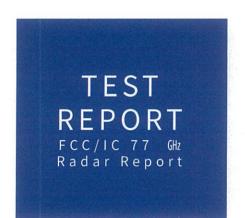
TEST REPORT

FCC/IC 77 GHz Radar Report

APPLICANT HYUNDAI MOBIS CO., LTD.

REPORT NO. HCT-RF-2002-FI001-R1

DATE OF ISSUE February 20, 2020


74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-2002-FI001-R1

DATE OF ISSUE February 20, 2020

FCC ID/ IC TQ8-MAR120/5074A-MAR120

Applicant	HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea
Product Name Model Name	UNIT ASSY-RR CORNER RADAR MAR120
Date of Test	January 28, 2020 ~ February 07, 2020
Test Standard Used	Part 95(m) RSS-GEN issue 5, RSS-251 issue 2
Frequency Range	76 GHz ~ 77 GHz
FCC Classification	Vehicular Radar Systems (VRD)
Max. RF Output Power	Peak: 26.72 dBm (Normal Resolution) Aver: 17.15 dBm (Normal Resolution) Peak: 27.73 dBm (High Resolution) Aver: 18.71 dBm (High Resolution)
	This test results were applied only to the test methods required by the standard.
	Tested by Kwang Il Yoon
	Technical Manager Jong Seok Lee

HCT CO., LTD. Soo Chan Lee / CEO

REVISION HISTORY

Revision No.	Date of Issue	Description
0	February 14, 2020	Initial Release
1	February 20, 2020	Modified RSS Standard in Section 8.3.

The revision history for this test report is shown in table.

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance.

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
2.1 EUT CONFIGURATION	6
2.2 EUT EXERCISE	6
2.3 GENERAL TEST PROCEDURES	6
2.4 DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	8
4. FACILITIES AND ACCREDITATIONS	8
4.1 FACILITIES	8
4.2 EQUIPMENT	8
5. ANTENNA REQUIREMENTS	9
6. MEASUREMENT UNCERTAINTY	9
7. SUMMARY TEST OF RESULTS	10
8. TEST RESULT	12
8.1 OCCUPIED BANDWIDTH MEASUREMENT	12
8.2 Radiated Power	16
8.3 Unwanted emissions	21
8.4 Fundamental emissions (Frequency Stability)	35
9. LIST OF TEST EQUIPMENT	38

1. EUT DESCRIPTION

Model	MAR120	MAR120					
EUT Type	UNIT ASSY-F	UNIT ASSY-RR CORNER RADAR					
Power Supply	DC 12.0 V, 9	VDC to16 V	DC				
Frequency Range	76 GHz ~ 77	GHz					
	Normal	Peak	26.72 dBm				
EIDD	Resolution	Average	17.15 dBm				
EIRP	High	Peak	27.73 dBm				
	Resolution	Average	18.71 dBm				
Modulation Type	FMCW						
Antenna Specification		Bi): am Antenn eam Antenn	a ➔ 2.41 na ➔ 14.53				
Date(s) of Tests	January 28,	January 28, 2020 ~ February 07, 2020					
PMN (Product Marketing Number)	MAR120						
HVIN (Hardware Version Identification Number)	MAR120						
FVIN (Firmware Version Identification Number)	N/A						
HMN (Host Marketing Name)	N/A						

2. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) Operating Under §95(m)" were used in the measurement.

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on EIRP measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx Frequency that was for the purpose of the measurements.

2.3 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set far-field distance away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

2.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards. Especially, all antenna(Up to 40 GHz) for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

4. FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

4.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203, § 15.407:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

* The E.U.T Complies with the requirement of § 15.203, § 15.407 / RSS-Gen

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Expanded Uncertainty (\pm dB)		
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40		
Radiated Disturbance (30 MHz ~1 GHz)	4.80		
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70		
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05		
Radiated Disturbance (40 GHz ~ 243 GHz)	4.59		

Test Description	FCC Part Section(s)	ISED	Test Limit	Test Condition	Test Result
Occupied Bandwidth	§ 2.1049	§ 2.1049 RSS-GEN, FCC: N/A Section 6.7 ISED: 76-81 GHz			PASS
Radiated Power	§ 95.3367(a)(b)	RSS-251, Section 8.1, 9.1	< EIRP 50 dBm (Average) < EIRP 55 dBm (Peak)		PASS
Unwanted emissions	§ 95.3379(a)(1)(2)	RSS-GEN, Section 6.13 RSS-251, Section 10	0.009 - 0.490 MHz: 2400/F[kHz] 0.490 - 1.705 MHz: 24000/F[kHz] 1.705 - 30.0 MHz: 30 dBuV/m 30 - 88 MHz: 30.0 dBuV/m 88 - 216 MHz: 33.5 dBuV/m 216 - 960 MHz: 36.0 dBuV/m 960 - 40 000 MHz: 54 dBuV/m 40 - 200 GHz: - 1.7 dBm 200 - 243 GHz: +0.5 dBm	RADIATED	PASS
Fundamental Emissions(Frequency stability)	§ 95.3379(b)	RSS-GEN, Section 8.11 RSS-251, Section 11	76 – 81 GHz		PASS

7. SUMMARY TEST OF RESULTS

- All tests is performed by radiated measurement and applied below conditions.

: Used measurement distance with far field of test such as EIRP, OBW and Band edge are as follow.

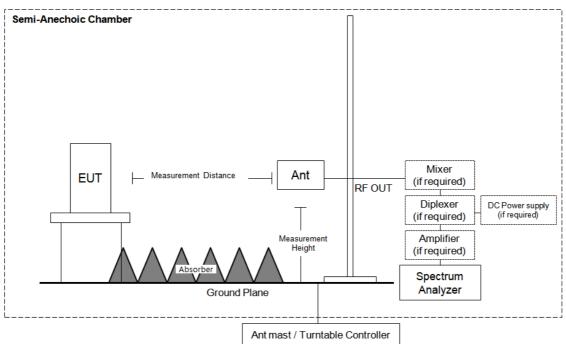
Wavelength = Speed of light / Measurement frequency = 30 / 7 700 = 0.0038 (2 X (Max antenna length of EUT)²) / Wavelength = (2 X (0.0264197)² / 0.0038 = 0.358 m

Frequency Rage (GHz)	Wavelength (cm)	Far Field Distance (m)	Measured Distance (m)
18 ~ 40	0.75	0.19	1.0
40 ~ 60	0.50	0.28	1.0
60 ~90	0.33	0.42	1.0
90~140	0.21	0.65	1.0
140 ~ 220	0.13	1.02	1.5
220 ~ 243	0.12	1.13	1.5

: Spurious emissions measurement distance is shown in table below. (Far field)

8. TEST RESULT

8.1 OCCUPIED BANDWIDTH MEASUREMENT


FCC Rules

Test Requirements and limit, § 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

ISED Rules

RSS-GEN, 7 Occupied bandwidth (or 99% emission bandwidth) and x dB bandwidth The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

RBW = 1% to 3% of the 99% bandwidth.

VBW \geq 3 x RBW

Detector = Peak

Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

Note : 1. We tested Occupied Bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer.

TEST RESULTS

TEST CON	NDITIONS:	Occupied Channel Bandwidth
T nom	V nom	236.349 MHz

* Normal Resolution

TEST CON	IDITIONS:	Occupied Channel Bandwidth
T nom	V nom	864.134 MHz

*High Resolution

RESULT PLOTS

Occupied Bandwidth plot (Normal Resolution)

Occupied Bandwidth plot (High Resolution)

8.2 Radiated Power

FCC Rules

Test Requirements and limit, § 95.3367

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

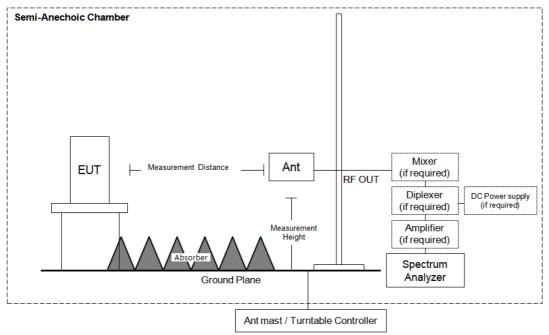
(a) The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).
(b) The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

ISED Rules

RSS-251, 8, 9 Average equivalent isotropically radiated power (e.i.r.p.)

The average e.i.r.p. measurement shall be performed using a power averaging detector with a 1 MHz resolution bandwidth (RBW). The power shall be integrated over the occupied bandwidth.

RSS-251, Peak e.i.r.p. spectral density


The peak e.i.r.p. measurement shall be performed by sweeping the transmitted occupied bandwidth with a positive peak power detector, using a peak hold display mode, and a 1 MHz resolution bandwidth. The power integration is not to be used in performing this measurement.

Test Configuration

40 GHz – 243 GHz

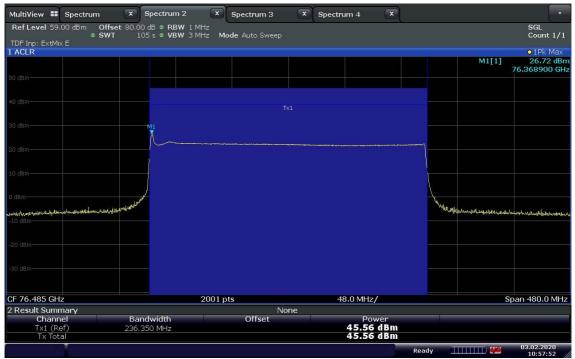
TEST RESULTS

Normal Resolution

Frequency	Reading	Factor	Ant. Pol.	Total	Limit	Margin	Measurement Type	
[GHz]	[dBm]	[dB]	[H/V]	[dBm]	[dBm]	[dB]		
76.442	-56.20	82.92	Н	26.72	55	28.28	РК	
76.442	-65.77	82.92	Н	17.15	50	32.85	AV	

High Resolution

Frequency	Reading	Factor	Ant. Pol.	Total	Limit	Margin	Measurement Type
[GHz]	[dBm]	[dB]	[H/V]	[dBm]	[dBm]	[dB]	Measurement Type
76.46	-55.19	82.92	Н	27.73	55	27.27	РК
76.46	-64.21	82.92	Н	18.71	50	31.29	AV

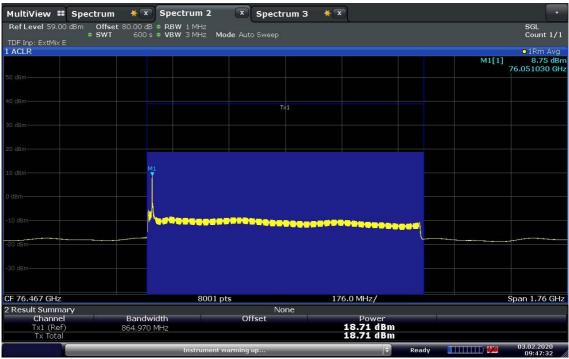

Note :

1. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

RESULT PLOTS

Plot (Peak) _ Normal Resolution

Plot (Average) _ Normal Resolution


MultiView 🎫 Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	×	•
Ref Level 59.00 dBm Offs SWT TDF Inp: ExtMix E		Mode Auto Sweep			SGL Count 1/1
1 ACLR					•1Rm Clrw
					M1[1] 6.77 dBm 76.368660 GHz
50 dBm-					
40 dBm					
30 dBm					
20 dBm					
20 0011					
10 dBm	Mi				
0 dBm					
-10 dBm			<u> </u>	un and the second se	
-20 dBm					
-30 dBm					
CF 76.485 GHz	200	1 pts	48.0 MHz	2/	Span 480.0 MHz
2 Result Summary		Non			
Channel Tx1 (Ref) Tx Total	Bandwidth 236.350 MHz	Offset	17.15	ower 5 dBm 5 dBm	
				Ready	03.02.2020 11:01:49

MultiView 🎫 Spect	rum 🗙 Spect	trum 2 🛛 💌 Spectru	m 3 🗕 🗶		-
	Offset 80.00 dB = RBW SWT 600 s = VBW				SGL Count 1/
DF Inp: ExtMix E	5441 600 S = VB44	3 MHz Mode Auto Sweep			
ACLR					o 1Pk Max
				M1[1] 27.73 dB 76.050370 G
					70.030370 0
		Tx1			
	<u>M1</u>				
) dBm	M				
	-				
	a salah			A state of the sta	
o dBm				and a first of the second s	and the second
20 dBm					
0 dBm					
F 76.467 GHz		8001 pts	176.0 MHz/		Span 1.76 GH
Result Summary		None			
Channel	Bandwidth	Offset	Power 44.86 dBm		
Tx1 (Ref) Tx Total	864.970 MHz		44.86 dBm		
T				Ready 🛛 🗰	03.02.2020

Plot (Peak) _High Resolution

Plot (Average) _ High Resolution

8.3 Unwanted emissions

FCC Rules

Test Requirements and limit, § 95.3379

The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency	Field strength	Measurement distance
(MHz)	(microvolts/meter)	(meter)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

(i) In the emissions table in paragraph (a)(1) of this section, the tighter limit applies at the band edges.

- (ii) The limits in the table in paragraph (a)(1) of this section are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (iii) The emissions limits shown in the table in paragraph (a)(1) of this section are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

- (i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.
- (ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.
- (3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum

shall be investigated up to 231.0 GHz.

ISED Rules

RSS-251, 10 Unwanted emissions

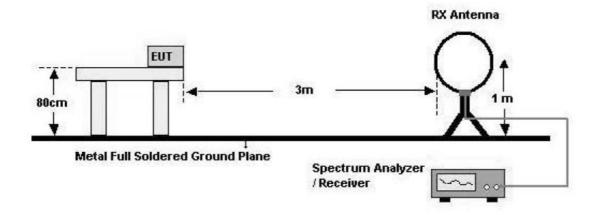
Emission frequency range	Limit	Applicable detector		
	RSS-Gen general field strength			
Below 40 GHz	limits for licence-exempt radio	RSS-Gen requirements		
	apparatus			
40-162 GHz	-30 dBm/MHz(e.i.r.p.)	RMS detector		

RSS GEN, 7.3 Receiver radiated emission limits

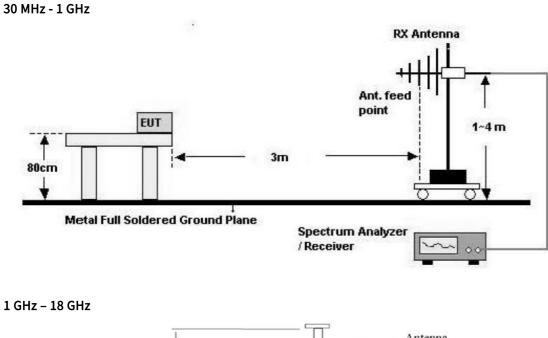
Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna ports. The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver or 30 MHz, whichever is higher, to at least five times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz. Spurious emissions from receivers shall not exceed the radiated emissions limits shown in Table3.

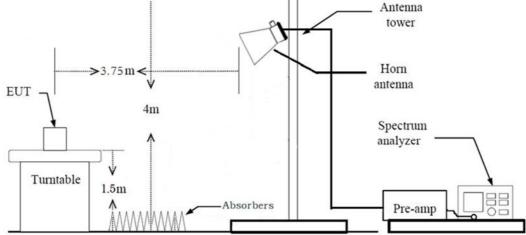
Table 3 – Receiver radiated emissions limits							
Frequency (MHz)	Field Strength (μv/m at 3 metres) [*]						
30-88	100						
88-216	150						
216-960	200						
Above 960	500						
30-88	100						
88-216	150						

Footnote : Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with section 6.6.

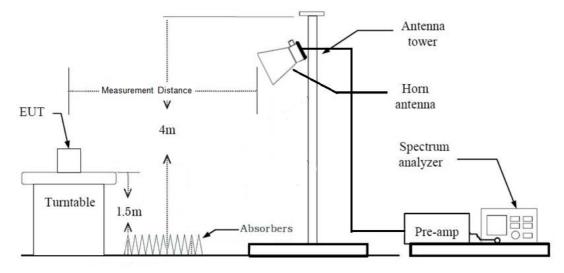

Test Procedure

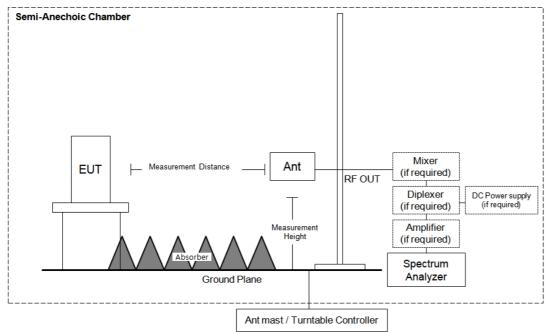
- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until the measurements for all frequencies are complete.




Test Configuration

Below 30 MHz





18 GHz – 40 GHz

40 GHz – 243 GHz

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Continuous TX Mode_Normal Resolution

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
	No Critical peaks found								

Operation Mode: Continuous TX Mode_High Resolution

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	Iz dBuV/m dBm/m dBm				dBuV/m	dBuV/m	dB		
	No Critical peaks found								

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 6. The test results for below 30 MHz is correlated to an open site.

The result on OFTS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

Below 1 GHz

Operation Mode: Continuous TX Mode_ Normal Resolution

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
	No Critical peaks found								

Operation Mode: Continuous TX Mode_ High Resolution

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

1 GHz – 18 GHz

Operation Frequency: Continuous TX Mode_ Normal Resolution

		A.F.+C.LAMP G								
Frequency	Reading	+D.F.	ANT. POL	Total	Limit	Margin				
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Measurement Type			
	No Critical peaks found									

Operation Frequency: Continuous TX Mode_ High Resolution

		A.F.+C.LAMP G								
Frequency	Reading	+D.F.	ANT. POL	Total	Limit	Margin				
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Measurement Type			
	No Critical peaks found									

A·F: ANTENNA FACTOR
 C·L: CABLE LOSS
 AMP G: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amplifier Gain + Distance Factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

18 GHz – 40 GHz

Operation Frequency: Continuous TX Mode_ Normal Resolution

Frequency	Reading	A.F.+C.L AMP G	Ant. Pol.	D.E.F	Ducy	Total	Limit	Margin	Measur
[GHz]	[dBuV/m]	[dB]	[H/V]	[dB]	Cycle Factor	[dBuV/m]	[dBuV/m]	[dB]	ement Type
	No Critical peaks found								

Operation Frequency: Continuous TX Mode_ High Resolution

Frequency	Reading	A.F.+C.L AMP G	Ant. Pol.	D.E.F	Ducy	Total	Limit	Margin	Measur	
[GHz]	[dBuV/m]	[dB]	[H/V]	[dB]	Cycle Factor	[dBuV/m]	[dBuV/m]	[dB]	ement Type	
	No Critical peaks found									

A·F: ANTENNA FACTOR
 C·L: CABLE LOSS
 AMP G: AMPLIFIER GAIN

Note :

- 1. Total = Reading Value + Antenna Factor + Cable Loss + Distance Factor Amp Gain
- 2. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. Worst case is y plane and vertical polarization.

40 GHz – 90 GHz

Operation Frequency: Continuous TX Mode_Normal Resolution

Frequency	Reading	Factor	Ant. Pol.	Total	Limit	Margin	Measurement
[GHz]	[dBm]	[dB]	[H/V]	[dBm]	[dBm]	[dB]	Туре
75.7564	-100.78	82.92	Н	-17.86	-1.70	16.16	AV
77.2786	-100.35	82.92	Н	-17.43	-1.70	15.73	AV

Operation Frequency: Continuous TX Mode_High Resolution

Frequency	Reading	Factor	Ant. Pol.	Total	Limit	Margin	Measurement
[GHz]	[dBm]	[dB]	[H/V]	[dBm]	[dBm]	[dB]	Туре
75.74239	-100.57	82.92	Н	-17.65	-1.70	15.95	AV
77.2539	-100.16	82.92	Н	-17.24	-1.70	15.54	AV

Note :

1. Total(dBµV/m) = Reading Value(dBm) + AFCL(dB)

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Worst case is y plane and horizontal polarization.

3. In this test, AFCL factor consists of antenna factor, cable loss, mixer loss, amplifier gain

4. AV: Average

90 GHz – 243 GHz

Operation Frequency: Continuous TX Mode_ Normal Resolution

		A.F.+C.LAMP G					
Frequency	Reading	+D.F.	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Measurement Type
No Critical peaks found							

Operation Frequency: Continuous TX Mode_ High Resolution

		A.F.+C.LAMP G						
Frequency	Reading	+D.F.	ANT. POL	Total	Limit	Margin		
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Measurement Type	
	No Critical peaks found							

A·F: ANTENNA FACTOR
 C·L: CABLE LOSS
 AMP G: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amplifier Gain + Distance Factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Receiver Spurious Emissions Test Result:

ISED Rule(s):	RSS-Gen			
Test Requirements:	Blow the table			
Operating conditions: Under normal test conditions				
Method of testing:	Radiated			

F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)

S/A. Settings:

F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Mode of operation:

Receive

Frequency	Field Strength			
(MHz)	(microvolts/m at 3 meters)			
30 - 88	100			
88 - 216	150			
216 – 960	200			
Above 960	500			

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
(MHz)	(dB µV)	(dB /m)	(dB)	(H/V)	(dB µV/m)	(dB μV/m)	(dB)
No critical peaks found							

Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
(MHz)	(dB µV)	(dB /m)	(dB)	(H/V)	(dB µV/m)	(dB μV/m)	(dB)	
	No critical peaks found							

RESULT PLOTS

Band Edge Plot(average, y-V)_ Normal Resolution

Band Edge Plot(average, y-V)_ High Resolution

Note : Only the worst case plots for Radiated Spurious Emissions.

8.4 Fundamental emissions (Frequency Stability)

FCC Rules

§ 95.3379 76 ~ 81 GHz Band Radar Service unwanted emissions limits.

(b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

ISED Rules

RSS-GEN, 8.11 Frequency stability

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

RBW = 1% to 3% of the 99% bandwidth. VBW \geq 3 x RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

The frequency drift was investigated for every 10 °C $\,$ increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -40 to 85 °C.(Manufacturer declaration) Voltage supplied to EUT is 12 V reference temperature was done at 20°C. The voltage was varied by \pm 15 % of nominal

TEST RESULTS

Reference: 12 V at 20°c Freq. = 76.46 GHz Voltage Temp. Frequency Rage Limit Result (°C) (GHz) (GHz) +20(Ref) 76.220 ~ 76.661 Pass 76.239 ~ 76.654 -40 Pass 76.236 ~ 76.652 -30 Pass 76.234 ~ 76.653 Pass -20 -10 76.235 ~ 76.661 Pass 76.224 ~ 76.655 0 Pass 76.228 ~ 76.654 +10 Pass 12 V +30 76.221 ~ 76.666 Pass 76~81 +40 76.224 ~ 76.661 Pass +50 76.225 ~ 76.655 Pass +60 76.226 ~ 76.647 Pass +70 76.229 ~ 76.659 Pass +80 76.225 ~ 76.671 Pass +85 $76.231 \sim 76.622$ Pass 16 V +20 76.233 ~ 76.660 Pass 9 V +20 76.222 ~ 76.670 Pass

*Normal Resolution

Voltage	Temp.	Frequency Rage	Limit	Desult
	(°C)	(GHz)	(GHz)	Result
	+20(Ref)	76.360 ~ 76.555		Pass
	-40	76.375 ~ 76.561		Pass
	-30	76.374 ~ 76.551		Pass
	-20	76.362 ~ 76.552		Pass
	-10	76.364 ~ 76.559		Pass
	0	76.369 ~ 76.566		Pass
12 V	+10	76.364 ~ 76.569		Pass
12 V	+30	76.357 ~ 76.564	76~81	Pass
	+40	76.365 ~ 76.542	10~01	Pass
	+50	76.374 ~ 76.565		Pass
	+60	76.369 ~ 76.551		Pass
	+70	76.366 ~ 76.573		Pass
	+80	76.361 ~ 76.577		Pass
	+85	76.358 ~ 76.552		Pass
16 V	+20	76.366 ~ 76.561		Pass
9 V	+20	76.348 ~ 76.564		Pass

Reference: $12 V at 20^{\circ}c$ Freq. = 76.46 GHz

*High Resolution

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Schwarzbeck	BBHA 9170 / Horn Antenna	11/29/2019	Biennial	BBHA9170541
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Rohde&Schwarz	FSW / Spectrum Analyzer	09/09/2019	Annual	101256
Rohde&Schwarz	FSP / Spectrum Analyzer	09/11/2019	Annual	836650/016
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	01/18/2019	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/31/2018	Biennial	9168-0895
Schwarzbeck	BBHA 9120D / Horn Antenna	09/25/2019	Biennial	9120D-1298
OML INC.	WR-19 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042301
OML INC.	WR-19 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042302
OML INC.	WR-12 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042301
OML INC.	WR-12 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042302
OML INC.	WR-08 Horn Antenna / Horn Antenna	05/01/2018	Biennial	18050101
OML INC.	WR-08 Horn Antenna / Horn Antenna	05/01/2018	Biennial	18050102
OML INC.	WR-05 Horn Antenna / Horn Antenna	05/01/2018	Biennial	18050101
OML INC.	WR-05 Horn Antenna / Horn Antenna	05/01/2018	Biennial	18050102
OML INC.	WR-03 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042301
OML INC.	WR-03 Horn Antenna / Horn Antenna	04/23/2018	Biennial	18042302
OML INC.	OML WR19 / Harmonic Mixer	09/09/2019	Annual	W19HWD
OML INC.	OML WR12 / Harmonic Mixer	09/09/2019	Annual	W12HWD
OML INC.	OML WR08 / Harmonic Mixer	09/09/2019	Annual	W08HWD
OML INC.	OML WR05 / Harmonic Mixer	09/09/2019	Annual	M05HWD
OML INC.	OML WR03 / Harmonic Mixer	09/09/2019	Annual	M03HWD
OML INC.	WR-19 / Source Module	11/19/2019	Annual	S19MS-A-160516-1
OML INC.	WR-12 / Source Module	09/09/2018	Annual	S12MS-A-160419-1
OML INC.	WR-08 / Source Module	09/09/2018	Annual	S08MS-A-160419-1
OML INC.	WR-05 / Source Module	09/09/2018	Annual	S05MS-A-160419-1
OML INC.	WR-03 / Source Module	09/09/2018	Annual	S03MS-A-160419-1
OML INC.	Diplexer L.O / Diplexer	07/05/2019	Annual	DPL518-160419-1
CERNEX	CBLU1183540 / Power Amplifier	07/01/2019	Annual	22964
CERNEX	CBL26405040 / Power Amplifier	06/18/2019	Annual	25956

9. LIST OF TEST EQUIPMENT

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.