

TEST REPORT

FCC/ISED BT Test for VT250TWAN&VT250GYKN Certification

APPLICANT HYUNDAI MOBIS CO., LTD.

REPORT NO. HCT-RF-2103-FC002

DATE OF ISSUE March 4, 2021

> Tested by Sang Hoon Lee

もく

Technical Manager Jong Seok Lee

HCT CO., LTD. Soo Chan Lee SooChan Lee / CEO

HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

F-TP22-03(Rev.03)

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC/ISED BT Test for VT250TWAN& VT250GYKN	REPORT NO. HCT-RF-2103-FC002 DATE OF ISSUE March 04, 2021 Additional Model FCC : VT250JWAN, VT251JWAN, VT260TWAN, VT260JWAN, VT261JWAN, VT261TWAN, VT262JWAN, VT263JWAN ISED: VT250JWKN, VT251JWKN, VT260GYKN, VT260JWKN, VT261JWKN, VT261GYKN, VT262JWKN, VT263JWKN
Applicant	HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea
Eut Type	Car Audio System
FCC Model Name	VT250TWAN
ISED Model Name	VT250GYKN
FCC ID	TQ8-VT250TWAN
IC	5074A-VT250GYKN
Max. RF Output Power	2.550 dBm (1.80 mW)
FCC Classification	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s)	Part 15 subpart C 15.247
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 1 (March 2019)
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	March 04, 2021	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

Report No. HCT-RF-2103-FC002

CONTENTS

1. EUT DESCRIPTION	5
2. Requirements for Bluetooth transmitter(15.247)	6
3. TEST METHODOLOGY	7
EUT CONFIGURATION	7
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	8
4. INSTRUMENT CALIBRATION	8
5. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
6. ANTENNA REQUIREMENTS	9
7. MEASUREMENT UNCERTAINTY	10
8. DESCRIPTION OF TESTS	11
9. SUMMARY OF TEST RESULTS	33
10. TEST RESULT	34
10.1 PEAK POWER	34
10.2 BAND EDGES	40
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	47
10.4 NUMBER OF HOPPING FREQUENCY	55
10.5 TIME OF OCCUPANCY (DWELL TIME)	59
10.6 SPURIOUS EMISSIONS	65
10.6.1 CONDUCTED SPURIOUS EMISSIONS	65
10.6.2 RADIATED SPURIOUS EMISSIONS	73
10.6.3 RADIATED RESTRICTED BAND EDGES	79
10.7 RECEIVER SPURIOUS EMISSIONS	83
11. LIST OF TEST EQUIPMENT	84
12. ANNEX A_TEST SETUP PHOTO	86

1. EUT DESCRIPTION

FCC Model	VT250TWAN
ISED Model	VT250GYKN
FCC Additional Model	VT250JWAN, VT251JWAN, VT260TWAN, VT260JWAN, VT261JWAN, VT261TWAN, VT262JWAN, VT263JWAN
ISED Additional Model	VT250JWKN, VT251JWKN, VT260GYKN, VT260JWKN, VT261JWKN, VT261GYKN, VT262JWKN, VT263JWKN
EUT Type	Car Audio System
Power Supply	DC 14.4 V
Frequency Range	2 402 MHz – 2 480 MHz
Max. RF Output Power	2.550 dBm (1.80 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), $\pi/4DQPSK$ and $8DPSK(EDR)$
Modulation Technique	FHSS
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: Single Bands Bluetooth ANT Peak Gain : -0.38 dBi
Date(s) of Tests	February 01, 2021 ~ February 28, 2021
PMN (Product Marketing Number)	VT250GYKN, VT250JWKN, VT251JWKN, VT260GYKN, VT260JWKN, VT261JWKN, VT261GYKN, VT262JWKN, VT263JWKN
HVIN (Hardware Version Identification Number)	VT250GYKN, VT250JWKN, VT251JWKN, VT260GYKN, VT260JWKN, VT261JWKN, VT261GYKN, VT262JWKN, VT263JWKN
FVIN (Firmware Version Identification Number)	NQ5.USA.0000.V038.001.201222
HMN (Host Marketing Name)	N/A
EUT serial numbers	Conducted : 96560-DW000 (FCC), 96560-P1030 (ISED) Radiated : 96560-DW000 (FCC), 96560-P1030 (ISED)

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
 - 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

• RSS-247 5.1 (a): The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and sh

all shift frequencies in synchronization with the transmitted signals.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the RSS-GEN issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

According to RSS-GEN(Issue 5) Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested..

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

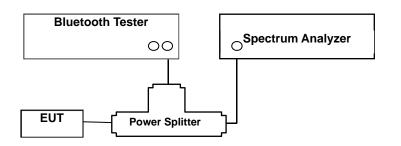
ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

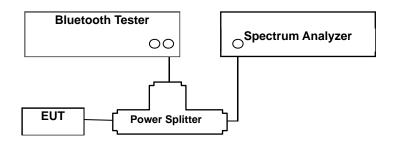
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW \geq RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

Limit

According to § 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

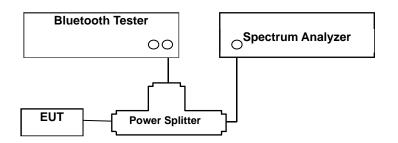
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

Limit

According to § 15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

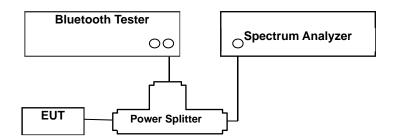
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1% to 5% of the OBW.
- 3) VBW \geq 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

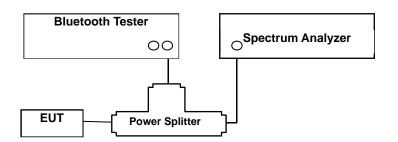
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- 2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)

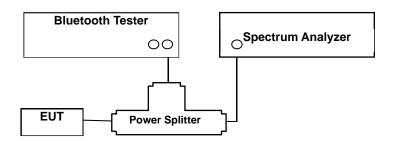
(2) AFH Mode

- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π /4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance.


Each tx-time per appearance of DH5 is 2.890 ms. Dwell time = Tx-time x 106.667 = 308.27 (ms)

8.6. Conducted Spurious Emissions

Limit Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

Report No. HCT-RF-2103-FC002

Factors for frequency

Freq(MHz)	Factor(dB)
30	26.63
100	26.71
200	26.80
300	26.91
400	26.97
500	26.99
600	26.99
700	27.03
800	27.06
900	27.10
1000	27.13
2000	27.42
2400	27.52
2480	27.54
2500	27.54
3000	27.64
4000	27.82
5000	28.01
5150	28.03
5850	28.10
6000	28.10
7000	28.26
8000	28.38
9000	28.51
10000	28.64
11000	28.73
12000	28.89
13000	29.06
14000	29.01
15000	29.08
16000	29.14
17000	29.21
18000	29.32
19000	29.37
20000	29.47
21000	29.80
22000	29.84
23000	30.04
24000	29.91
25000	30.03
26000	30.04

Note :

1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss(20 dB) + Cable loss(2 EA) + Splitter loss(6 dB) + EUT Cable(For Conducted)

8.7. Radiated Test

<u>Limit</u>

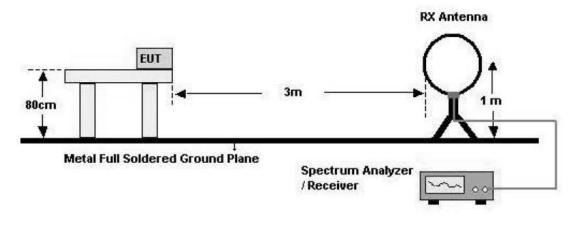
FCC

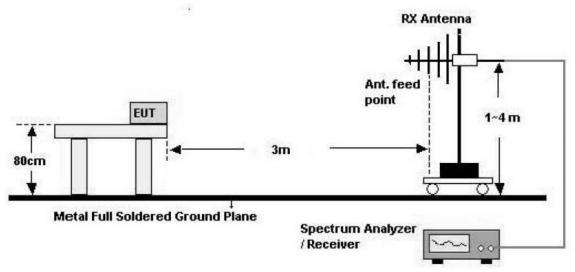
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30	30	30

ISED

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 – 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

FCC&ISED

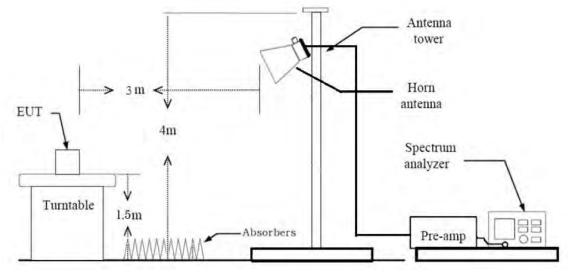

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3



Test Configuration

Below 30 MHz

30 MHz - 1 GHz



Report No. HCT-RF-2103-FC002

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB
- Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered

that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

%In general, (1) is used mainly

- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. Radiated test is performed with hopping off.

- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.13 (On Page. 25)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.13 (On Page. 25)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

- 10. Total
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
- b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
- c. Worst Case Dwell Time = τ [ms] x H ' = 2.9 ms
- d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB

13. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)

- a. Time to cycle through all channels = Δ t = τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
- b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
- c. Worst Case Dwell Time = τ [ms] x H ' = 5.800 ms
- d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

8.8. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits	(dBµV)
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

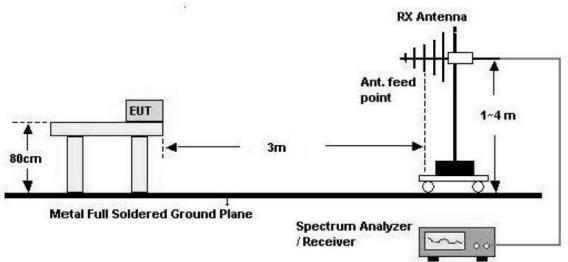
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

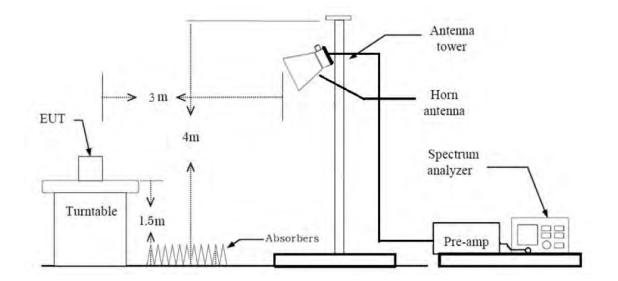
Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

Test Procedure of Receiver Spurious Emissions (Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Report No. HCT-RF-2103-FC002

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):

- We performed using a reduced video BW method was done with the analyzer in linear mode

- Measured Frequency Range : 1 GHz 25 GHz
- Detector = Peak
- Trace = Maxhold
- RBW = 1 MHz
- VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
- The actual setting value of VBW = 1 kHz
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance

Factor(D.F)

8.10. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 2. EUT Axis

- Radiated Spurious Emissions : X

- Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5

- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

5. VT250TWAN(FCC)& VT250GYKN(ISED), Additional Model were tested and the worst case results are reported.

reported.

(Worst case : VT250TWAN(FCC)& VT250GYKN(ISED))

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

1. The EUT was configured with data rate of highest power.

- GFSK : DH5
- π/4DQPSK : 2-DH5

- 8DPSK : 3-DH5

2. AFH & Non-AFH were tested and the worst case results are reported.

(Worst case : Non-AFH)

3. VT250TWAN(FCC)& VT250GYKN(ISED), Additional Model were tested and the worst case results are reported.

(Worst case : VT250TWAN(FCC)& VT250GYKN(ISED))

9.	SUMMARY	OF TEST	
•••	•••••		

Test Description	FCC Part Section(s)	ISED Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§ 15.247(a)(1)	RSS-247, 5.1	N/A		PASS
Occupied Bandwidth	N/A	RSS-GEN, 6.7	N/A		N/A
Conducted Maximum Peak Output Power	§ 15.247(b)(1)	RSS-247, 5.1 b)	< 0.125 W		PASS
Carrier Frequency Separation	§ 15.247(a)(1)	RSS-247, 5.1 b)	> 25 kHz or >2/3 of the 20dB BW	-	PASS
Number of Hopping Frequencies	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	≥ 15	Conducted	PASS
Time of Occupancy	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	< 400 ms		PASS
Conducted Spurious Emissions	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions	-	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§ 15.207(a)	RSS-GEN, 8.8	cf. Section 8.8		N/A (Note1)
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9 RSS-GEN, 8.10	cf. Section 8.7	Radiated	PASS
Receiver Spurious Emissions	N/A	RSS-GEN, 7	cf. Section 8.9		PASS

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	Output Power (GFSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	2.065	1.61	
Mid	2441	2.550	1.80	125
High	2480	2.148	1.64	

Channel	Frequency (MHz)	Output Power (8DPSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	-0.596	0.87	
Mid	2441	0.359	1.09	125
High	2480	0.237	1.06	

Channel	Frequency (MHz)	Output Power (π/4DQPSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	-1.023	0.79	
Mid	2441	-0.103	0.98	125
High	2480	-0.198	0.96	

Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 27.52 dB at 2400 MHz and is 27.54 dB at 2500 MHz.

So, 27.54 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Report No. HCT-RF-2103-FC002

Test Plots (GFSK) Peak Power (CH.0)

Test Plots (GFSK)
Peak Power (CH.39)

RL 1902 AC 100 A	GHZ PNO: Fast Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	10:14:11 AM Feb 05, 2021 TRACE 22.4 TYPE MUMOUMUD DET P.P.P.P.P.P	Frequency
Ref Offset 27.54 dB 0 dB/div Ref 20.00 dBm	IFGain:Low Atten: 6 dB	Mkr	1 2.440 825 GHz 2.550 dBm	Auto Tune
1819	1			Center Free 2.441000000 GH
0.00 TO (2)				Start Fre 2,438498459 GH
200				Stop Fre 2.443501541 GH
40.01				CF Ste 500.308 kH Auto Ma
8.0				Freq Offse 0 H
70.0 Center 2.441000 GHz			Span 5.003 MHz	
Res BW 3.0 MHz	#VBW 50 MHz	Sweep	1.000 ms (1001 pts)	

Report No. HCT-RF-2103-FC002

Test Plots (GFSK) Peak Power (CH.78)

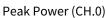
HCT

Test Plots (8DPSK) Peak Power (CH.0)

RL ar 500 Ac Center Freq 2.402000000 (FNO: Fast +++ IFGain:Low Atten: 6 dB	#Avg Type: RMS Avg Hold: 1/1	10:15:10 AM Feb 05, 2021 TRACE 2 3 4 5 TVPE MMMMMMM DET P P P P P P	Frequency
Ref Offset 27.54 dB Mkr1 2.401 979 9 GHz 10 dB/diy Ref 20.00 dBm -0.596 dBm				Auto Tun
iê û)				Center Fre 2.402000000 GH
0.0				Start Fre 2.398650000 GH
100				Stop Fre 2.405350000 GH
80.0				CF Ste 670.000 kH Auto Ma
80.0				Freq Offso 0 H
7000 Center 2.402000 GHz Res BW 3.0 MHz	#VBW 50 MHz	Sweep 1	Span 6.700 MHz .000 ms (1001 pts)	

Test Plots (8DPSK)

HCT


Peak Power (CH.39)
--------------	--------

Test Plots (8DPSK) Peak Power (CH.78)

	req 2.48000000		Trig: Free Run Atten: 6 dB	#Avg Type: RMS Avg Hold: 1/1	10/15:33 AM Feb 05, 2021 TRACE 2 4 TVPE MWWWWW DET P P P P P P	Frequency
0 dB/div	Ref Offset 27.54 dB Ref 20.00 dBm			Mkr1	2,480 047 GHz 0.237 dBm	Auto Tune
Iĝ.Ó ;			1			Center Fre 2.480000000 GH
0.00						Start Fre 2.476645000 GH
00						Stop Fre 2.483355000 GF
0.0						CF Ste 671.000 kF Auto Ma
80						Freq Offs 0 F
Center 2.4	480000 GHz	#VBW	50 MHz	Sween	Span 6.710 MHz .000 ms (1001 pts)	
Res BW	3.0 MHZ	#VBW	30 MHZ	Sweep		

Test Plots (π/4DQPSK)

HCT

Test Plots (π/4DQPSK) Peak Power (CH.39)

BHZ PNO: Fast IFGain:Low Atten: 6 dB	#Avg Type: RMS Avg[Hold: 1/1	10:14:46 AM Feb 05, 2021 TRACE 1 2 3 4 3 TYPE MUSCLOWD DET P P P P P P	Frequency
	Mkr1 2.	441 054 16 GHz -0.103 dBm	Auto Tune
			Center Free 2.441000000 GH
			Start Free 2.437615000 GH
			Stop Fre 2.444385000 GH
			CF Stej 677,000 kH Auto Ma
			Freq Offse 0 H
#VBW 50 MHz	Sweep	Span 6.770 MHz	
	PNO: Fast Irig: Free Run	PNO: Fast Trig: Free Run IFGain:Low Atten: 6 dB Mkr1 2.	If GainLow Atten: 6 dB Cet PPPPP Mkr1 2.441 054 16 GHz -0.103 dBm

Test Plots (π/4DQPSK) Peak Power (CH.78)

	req 2.480000000	GHz PNO: Fast	Trig: Free Run Atten: 6 dB	#Avg Type: RMS Avg[Hold: 1/1	10:14:58 AM Feb 05, 2021 IRACE I 2 3 4 TYPE TYPE DET P P P P P P P P P P P	Frequency
10 dB/div	Ref Offset 27.54 dB Ref 20.00 dBm			Mk	r1 2.480 129 GHz -0.198 dBm	
189						Center Free 2.480000000 GHz
0.00 m()			` `			Start Freq 2.476612500 GHz
-200						Stop Freq 2.483387500 GHz
-40,0 -50,0						CF Step 677,500 kHz Auto Mar
-80.0						Freq Offset 0 Hz
Center 2.4	180000 GHz 3.0 MHz	#VBW	50 MHz	Sween	Span 6.775 MHz	
#Res BW		#VBW	50 MHz	Sweep	1.000 ms (1001 pts)	

10.2 BAND EDGES

Without hopping

Outside Frequency Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	57.956	54.500	53.967	20
Upper	60.251	55.357	54.963	20

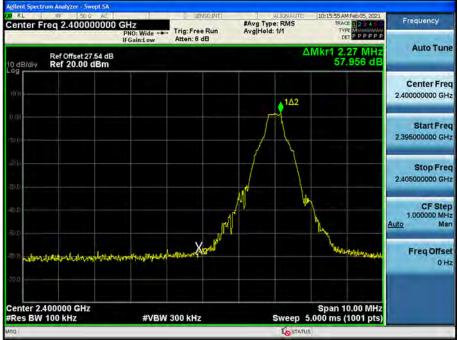
With hopping

Outside Frequency Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	59.005	53.998	54.062	20
Upper	56.370	52.724	55.335	20

Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

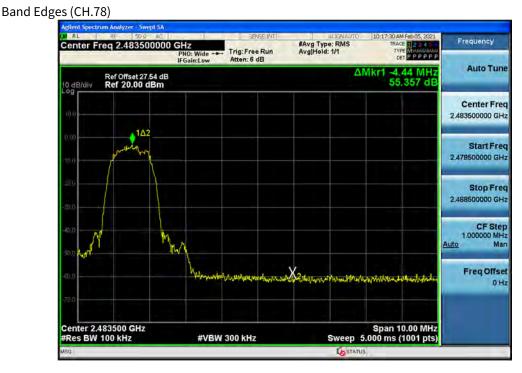

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 27.52 dB at 2400 MHz and is 27.54 dB at 2500 MHz.

So, 27.54 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots without hopping (GFSK)

Band Edges (CH.0)

Test Plots without hopping (GFSK)



Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π /4DQPSK)

Test Plots with hopping (GFSK)

Band Edges (CH.0)

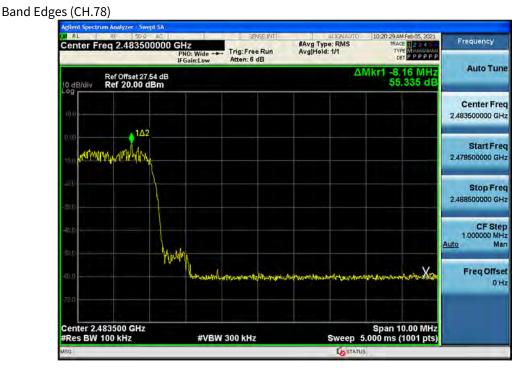
Test Plots with hopping (GFSK)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK)

Band Edges (CH.78)



Test Plots with hopping ($\pi/4DQPSK$)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK)

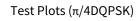
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

99% BW (kHz)							
Channel	GFSK	8DPSK	π/4DQPSK				
CH.0	901.13	1216.2	1210.9				
CH.39	902.01	1215.4	1209.1				
CH.78	898.66	1215.4	1206.8				

20dB BW (kHz)							
Channel	GFSK	8DPSK	π/4DQPSK				
CH.0	992.8	1340	1354				
CH.39	1001.0	1339	1354				
CH.78	1001.0	1342	1355				

	Limit					
GFSK	GFSK 8DPSK π/4DQPSK					
			>25 kHz			
1004	988	991	or			
			>2/3 of the 20dB BW			

Test Plots (GFSK)


HCT

Channel Separation

Test Plots (8DPSK) Channel Separation

enter		RF	50 Q	0000 GHz		3BMS	BINT	ALIGNAUTO	10:23:51 AM Feb 05, 2021 TRACE TRACE	Frequency
entrei	i i e	42		PNO: Win		#Atten: 20	Run Av	g Hold: 1/1	DET P P P P P	-
dB/di			Offset 27. 20.00 d	54 dB				Δ	Akr3 1.171 MHz -0.847 dB	Auto Tun
			X2			and a	Δ2	0.00	304	Center Fre 2.441000000 GH
00 05 05										Start Fre 2.439500000 GH
08 08 00										Stop Fre 2.442500000 GH
enter Res B			0 GHz Iz	#	VBW	100 kHz		Sweep	Span 3.000 MHz 3.176 ms (900 pts)	CF Ste 300.000 kF Auto Ma
KR MODE	TRC 1			× 988 kH:	(Δ)	Y 0.272 d	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
5			(Δ)	2.439 991 GHz 1.171 MH; 2.440 978 GHz	(Δ)	-5.426 dBr -0.847 d -5.155 dBr	n B			Freq Offs 0 F
6										
8		-								

Channel Separation

Center Freq 2.44	1000000 GHz PNO: Wide IFGain:Low	SEVSE:INT Trig: Free Run #Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	10:23:14 AM Feb 05, 2021 TRACE 2 3 4 5 TYPE M WARNAM DET P P P P F	
	et 27.54 dB 00 dBm		Δ	/kr3 1.004 MHz 0.288 dB	
	Kennin	142	mmm	3 <u>0</u> 4	Center Fred 2.441000000 GH:
20.0					Start Free 2.439500000 GH
-50,0) -60,0) -70,0)					Stop Free 2.442500000 GH;
Center 2.441000 C #Res BW 30 kHz		100 kHz	Sweep	Span 3.000 MHz 3.176 ms (900 pts)	CF Ster 300.000 kH Auto Ma
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	991 kHz (Δ) 2.439 977 GHz 1.004 MHz (Δ) 2.440 968 GHz	-0.846 dB -5.102 dBm 0.288 dB -5.948 dBm		FUNCTION VALUE	Freq Offse 0 H
8 9 10 11					

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

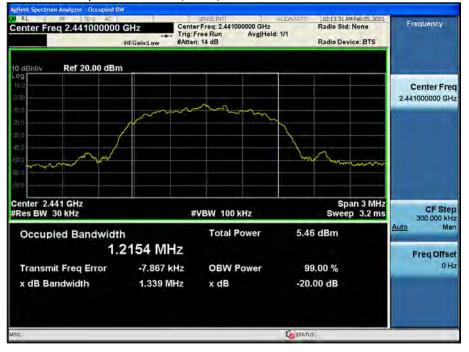
Test Plots (GFSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

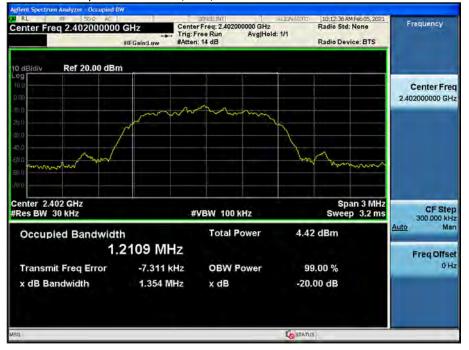
Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

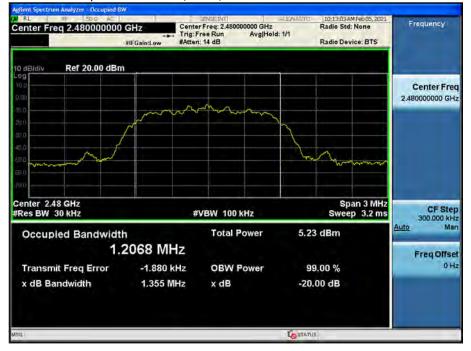
Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

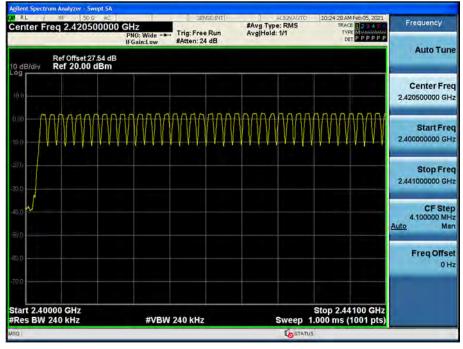
Test Plots ($\pi/4DQPSK$)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

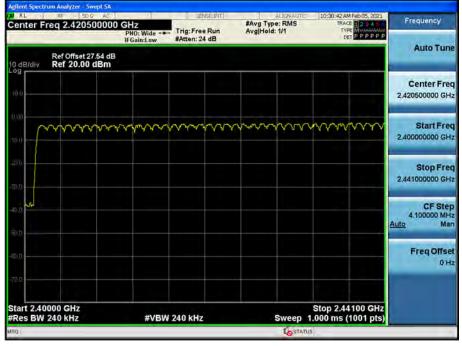

	Limit				
GFSK	GFSK 8DPSK π/4DQPSK				
79	79	79	>15		

Note :

In case of AFH mode, minimum number of hopping channels is 20.

Test Plots (GFSK) Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

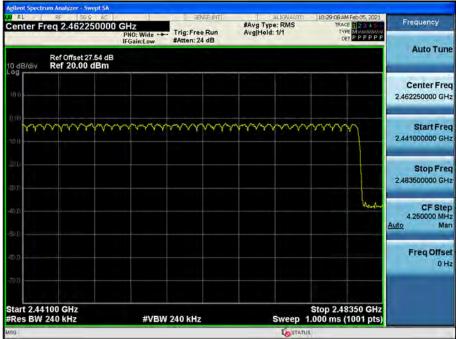

Number of Channels (2.441 GHz - 2.4835 GHz)

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)



Test Plots (π/4DQPSK) Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.885	2.890	2.890
(ms)	Mid	2.885	2.895	2.890
	High	2.890	2.890	2.890

Non-AFH Mode

Total of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Dwell	Low	307.73	308.27	308.27	31.60	
(ms)	Mid	307.73	308.80	308.27	31.60	400
	High	308.27	308.27	308.27	31.60	

AFH Mode

Total of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Dwell	Low	153.87	154.13	154.13	8.0	
(ms)	Mid	153.87	154.40	154.13	8.0	400
	High	154.13	154.13	154.13	8.0	

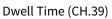
Test Plots (GFSK) Dwell Time (CH.0)

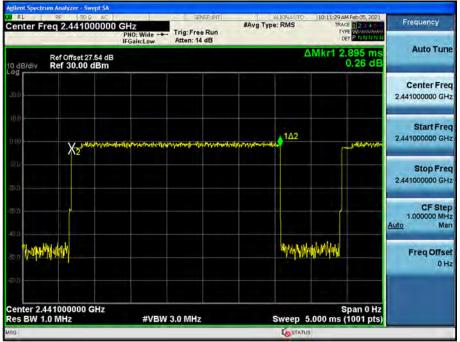
Test Plots (GFSK) Dwell Time (CH.39)

00000 GHz PNO: Wide	Trig: Free Run Atten: 14 dB	#Avg Type: RMS	10:10:03 AM Feb 05, 2021 TRACE 2 2 3 4 5 TYPE WHATAN	Frequency		
Ref Offset 27.54 dB ΔMkr1 2.885 ms 10 dB/div Ref 30.00 dBm -0.07 dB						
				Center Fre 2.441000000 GH		
	K2		142	Start Fre 2.441000000 GH		
				Stop Fre 2.441000000 GH		
				CF Ste 1.000000 MH Auto Ma		
and hadden and investor				Freq Offse 0 H		
SHz #VPW	2.0.844	Sweep 5	Span 0 Hz			
	D0000 GHz PRO: Wide ++ IFGain:Lew 54 dB dBm	200000 GHz PN0: Wide + Trig: Free Run Atten: 14 dB	200000 GHz PN0: Wide +++ Trig: Free Run Atten: 14 dB 2:54 dB Atten: 14 dB 2:54 dB Atten: 14 dB Atte	D00000 GHz PN0: Wide BFGainLow Trig: Free Run Atten: 14 dB #Avg Type: RMS Iffeat Bases Trig: Free Run Atten: 14 dB 554 dB ΔMkr1 2.885 ms -0.07 dB 4 Δ <tr< td=""></tr<>		

Test Plots (GFSK) Dwell Time (CH.78)

HCT




Test Plots (8DPSK) Dwell Time (CH.0)

enter Freq 2.4	F	NO: Wide	Trig: Free Run Atten: 14 dB	#Avg Type: RMS	1RAC TVI	4 Feb 05, 2021	Frequency
Ref Off 0 dB/div Ref 3	set 27.54 dB 0.00 dBm	GaineLow	Auten. 14 ub		AMkr1 2	890 ms 0.87 dB	Auto Tun
210							Center Fre 2.402000000 GH
0.00 NIN	Vartaner	45 Juni - 4-4 1/26-27- 1-64	notestation and	angenerates that shows have	1 <u>Δ</u> 2		Start Free 2.402000000 GH
0.0 							Stop Fre 2.402000000 GH
8.0							CF Ste 1.000000 MH Auto Ma
nn Milder	july lar				NALIAL AP	why	Freq Offse 0 H
enter 2.402000	000 GHz	#VRW	3.0 MHz	Sweet	S 5.000 ms (pan 0 Hz 1001 pts)	


Test Plots (8DPSK)

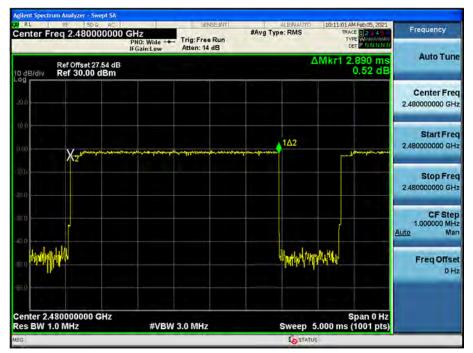
HCT

Test Plots (8DPSK) Dwell Time (CH.78)

Test Plots (π/4DQPSK)

HCT

Test Plots (π/4DQPSK) Dwell Time (CH.39)

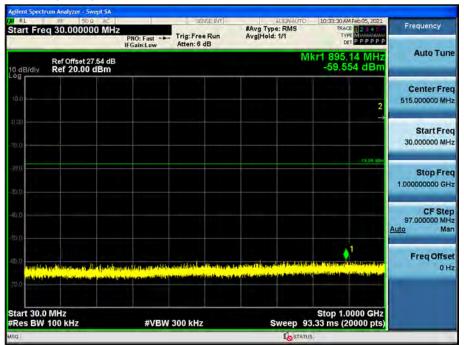


Test Plots (π/4DQPSK)

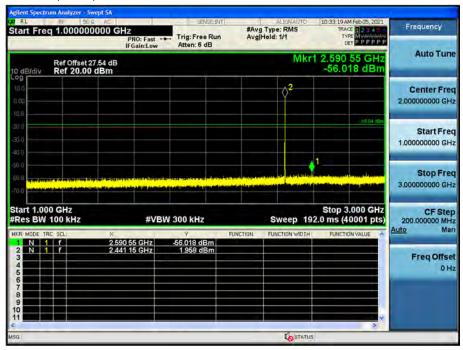
Dwell Time (CH.78)

10.6 SPURIOUS EMISSIONS

10.6.1 CONDUCTED SPURIOUS EMISSIONS

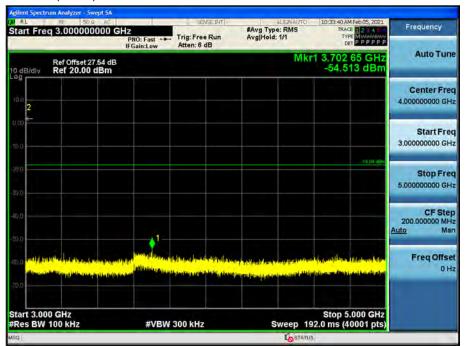

Test Result : please refer to the plot below.

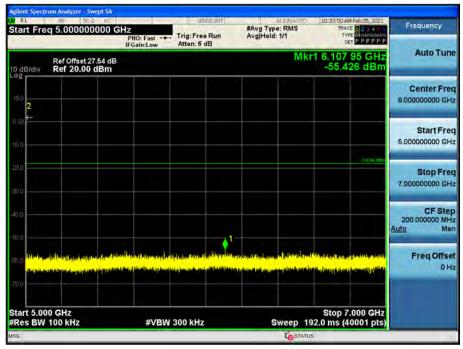
In order to simplify the report, attached plots were only the worst case channel and data rate.



Test Plots (GFSK)- 30 MHz - 1 GHz

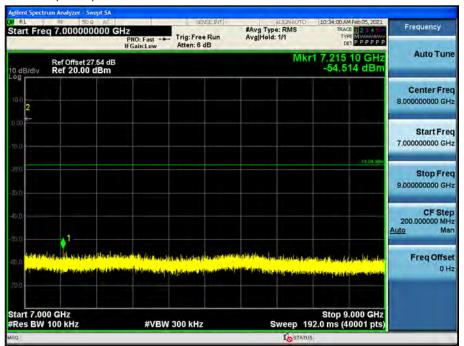
Spurious Emission (CH.39)

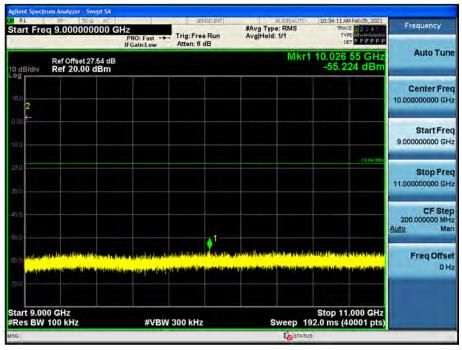

Test Plots (GFSK)- 1 GHz – 3 GHz



Test Plots(GFSK)- 3 GHz - 5 GHz

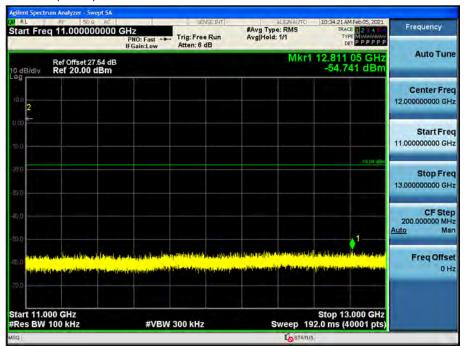
Spurious Emission (CH.39)

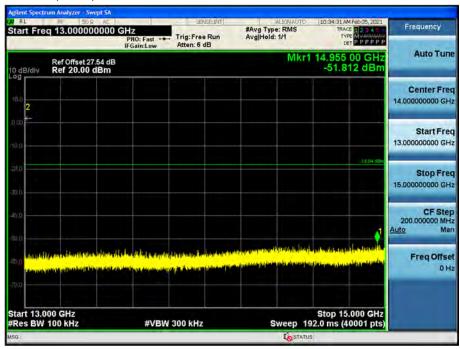

Test Plots (GFSK)- 5 GHz - 7 GHz



Test Plots(GFSK)- 7 GHz - 9 GHz

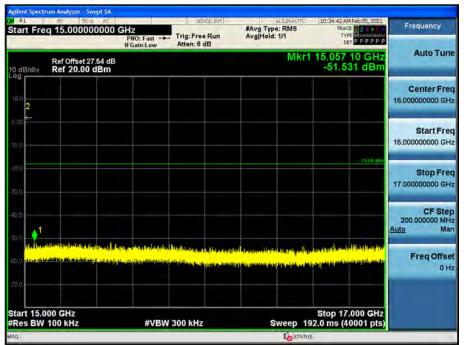
Spurious Emission (CH.39)


Test Plots(GFSK)- 9 GHz - 11 GHz



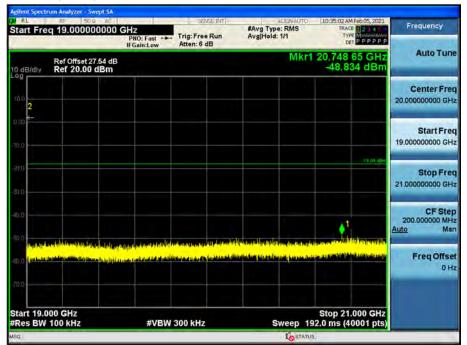
Test Plots(GFSK) 11 GHz - 13 GHz

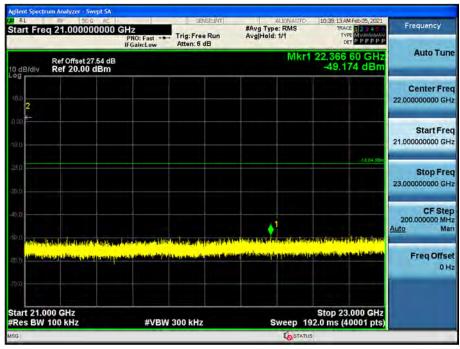
Spurious Emission (CH.39)


Test Plots (GFSK)- 13 GHz - 15 GHz

Test Plots(GFSK)- 15 GHz - 17 GHz

Spurious Emission (CH.39)


Test Plots(GFSK)- 17 GHz - 19 GHz



Test Plots (GFSK)- 19 GHz - 21 GHz

Spurious Emission (CH.39)

Test Plots (GFSK)- 21 GHz - 23 GHz

Test Plots (GFSK)- 23 GHz - 25 GHz

RL RE 50 Q AC		SENSE INT	ALBEAT AUTO	10:35:23 AM Feb 05, 2021	Frequency
Start Freq 23.000000000	PNO: Fast	Trig: Free Run Atten: 6 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 2 3 4 TYPE MIMMMAN	Frequency
Ref Offset 27.54 dB		Mkr1 24.983 25 GH: -44.421 dBn			Auto Tune
100 2					Center Fred 24.00000000 GH
18,0					Start Free 23.000000000 GH
30.0				-13,04 (don	Stop Free 25.000000000 GH
40.0	al. to a be pair a f	Antidada a Junga a Mar	uguhan den stade fite di kali kali kali kali kali kali kali kal	t 5. See Aspallices to be deeper a fit is been allowed	CF Step 200.000000 MH: Auto Mar
	eletroperate a telet	Sana di Shi Tiku biriyin na siyiyin	y Manana Alfred 2000, dy alfred 2000		Freq Offse 0 H
Start 23.000 GHz Res BW 100 kHz		300 kHz		Stop 25.000 GHz 2.0 ms (40001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz

Operation M	oue. Chi Low	(UI 3N)						
Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4804	43.68	4.08	V	0.00	47.76	73.98	26.22	PK
4804	43.68	4.08	V	-24.73	23.03	53.98	30.95	AV
7206	38.02	12.05	V	0.00	50.07	73.98	23.91	PK
7206	38.02	12.05	V	-24.73	25.34	53.98	28.64	AV
4804	42.06	4.08	Н	0.00	46.14	73.98	27.84	PK
4804	42.06	4.08	Н	-24.73	21.41	53.98	32.57	AV
7206	37.91	12.05	Н	0.00	49.96	73.98	24.02	PK
7206	37.91	12.05	Н	-24.73	25.23	53.98	28.75	AV

Operation Mode: CH Low(GFSK)

Operation Mode: CH Mid(GFSK)

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4882	40.92	4.01	V	0.00	44.93	73.98	29.05	PK
4882	40.92	4.01	V	-24.73	20.20	53.98	33.78	AV
7323	38.10	12.49	V	0.00	50.59	73.98	23.39	PK
7323	38.10	12.49	V	-24.73	25.86	53.98	28.12	AV
4882	40.48	4.01	Н	0.00	44.49	73.98	29.49	PK
4882	40.48	4.01	Н	-24.73	19.76	53.98	34.22	AV
7323	38.22	12.49	Н	0.00	50.71	73.98	23.27	PK
7323	38.22	12.49	Н	-24.73	25.98	53.98	28.00	AV

Operation Mode: CH High(GFSK)

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4960	41.15	4.55	V	0.00	45.70	73.98	28.28	PK
4960	41.15	4.55	V	-24.73	20.97	53.98	33.01	AV
7440	38.79	12.60	V	0.00	51.39	73.98	22.59	PK
7440	38.79	12.60	V	-24.73	26.66	53.98	27.32	AV
4960	40.81	4.55	Н	0.00	45.36	73.98	28.62	PK
4960	40.81	4.55	Н	-24.73	20.63	53.98	33.35	AV
7440	38.63	12.60	Н	0.00	51.23	73.98	22.75	PK
7440	38.63	12.60	Н	-24.73	26.50	53.98	27.48	AV

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4804	43.17	4.08	V	0.00	47.25	73.98	26.73	PK
4804	43.17	4.08	V	-24.73	22.52	53.98	31.46	AV
7206	38.59	12.05	V	0.00	50.64	73.98	23.34	PK
7206	38.59	12.05	V	-24.73	25.91	53.98	28.07	AV
4804	41.84	4.08	Н	0.00	45.92	73.98	28.06	PK
4804	41.84	4.08	Н	-24.73	21.19	53.98	32.79	AV
7206	38.34	12.05	Н	0.00	50.39	73.98	23.59	PK
7206	38.34	12.05	Н	-24.73	25.66	53.98	28.32	AV

Operation Mode: CH Low(π/4DQPSK)

Operation Mode: CH Mid(π/4DQPSK)

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Dotoct
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4882	41.06	4.01	V	0.00	45.07	73.98	28.91	PK
4882	41.06	4.01	V	-24.73	20.34	53.98	33.64	AV
7323	38.11	12.49	V	0.00	50.60	73.98	23.38	PK
7323	38.11	12.49	V	-24.73	25.87	53.98	28.11	AV
4882	40.66	4.01	Н	0.00	44.67	73.98	29.31	PK
4882	40.66	4.01	Н	-24.73	19.94	53.98	34.04	AV
7323	38.15	12.49	Н	0.00	50.64	73.98	23.34	PK
7323	38.15	12.49	Н	-24.73	25.91	53.98	28.07	AV

Operation Mode: CH High (π /4DQPSK)

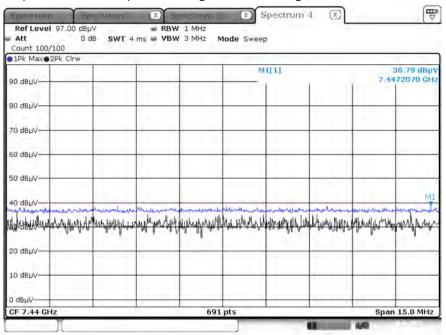
_		A.F+C.L-	ANT.	Duty Cycle				
Frequency	Reading	A.G+D.F	POL	Correction	Total	Limit	Margin	Dataat
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4960	41.42	4.55	V	0.00	45.97	73.98	28.01	PK
4960	41.42	4.55	V	-24.73	21.24	53.98	32.74	AV
7440	38.66	12.60	V	0.00	51.26	73.98	22.72	PK
7440	38.66	12.60	V	-24.73	26.53	53.98	27.45	AV
4960	41.03	4.55	Н	0.00	45.58	73.98	28.40	PK
4960	41.03	4.55	Н	-24.73	20.85	53.98	33.13	AV
7440	38.52	12.60	Н	0.00	51.12	73.98	22.86	PK
7440	38.52	12.60	Н	-24.73	26.39	53.98	27.59	AV

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4804	42.84	4.08	V	0.00	46.92	73.98	27.06	PK
4804	42.84	4.08	V	-24.73	22.19	53.98	31.79	AV
7206	38.48	12.05	V	0.00	50.53	73.98	23.45	РК
7206	38.48	12.05	V	-24.73	25.80	53.98	28.18	AV
4804	42.01	4.08	Н	0.00	46.09	73.98	27.89	PK
4804	42.01	4.08	Н	-24.73	21.36	53.98	32.62	AV
7206	38.31	12.05	Н	0.00	50.36	73.98	23.62	PK
7206	38.31	12.05	Н	-24.73	25.63	53.98	28.35	AV

Operation Mode: CH Low(8DPSK)

Operation Mode: CH Mid(8DPSK)

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4882	40.97	4.01	V	0.00	44.98	73.98	29.00	PK
4882	40.97	4.01	V	-24.73	20.25	53.98	33.73	AV
7323	38.13	12.49	V	0.00	50.62	73.98	23.36	PK
7323	38.13	12.49	V	-24.73	25.89	53.98	28.09	AV
4882	40.35	4.01	Н	0.00	44.36	73.98	29.62	PK
4882	40.35	4.01	Н	-24.73	19.63	53.98	34.35	AV
7323	38.84	12.49	Н	0.00	51.33	73.98	22.65	PK
7323	38.84	12.49	Н	-24.73	26.60	53.98	27.38	AV


Operation Mode: CH High(8DPSK)

Frequency	Reading	A.F+C.L- A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/ m]	[dBuV/ m]	[dB]	Detect
4960	40.98	4.55	V	0.00	45.53	73.98	28.45	PK
4960	40.98	4.55	V	-24.73	20.80	53.98	33.18	AV
7440	38.74	12.60	V	0.00	51.34	73.98	22.64	PK
7440	38.74	12.60	V	-24.73	26.61	53.98	27.37	AV
4960	40.93	4.55	Н	0.00	45.48	73.98	28.50	PK
4960	40.93	4.55	Н	-24.73	20.75	53.98	33.23	AV
7440	38.65	12.60	Н	0.00	51.25	73.98	22.73	PK
7440	38.65	12.60	Н	-24.73	26.52	53.98	27.46	AV

RESULT PLOTS

Radiated Spurious Emissions plot – Average & Peak Reading (GFSK, Ch.78 3rd Harmonic, X-V)

Radiated Spurious Emissions plot – Average & Peak Reading (π/4DQPSK, Ch.78 3rd Harmonic, X-V)

ALIS MILLING	Pk Clrw	ç	_						A 1. A.
90 dBuV					M	1[1]			38.66 dBµ 38640 CH
			1	-		1			
во авил-	-	-	1	-					
70 d8µV	-								
0 dBµV									
50 dBµV		-					-		
40 dBµV-	to a base to	4		and the second		- grickliber-peri	M1	manduary	white he is
1 C	handman	11		hyper welly		1 1 1 1 1	A start of the sta	AMAMAN	1.
20 dBµV	_			-					
LO dBµV	_								
1.1.1.1									

S) HINN	1 St	a a a a a a a a a a a a a a a a a a a	< W113	8	Spectrum	4 🗷		v ₽
Ref Level 97. Att Count 100/100		4 ms VBW		lode Sweep	p			
●1Pk Max●2Pk	Clrw	1						
90 dBµV				M	1[1]			38.74 dBµV 31190 CHz
AO ORTA					() ()		1	
BO dBUV-	_	-	_	-			-	-
1.5.1						1000	-	
70 dBµV							-	
60 dBµV		-			_			
								10 m (
50 dBµV								
		1		1		1	1.1.1	
menterfronten	as day a clubb holder	margan	ephdomen	worklight when	to de de la de	undor lane	dog good and	mulling
BROGANDARIAN	Andreaky the have	red for the state of the state	and water from	LA TRACTION	M A Barresta	Albrast miller	Prophyloghy	Mar Martin
20 dBµV	-	12 1				1		
						T		
10 dBµV-		-	-					
0 dBuV-	_							
CF 7.44 GHz	-	1	691	pts	-		Span	15.0 MHz
T				-		10	440	

Radiated Spurious Emissions plot – Average & Peak Reading (8DPSK, Ch.78 3rd Harmonic, X-V)

Note:

Plot of worst case are only reported.

10.6.3 RADIATED RESTRICTED BAND EDGES

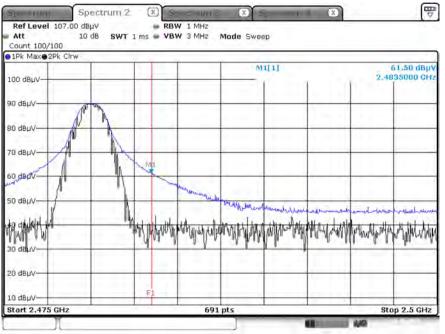
Operation Mode	Normal(GFSK)		
Operating Frequency	2402 MHz, 2480 MHz		
Channel No	CH 0, CH 78		

Frequency	Reading	※ A.F+C.L- AMP+ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
2390.0	47.72	3.32	Н	0	51.04	73.98	22.94	PK
2390.0	47.72	3.32	Н	-24.73	26.31	53.98	27.67	AV
2390.0	48.44	3.32	V	0	51.76	73.98	22.22	PK
2390.0	48.44	3.32	V	-24.73	27.03	53.98	26.95	AV
2483.5	59.85	3.78	Н	0	63.63	73.98	10.35	PK
2483.5	59.85	3.78	Н	-24.73	38.90	53.98	15.08	AV
2483.5	61.50	3.78	V	0	65.28	73.98	8.70	PK
2483.5	61.50	3.78	V	-24.73	40.55	53.98	13.43	AV

Operation Mode Operating Frequency Channel No EDR(π/4DQPSK) 2402 MHz, 2480 MHz CH 0, CH 78

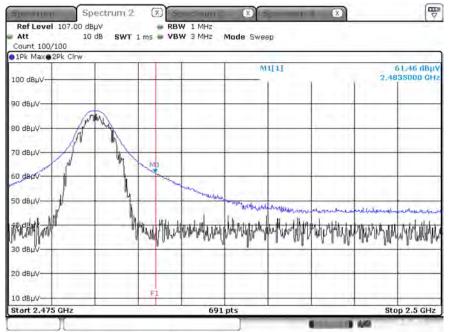
Frequency	Reading	※ A.F+C.L- AMP+ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
2390.0	47.61	3.32	Н	0	50.93	73.98	23.05	PK
2390.0	47.61	3.32	Н	-24.73	26.20	53.98	27.78	AV
2390.0	47.94	3.32	V	0	51.26	73.98	22.72	PK
2390.0	47.94	3.32	V	-24.73	26.53	53.98	27.45	AV
2483.5	59.72	3.78	Н	0	63.50	73.98	10.48	PK
2483.5	59.72	3.78	Н	-24.73	38.77	53.98	15.21	AV
2483.5	61.46	3.78	V	0	65.24	73.98	8.74	PK
2483.5	61.46	3.78	V	-24.73	40.51	53.98	13.47	AV

고 객 비 밀 CUSTOMER SECRET

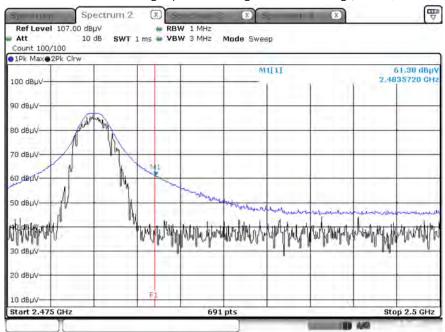

Report No. HCT-RF-2103-FC002

Operation Mode	EDR(8DPSK)			
Operating Frequency	2402 MHz, 2480 MHz			
Channel No	CH 0, CH 78			

Frequency	Reading	※ A.F+C.L- AMP+ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
2390.0	47.70	3.32	Н	0	51.02	73.98	22.96	PK
2390.0	47.70	3.32	Н	-24.73	26.29	53.98	27.69	AV
2390.0	47.97	3.32	V	0	51.29	73.98	22.69	PK
2390.0	47.97	3.32	V	-24.73	26.56	53.98	27.42	AV
2483.5	59.75	3.78	Н	0	63.53	73.98	10.45	PK
2483.5	59.75	3.78	Н	-24.73	38.80	53.98	15.18	AV
2483.5	61.38	3.78	V	0	65.16	73.98	8.82	PK
2483.5	61.38	3.78	V	-24.73	40.43	53.98	13.55	AV



RESULT PLOTS



Radiated Restricted Band Edges plot - Average & Peak Reading (GFSK, Ch.78, X-V)

Radiated Restricted Band Edges plot – Average & Peak Reading (π/4DQPSK, Ch.78, X-V)

Radiated Restricted Band Edges plot - Average & Peak Reading (8DPSK, Ch.78, X-V)

Note:

Plot of worst case are only reported.

10.7 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
	No Critical peaks found								

11. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration	Calibration	Serial No.	
Manufacturer	Modely Equipment	Date	Interval	Senativo.	
Rohde & Schwarz	ENV216 / LISN	09/04/2020	Annual	102245	
Rohde & Schwarz	ESR / EMI Test Receiver	09/16/2020	Annual	101910	
ESPEC	SU-642 /Temperature Chamber	07/30/2020	Annual	0093000718	
Agilent	N9020A / Signal Analyzer	05/11/2020	Annual	MY51110085	
Agilent	N9030A / Signal Analyzer	03/23/2020	Annual	MY49432108	
Agilent	N1911A / Power Meter	04/07/2020	Annual	MY45100523	
Agilent	N1921A / Power Sensor	06/08/2020	Annual	MY57820067	
Agilent	87300B / Directional Coupler	11/10/2020	Annual	3116A03621	
Hewlett Packard	11667B / Power Splitter	04/27/2020	Annual	11275	
НР	E3632A / DC Power Supply	09/16/2020	Annual	MY40004427	
HP	8493C / Attenuator(10 dB)(DC-26.5	06/26/2020	Annual	07500	
ΠP	GHz)	00/20/2020	Annual	07560	
HP	8493C / Attenuator(10 dB)(DC-26.5	07/03/2020	Annual	08285	
	GHz)	01/03/2020	Annual	00205	
Rohde & Schwarz	18N-20dB / Attenuator(20 dB)	03/23/2020	Annual	8	
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A	
	FCC WLAN&BT&BLE Conducted Test	NI /A	NI /A	NI /A	
HCT CO., LTD.	Software v3.0	N/A	N/A	N/A	

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
TNM system	FBSM-01B / Amp & Filter Bank Switch Controller	N/A	N/A	N/A
Schwarzbeck	Loop Antenna	05/18/2020	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/02/2019	Biennial	01039
Schwarzbeck	BBHA 9120D / Horn Antenna	08/01/2019	Biennial	912D-1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/29/2019	Biennial	BBHA9170342
Rohde & Schwarz	FSP(10 Hz ~ 40 GHz) / Spectrum Analyzer	05/13/2020	Annual	101055
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	01/06/2021	Annual	2
Wainwright Instruments	WRCJV12-4900-5100-5900-6100-50SS	06/24/2020	Annual	5
Wainwright Instruments	WRCJV12-4900-5100-5900-6100-50SS	06/24/2020	Annual	6
CERNEX	CBL18265035 / Power Amplifier	12/04/2020	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2020	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/18/2020	Annual	3000C000276
TNM system	FBSM-05B / HPF(3~18GHz) + LNA1(1~18GHz)	01/20/2021	Annual	F6
TNM system	FBSM-05B / ATT(10dB) + LNA1(1~18GHz)	01/20/2021	Annual	None
TNM system	FBSM-05B / ATT(3dB) + LNA1(1~18GHz)	01/20/2021	Annual	None
TNM system	FBSM-05B / LNA1(1~18GHz)	01/20/2021	Annual	25540
TNM system	FBSM-05B / HPF(7~18GHz) + LNA2(6~18GHz)	01/20/2021	Annual	28550
TNM system	FBSM-05B / Thru(30MHz ~ 18GHz)	01/20/2021	Annual	None
Weinschel	2-3 / Attenuator (3 dB)	10/07/2020	Annual	BR0617
H+S	5910-N-50-010 / Attenuator(10 dB)	10/28/2020	Annual	None

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2103-FC002-P