

TEST REPORT

FCC/ISED UNII Test for VT2600TAN&VT2500TKN Certification

APPLICANT HYUNDAI MOBIS CO., LTD.

REPORT NO. HCT-RF-2105-FI008-R1

DATE OF ISSUE June 10, 2021

> Tested by Chang Hee Hwang

Hu

Technical Manager Jong Seok Lee

HCT CO., LTD. Bongjai Huh Bongjai Huh / CEO

HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

F-TP22-03(Rev.03)

1/131

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC/ISED UNII Test for VT2600TAN& VT2500TKN	REPORT NO.HCT-RF-2105-FI008-R1DATE OF ISSUEJune 10, 2021Additional ModelFCC : VT2620TAN, VT2610TAN, VT260TOAN, VT2500TAN, VT2520TAN,VT2510TAN, VT250TOAN, VT2530TAN, VT2630TAN, VT251TOAN, VT261TOANISED : VT2600TKN, VT2620TKN, VT2610TKN, VT260TOKN, VT2520TKN,VT2510TKN, VT250TOKN, VT2530TKN, VT2630TKN, VT251TOKN, VT261TOKN	
Applicant	HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea	
Eut Type FCC Model Name ISED Model Name	CAR AUDIO SYSTEM VT2600TAN VT2500TKN	
FCC ID IC	TQ8-VT2600TAN 5074A-VT2500TKN	
Modulation type	OFDM	
FCC Classification	Unlicensed National Information Infrastructure(NII)	
FCC Rule	Part 15.407	
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 1 (March 2019)	
	The result shown in this test report refer only to the sample(s) tested unless	

otherwise stated.

This test results were applied only to the test methods required by the standard.

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	June 01, 2021	Initial Release
1	June 10, 2021	- Added the Additional Model on Page 2, 5 - Revised PMN, HVIN on Page.5

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

CONTENTS

1. GENERAL INFORMATION	5
EUT DESCRIPTION	5
2. MAXIMUM OUTPUT POWER	6
3. TEST METHODOLOGY	7
EUT CONFIGURATION	7
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	8
4. INSTRUMENT CALIBRATION	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
6. ANTENNA REQUIREMENTS	9
7. MEASUREMENT UNCERTAINTY	9
8. DESCRIPTION OF TESTS	10
9. SUMMARY OF TEST RESULTS	31
10. TEST RESULT	33
10.1 DUTY CYCLE	33
10.2 26dB BANDWIDTH & 99 % BANDWIDTH	36
10.3 6DB BANDWIDTH	48
10.4 OUTPUT POWER MEASUREMENT	54
10.5 POWER SPECTRAL DENSITY	57
10.6 FREQUENCY STABILITY.	68
10.6.1 80MHz BW	68
10.7 STRADDLE CHANNEL	84
10.7.1 26dB Bandwidth	84
10.7.2 6dB Bandwidth	87
10.7.3 Output Power	90
10.7.4 Power Spectral Density	93
10.8 RADIATED SPURIOUS EMISSIONS	96
10.9 RADIATED RESTRICTED BAND EDGE	104
10.10 RECEIVER SPURIOUS EMISSIONS	128
11. LIST OF TEST EQUIPMENT	129
12. ANNEX A_ TEST SETUP PHOTO	131

1. GENERAL INFORMATION

EUT DESCRIPTION

FCC Model	VT2600TAN		
ISED Model	VT2500TKN		
FCC Additional Model	VT2620TAN, VT2610TAN, VT260TOAN, VT2500TAN, VT2520TAN, VT2510TAN, VT250TOAN, VT2530TAN, VT2630TAN, VT251TOAN, VT261TOAN		
ISED Additional Model	VT2600TKN, VT2620TKN, VT2610TKN, VT260TOKN, VT2520TKN, VT2510TKN, VT250TOKN, VT2530TKN, VT2630TKN, VT251TOKN, VT261TOKN		
EUT Type	CAR AUDIO	SYSTEM	
Power Supply	DC 14.4 V		
Modulation Type	OFDM : 802	.11a, 802.11n, 802.11ac	
	U-NII-1	20MHz BW : 5180 - 5240 40MHz BW : 5190 - 5230 80MHz BW : 5210	
Frequency Range (MHz)	U-NII-2A	20MHz BW : 5260 - 5320 40MHz BW : 5270 - 5310 80MHz BW : 5290	
	U-NII-2C	20MHz BW : 5500 - 5720 40MHz BW : 5510 - 5710 80MHz BW : 5530 - 5690	
	U-NII-3	20MHz BW : 5745 - 5825 40MHz BW : 5755 - 5795 80MHz BW : 5775	
Antenna Specification	Antenna type: Wi-Fi Dual Band Antenna Peak Gain : UNII-1: 0.59 dBi, UNII-2A: 2.00 dBi UNII-2C: 4.58 dBi, UNII-3: 4.19 dBi		
Straddle channel	Supported		
TDWR Band	Not Supported		
Dynamic Frequency Selection	Slave without radar detection		
Date(s) of Tests	April 15 , 2021 ~ May 26, 2021		
PMN (Product Marketing Number)	VT2600TKN, VT2620TKN, VT2610TKN, VT260TOKN, VT2520TKN, VT2510TKN, VT250TOKN, VT2530TKN, VT2630TKN, VT251TOKN, VT261TOKN		
HVIN (Hardware Version Identification Number)	VT2600TKN, VT2620TKN, VT2610TKN, VT260TOKN, VT2520TKN, VT2510TKN, VT250TOKN, VT2530TKN, VT2630TKN, VT251TOKN, VT261TOKN		
FVIN (Firmware Version Identification Number)	SG2HEV.USA.0000.V039.001.210216		
HMN (Host Marketing Name)	N/A		
EUT serial numbers		: 96560-AT130 (FCC), 96560-AT120 ISED) 6560-AT130 (FCC), 96560-AT120 (ISED)	

2. MAXIMUM OUTPUT POWER

Band	Mode	RF Output Power (dBm)	RF Output Power (W)
	802.11a	9.03	0.008
	802.11n (HT20)	8.94	0.008
118111 1	802.11n (HT40)	4.46	0.003
UNII-1	802.11ac (VHT20)	8.94	0.008
	802.11ac (VHT40)	4.52	0.003
	802.11ac (VHT80)	4.25	0.003
	802.11a	9.06	0.008
	802.11n (HT20)	8.84	0.008
	802.11n (HT40)	8.88	0.008
UNII-2A	802.11ac (VHT20)	8.86	0.008
	802.11ac (VHT40)	8.78	0.008
	802.11ac (VHT80)	8.00	0.006
	802.11a	8.35	0.007
	802.11n (HT20)	8.10	0.006
UNII-2C	802.11n (HT40)	7.92	0.006
UNII-2C	802.11ac (VHT20)	8.12	0.006
	802.11ac (VHT40)	7.91	0.006
	802.11ac (VHT80)	7.97	0.006
	802.11a	8.39	0.007
	802.11n (HT20)	8.33	0.007
	802.11n (HT40)	7.98	0.006
UNII-3	802.11ac (VHT20)	8.37	0.007
	802.11ac (VHT40)	7.86	0.006
	802.11ac (VHT80)	7.96	0.006

The transmitter has a maximum total conducted average output power as follows:

3. TEST METHODOLOGY

The measurement procedure described in FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 dated December 14, 2017 entitled "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part15, Subpart E" and ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices' were used in the measurement.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203, § 15.407 / RSS-Gen (Issue 5) Section 8:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

(2) The E.U.T Complies with the requirement of § 15.203, § 15.407

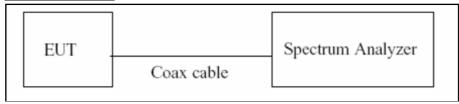
7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05



8. DESCRIPTION OF TESTS

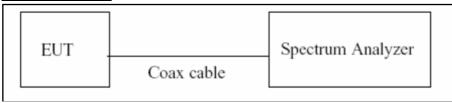
8.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. We tested according to Procedure B.2 in KDB 789033 D02 v02r01.

- 1. RBW = 8 MHz (the largest availble value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



8.2. 6dB Bandwidth & 26dB Bandwidth & 99 % Bandwidth

Limit

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Configuration

Test Procedure(26dB Bandwidth)

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure C.1 in KDB 789033 D02 v02r01.

- 1. RBW = approximately 1 % of the emission bandwidth
- 2. VBW > RBW
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Test Procedure (6dB Bandwidth)

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure C.2 in KDB 789033 D02 v02r01.

- 1. RBW = 100 kHz
- 2. VBW \geq 3 x RBW
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Allow the trace to stabilize
- 6. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points(upper and lower frequencies) that are attenuated by 6 dB relative to the maximum lever measured in the fundamental emission.

Note:

1. We tested X dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer.

- 2. DFS test channels should be defined. So, We performed the OBW test to prove that no part of the fundamental emissions of any channels belong to UNII1 and UNII3 band for DFS.
- 3. The 26 dB bandwidth is used to determine the conducted power limits.

Test Procedure (99 % Bandwidth for ISED)

The transmitter output is connected to the spectrum analyzer.

 RBW = 1% ~ 5% of the occupied bandwidth

VBW \Rightarrow 3 x RBW

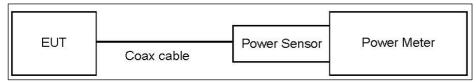
Detector = Peak

Trace mode = max hold

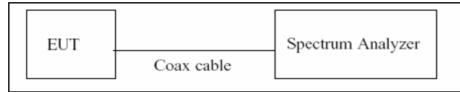
Sweep = auto couple

Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.


8.3. Output Power Measurement

Limit


Band	Limit	
	- Master : Not exceed 1 W(=30dBm)	
UNII 1	- Slave : Not exceed 250 mW(=23.98 dBm)	
	Not exceed the lesser of 250 mW or 11 dBm + 10 log B,	
UNII 2A, 2C	(where B is the 26 dB emission bandwidth in megahertz.)	
UNII 3	Not exceed 1 W(=30dBm)	

Test Configuration

Power Meter

Spectrum Analyzer(Only Straddle Channel)

Test Procedure(Power Meter)

We tested according to Procedure E.3.a in KDB 789033 D02 v02r01.

- 1. Measure the duty cycle.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Test Procedure(Spectrum Analyzer)

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function. We tested according to Procedure E.2.d) in KDB 789033 D02 v02r01.

- 1. Measure the duty cycle.
- 2. Set span to encompass the 26 dB EBW of the signal.
- 3. RBW = 1 MHz.
- 4. VBW \geq 3 MHz.
- 5. Number of points in sweep $\geq 2 \times \text{span/RBW}$.
- 6. Sweep time = auto.
- 7. Detector = RMS.
- 8. Do not use sweep triggering. Allow the sweep to "free run".
- 9. Trace average at least 100 traces in power averaging(RMS) mode
- 10. Integrated bandwidth = OBW
- 11. Add $10\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

Total Power(dBm) = Reading Value(dBm) + ATT loss(dB) + Cable loss(dB) + Duty Cycle Factor(dB)

<u>Note</u>

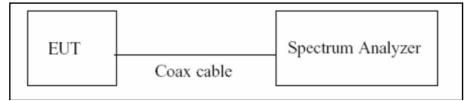
1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss(20 dB) + Cable loss
- 3. Actual value of loss for the attenuator and cable combination is below table.

Band	Loss(dB)
UNII 1	21.98
UNII 2A	21.98
UNII 2C	21.98
UNII 3	21.98

(Actual value of loss for the attenuator and cable combination)



8.4. Power Spectral Density

Limit

Band	Limit	
UNII 1	11 dBm/MHz	
UNII 2A, 2C	11 dBm/MHz	
UNII 3	30 dBm/500 kHz	

Test Configuration

Test Procedure

We tested according to Procedure F in KDB 789033 D02 v02r01.

- 1. Set span to encompass the entire emission bandwidth(EBW) of the signal.
- 2. RBW = 1 MHz(510 kHz for UNII 3)
- 3. VBW \geq 3 MHz
- 4. Number of points in sweep $\geq 2 \times \text{span/RBW}$.
- 5. Sweep time = auto.
- 6. Detector = RMS(i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. Do not use sweep triggering. Allow the sweep to "free run".
- 8. Trace average at least 100 traces in power averaging(RMS) mode
- 9. Use the peak search function on the spectrum analyzer to find the peak of the spectrum.
- 10. If Method SA-2 was used, add $10 \log(1/x)$, where x is the duty cycle, to the peak of the spectrum.

Sample Calculation

Total PSD(dBm) = Reading Value(dBm) + ATT loss(dB) + Cable loss(dB) + Duty Cycle Factor(dB)

Note

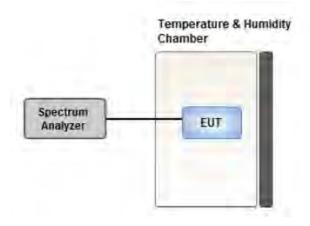
1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss(20 dB) + Cable loss
- 3. Actual value of loss for the attenuator and cable combination is below table.

Band	Loss(dB)
UNII 1	21.98
UNII 2A	21.98
UNII 2C	21.98
UNII 3	21.98

(Actual value of loss for the attenuator and cable combination)



8.5. Frequency Stability

Limit

Maintained within the band

Test Configuration

Test Procedure

- 1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -30 $^{\circ}$ C and 50 $^{\circ}$ C.
- 2. The temperature was incremented by 10 °C intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.
- 3. The primary supply voltage is varied from 85% to 115% of the nominal value for non handcarried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battety operating end point which shall be specified by the manufacturer.
- 4. While maintaining a constant temperature inside the environmental chamber, turn the EUT ON

and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after

the EUT is energized. Four measurements in total are made.

8.6. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/50 ohms line impedance stabilization network (LISN).

Frequency Denge (MUT)	Limits	(dBµV)
Frequency Range (MHz)	Quasi-peak Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.7. Radiated Test

Limit

1. UNII 1: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

- 2. UNII 2A, 2C: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- 3. UNII 3: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- 4. All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Section 15.209.

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30	30	30

FCC

ISED

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 - 30	0.08	30



FCC&ISED

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

RX Antenna 3m EUT Ant. feed point 80cm Metal Full Soldered Ground Plane Spectrum Analyzer /Receiver Above 1 GHz Antenna lower Horn m antenna EUT 4m Spectrum analyzer Turntable 1.5m 26 1 Absorbers Pre-amp

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW

9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making

measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW

- (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - **%**In general, (1) is used mainly ∎
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type (Peak, G.5 in KDB 789033 v02r01):
 - RBW = 1 MHz
 - VBW \geq 3 MHz
 - Detector = Peak
 - Sweep Time = auto
 - Trace mode = max hold
 - Allow sweeps to continue until the trace stabilizes.

Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle.

(2) Measurement Type (Average, G.6.d in KDB 789033 v02r01):

- RBW = 1 MHz
- VBW(Duty cycle \geq 98 percent) = VBW \leq RBW/100(i.e., 10 kHz) but not less than 10 Hz.
- VBW(Duty cycle is < 98 percent) = VBW $\geq 1/T$, where T is the minimum transmission duration.
- The analyzer is set to linear detector mode.
- Detector = Peak.

- Sweep time = auto.
- Trace mode = max hold.
- Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least
 98 percent duty cycle. For lower duty cycles, increase the minimym number of traces by a factor of 1/x, where x is the duty cycle.

- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor
- 10. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak, G.5 in KDB 789033 v02r01):
 - RBW = 1 MHz
 - VBW \geq 3 MHz
 - Detector = Peak
 - Sweep Time = auto
 - Trace mode = max hold
 - Allow sweeps to continue until the trace stabilizes.

Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle.

(2) Measurement Type(Average, G.6.d in KDB 789033 v02r01):

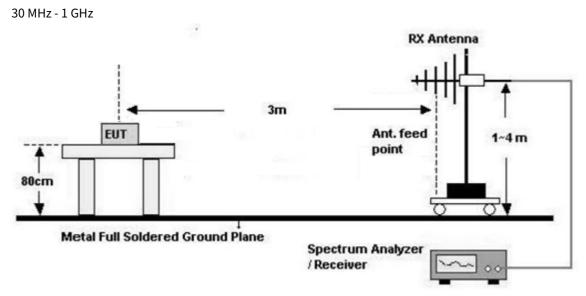
- RBW = 1 MHz
- VBW(Duty cycle \geq 98 percent) = VBW \leq RBW/100(i.e., 10 kHz) but not less than 10 Hz.
- VBW(Duty cycle is < 98 percent) = VBW $\geq 1/T$, where T is the minimum transmission duration.
- The analyzer is set to linear detector mode.
- Detector = Peak.
- Sweep time = auto.
- Trace mode = max hold.
- Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98 percent duty cycle. For lower duty cycles, increase the minimym number of traces by a factor of 1/x, where x is the duty cycle.

- 9. Measured Frequency Range :
 - 4 500 MHz ~ 5 150 MHz
 - 5 350 MHz ~ 5 460 MHz
 - 5 460 MHz ~ 5 470 MHz
 - (75 MHz or more below the 5 725 MHz) ~ 5 725 MHz
 - 5 850 MHz \sim (75 MHz or more above the 5 850 MHz)
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Attenuator
 - + Distance Factor(D.F)

The actual setting value of VBW

	Worst Data rate		Duty Cycle	The actual setting
Mode	(Mbps)	Duty Cycle	Factor	value of VBW
	(MDPS)		(dB)	(Hz)
802.11a	6	0.932	0.306	1000
802.11n(HT20)	MCS 0(6.5)	0.929	0.322	1000
802.11n(HT40)	MCS 0(13.5)	0.868	0.614	2000
802.11ac(VHT20)	MCS 0(6.5)	0.930	0.315	1000
802.11ac(VHT40)	MCS 0(13.5)	0.869	0.610	2000
802.11ac(VHT80)	MCS 0(29.3)	0.771	1.128	3000

8.8. Receiver Spurious Emissions


Limit

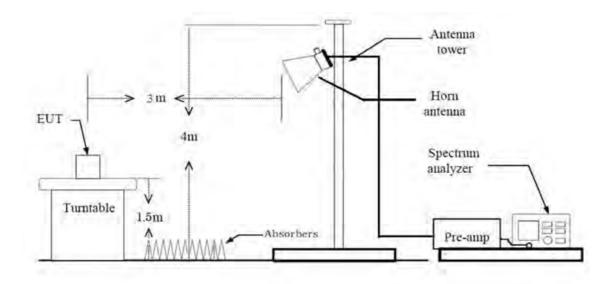
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

Test Procedure of Receiver Spurious Emissions (Below 1GHz)


- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out

the highest emissions.

- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

8.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone , Stand alone + Shark Antenna
- Mode : Stand alone + Shark Antenna
- 2. EUT Axis
 - Radiated Spurious Emissions : X
 - Radiated Restricted Band Edge : X
- 3. All datarate of operation were investigated and the worst case datarate results are reported
 - 802.11a : 6Mbps
 - 802.11n_HT20 : MCS0
 - 802.11n_HT40 : MCS0
 - -802.11ac_VHT20:MCS0
 - -802.11ac_VHT40:MCS0
 - 802.11ac_VHT80 : MCS0
- 4. Radiated Spuirous Emission

-All modulation of operation were investigated and the worst case modulation results are reported. (Worstcase : 802.11a_6 Mbps)

- 5. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane
- 6. VT2600TAN(FCC)& VT2500TKN(ISED), Additional Model were tested and the worst case results are reported.

(Worst case : VT2600TAN(FCC)& VT2500TKN(ISED))

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

1. All datarate of operation were investigated and the worst case datarate results are reported.

2. VT2600TAN(FCC) VT2500TKN(ISED), Additional Model were tested and the worst case results are reported.

(Worst case : VT2600TAN(FCC)& VT2500TKN(ISED))

9. SUMMARY OF TEST RESULTS

FCC	

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
26dB Bandwidth	§ 15.407 (for Power Measurement)	N/A		PASS
6 dB Bandwidth	§ 15.407(e)	>500 kHz (5725-5850 MHz)		PASS
Maximum Conducted Output Power	§ 15.407(a)(1),(2),(3)	< 250 mW(5150-5250 MHz) < 250 mW or 11+10log10 (BW) dBm (5250-5350 MHz) < 250 mW or 11+10log10 (BW) dBm (5470-5725 MHz) <1 W(5725-5850 MHz)	Conducted	PASS
Maximum Power Spectral Density	§ 15.407(a)(1),(2),(3)	<11 dBm/ MHz (5150-5250 MHz) <11 dBm/ MHz (5250-5350 MHz) <11 dBm/ MHz (5470-5725 MHz) <30 dBm/500 kHz(5725-5850 MHz)		PASS
Frequency Stability	§ 15.407(g) § 2.1055	Maintained within the band		PASS
AC Conducted Emissions 150 kHz-30 MHz	§ 15.207 § 15.407(b)(8)	<fcc 15.207="" limits<="" td=""><td></td><td>N/A (#Note1)</td></fcc>		N/A (#Note1)
Undesirable Emissions	§ 15.407(b) (1)(2)(3)(4)	<-27 dBm/MHz EIRP (UNII1, 2A, 2C) cf. Section 8.7 (UNII 3)		PASS
General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	§ 15.205, 15.407(b)(9), (10)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	PASS

#Note1 : Not Tested

Test Description	ISED Part Section(s)	Test Limit	Test Condition	Test Result
99% Bandwidth	RSS-GEN, 6.7	N/A		PASS
6 dB Bandwidth	RSS-247, 6.2.4.1	> 500 kHz (5725~5850 MHz)		PASS
Maximum Conducted Output Power,	RSS-247, 6.2	 < 250 mW or 11+10 log 10 (BW) dBm (5470-5600, 5650-5725 MHz) Whichever power is less <1 W 		PASS
	RSS-247, 6.2.4 1	(5725-5850 MHz)		
Maximum e.i.r.p	RSS-247, 6.2	< 30 mW or 1.76+10 log 10 (BW) dBm (5150-5250 MHz) < 30 mW or 1.76+10 log 10 (BW) dBm (5250-5350 MHz) < 1 W or 17+10 log 10 (BW) dBm (5470-5725 MHz) Whichever power is less	Conducted	PASS
Power Spectral Density	RSS-247 6.2	<10 dBm/ MHz(e.i.r.p.) (5150-5250 MHz) <11 dBm/MHz(Conducted) (5250-5350 MHz, 5470-5600 MHz, 5650-5725 MHz)		PASS
	RSS-247, 6.2.4 1	<30 dBm/500 kHz(Conducted) (5725-5850 MHz)		
Frequency Stability	RSS-GEN 8.11	should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.		PASS
AC Conducted Emissions 150 kHz-30 MHz	RSS-GEN, 8.8	RSS-GEN section 8.8 table 4		N/A (#Note1)
	RSS-247, 6.2.1 2	26 dBc at 5250~5350 MHz (5150~5350 MHz)		PASS
Undesirable Emissions	RSS-247, 6.2	<-27 dBm/ MHz EIRP (5150-5350 MHz, 5470-5725 MHz)		PASS
Conoral Field	RSS-247, 6.2.4 2	cf. Section 9.8.1 (UNII 3)		
General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	RSS-Gen, 8.9 RSS-Gen, 8.10	RSS-Gen section 8.9 table 5, 6 section 8.10 table 7	Radiated	PASS
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.3	RSS-GEN section 7.3 table 3		PASS

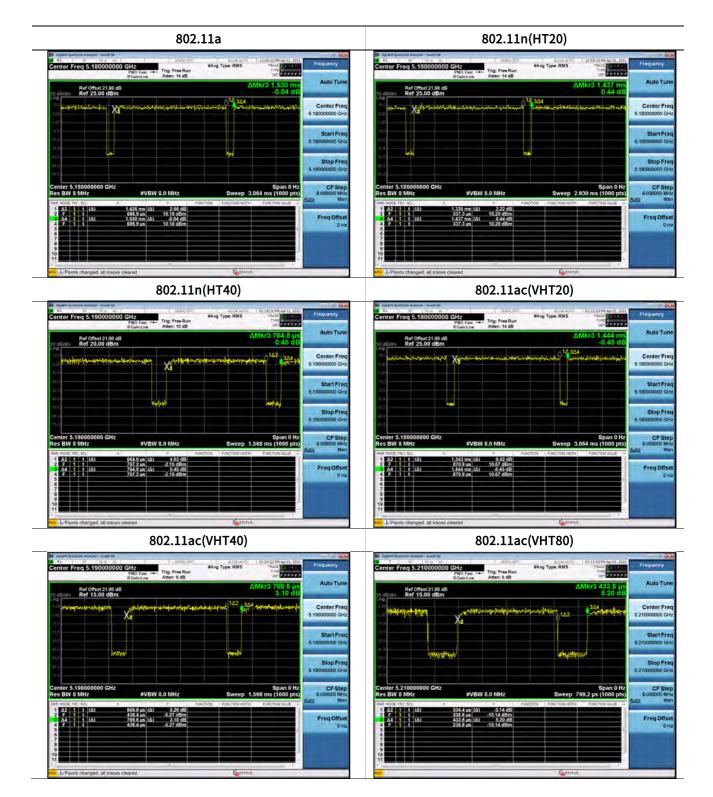
#Note1 : Not Tested

10. TEST RESULT

10.1 DUTY CYCLE

Mode	Data Rate (Mbps)	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor(dB)
	6	1.426	1.530	0.932	0.306
	9	0.961	1.062	0.905	0.435
	12	0.723	0.827	0.875	0.580
002 116	18	0.491	0.592	0.830	0.810
802.11a	24	0.371	0.473	0.785	1.051
	36	0.256	0.358	0.716	1.448
	48	0.196	0.297	0.659	1.813
	54	0.180	0.281	0.639	1.943

Mode	MCS Index	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor(dB)
	0	1.335	1.437	0.929	0.322
	1	0.688	0.789	0.872	0.596
	2	0.472	0.573	0.824	0.843
802.11n	3	0.364	0.465	0.782	1.067
(HT20)	4	0.256	0.357	0.716	1.451
	5	0.200	0.302	0.664	1.781
	6	0.184	0.286	0.645	1.908
	7	0.168	0.270	0.623	2.054
	0	0.664	0.765	0.868	0.614
	1	0.352	0.453	0.777	1.094
	2	0.248	0.350	0.711	1.483
802.11n	3	0.197	0.298	0.662	1.793
(HT40)	4	0.144	0.245	0.587	2.315
	5	0.116	0.217	0.535	2.720
	6	0.108	0.209	0.516	2.876
	7	0.100	0.201	0.497	3.041



Mode	MCS Index	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor(dB)
	0	1.343	1.444	0.930	0.315
	1	0.692	0.794	0.872	0.593
	2	0.475	0.577	0.823	0.844
	3	0.367	0.469	0.783	1.065
802.11ac (VHT20)	4	0.260	0.361	0.721	1.423
(01120)	5	0.204	0.305	0.669	1.744
	6	0.189	0.290	0.652	1.858
	7	0.172	0.274	0.630	2.006
	8	0.152	0.253	0.600	2.216
	0	0.669	0.770	0.869	0.610
	1	0.356	0.457	0.779	1.083
	2	0.253	0.354	0.715	1.457
	3	0.200	0.301	0.665	1.772
802.11ac	4	0.148	0.249	0.595	2.257
(VHT40)	5	0.120	0.221	0.543	2.653
	6	0.112	0.213	0.525	2.796
	7	0.104	0.205	0.507	2.946
	8	0.096	0.197	0.485	3.140
	9	0.088	0.189	0.465	3.328
	0	0.334	0.434	0.771	1.128
	1	0.188	0.290	0.649	1.876
	2	0.140	0.241	0.581	2.355
	3	0.116	0.217	0.535	2.716
802.11ac	4	0.092	0.193	0.477	3.213
(VHT80)	5	0.080	0.182	0.441	3.560
	6	0.076	0.177	0.430	3.667
	7	0.072	0.174	0.415	3.822
	8	0.068	0.169	0.403	3.949
	9	0.064	0.166	0.386	4.129

Note:

In order to simplify the report, attached plots were only lowest datarate.

10.2 26dB BANDWIDTH & 99 % BANDWIDTH

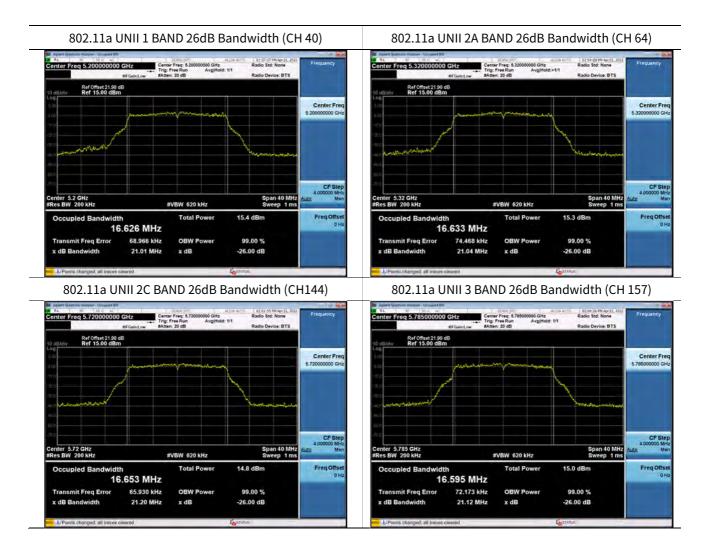
FCC

802.11a Mode		26dD Dondwidth [MII=]	99% bandwidth [MHz]	
Frequency [MHz]	Channel No.	26dB Bandwidth [MHz]	99% bandwidth [MHZ]	
5180	36	20.90	16.626	
5200	40	21.01	16.626	
5240	48	20.95	16.652	
5260	52	21.03	16.617	
5300	60	20.92	16.622	
5320	64	21.04	16.633	
5500	100	20.75	16.600	
5580	116	20.95	16.652	
5720	144	21.20	16.653	
5745	149	20.95	16.631	
5785	157	21.12	16.595	
5825	165	20.78	16.664	

802.11n(HT20) Mode		26dD Dandwidth [MU]	000/ bandwidth [MU-]
Frequency [MHz]	Channel No.	- 26dB Bandwidth [MHz]	99% bandwidth [MHz]
5180	36	21.40	17.816
5200	40	21.25	17.772
5240	48	21.28	17.755
5260	52	21.47	17.796
5300	60	21.28	17.776
5320	64	21.32	17.787
5500	100	21.26	17.741
5580	116	21.29	17.744
5720	144	21.28	17.757
5745	149	21.36	17.751
5785	157	21.45	17.764
5825	165	21.27	17.788

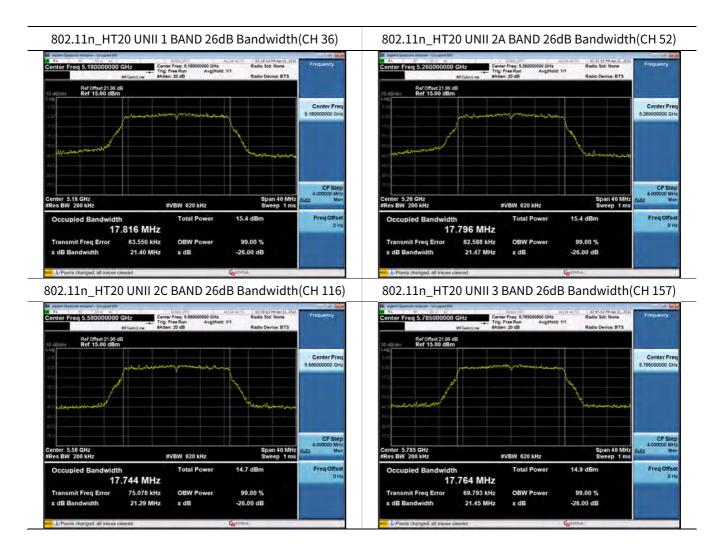
802.11n(HT40) Mode		- 26dB Bandwidth [MHz]	99% bandwidth [MHz]
Frequency [MHz]	Channel No.		55 /0 bandwiath [Mil2]
5190	38	39.29	36.068
5230	46	39.63	36.132
5270	54	39.40	36.167
5310	62	39.33	36.106
5510	102	39.39	36.149
5550	110	39.34	36.148
5710	142	39.35	36.119
5755	151	39.30	36.140
5795	159	39.63	36.125

802.11ac(VHT20) Mode		26dD Dondwidth [MII=]	00% bandwidth [MHz]	
Frequency [MHz]	Channel No.	26dB Bandwidth [MHz]	99% bandwidth [MHz]	
5180	36	21.35	17.730	
5200	40	21.32	17.774	
5240	48	21.31	17.786	
5260	52	21.32	17.755	
5300	60	21.17	17.814	
5320	64	21.12	17.732	
5500	100	21.26	17.732	
5580	116	20.96	17.780	
5720	144	21.41	17.750	
5745	149	21.36	17.748	
5785	157	21.39	17.808	
5825	165	21.33	17.778	

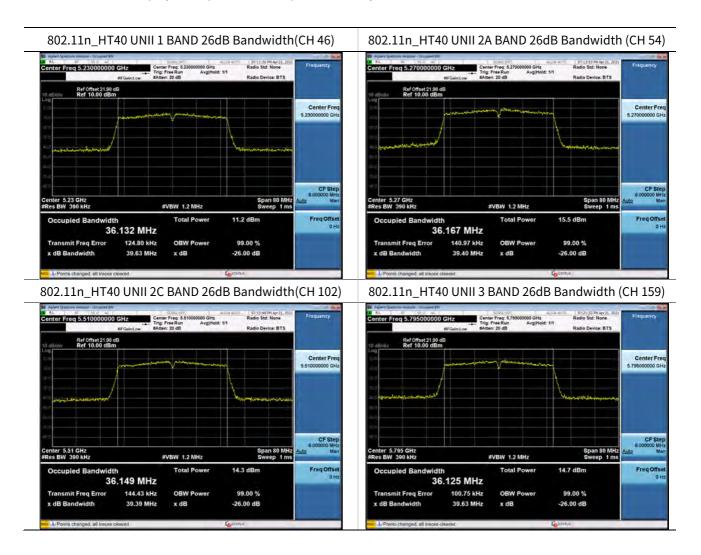

802.11ac(VHT40) Mode		26dD Dandwidth [MU=]	0004 bandwidth [MU-]	
Frequency [MHz]	Channel No.	26dB Bandwidth [MHz]	99% bandwidth [MHz]	
5190	38	39.31	36.139	
5230	46	39.79	36.104	
5270	54	39.83	36.091	
5310	62	39.30	36.112	
5510	102	39.64	36.110	
5550	110	39.40	36.075	
5710	142	39.52	36.117	
5755	151	39.57	36.138	
5795	159	39.43	36.126	

802.11ac(VHT80) Mode		26dB Bandwidth [MHz]	99% bandwidth [MHz]	
Frequency [MHz]	Channel No.		99% bandwidth [MHZ]	
5210	42	81.55	75.485	
5290	58	80.94	75.450	
5530	106	80.93	75.465	
5690	138	80.90	75.481	
5775	155	80.88	75.493	

Test Plots(802.11a)


Note:

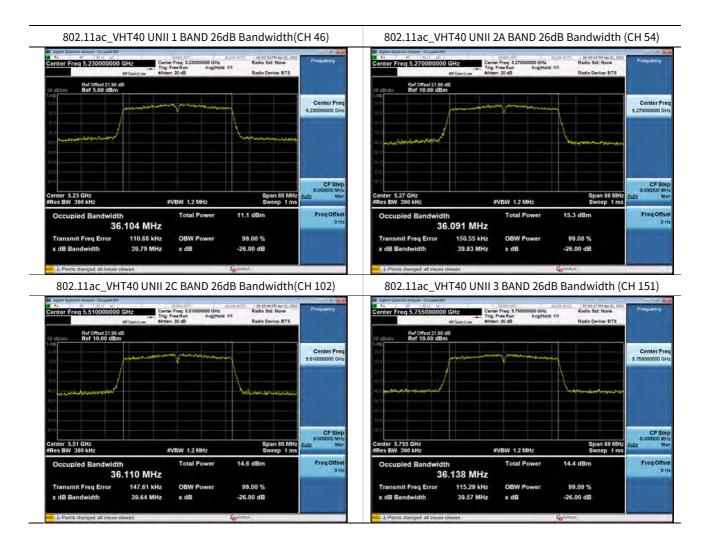
Test Plots(802.11n(HT20))


Note:

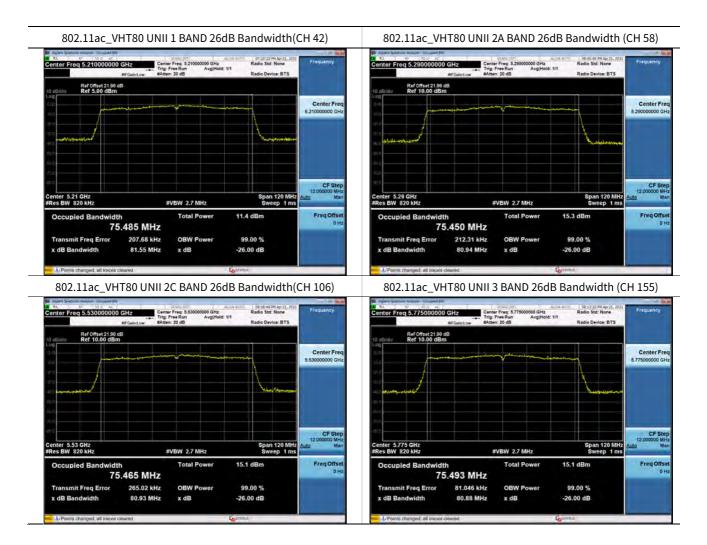
Test Plots(802.11n(HT40))

Note:

Test Plots(802.11ac(VHT20))

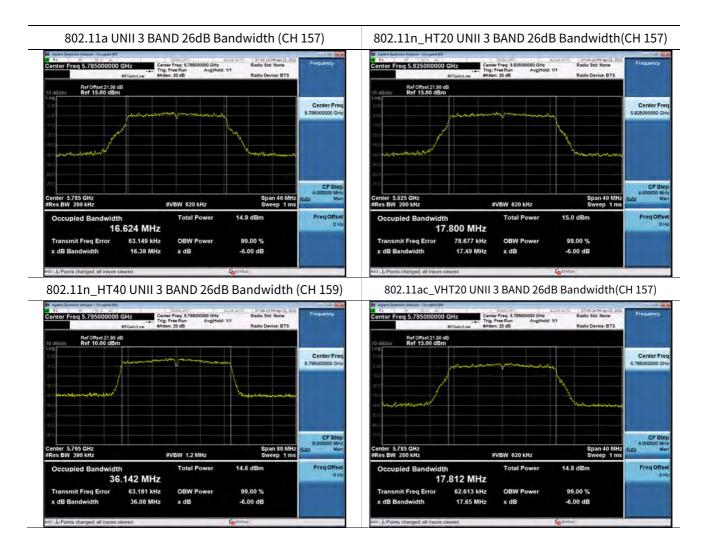

Note:

Test Plots(802.11ac(VHT40))

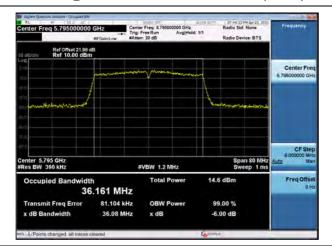

Note:

Test Plots(802.11ac(VHT80))

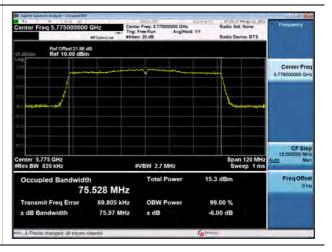
Note:


99% bandwidth UNII-3 (ISED)

000/ handwidth [MI	802.11a Mode	
99% bandwidth [Mł	Channel No.	requency [MHz]
16.606	149	5745
16.624	157	5785
16.612	165	5825
	20) Mode	802.11n(HT2
99% bandwidth [Mŀ	Channel No.	requency [MHz]
17.736	149	5745
17.787	157	5785
17.800	165	5825
	40) Mode	802.11n(HT4
99% bandwidth [MHz]	Channel No.	requency [MHz]
36.095	151	5755
36.142	159	5795
	۲20) Mode	802.11ac(VHT
99% bandwidth [Mł	Channel No.	requency [MHz]
17.770	149	5745
17.812	157	5785
17.774	165	5825
	(40) Modo	802.11ac(VH1
99% bandwidth [Mł	Channel No.	requency [MHz]
36.088	151	5755
36.161	159	5795
000/ karalatidi. Du	۲80) Mode	802.11ac(VH1
99% bandwidth [Mł	Channel No.	requency [MHz]
75.528	155	5775


Test Plots

Note:



802.11ac_VHT40 UNII 3 BAND 26dB Bandwidth (CH 159)

802.11ac_VHT80 UNII 3 BAND 26dB Bandwidth (CH 155)

10.3 6DB BANDWIDTH

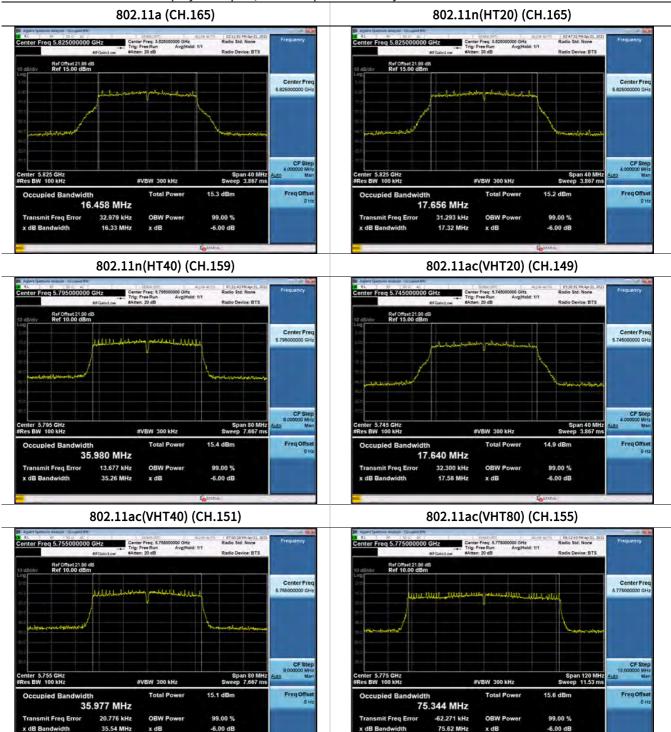
FCC

802.11a Mode		Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5745	149	16.36	> 0.5	Pass
5785	157	16.35	> 0.5	Pass
5825	165	16.33	> 0.5	Pass

802.11n(H	T20) Mode	Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5745	149	17.57	> 0.5	Pass
5785	157	17.38	> 0.5	Pass
5825	165	17.32	> 0.5	Pass

802.11n(H	T40) Mode	Measured Bandwidth	Limit	
Frequency	Channel No.	[MHz]	[MHz]	Pass / Fail
[MHz]		[]	[,]	
5755	151	35.26	> 0.5	Pass
5795	159	35.26	> 0.5	Pass

802.11ac(V	HT20) Mode	Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5745	149	17.58	> 0.5	Pass
5785	157	17.60	> 0.5	Pass
5825	165	17.58	> 0.5	Pass


802.11ac(VHT40) Mode		Manager and Dansderidth	l insit	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Limit Pass [MHz]	Pass / Fail
5755	151	35.54	> 0.5	Pass
5795	159	35.57	> 0.5	Pass

802.11ac(V	HT80) Mode	Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5775	155	75.62	> 0.5	Pass

Test Plots

ISED 6dB bandwidth UNII-3 (ISED)

802.11	a Mode	Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5745	149	16.37	> 0.5	Pass
5785	157	16.38	> 0.5	Pass
5825	165	16.31	> 0.5	Pass

802.11n(H	T20) Mode	Measured Bandwidth	Limit		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5745	149	17.59	> 0.5	Pass	
5785	157	17.58	> 0.5	Pass	
5825	165	17.49	> 0.5	Pass	

802.11n(H	T40) Mode	Measured Bandwidth	Limit		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5755	151	36.05	> 0.5	Pass	
5795	159	36.08	> 0.5	Pass	

802.11ac(VI	HT20) Mode	Measured Bandwidth	Limit		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5745	149	17.60	> 0.5	Pass	
5785	157	17.65	> 0.5	Pass	
5825	165	17.36	> 0.5	Pass	

802.11ac(VI	HT40) Mode	Measured Bandwidth	Limit		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5755	151	36.07	> 0.5	Pass	
5795	159	36.08	> 0.5	Pass	

802.11ac(V	HT80) Mode	Measured Bandwidth	Limit	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5775	155	75.97	> 0.5	Pass

10.4 OUTPUT POWER MEASUREMENT

Straddle channel data in the table below are for reporting purposes only. Straddle channel data were added in section 10.7.3.

802.11a	Mode	Measured Power	Duty Cycle Factor	Total Power	Ant Gain	EIRP [dBm]	ISED Limit	FCC Limit
Frequency [MHz]	Channel No.	[dBm]	[dB]	[dBm]	[dBi]	[]	[dBm]	[dBm]
5180	36	8.69	0.31	8.99	0.59	9.58	13.97	
5200	40	8.65	0.31	8.96	0.59	9.55	13.97	23.98
5240	48	8.72	0.31	9.03	0.59	9.62	13.97]
5260	52	8.75	0.31	9.06	2.00	11.06	13.97	
5300	60	8.68	0.31	8.99	2.00	10.99	13.97	23.98
5320	64	8.48	0.31	8.79	2.00	10.79	13.97	
5500	100	7.92	0.31	8.22	-	-		
5580	116	7.86	0.31	8.17	-	-	23.98	23.98
5720	144	8.04	0.31	8.35	-	-		
5745	149	7.91	0.31	8.22	-	-		
5785	157	8.04	0.31	8.35	-	-	30	30
5825	165	8.09	0.31	8.39	-	-		

802.11n Moo		Measured Power	Duty Cycle Factor	Total Power	Ant Gain	EIRP [dBm]	ISED Limit	FCC Limit
Frequency [MHz]	Channel No.	[dBm]	[dB]	[dBm]	[dBi]		[dBm]	[dBm]
5180	36	8.62	0.32	8.94	0.59	9.53	14.27	
5200	40	8.50	0.32	8.82	0.59	9.41	14.26	23.98
5240	48	8.58	0.32	8.91	0.59	9.50	14.25	
5260	52	8.50	0.32	8.82	2.00	10.82	14.26	
5300	60	8.52	0.32	8.84	2.00	10.84	14.26	23.98
5320	64	8.40	0.32	8.72	2.00	10.72	14.26	
5500	100	7.62	0.32	7.94	-	-		
5580	116	7.51	0.32	7.83	-	-	23.98	23.98
5720	144	7.78	0.32	8.10	-	-		
5745	149	7.79	0.32	8.11	-	-		
5785	157	7.97	0.32	8.29	-	-	30	30
5825	165	8.01	0.32	8.33	-	-		

	802.11ac(VHT20) Mode		Duty Cycle Factor	Total Power	Ant Gain	EIRP [dBm]	ISED Limit	FCC Limit
Frequency [MHz]	Channel No.	[dBm]	[dB]	[dBm]	[dBi]	[0.2]	[dBm]	[dBm]
5180	36	8.63	0.31	8.94	0.59	9.53	14.25	
5200	40	8.48	0.31	8.80	0.59	9.39	14.26	23.98
5240	48	8.61	0.31	8.92	0.59	9.51	14.26	
5260	52	8.46	0.31	8.77	2.00	10.77	14.25	
5300	60	8.55	0.31	8.86	2.00	10.86	14.27	23.98
5320	64	8.42	0.31	8.74	2.00	10.74	14.25	
5500	100	7.71	0.31	8.03	-	-		
5580	116	7.62	0.31	7.93	-	-	23.98	23.98
5720	144	7.80	0.31	8.12	-	-		
5745	149	7.78	0.31	8.10	-	-		
5785	157	8.05	0.31	8.37	-	-	30	30
5825	165	8.03	0.31	8.34	-	-		

802.11n Moc		Measured Power	Duty Cycle Factor	Total Power	Ant Gain	EIRP [dBm]	ISED Limit	FCC Limit
Frequency [MHz]	Channel No.	[dBm]	[dB]	[dBm]	[dBi]	[4211]	[dBm]	[dBm]
5190	38	3.84	0.61	4.46	0.59	5.05	14.77	22.00
5230	46	3.81	0.61	4.43	0.59	5.02	14.77	23.98
5270	54	8.26	0.61	8.88	2.00	10.88	14.77	23.98
5310	62	8.15	0.61	8.76	2.00	10.76	14.77	23.90
5510	102	7.10	0.61	7.71	-	-		
5550	110	7.18	0.61	7.80	-	-	23.98	23.98
5710	142	7.30	0.61	7.92	-	-		
5755	151	7.11	0.61	7.73	-	-	30	30
5795	159	7.36	0.61	7.98	-	-	- 30	30

802.11ac(Moo		Measured Power	Duty Cycle Factor	Total Power	Ant Gain	EIRP	ISED Limit	FCC Limit
Frequency	Channel	[dBm]	[dB]	[dBm]	[dBi]	[dBm]	[dBm]	[dBm]
[MHz]	No.							
5190	38	3.91	0.61	4.52	0.59	5.11	14.77	22.00
5230	46	3.65	0.61	4.26	0.59	4.85	14.77	23.98
5270	54	7.99	0.61	8.60	2.00	10.60	14.77	23.98
5310	62	8.17	0.61	8.78	2.00	10.78	14.77	23.98
5510	102	7.30	0.61	7.91	-	-		
5550	110	7.21	0.61	7.82	-	-	23.98	23.98
5710	142	7.29	0.61	7.90	-	-		
5755	151	7.21	0.61	7.82	-	-	20	20
5795	159	7.25	0.61	7.86	-	-	30	30

802.11ac Moo		Measured Power [dBm]	Duty Cycle Factor [dB]	Total Power [dBm]	Ant Gain [dBi]	EIRP [dBm]	ISED Limit [dBm]	FCC Limit [dBm]
Frequency [MHz]	Channel No.							
5210	42	3.12	1.13	4.25	0.59	4.84	14.77	23.98
5290	58	6.88	1.13	8.00	2.00	10.00	14.77	23.98
5530	106	6.63	1.13	7.76	-	-	23.98	23.98
5690	138	6.84	1.13	7.97	-	-	23.98	23.98
5775	155	6.83	1.13	7.96	-	-	30	30

FCC&ISED Worst Limit applied

U-NII-1	► ISED Maximun E.I.R.P Worst Limit
0-NII-1	< 30 mW or 1.76+10 log 10 (BW) dBm (5150-5250 MHz)
U-NII-2A	► ISED Maximun E.I.R.P Worst Limit
0-NII-2A	< 30 mW or 1.76+10 log 10 (BW) dBm (5250-5350 MHz)
	► FCC&ISED Conducted Power Limit
U-NII-2C	< 250 mW or 11+10 log 10 (BW) dBm (5470-5600, 5650-5725 MHz)Whichever power is less

10.5 POWER SPECTRAL DENSITY

FCC & ISED

	Tatal DSD	Measured Duty Cycle PSD Factor		Mode	802.11a
Limit	Total PSD [dBm]			Channel	Frequency
	[]	(dB)	[dBm]	No.	[MHz]
	-1.187	0.306	-1.493	36	5180
	-0.800	0.306	-1.106	40	5200
	-0.999	0.306	-1.305	48	5240
	-1.110	0.306	-1.416	52	5260
11 dBm/MHz	-1.218	0.306	-1.524	60	5300
	-1.254	0.306	-1.560	64	5320
	-1.673	0.306	-1.979	100	5500
	-1.835	0.306	-2.141	116	5580
	-1.626	0.306	-1.932	144	5720
	-4.383	0.306	-4.689	149	5745
30 dBm/500kHz	-4.596	0.306	-4.902	157	5785
	-4.394	0.306	-4.700	165	5825

802.11n(20N	MHz) Mode	Measured	Duty Cycle	Total PSD	
Frequency [MHz]	Channel No.	PSD [dBm]	Factor (dB)	[dBm]	Limit
5180	36	-1.389	0.322	-1.067	
5200	40	-1.812	0.322	-1.490	
5240	48	-2.102	0.322	-1.780	
5260	52	-1.752	0.322	-1.430	
5300	60	-1.914	0.322	-1.592	11 dBm/MHz
5320	64	-1.803	0.322	-1.481	
5500	100	-2.845	0.322	-2.523	
5580	116	-2.695	0.322	-2.373	
5720	144	-2.669	0.322	-2.347	
5745	149	-5.376	0.322	-5.054	20 dDmc/500k
5785	157	-5.085	0.322	-4.763	30 dBm/500k
5825	165	-4.826	0.322	-4.504	Hz

802.11n(40M	IHz) Mode	Measured	Duty Cycle	Total DCD	
Frequency	Channel	PSD	Factor	Total PSD	Limit
[MHz]	No.	[dBm]	(dB)	[dBm]	
5190	38	-9.271	0.614	-8.657	
5230	46	-9.303	0.614	-8.689	
5270	54	-4.848	0.614	-4.234	
5310	62	-4.925	0.614	-4.311	11 dBm/MHz
5510	102	-6.124	0.614	-5.510	
5500	110	-5.845	0.614	-5.231	
5710	142	-5.566	0.614	-4.952	
5755	151	-8.240	0.614	-7.626	30 dBm /500kHz
5795	159	-8.366	0.614	-7.752	30 UBIII / 300KHZ

802.11ac(20N	/Hz) Mode	Measured	Duty Cycle	Total DCD	
Frequency	Channel	PSD Factor		Total PSD	Limit
[MHz]	No.	[dBm]	(dB)	[dBm]	
5180	36	-1.855	0.315	-1.540	
5200	40	-1.988	0.315	-1.673	
5240	48	-1.728	0.315	-1.413	
5260	52	-1.981	0.315	-1.666	
5300	60	-1.850	0.315	-1.535	11 dBm/MHz
5320	64	-1.784	0.315	-1.469	
5500	100	-2.600	0.315	-2.285	
5580	116	-2.634	0.315	-2.319	
5720	144	-2.501	0.315	-2.186	
5745	149	-5.244	0.315	-4.929	
5785	157	-4.930	0.315	-4.615	30 dBm/500kHz
5825	165	-5.054	0.315	-4.739	

Frequency Channel PSD Factor Total PSD Lin [MHz] No. [dBm] (dB) [dBm] Lin 5190 38 -9.217 0.610 -8.607	
[MHz] No. [dBm] (dB) I I 5190 38 -9.217 0.610 -8.607 5230 46 -9.386 0.610 -8.776 5270 54 -4.995 0.610 -4.385 5310 62 -4.620 0.610 -4.010 11 dBn	nit
5230 46 -9.386 0.610 -8.776 5270 54 -4.995 0.610 -4.385 5310 62 -4.620 0.610 -4.010 11 dBn	
5270 54 -4.995 0.610 -4.385 5310 62 -4.620 0.610 -4.010 11 dBn	
5310 62 -4.620 0.610 -4.010 11 dBn	
	า/MHz
5510 102 -5.755 0.610 -5.145	
5500 110 -5.891 0.610 -5.281	
5710 142 -5.802 0.610 -5.192	
5755 151 -8.963 0.610 -8.353 20 dBm	
5795 159 -8.675 0.610 -8.065 30 dBm/	SUUKHZ

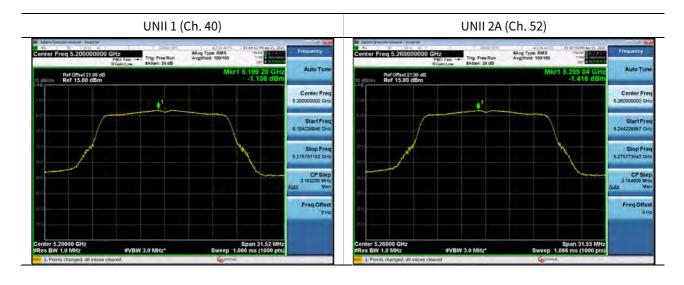
802.11ac(80N	/Hz) Mode	Measured	Duty Cycle	Total PSD	
Frequency	Channel	PSD	Factor		Limit
[MHz]	No.	[dBm]	(dB)	[dBm]	
5210	42	-13.495	1.128	-12.367	
5290	58	-9.510	1.128	-8.382	11 dBm /MHT
5530	106	-9.390	1.128	-8.262	11 dBm/MHz
5690	138	-9.844	1.128	-8.716	
5775	155	-12.295	1.128	-11.167	30 dBm/500kHz

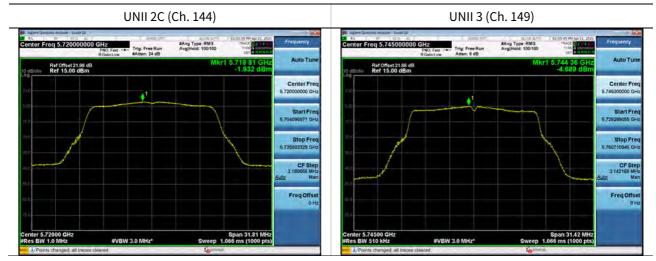
ISED Only

EIRP(UNII-1) # NOTE : Only UNII1 bands were calculated as EIRP.

802.11a M Frequency [MHz]	ode Channel No.	Measured PSD [dBm]	Duty Cycle Factor (dB)	Total PSD [dBm]	Ant. Gain (dBi)	EIRP PSD (dBm)	EIRP PSD Limit
5180	36	-1.493	0.306	-1.187	0.59	-0.597	
5200	40	-1.106	0.306	-0.800	0.59	-0.210	10 dBm/MHz
5240	48	-1.305	0.306	-0.999	0.59	-0.409	
							<u> </u>
802.11n(HT20)) Mode	Measured PSD	Duty Cycle	Total PSD	Ant. Gain	EIRP PSD	EIRP PSD
Frequency [MHz]	Channel No.	[dBm]	Factor (dB)	[dBm]	(dBi)	(dBm)	Limit
5180	36	-1.389	0.322	-1.067	0.59	-0.477	
5200	40	-1.812	0.322	-1.490	0.59	-0.900	10 dBm/MHz
5240	48	-2.102	0.322	-1.780	0.59	-1.190	
		1	1	1		1	
802.11n(HT40)) Mode	Measured PSD	Duty Cycle	Total PSD	Ant. Gain	EIRP PSD	EIRP PSD

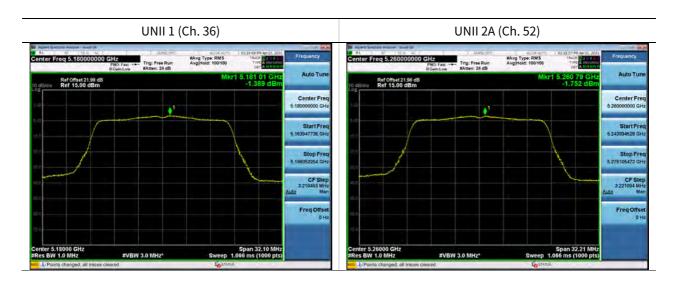
Frequency [MHz]	Channel No.	PSD [dBm]	Factor (dB)	[dBm]	Gain (dBi)	PSD (dBm)	Limit
5190	38	-9.271	0.614	-8.657	0.59	-8.067	
5230	46	-9.303	0.614	-8.689	0.59	-8.099	10 dBm/MHz

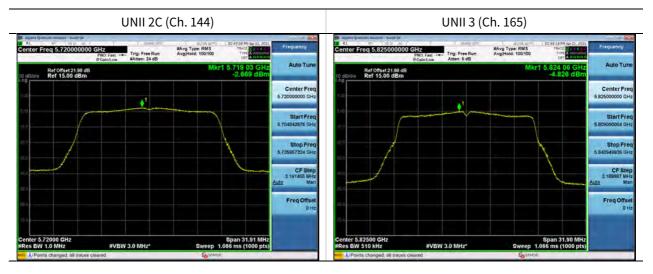

802.11ac(VHT	20)Mode	Measured	Duty Cycle	Total PSD	Ant.	EIRP	EIRP PSD
Frequency [MHz]	Channel No.	PSD [dBm]	Factor (dB)	[dBm]	Gain (dBi)	PSD (dBm)	Limit
5180	36	-1.855	0.315	-1.540	0.59	-0.950	
5200	40	-1.988	0.315	-1.673	0.59	-1.083	10 dBm/MHz
5240	48	-1.728	0.315	-1.413	0.59	-0.823	



802.11ac(VHT	40)Mode	Measured	Duty Cycle	Total PSD	Ant.	EIRP	EIRP PSD
Frequency [MHz]	Channel No.	PSD [dBm]	Factor (dB)	[dBm]	Gain (dBi)	PSD (dBm)	Limit
5190	38	-9.217	0.610	-8.607	0.59	-8.017	10 dBm/MUz
5230	46	-9.386	0.610	-8.776	0.59	-8.186	10 dBm/MHz
802.11ac(VHT	80)Mode	Measured	Duty Cycle	Total PSD	Ant.	EIRP	EIRP PSD
Frequency	Channel	PSD	Factor	[dBm]	Gain	PSD	Limit

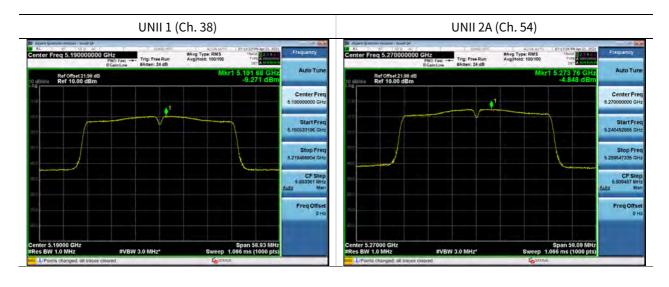
[MHz]	No.	[dBm]	Factor (dB)	[dBm]	(dBi)	(dBm)	Limit
5210	42	-13.495	1.128	-12.367	0.59	-11.777	10 dBm/MHz

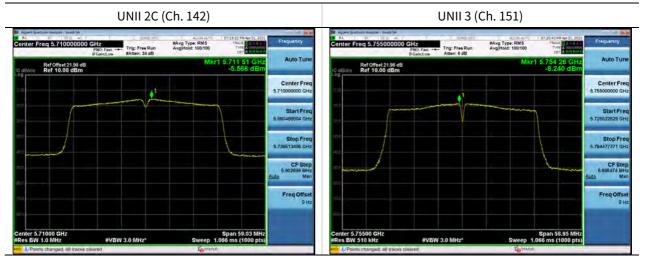




Test Plots(802.11n(HT20))

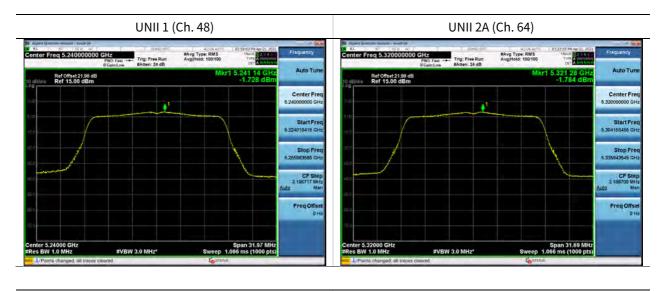
Note:

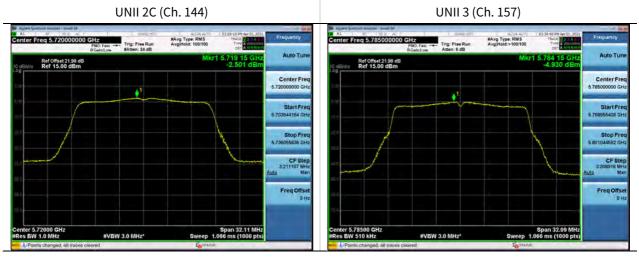




Test Plots(802.11n(HT40))

Note:



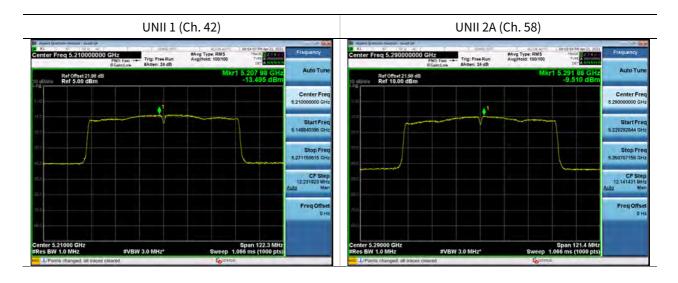


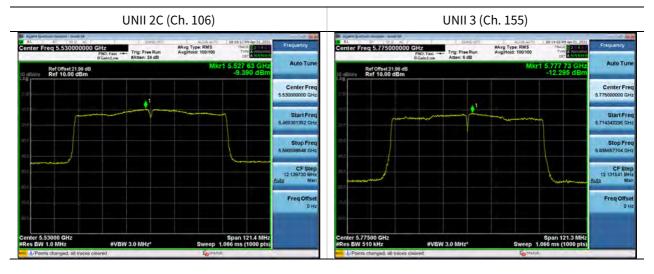
Test Plots(802.11ac(VHT20))

Note:

Test Plots(802.11ac(VHT40))

Note:





Test Plots(802.11ac(VHT80))

Note:

10.6 FREQUENCY STABILITY.

10.6.1 80MHz BW

Startup after the EUT is energized

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	5,210,000,000 Hz
CHANNEL:	42
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5210054.26	54.26
100%		-30	5210006.84	6.84
100%		-20	5210014.70	14.70
100%		-10	5210016.55	16.55
100%	14.40	0	5210023.42	23.42
100%		+10	5210030.77	30.77
100%		+30	5210040.15	40.15
100%		+40	5210044.10	44.10
100%		+50	5210060.19	60.19
LOW	9.00	+20	5210055.12	55.12
HIGH	16.00	+20	5210054.58	54.58

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

OPERATING BAND:	UNII Band 2A
OPERATING FREQUENCY:	5,290,000,000 Hz
CHANNEL:	58
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5290052.51	52.51
100%		-30	5290009.92	9.92
100%		-20	5290012.96	12.96
100%		-10	5290016.98	16.98
100%	14.40	0	5290024.55	24.55
100%		+10	5290028.59	28.59
100%		+30	5290035.18	35.18
100%		+40	5290040.94	40.94
100%		+50	5290052.16	52.16
LOW	9.00	+20	5290050.38	50.38
HIGH	16.00	+20	5290053.34	53.34

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

OPERATING BAND:	UNII Band 2C
OPERATING FREQUENCY:	5,530,000,000 Hz
CHANNEL:	106
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5530054.78	54.78
100%		-30	5530006.14	6.14
100%		-20	5530013.32	13.32
100%		-10	5530019.48	19.48
100%	14.40	0	5530022.09	22.09
100%		+10	5530025.29	25.29
100%		+30	5530038.32	38.32
100%		+40	5530042.33	42.33
100%		+50	5530059.40	59.40
LOW	9.00	+20	5530054.37	54.37
HIGH	16.00	+20	5530055.78	55.78

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

OPERATING BAND:	UNII Band 3
OPERATING FREQUENCY:	5,775,000,000 Hz
CHANNEL:	155
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5775054.11	54.11
100%		-30	5775010.23	10.23
100%		-20	5775015.23	15.23
100%		-10	5775018.34	18.34
100%	14.40	0	5775023.48	23.48
100%		+10	5775025.33	25.33
100%		+30	5775035.73	35.73
100%		+40	5775047.15	47.15
100%		+50	5775056.93	56.93
LOW	9.00	+20	5775055.71	55.71
HIGH	16.00	+20	5775055.12	55.12

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

2 minutes after the EUT is energized

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	5,210,000,000 Hz
CHANNEL:	42
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5210051.16	51.16
100%		-30	5210009.39	9.39
100%		-20	5210015.50	15.50
100%		-10	5210017.61	17.61
100%	14.40	0	5210023.25	23.25
100%		+10	5210025.12	25.12
100%		+30	5210038.68	38.68
100%		+40	5210044.04	44.04
100%		+50	5210054.95	54.95
LOW	9.00	+20	5210051.65	51.65
HIGH	16.00	+20	5210051.45	51.45

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

OPERATING BAND:	UNII Band 2A
OPERATING FREQUENCY:	5,290,000,000 Hz
CHANNEL:	58
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5290053.18	53.18
100%		-30	5290007.82	7.82
100%		-20	5290012.46	12.46
100%		-10	5290016.57	16.57
100%	14.40	0	5290020.17	20.17
100%		+10	5290029.14	29.14
100%		+30	5290037.74	37.74
100%		+40	5290050.17	50.17
100%		+50	5290054.45	54.45
LOW	9.00	+20	5290050.77	50.77
HIGH	16.00	+20	5290051.01	51.01

OPERATING BAND:	UNII Band 2C
OPERATING FREQUENCY:	5,530,000,000 Hz
CHANNEL:	106
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%	x - 7	+20(Ref)	5530050.55	50.55
100%	-	-30	5530005.64	5.64
100%	-	-20	5530014.34	14.34
100%	-	-10	5530020.21	20.21
100%	14.40	0	5530020.65	20.65
100%	-	+10	5530027.37	27.37
100%	-	+30	5530037.34	37.34
100%	-	+40	5530048.04	48.04
100%	-	+50	5530056.12	56.12
LOW	9.00	+20	5530055.80	55.8
HIGH	16.00	+20	5530055.02	55.02

OPERATING BAND:	UNII Band 3
OPERATING FREQUENCY:	5,775,000,000 Hz
CHANNEL:	155
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5775051.15	51.15
100%		-30	5775010.17	10.17
100%		-20	5775010.55	10.55
100%		-10	5775020.88	20.88
100%	14.40	0	5775020.92	20.92
100%		+10	5775025.65	25.65
100%		+30	5775038.43	38.43
100%		+40	5775048.43	48.43
100%		+50	5775051.72	51.72
LOW	9.00	+20	5775052.56	52.56
HIGH	16.00	+20	5775054.15	54.15

5 minutes after the EUT is energized

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	5,210,000,000 Hz
CHANNEL:	42
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5210052.24	52.24
100%		-30	5210009.76	9.76
100%		-20	5210013.45	13.45
100%		-10	5210015.19	15.19
100%	14.40	0	5210025.63	25.63
100%		+10	5210026.54	26.54
100%		+30	5210037.91	37.91
100%		+40	5210040.39	40.39
100%		+50	5210053.75	53.75
LOW	9.00	+20	5210055.82	55.82
HIGH	16.00	+20	5210054.25	54.25

Note:

OPERATING BAND:	UNII Band 2A
OPERATING FREQUENCY:	5,290,000,000 Hz
CHANNEL:	58
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5290054.17	54.17
100%		-30	5290009.80	9.80
100%		-20	5290014.22	14.22
100%		-10	5290018.03	18.03
100%	14.40	0	5290022.71	22.71
100%		+10	5290027.62	27.62
100%		+30	5290036.04	36.04
100%		+40	5290041.80	41.8
100%		+50	5290054.41	54.41
LOW	9.00	+20	5290051.83	51.83
HIGH	16.00	+20	5290051.78	51.78

OPERATING BAND:	UNII Band 2C
OPERATING FREQUENCY:	5,530,000,000 Hz
CHANNEL:	106
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5530052.82	52.82
100%		-30	5530006.43	6.43
100%		-20	5530013.58	13.58
100%		-10	5530016.05	16.05
100%	14.40	0	5530021.06	21.06
100%		+10	5530027.15	27.15
100%		+30	5530039.43	39.43
100%		+40	5530048.55	48.55
100%		+50	5530059.97	59.97
LOW	9.00	+20	5530054.21	54.21
HIGH	16.00	+20	5530054.55	54.55

OPERATING BAND:	UNII Band 3
OPERATING FREQUENCY:	5,775,000,000 Hz
CHANNEL:	155
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5775054.52	54.52
100%		-30	5775007.10	7.10
100%		-20	5775011.44	11.44
100%		-10	5775016.84	16.84
100%	14.40	0	5775025.16	25.16
100%		+10	5775028.09	28.09
100%		+30	5775036.47	36.47
100%		+40	5775045.43	45.43
100%		+50	5775055.29	55.29
LOW	9.00	+20	5775055.05	55.05
HIGH	16.00	+20	5775053.98	53.98

10 minutes after the EUT is energized

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	5,210,000,000 Hz
CHANNEL:	42
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5210050.57	50.57
100%		-30	5210009.95	9.95
100%		-20	5210015.66	15.66
100%		-10	5210015.77	15.77
100%	14.4	0	5210025.93	25.93
100%		+10	5210029.86	29.86
100%		+30	5210036.93	36.93
100%		+40	5210041.37	41.37
100%		+50	5210055.95	55.95
LOW	9.00	+20	5210054.82	54.82
HIGH	16.00	+20	5210053.68	53.68

Note:

OPERATING BAND:	UNII Band 2A
OPERATING FREQUENCY:	5,290,000,000 Hz
CHANNEL:	58
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5290051.62	51.62
100%		-30	5290005.97	5.97
100%		-20	5290015.97	15.97
100%		-10	5290016.08	16.08
100%	14.4	0	5290025.28	25.28
100%		+10	5290029.65	29.65
100%		+30	5290040.31	40.31
100%		+40	5290042.91	42.91
100%		+50	5290053.63	53.63
LOW	9.00	+20	5290055.93	55.93
HIGH	16.00	+20	5290053.45	53.45

OPERATING BAND:	UNII Band 2C
OPERATING FREQUENCY:	5,530,000,000 Hz
CHANNEL:	106
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5530052.72	52.72
100%		-30	5530006.98	6.98
100%		-20	5530014.60	14.6
100%		-10	5530019.91	19.91
100%	14.4	0	5530022.30	22.3
100%		+10	5530030.93	30.93
100%		+30	5530035.59	35.59
100%		+40	5530044.02	44.02
100%		+50	5530058.49	58.49
LOW	9.00	+20	5530051.41	51.41
HIGH	16.00	+20	5530052.14	52.14

OPERATING BAND:	UNII Band 3
OPERATING FREQUENCY:	5,775,000,000 Hz
CHANNEL:	155
REFERENCE VOLTAGE:	14.4 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(AC)	(°C)	(kHz)	Error (kHz)
100%		+20(Ref)	5775055.50	55.50
100%		-30	5775007.23	7.23
100%		-20	5775010.46	10.46
100%		-10	5775020.98	20.98
100%	14.4	0	5775024.36	24.36
100%		+10	5775025.17	25.17
100%		+30	5775035.25	35.25
100%		+40	5775048.78	48.78
100%		+50	5775055.58	55.58
LOW	9.00	+20	5775055.39	55.39
HIGH	16.00	+20	5775055.12	55.12

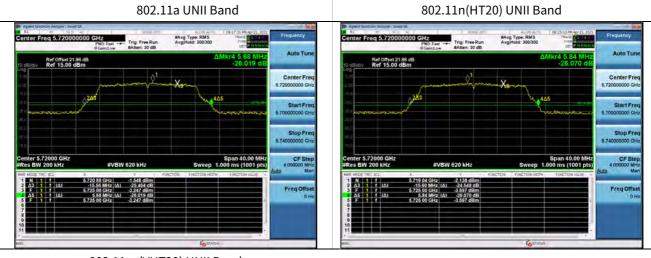
10.7 STRADDLE CHANNEL

10.7.1 26dB Bandwidth

Mode Band	Frequency		Measured	26dB		
	Frequency [MHz]	Channel	Frequency	Bandwidth		
		[MILZ]		[MHz]	[MHz]	
802.11a				5709.44	15.56	
802.11n(HT20)	UNII 2C	5720	144	5709.40	15.60	
802.11ac(VHT20)				5709.48	15.52	
802.11a				5730.68	5.68	
802.11n(HT20)	UNII 3	5720	144	5730.84	5.84	
802.11ac(VHT20)					5730.64	5.64

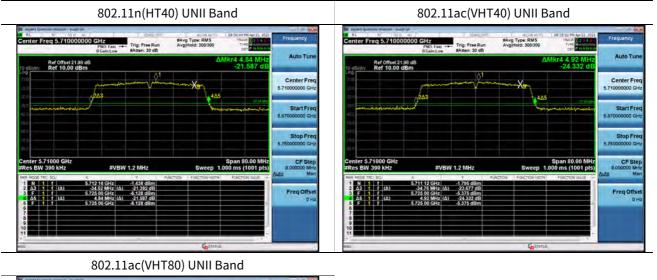
Mode Band	Fraguener		Measured	26dB	
	Frequency	Channel	Frequency	Bandwidth	
	[MHz]		[MHz]	[MHz]	
802.11n(HT40)		5710	140	5690.48	34.52
802.11ac(VHT40)	UNII 2C		5710	142	5690.24
802.11n(HT40)		5710	140	5729.84	4.84
802.11ac(VHT40)	UNII 3	5710	142	5729.92	4.92

Mode	Band	Frequency [MHz]	Channel	Measured Frequency [MHz]	26dB Bandwidth [MHz]
802.11ac(VHT80)	UNII 2C	5690	138	5649.44	75.56
	UNII 3	5690	138	5730.68	5.68


Note:

[UNII 2C] 26dB Bandwidth = 5725MHz - Measured Frequency[MHz] [UNII 3C] 26dB Bandwidth = Measured Frequency[MHz] -5725MHz

Test Plots (26dB Bandwidth)

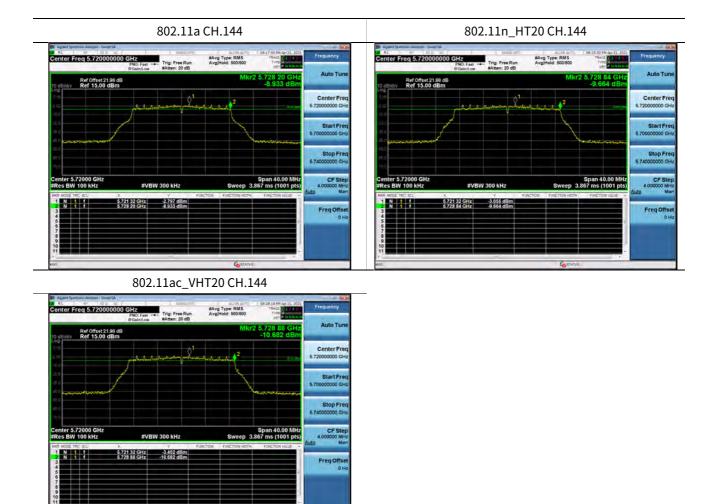

802.11ac(VHT20) UNII Band

Test Plots (26dB Bandwidth)

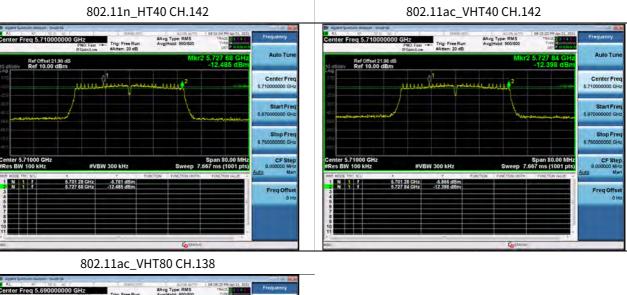
10.7.2 6dB Bandwidth

Mode	Band	Frequency [MHz]	Channel	Measured Frequency [MHz]	6dB Bandwidth [MHz]	Limit [MHz]
802.11a				5728.20	3.20	> 0.5
802.11n(HT20)	UNII 3	5720	144	5728.84	3.84	> 0.5
802.11ac(VHT20)				5728.88	3.88	> 0.5

Mode	Band	Frequency [MHz]	Channel	Measured Frequency [MHz]	6dB Bandwidth [MHz]	Limit [MHz]
802.11n(HT40)		5710	140	5727.68	2.68	> 0.5
802.11ac(VHT40)	UNII 3	5710	142	5727.84	2.84	> 0.5


Mode	Band	Frequency [MHz]	Channel	Measured Frequency [MHz]	6dB Bandwidth [MHz]	Limit [MHz]
802.11ac(VHT80)	UNII 3	5690	138	5727.80	2.80	> 0.5

Note:


6dB Bandwidth = Measured Frequency[MHz] – 5725MHz

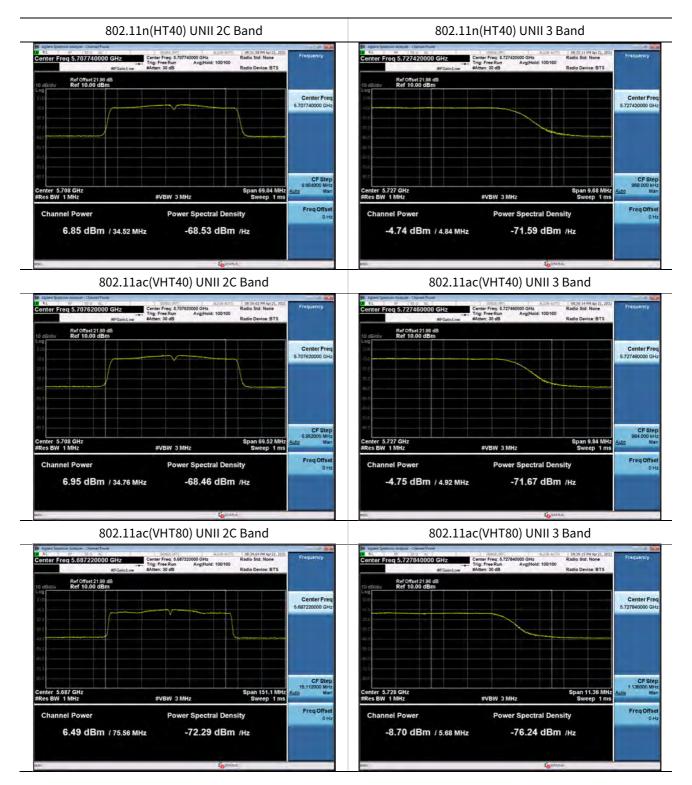
Test Plots(UNII 3 Band 6dB Bandwidth)

Center Freq 5.690	000000 GHz PNO: Fast - EGainLow	Trig: Free Run #Atten: 20 dB	#Avg Type: RMS Avg/Hold: 500/500	1 08:38:25 PH Apr21, 2(2) TRACE 1 2 3 8 TYPE A MANAGE DET 7 NOVALLA	Frequency
10 dB/div Ref Offset	21.98 dB 10 dBm		Mkr	2 5.727 80 GHz -14.949 dBm	Auto Tune
100 (10)	postant su	p Line pour		2	Center Free 5.690000000 GH
100 42.0 50.0				Wyener	Start Free 5,630000000 GH
60.0 c010 d0.0					Stop Free 5.750000000 GH
Center 5.69000 GH #Res BW 100 kHz	#VB	W 300 kHz		Span 120.0 MHz 1.53 ms (1001 pts)	CF Step 12.000000 MHz Auto Mar
MKR MODE TRE SCL 1 N 1 F 2 N 1 F 3 4 5	× 5.681 36 GHz 5.727 80 GHz	-14.949 dBm	UNCTION FUNCTION VIEDTH	EUNICTION VALUE	Freq Offse
6 7 8 9 10 11					
+ Isa JAlignment Comp	lesed.		Co STATUS	* .	

10.7.3 Output Power


Mode	Fraguanay		Measured	Duty Cycle	Total	Limit
	Frequency [MHz]	Channel	Power	Factor	Power	(dBm)
			(dBm)	(dB)	(dBm)	(автт)
802.11a	5720	144	7.18	0.306	7.49	22.92
802.11n(HT20)	5720		6.96	0.322	7.28	22.93
802.11ac(VHT20)	(UNII 2C Band)		7.01	0.315	7.33	22.91
802.11a	E720		0.03	0.306	0.34	30.00
802.11n(HT20)	5720	144	0.22	0.322	0.54	30.00
802.11ac(VHT20)	(UNII 3 Band)		0.37	0.315	0.68	30.00

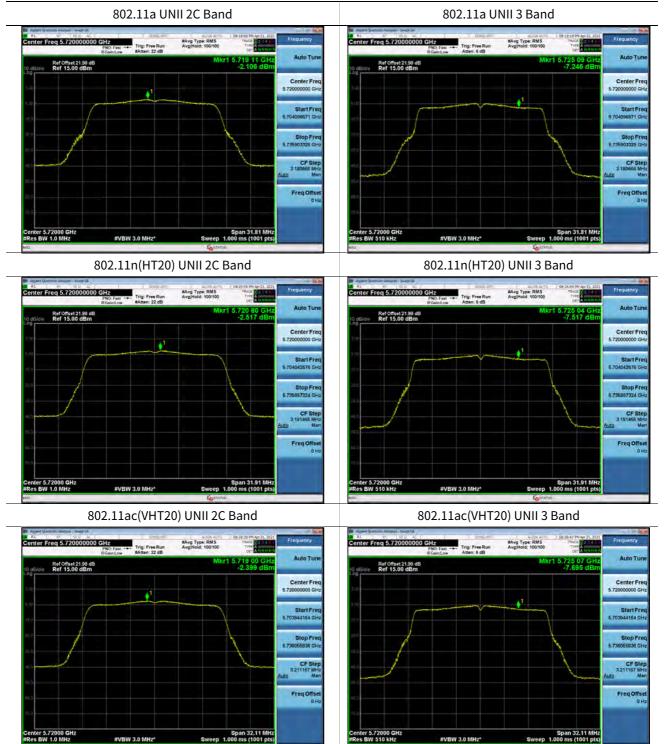
Mode	Frequency [MHz]	Channel	Measured Power (dBm)	Duty Cycle Factor (dB)	Total Power (dBm)	Limit (dBm)
802.11n(HT40)	5710		6.85	0.614	7.47	23.98
802.11ac(VHT40)	(UNII 2C	142	6.95	0.610	7.56	23.98
	Band)		0.55	0.010		23.30
802.11n(HT40)	5710	142	-4.74	0.614	-4.12	30.00
802.11ac(VHT40)	(UNII 3 Band)	142	-4.75	0.610	-4.14	30.00


Mode	Frequency [MHz]	Channel	Measured Power (dBm)	Duty Cycle Factor (dB)	Total Power (dBm)	Limit (dBm)
802.11ac(VHT80)	5690 (UNII 2C Band)	138	6.49	1.128	7.62	23.98
	5690 (UNII 3 Band)	138	-8.70	1.128	-7.57	30.00

Test Plots_

10.7.4 Power Spectral Density

	Frequency		Measured	Duty Cycle	Total	Limit
Mode		Channel	Density	Factor	PSD	
	[MHz]		(dBm)	(dB)	(dBm)	(dBm)
802.11a	- 5720 - (UNII 2C Band)	144	-2.106	0.306	-1.800	11dDm/
802.11n(HT20)			-2.517	0.322	-2.195	– 11dBm/ – MHz
802.11ac(VHT20)			-2.399	0.315	-2.084	МПZ
802.11a	5720		-7.246	0.306	-6.940	20 dDm
802.11n(HT20)		144	-7.517	0.322	-7.195	- 30 dBm
802.11ac(VHT20)	(UNII 3 Band)		-7.695	0.315	-7.380	/500kHz


Mode	Frequency [MHz]	Channel	Measured Density (dBm)	Duty Cycle Factor (dB)	Total PSD (dBm)	Limit (dBm)
802.11n(HT40)	5710		-5.859	0.614	-5.245	11dDm/
802.11ac(VHT40)	(UNII 2C Band)	142	-6.019	0.610	-5.409	11dBm/ MHz
802.11n(HT40)	5710	140	-12.227	0.614	-11.613	30 dBm/
802.11ac(VHT40)	(UNII 3 Band)	142	-12.026	0.610	-11.416	500kHz

Mode	Frequency [MHz]	Channel	Measured Density (dBm)	Duty Cycle Factor (dB)	Total PSD (dBm)	Limit (dBm)
802.11ac(VHT80)	5690 (UNII 2C Band)	138	-9.552	1.128	-8.424	11dBm/ MHz
	5690 (UNII 3 Band)	138	-15.671	1.128	-14.543	30 dBm/ 500kHz

Test Plots_

enter 5.69000 GHz Res BW 510 kHz

#VBW 3.0 MH

Span 121.3 MHz 1.000 ms (1001 pts

Center 5.69000 GH: #Res BW 1.0 MHz

W 3.0 MH

Span 121.3 MHz 000 ms (1001 pts)

10.8 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode

Frequency Range : Above 1 GHz

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10360	52.59	0.24	V	52.83	68.20	15.37	PK
15540	53.85	2.16	V	56.01	73.98	17.97	PK
15540	37.88	2.16	V	40.04	53.98	13.94	AV
10360	52.22	0.24	Н	52.46	68.20	15.74	PK
15540	54.28	2.16	Н	56.44	73.98	17.54	PK
15540	38.13	2.16	Н	40.29	53.98	13.69	AV

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5200 MHz
Channel No.	40 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10400	51.73	0.74	V	52.47	68.20	15.73	PK
15600	54.12	1.81	V	55.93	73.98	18.05	PK
15600	37.77	1.81	V	39.58	53.98	14.40	AV
10400	51.25	0.74	Н	51.99	68.20	16.21	PK
15600	54.43	1.81	Н	56.24	73.98	17.74	PK
15600	38.18	1.81	Н	39.99	53.98	13.99	AV

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5240 MHz
Channel No.	48 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10480	52.06	-0.25	V	51.81	68.20	16.39	PK
15720	53.95	1.16	V	55.11	73.98	18.87	PK
15720	37.54	1.16	V	38.70	53.98	15.28	AV
10480	51.58	-0.25	Н	51.33	68.20	16.87	PK
15720	54.65	1.16	Н	55.81	73.98	18.17	PK
15720	37.65	1.16	Н	38.81	53.98	15.17	AV

Band :	UNII 2A
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5260 MHz
Channel No.	52 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10520	52.67	-0.20	V	52.47	68.20	15.73	PK
15780	52.85	1.20	V	54.05	73.98	19.93	PK
15780	37.18	1.20	V	38.38	53.98	15.60	AV
10520	52.55	-0.20	Н	52.35	68.20	15.85	PK
15780	53.76	1.20	Н	54.96	73.98	19.02	PK
15780	37.22	1.20	Н	38.42	53.98	15.56	AV

Band :	UNII 2A
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5300 MHz
Channel No.	60 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10600	52.31	0.10	V	52.41	73.98	21.57	PK
10600	39.36	0.10	V	39.46	53.98	14.52	AV
15900	48.91	1.04	V	49.95	73.98	24.03	PK
15900	36.42	1.04	V	37.46	53.98	16.52	AV
10600	51.51	0.10	Н	51.61	73.98	22.37	PK
10600	38.68	0.10	Н	38.78	53.98	15.20	AV
15900	51.12	1.04	Н	52.16	73.98	21.82	PK
15900	37.22	1.04	Н	38.26	53.98	15.72	AV

Band :	UNII 2A
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5320 MHz
Channel No.	64 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10640	51.76	0.35	V	52.11	73.98	21.87	PK
10640	41.05	0.35	V	41.40	53.98	12.58	AV
15960	52.02	1.12	V	53.14	73.98	20.84	PK
15960	36.12	1.12	V	37.24	53.98	16.74	AV
10640	51.41	0.35	Н	51.76	73.98	22.22	PK
10640	39.19	0.35	Н	39.54	53.98	14.44	AV
15960	52.31	1.12	Н	53.43	73.98	20.55	PK
15960	36.64	1.12	Н	37.76	53.98	16.22	AV

Band :	UNII 2C
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5500 MHz
Channel No.	100 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11000	51.99	0.40	V	52.39	73.98	21.59	PK
11000	39.48	0.40	V	39.88	53.98	14.10	AV
16500	50.52	1.16	V	51.68	68.20	16.52	PK
11000	52.21	0.40	Н	52.61	73.98	21.37	PK
11000	39.86	0.40	Н	40.26	53.98	13.72	AV
16500	50.92	1.16	Н	52.08	68.20	16.12	PK

Band :	UNII 2C
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5580 MHz
Channel No.	116 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11160	51.51	-0.26	V	51.25	73.98	22.73	PK
11160	38.64	-0.26	V	38.38	53.98	15.60	AV
16740	53.85	1.16	V	55.01	68.20	13.19	PK
11160	51.28	-0.26	Н	51.02	73.98	22.96	PK
11160	38.55	-0.26	Н	38.29	53.98	15.69	AV
16740	54.62	1.16	Н	55.78	68.20	12.42	PK

Band :	UNII 2C
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5720 MHz
Channel No.	144 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11440	51.85	0.14	V	51.99	73.98	21.99	РК
11440	40.95	0.14	V	41.09	53.98	12.89	AV
17160	50.28	1.35	V	51.63	68.20	16.57	РК
11440	51.95	0.14	Н	52.09	73.98	21.89	РК
11440	41.22	0.14	Н	41.36	53.98	12.62	AV
17160	54.70	1.35	Н	56.05	68.20	12.15	PK

UNII 3
802.11 a
6 Mbps
5745MHz
149 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11490	51.69	-0.14	V	51.55	73.98	22.43	PK
11490	39.51	-0.14	V	39.37	53.98	14.61	AV
17235	54.23	1.61	V	55.84	68.20	12.36	PK
11490	51.75	-0.14	Н	51.61	73.98	22.37	PK
11490	39.56	-0.14	Н	39.42	53.98	14.56	AV
17235	55.32	1.61	Н	56.93	68.20	11.27	PK

Band :	UNII 3
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5785 MHz
Channel No.	157 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11570	51.82	0.07	V	51.89	73.98	22.09	PK
11570	39.56	0.07	V	39.63	53.98	14.35	AV
17355	53.52	1.69	V	55.21	68.20	12.99	PK
11570	52.05	0.07	Н	52.12	73.98	21.86	PK
11570	41.26	0.07	Н	41.33	53.98	12.65	AV
17355	55.94	1.69	Н	57.63	68.20	10.57	PK

Band :	UNII 3
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5825 MHz
Channel No.	165 Ch

Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
11650	51.52	-0.70	V	50.82	73.98	23.16	PK
11650	40.81	-0.70	V	40.11	53.98	13.87	AV
17475	54.32	2.65	V	56.97	68.20	11.23	PK
11650	52.96	-0.70	Н	52.26	73.98	21.72	PK
11650	41.47	-0.70	Н	40.77	53.98	13.21	AV
17475	54.42	2.65	Н	57.07	68.20	11.13	PK

All Modes of operation were investigated and the worst case configuration results are reported.

[Worst case]

- Worstcase : UNII 1, 2A, 2C, 3 : 802.11a

Test Plots

Spectrum	Spectrum	2 🕱		
Ref Level 87 Att Count 200/200		4 ms WBW 3 MHz		
1Pk Viewe2Pk	Clrw			
80 dBµV			M1[1]	55.94 dBµV 17.3501520 GH
70 dBµV				
60 dBµV		a fata de		
50 dBUV	and some all	prover superstances and the	and a superior and the star	Inter Marine Manhar Marine marries
460 <u>46666471110</u> зо авµv—		สนะใช้เป็นมาห _{ลา} แ _{หม่} ก็หากๆ บาง	phillipping and a second s	ungeneralitation of the database
20 dBµV				
10 dBµV				
) dBµV				

Note:

Only the worst case plots for Radiated Spurious Emissions.

F-TP22-03 (Rev. 03)

10.9 RADIATED RESTRICTED BAND EDGE

Band :	UNII 1		
Operation Mode:	802.11 a		
Transfer Rate:	6 Mbps		
Operating Frequency	5180 MHz		
Channel No.	36 Ch		

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	45.85	6.72	Н	52.57	73.98	21.41	РК
5150	35.41	6.72	Н	42.13	53.98	11.85	AV
5150	43.14	6.72	V	49.86	73.98	24.12	РК
5150	32.55	6.72	V	39.27	53.98	14.71	AV

Band :	UNII 2A
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5320 MHz
Channel No.	64 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	45.38	7.24	Н	52.62	73.98	21.36	PK
5350	33.49	7.24	Н	40.73	53.98	13.25	AV
5350	49.85	7.24	V	57.09	73.98	16.89	РК
5350	36.88	7.24	V	44.12	53.98	9.86	AV

UNII 2C		
802.11 a		
6 Mbps		
5500 MHz		
100 Ch		

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	43.46	7.90	Н	51.36	73.98	22.62	PK
5460	32.55	7.90	Н	40.45	53.98	13.53	AV
5470	45.25	8.24	Н	53.49	68.20	14.71	PK
5460	45.33	7.90	V	53.23	73.98	20.75	PK
5460	33.67	7.90	V	41.57	53.98	12.41	AV
5470	47.62	8.24	V	55.86	68.20	12.34	PK

Band :	UNII 1	
Operation Mode:	802.11 n_HT20	
Transfer MCS Index:	0	
Operating Frequency	5180 MHz	
Channel No.	36 Ch	

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	46.78	6.72	Н	53.50	73.98	20.48	PK
5150	35.22	6.72	Н	41.94	53.98	12.04	AV
5150	45.12	6.72	V	51.84	73.98	22.14	PK
5150	32.15	6.72	V	38.87	53.98	15.11	AV

Band :	UNII 2A
Operation Mode:	802.11 n_HT20
Transfer MCS Index:	0
Operating Frequency	5320 MHz
Channel No.	64 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	48.12	7.24	Н	55.36	73.98	18.62	PK
5350	36.21	7.24	Н	43.45	53.98	10.53	AV
5350	49.58	7.24	V	56.82	73.98	17.16	РК
5350	37.08	7.24	V	44.32	53.98	9.66	AV

Band :	UNII 2C
Operation Mode:	802.11 n_HT20
Transfer MCS Index:	0
Operating Frequency	5500 MHz
Channel No.	100 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	43.25	7.90	Н	51.15	73.98	22.83	PK
5460	32.45	7.90	Н	40.35	53.98	13.63	AV
5470	46.85	8.24	Н	55.09	68.20	13.11	PK
5460	45.98	7.90	V	53.88	73.98	20.10	PK
5460	34.12	7.90	V	42.02	53.98	11.96	AV
5470	47.77	8.24	V	56.01	68.20	12.19	PK

Report No. HCT-RF-2105-FI008-R1

Band :	UNII 1
Operation Mode:	802.11 ac_VHT20
Transfer MCS Index:	0
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	47.02	6.72	Н	53.74	73.98	20.24	PK
5150	35.37	6.72	Н	42.09	53.98	11.89	AV
5150	45.01	6.72	V	51.73	73.98	22.25	PK
5150	32.22	6.72	V	38.94	53.98	15.04	AV

Band :	UNII 2A
Operation Mode:	802.11 ac_VHT20
Transfer MCS Index:	0
Operating Frequency	5320 MHz
Channel No.	64 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	48.12	7.24	Н	55.36	73.98	18.62	PK
5350	35.98	7.24	Н	43.22	53.98	10.76	AV
5350	49.66	7.24	V	56.9	73.98	17.08	PK
5350	37.00	7.24	V	44.24	53.98	9.74	AV

Band :	UNII 2C
Operation Mode:	802.11 ac_VHT20
Transfer MCS Index:	0
Operating Frequency	5500 MHz
Channel No.	100 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	45.55	7.90	Н	53.45	73.98	20.53	PK
5460	31.33	7.90	Н	39.23	53.98	14.75	AV
5470	45.78	8.24	Н	54.02	68.20	14.18	PK
5460	46.45	7.90	V	54.35	73.98	19.63	PK
5460	34.16	7.90	V	42.06	53.98	11.92	AV
5470	48.87	8.24	V	57.11	68.20	11.09	PK

Band :	UNII 1
Operation Mode:	802.11 n_HT40
Transfer MCS Index:	0
Operating Frequency	5190 MHz
Channel No.	38 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	45.22	6.72	Н	51.94	73.98	22.04	PK
5150	33.54	6.72	Н	40.26	53.98	13.72	AV
5150	43.88	6.72	V	50.6	73.98	23.38	PK
5150	31.25	6.72	V	37.97	53.98	16.01	AV

Band :	UNII 1
Operation Mode:	802.11 n_HT40
Transfer MCS Index:	0
Operating Frequency	5310 MHz
Channel No.	62 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	52.48	7.24	Н	59.72	73.98	14.26	РК
5350	36.58	7.24	Н	43.82	53.98	10.16	AV
5350	53.02	7.24	V	60.26	73.98	13.72	РК
5350	37.62	7.24	V	44.86	53.98	9.12	AV

Band :	UNII 2C
Operation Mode:	802.11 n_HT40
Transfer MCS Index:	0
Operating Frequency	5510 MHz
Channel No.	102 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	43.58	7.90	Н	51.48	73.98	22.50	PK
5460	32.58	7.90	Н	40.48	53.98	13.50	AV
5470	50.25	8.24	Н	58.49	68.20	9.71	PK
5460	45.12	7.90	V	53.02	73.98	20.96	PK
5460	33.60	7.90	V	41.50	53.98	12.48	AV
5470	50.82	8.24	V	59.06	68.20	9.14	PK

Band :	UNII 1
Operation Mode:	802.11 ac_VHT40
Transfer MCS Index:	0
Operating Frequency	5190 MHz
Channel No.	38 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	45.14	6.72	Н	51.86	73.98	22.12	PK
5150	33.42	6.72	Н	40.14	53.98	13.84	AV
5150	43.32	6.72	V	50.04	73.98	23.94	PK
5150	30.12	6.72	V	36.84	53.98	17.14	AV

Band :	UNII 1
Operation Mode:	802.11 ac_VHT40
Transfer MCS Index:	0
Operating Frequency	5310 MHz
Channel No.	62 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	51.25	7.24	Н	58.49	73.98	15.49	РК
5350	36.24	7.24	Н	43.48	53.98	10.50	AV
5350	52.63	7.24	V	59.87	73.98	14.11	РК
5350	37.38	7.24	V	44.62	53.98	9.36	AV

Band :	UNII 2C
Operation Mode:	802.11 ac_VHT40
Transfer MCS Index:	0
Operating Frequency	5510 MHz
Channel No.	102 Ch

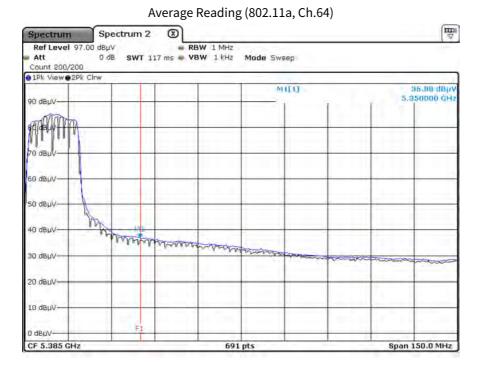
Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	45.12	7.90	Н	53.02	73.98	20.96	PK
5460	32.55	7.90	Н	40.45	53.98	13.53	AV
5470	49.22	8.24	Н	57.46	68.20	10.74	PK
5460	46.02	7.90	V	53.92	73.98	20.06	PK
5460	33.25	7.90	V	41.15	53.98	12.83	AV
5470	49.78	8.24	V	58.02	68.20	10.18	PK

Band :	UNII 1		
Operation Mode:	802.11 ac_VHT80		
Transfer MCS Index:	0		
Operating Frequency	5210 MHz		
Channel No.	42 Ch		

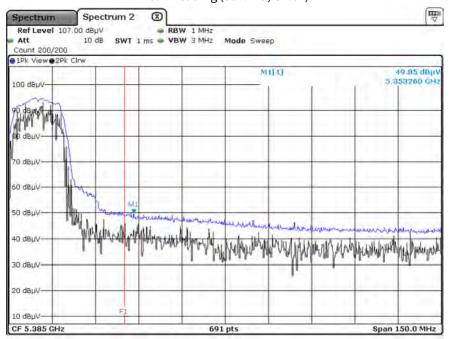
Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5150	45.12	6.72	Н	51.84	73.98	22.14	PK
5150	34.93	6.72	Н	41.65	53.98	12.33	AV
5150	43.25	6.72	V	49.97	73.98	24.01	PK
5150	33.12	6.72	V	39.84	53.98	14.14	AV

Band :	UNII 2A
Operation Mode:	802.11 ac_VHT80
Transfer MCS Index:	0
Operating Frequency	5290 MHz
Channel No.	58 Ch

Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5350	48.85	7.24	Н	56.09	73.98	17.89	PK
5350	36.78	7.24	Н	44.02	53.98	9.96	AV
5350	51.11	7.24	V	58.35	73.98	15.63	РК
5350	38.34	7.24	V	45.58	53.98	8.40	AV

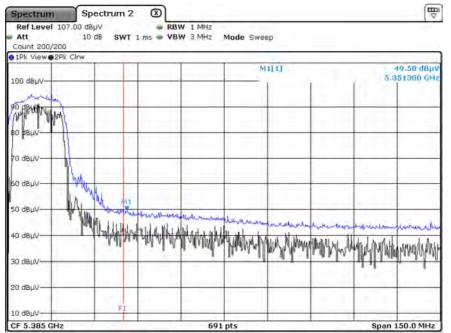


Band :	UNII 2C		
Operation Mode:	802.11 ac_VHT80		
Transfer MCS Index:	0		
Operating Frequency	5530 MHz		
Channel No.	106 Ch		


Frequency	Reading	CL+AF+DF-AG+ATT	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
5460	46.55	7.90	Н	54.45	73.98	19.53	PK
5460	34.85	7.90	Н	42.75	53.98	11.23	AV
5470	50.11	8.24	Н	58.35	68.20	9.85	PK
5460	47.36	7.90	V	55.26	73.98	18.72	PK
5460	35.56	7.90	V	43.46	53.98	10.52	AV
5470	50.27	8.24	V	58.51	68.20	9.69	PK

Test Plots(UNII 1, 2A, 2C)(X-H)

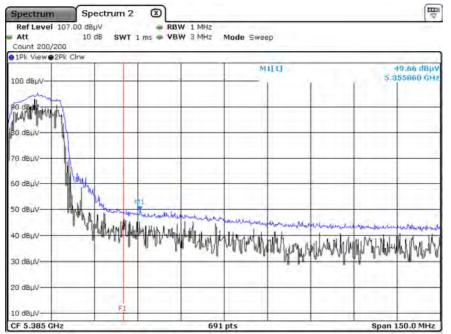
Peak Reading (802.11a, Ch.64)



Average Reading (802.11 n_HT20, Ch.64)

Spectrum	Spectrum 2 🛞				
Ref Level 107.00 Att Count 200/200	10 dB SWT 117 ms	RBW 1 MHz VBW 1 kHz	Mode Sweep		
1Pk View@2Pk Clr	w		1.00		
100 dBµV			MILI		37.08 dBpy 5.350220 GH
90.dBµV					
TO BENATION					
treast skill					
70 dBpV				+ +	
60 dBµV		-		-	
50 dBµV		-		-	_
40 dBµV	Margaran	-			
no douar	AND	annound and			
io dBµV					
20 dBµV	_				
10 dBuV-	F1				
CF 5.385 GHz		691 p	ts	1	Span 150.0 MHz

Average Reading (802.11 n_HT20, Ch.64)



Average Reading (802.11 ac_VHT20, Ch.64)

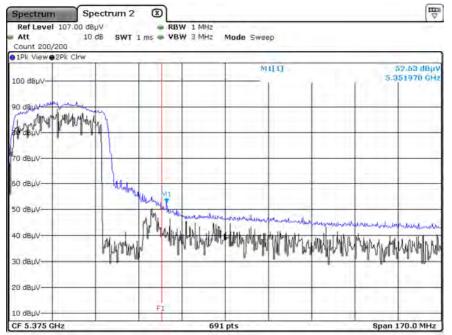
and the second se	ctrum 2 🛞				
Ref Level 107.00 dBµ Att 10 d Count 200/200	B SWT 117 ms	RBW 1 MHz VBW 1 kHz Mo	de Sweep		
1Pk Viewe2Pk Clrw		-			1
100 dBµV			MI[1]		00 dBµV
90 dBµV-					
Rom					
THE REAL AND A DECEMPTION AND A DECEMPTI					
0 dBµV					
iū dBµV					
50 dBµV-					
Too					
to dama	manu	1 1			
and and a	and have be	alla hanner and	manne		Changed Los
10.dBµV		to any account account			
20 dBµV					
10 0000					
LO dBUV	F1				
CF 5.385 GHz		691 pts		Snan 15	0.0 MHz

Peak Reading (802.11 ac_VHT20, Ch.64)

Average Reading (802.11 n_HT40, Ch.62)

and the second se	pectrum 2 🛞				
Ref Level 107.00 d Att 11 Count 200/200	ВµV 0 dB SWT 66.3 m s	RBW 1 MHz VBW 2 kHz Mo	de Sweep		
1Pk View@2Pk Clrw					
			MILLI	5	37.62 dBp .350000 GH
100 dBµV			1 1	1	
90.dBµV			_		-
BO dBUMAANAAAAA	nna				
70 586V					
HERE IN THE		1			i
а нери					-
50 dBuV					
		1			
40 dBµV	man		_		-
no do Ar	a www	and all and a second	and an and and and and and and and and a	some wander	man
30 dBµV			and		
20 dBµV					-
10 dBuV	F1				
CF 5.375 GHz		691 pts		Spar	n 170.0 MHz

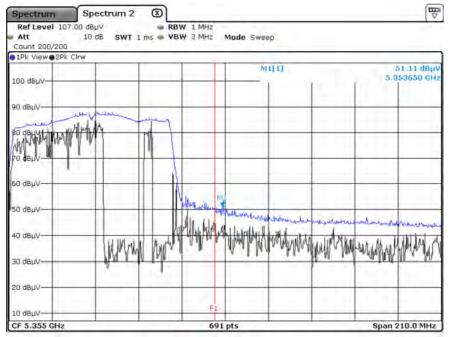
Peak Reading (802.11 n_HT40, Ch.62)


Spectrum Sp	ectrum 2 🛞						
Ref Level 107.00 de Att 10 Count 200/200	dB SWT 1 ms 🖷	RBW 1 MHz VBW 3 MHz	Mode Swee	q			
1Pk Viewe2Pk Clrw							
			M	10			53.02 dBµ 52420 GH
100 dBµV-				()	1	0.0	02420 011
and and							
90 dBurn mar	1						
MARTIN Y	hull)						
						1.11	
i deuv							
50 dBµV	the.				-		
	Mary M	A1				1.1.2.2.1	
50 dBµV	had	thennewer	1				
5	MANNAU.	ld Nu	and a state of the second	mound	matakuman	way and a second	Manuallina
40 dBμV	1.1.1	MARCH MAL	White a stall	AL AND AND A	La Mill all	with hits	he de
and the second se		and a self	Waltenheyly a	M . M.	As IN And	WWW IN Much	In William
30 dBµV							1.
20 dBµV							
20.0010						1.7.6.1	
10 dBuV	F1						
CF 5.375 GHz		69	pts	-		Span 1	170.0 MHz

Average Reading (802.11 ac_VHT40, Ch.62)

and the second se	trum 2 🛞				
Ref Level 107.00 dBμV Att 10 dB Count 200/200 10 dB		BW 1 MHz BW 2 kHz Mode	Sweep		
1Pk Viewe2Pk Clrw					-
100 dBµV-			MIII	5	37.38 dBµV .350000 GH
90 dBµV					
BO dBUYON MANA	à				-
toi deuv					
					_
O GRAV					
50 dвµV			-		-
40 dBµV	hanner		_		-
2.0	Man Martin	monter	morenew	and a second and a second	man
30 dBµV					
20 dBµV-			-		-
10 dBµV	F1				
CF 5.375 GHz		691 pts		Spar	n 170.0 MHz

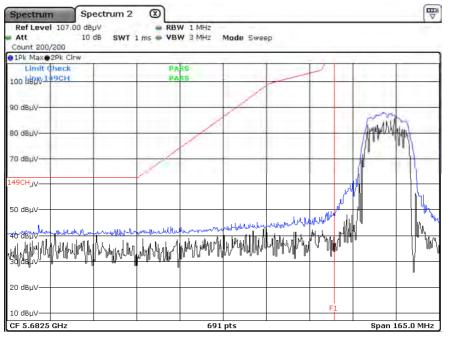
Peak Reading (802.11 ac_VHT40, Ch.62)



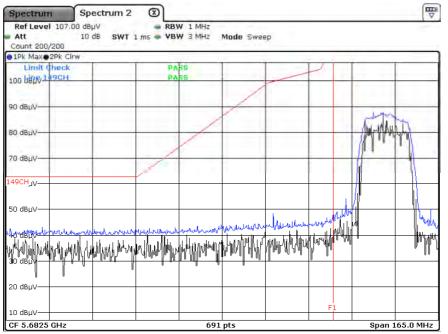
Average Reading (802.11 ac_VHT80, Ch.58)

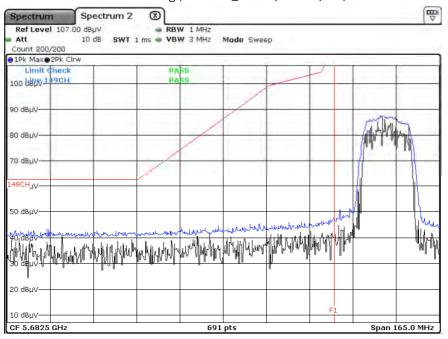
	ectrum 2 🛞						
Ref Level 107.00 dB Att 10 Count 200/200		RBW 1 MH VBW 3 kH		weep			
1Pk Viewe2Pk Clrw							
100 d8µV		-	•	un	4		38.34 dBµ 350610 GH
P							
90 dBµV				-	-		
BO dBUV	17.00		-	-	-		
TAUMANAN	Instant Balak interaction						
elesión 11			-	-	-	-	-
	1°00.07		· · · · · ·				_
0 93 14 1	1 -1. Helle tall -1			-	-		-
	A DARIE D					1 1 1 1	
50 dBuV							
in Jack		M					
to dBµV		MMANNA	Martin			immonthation	
30 dвµV		a ho allow		unternarya	Minumana	amannaharty	active marine
ο υμγ-						1 1 7 1	
20 dBµV							
o oopy							
LO dBUV		FI					
CF 5.355 GHz			1 pts			1	210.0 MHz

Peak Reading (802.11 ac_VHT80, Ch.58)

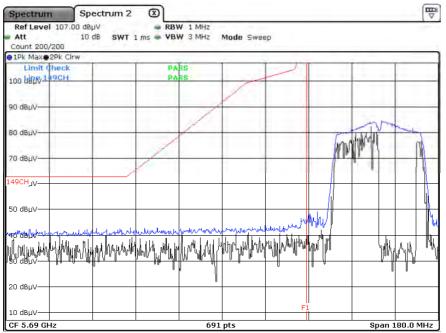


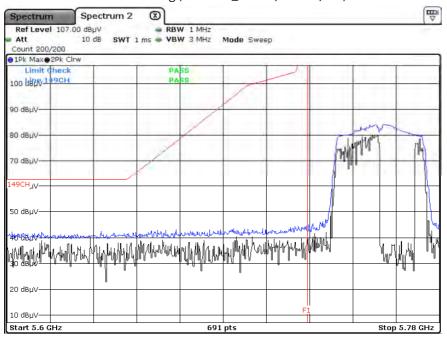
Note:


Only the worst case plots for Radiated Restricted Band Edge.


Peak Reading (802.11a, Ch.149, X-V)

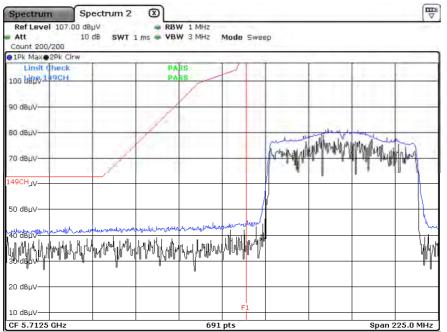
Peak Reading (802.11n_HT20, Ch.149, X-V)

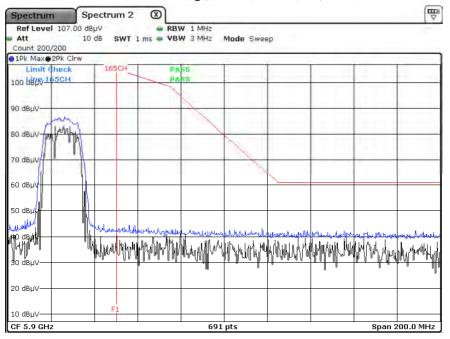




Peak Reading (802.11ac_VHT20, Ch.149, X-V)

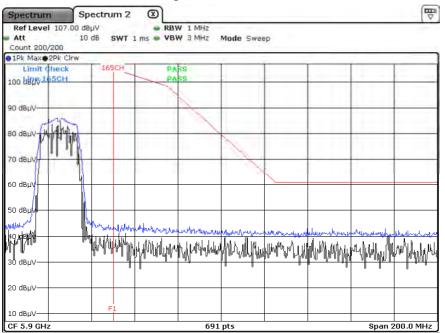
Peak Reading (802.11n_HT40, Ch.151, X-V)

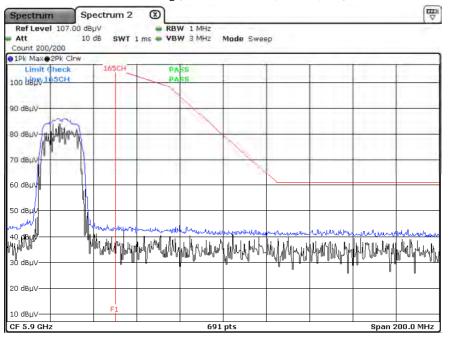




Peak Reading (802.11ac_VHT40, Ch.151, X-V)

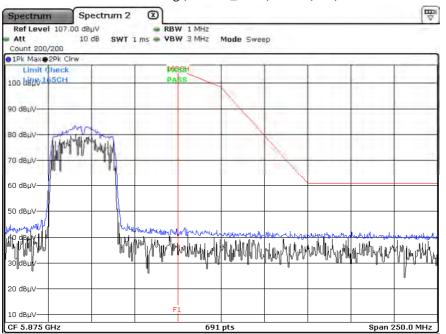
Peak Reading (802.11ac_VHT80, Ch.155, X-V)

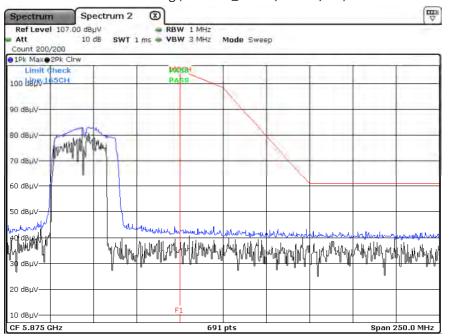




Peak Reading (802.11a, Ch.165, X-V)

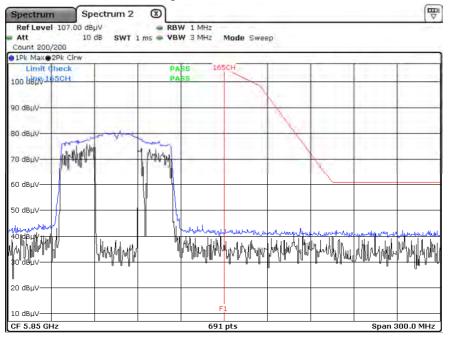
Peak Reading (802.11n_HT20, Ch.165, X-V)





Peak Reading (802.11ac_VHT20, Ch.165, X-V)

Peak Reading (802.11n_HT40, Ch.159, X-V)



Peak Reading (802.11ac_VHT40, Ch.159, X-V)

Peak Reading (802.11ac_VHT80, Ch.155, X-V)

Note :

- 1. Only the worst case plots for U-NII-3 Out of Band e.i.r.p Emission.
- 2. U-NII-3 Low & High Band Edge RedLine is Final Test Limit about factor value compensation.

10.10 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

11. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/04/2020	Annual	102245
Rohde & Schwarz	ESR / EMI Test Receiver	09/16/2020	Annual	101910
ESPAC	SU-642 /Temperature Chamber	03/15/2021	Annual	0093008124
Agilent	N9030A / Signal Analyzer	01/11/2021	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/02/2020	Annual	101231
Agilent	N1911A / Power Meter	04/08/2021	Annual	MY45100523
Keysight	N1921A / Power Sensor	04/08/2021	Annual	MY57820067
Agilent	87300B / Directional Coupler	11/10/2020	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	02/09/2021	Annual	10545
Hewlett Packard	E3632A / DC Power Supply	06/12/2020	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	06/26/2020	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated lest				
Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	05/18/2020	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	02/22/2021	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	02/17/2021	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	07/28/2020	Annual	102168
Agilent	N9030A / Signal Analyzer	01/11/2021	Annual	MY49431210
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	01/06/2021	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/08/2021	Annual	1
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	02/03/2021	Annual	8
Wainwright Instruments	WHKX8-6090-7000-18000-40SS/ High Pass Filter	02/03/2021	Annual	25
Api tech.	18B-03 / Attenuator (3 dB)	02/03/2021	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	02/03/2021	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	02/03/2021	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	02/03/2021	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	12/04/2020	Annual	22966
CERNEX	CBL26405040 / Power Amplifier 03/23/2021 Annual		25956	

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description		
1	HCT-RF-2105-FI008-P		