer	Fluke	2166A	42032	CAL 7/19/04	7/19/06
Frequency Counter	HP	5352B	2632A00165	CAL 8/3/04	8/3/06
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/5/04	11/5/06
Signal Generator	HP	8640B	2308A21464	CAL 8/26/04	8/26/06
Modulation Analyzer	HP	8901A	3435A06868	CAL 11/4/04	11/4/06
Egg Timer	Unk			CHAR 2/1/02	2/1/04
Measuring Tape-20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04

APPLICANT: KimARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc

PAGE: 2 of 6

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 80°C with a humidity of 76%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

$$\text{Freq (MHz) METER READING + ACF} = \text{FS}$$
$$33 \quad 20 \text{ dBuV} + 10.36 \text{ dB} = 30.36 \text{ dBuV/m @ 3m}$$

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The unit under test was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc

PAGE: 3 of 6

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.109

REQUIREMENTS: 30 to 80 MHz: 40.0 dBuV/M @ 3 METERS
88 to 216 MHz: 43.5 dBuV/M
216 to 960 MHz: 46.0 dBuV/M
ABOVE 960 MHz: 54.0 dBuV/M

TEST RESULTS: A search was made of the spectrum from 30 to 1000 MHz and the measurements indicate that the unit DOES meet the FCC requirements.

TEST DATA:

Tuned Frequency	Emission Frequency	Meter Reading	Ant. Pol.	Coax Loss	Correction Factor	Field Strength	Margin
MHz	MHz	dBuV		dB	dB	dBuV/m	dB
450.0	428.60	19.5	H	1.23	16.70	37.43	8.57
450.0	428.60	28.0	V	1.23	16.21	45.44	0.56
450.0	857.20	13.8	H	1.93	22.82	38.55	7.45
450.0	857.20	19.1	V	1.93	22.27	43.30	2.70
450.0	1,285.80	11.8	H	2.33	27.81	41.94	12.06
450.0	1,285.80	13.6	V	2.33	27.81	43.74	10.26
450.0	1,714.40	14.4	V	2.67	29.49	46.56	7.44
450.0	1,714.40	15.1	H	2.67	29.49	47.26	6.74
450.0	2,143.00	11.5	V	3.00	31.60	46.10	7.90
450.0	2,143.00	13.0	H	3.00	31.60	47.60	6.40
460.1	438.70	19.7	H	1.24	16.70	37.64	8.36
460.1	438.70	26.7	V	1.24	16.37	44.31	1.69
460.1	877.40	15.1	H	1.94	23.12	40.16	5.84
460.1	877.40	20.5	V	1.94	22.20	44.64	1.36
460.1	1,316.10	12.3	H	2.35	27.87	42.52	11.48
460.1	1,316.10	14.8	V	2.35	27.87	45.02	8.98
460.1	1,754.80	12.6	V	2.70	29.73	45.03	8.97
460.1	1,754.80	15.8	H	2.70	29.73	48.23	5.77
460.1	2,193.50	14.9	H	3.04	31.74	49.68	4.32
460.1	2,193.50	15.2	V	3.04	31.74	49.98	4.02
470.0	448.55	20.0	H	1.25	17.04	38.29	7.71
470.0	448.55	27.9	V	1.25	16.74	45.89	0.11
470.0	897.10	15.9	H	1.95	23.33	41.18	4.82
470.0	897.10	21.0	V	1.95	22.24	45.19	0.81
470.0	1,345.65	12.1	H	2.38	27.92	42.40	11.60
470.0	1,345.65	14.1	V	2.38	27.92	44.40	9.60
470.0	1,794.20	11.6	V	2.74	29.97	44.31	9.69
470.0	1,794.20	15.5	H	2.74	29.97	48.21	5.79
470.0	2,242.75	12.8	V	3.07	31.88	47.75	6.25
470.0	2,242.75	15.7	H	3.07	31.88	50.65	3.35

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc

PAGE: 4 of 6

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440

NAME OF TEST: RADIATION INTERFERENCE

SAMPLE CALCULATION: FSdBuV/m = MR (dBuV) + ACFdB.

TEST PROCEDURE: ANSI STANDARD C63.4-2003 using a Hewlett Packard Model 8566B spectrum analyzer, a Hewlett Packard Model 85685A Preselector, a Hewlett Packard Model 85650A Quasi-Peak adapter, an Electro-Metric Dipole Kit, and an Eaton Model 94455-1 Biconical Antenna. The bandwidth of spectrum analyzer was 100 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The receiver was put into the coherent mode by placing an antenna driven by a signal generator off site. The UUT was tested in 3 orthogonal planes.

PERFORMED BY: NAM NGUYEN

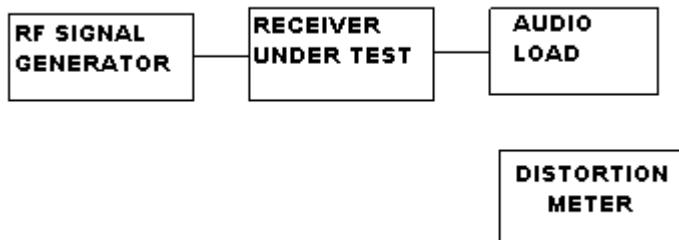
DATE: 11/15/05

APPLICANT: KiMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc

PAGE: 5 of 6

APPLICANT: KIMARK INTERNATIONAL INC.


FCC ID: TQXXSCAN440

NAME OF TEST: 38dB REJECTION RATIO

RULES PART NUMBER: 15.121(b)

REQUIREMENTS: 38dB REJECTION RATIO TO SENSITIVITY OF THE RECEIVER.

TEST SET-UP

TEST PROCEDURE: The reference sensitivity was measured in accordance with TIA/EIA-603;

- a. Equipment connected as illustrated
- b. A standard signal was applied to the receiver input terminals.
- c. Receiver output audio output was adjusted for rated output.
- d. The RF Signal generator was adjusted to the lowest level to produce a 12dB SINAD without the audio output dropping more than 3dB. Make note of sensitivity level.
- e. This was done across the different bands to establish a reference level. The reference taken was the worse case sensitivity.
- f. The output of the signal generator was then adjusted to a level of 60dB above the reference level at a frequency of 824.5MHz.
- g. With the level set 60dB above the level measured in step e.
- h. Set squelch on receiver to threshold, the signal level required to open the squelch must be lower than the level measured in step d.
- i. Cause the receiver to scan or step-it through its complete range of frequencies.
- j. If receiver stops or unsquelches on any frequency, record the frequency and then adjust the level until a 12dB SINAD is produced. This level must be greater than 38dB above the level in step e.
- k. Repeat steps f through j for frequencies 836.0, 848.5, 869.1, 881.0, & 893.5MHz.

TEST RESULTS: The UUT meets the 38dB REJECTION RATIO.

PERFORMED BY: NAM NGUYEN

DATE: 11/15/05

APPLICANT: KIMARK INTERNATIONAL INC.

FCC ID: TQXXSCAN440 REPORT #: K\KIMARK\2307UT55\2307UT55TestReport.doc

PAGE: 6 of 6