

Report Number: F690501-RF-RTL003920-1

TEST REPORT				
	of			
	15 Subpart F §15.503, §15.519 and §15.521 SS-220 Issue 1 and RSS-Gen Issue 5			
IC	FCC ID: TQ8-FOB-4F89U44 Certification: 5074A-FOB4F89U44			
Equipment Under Test	: FOB Smart Key			
Model Name	FOB-4F89U44			
Variant Model Name(s)	Refer to the page 3			
Applicant	FCC: HYUNDAI MOBIS CO., LTD. IC: Hyundai MOBIS Co., Ltd			
	Hyundai Mobis Co., Ltd.			
Date of Receipt	2023.02.21			
Date of Test(s)	2023.03.10 ~ 2023.03.14			
Date of Issue	2023.04.21			
In the configuration tested report does not assure KO	d, the EUT complied with the standards specified above. This test LAS accreditation.			
1) The results of this test report	are effective only to the items tested.			
	nsible for the sampling, the results of this test report apply to the sample as received. produced, except in full, without prior written permission of the Company.			
	port was provided by the customer and may affect the validity of the test results.			
We are responsible for all the	information of this test report except for the data(※) provided by the customer.			
Tested by:	Technical Manager:			
	Teo Kim Jinhyoung Cho			
SGS Korea Co., Ltd. Gunpo Laboratory				

Report Number:	F690501-RF-RTL003920-1	Page:	2	of	29

INDEX

Table of Contents	Page
1. General Information	3
2. Maximum Peak Power and Radiated Emissions	7
3. 10 dB Bandwidth	23
4. 99 % Bandwidth	25
5. Cease Transmission Time	27
6. Antenna Requirement	29

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil. Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Telephone	:	+82 31 688 0901
FAX	:	+82 31 688 0921

1.2. Details of Applicant

FCC Applicant FCC Address IC Applicant IC Address Contact Person	 HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 135-977 Hyundai MOBIS Co., Ltd 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea (Republic Of) Choe, Seung-hoon 482 21 260 0008
Phone No.	: +82 31 260 0098

1.3. Details of Manufacturer

Company	:	Hyundai Mobis Co., Ltd.
Address	:	203, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea, 06141

1.4. Description of EUT

Kind of Product FOB Smart Key	
Model Name	FOB-4F89U44
Variant Model Names FOB-4F89U43, FOB-4F90U33, FOB-4F90U42, FOB-4F91U41, FOB-4F92U31, FOB-4F92U301, FOB-4F92U40, FOB-4F93U21 FOB-4F93U30, FOB-4F94U20	
Serial Number	Conducted: 003, Radiated: 004
Power Supply	DC 3.0 V
Frequency Range	Tx: 6 489.6 Mz, Rx: 6 489.6 Mz
Modulation Type BPM-BPSK	
Number of Channel	1
Antenna Type PCB Pattern Antenna	
Antenna Gain*	-3.13 dB i
H/W Version 1.00	
S/W Version 1.00	
FVIN	N/A

Report Number: F690501-RF-RTL003920-1

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	E8257D	MY51501169	Mar. 07, 2023	Annual	Mar. 07, 2024
Signal Generator	R&S	SMBV100A	255834	May 25, 2022	Annual	May 25, 2023
Spectrum Analyzer	Agilent	N9030A	US51350132	Nov. 11, 2022	Annual	Nov. 11, 2023
Spectrum Analyzer	Agilent	N9020A	MY53421758	Aug. 26, 2022	Annual	Aug. 26, 2023
DC Power Supply	Agilent	U8002A	MY49030063	Jan. 20, 2023	Annual	Jan. 20, 2024
Spectrum Analyzer	R&S	FSW67	103242	Aug. 26, 2022	Annual	Aug. 26, 2023
Preamplifier	H.P.	8447F	2944A03909	Aug. 04, 2022	Annual	Aug. 04, 2023
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 13, 2022	Annual	Jun. 13, 2023
Pre Amplifier	TESTEK	TK-PA1840H	130016	Jan. 11, 2023	Annual	Jan. 11, 2024
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 23, 2021	Biennial	Aug. 23, 2023
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	01126	Feb. 09, 2023	Annual	Feb. 09, 2024
Horn Antenna	R&S	HF906	100326	Feb. 28, 2023	Annual	Feb. 28, 2024
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	9170-540	Nov. 30, 2022	Annual	Nov. 30, 2023
Test Receiver	R&S	ESCI 7	100911	Feb. 24, 2023	Annual	Feb. 24, 2024
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/3 8330516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/3 8330516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	MWX221-NMSNMS (4 m)	J1023142	Oct. 04, 2022	Semi- Annual	Apr. 04, 2023
Coaxial Cable	Qualwave Inc.	QA500-18-NN-10 (10 m)	22200114	Oct. 04, 2022	Semi- Annual	Apr. 04, 2023
Coaxial Cable	RFONE	PL360P-292M292M-1.5 M-A	20200324002	Feb. 18, 2023	Semi- Annual	Aug. 18, 2023

Note;

- Operating software of EUT has integrated test interface. No additional software was used.

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part15 subpart F, IC RSS-220 Issue 1 and RSS-Gen Issue 5				
Section in FCC	on in FCC Section in IC Test Item(s)		Result	
15.519(c) 15.519(e) 15.521(g)	RSS-220 Issue 1 5.3.1(d)(g)	Maximum Peak Power and Average Emissions	Complied	
15.209(a) 15.505(b) 15.519(c) 15.521(d) 15.521(a) 15.521(c) 15.521(h)	RSS-220 Issue 1 3.4 5.3.1(d)(e)(f)	Radiated emissions	Complied	
15.503(a) 15.519(b) 15.521(e)	RSS-220 Issue 1 2	10 dB Bandwidth	Complied	
-	RSS-Gen Issue 5 6.7	99 % Bandwidth	Complied	
15.519(a)(1)	RSS-220 Issue 1 5.3.1(b)	Cease Transmission Time	Complied	
15.207	RSS-Gen Issue 5 8.8	AC Conducted Emissions	N/A ¹⁾	

Note;

1) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

1.7. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncer	rtainty
Occupied Bandwidth	3.90 kHz	
Radiated Emission, 9 kHz to 30 MHz	Н	3.40 dB
	V	3.40 dB
Dedicted Emission holes: 1 Mile	Н	4.50 dB
Radiated Emission, below 1 GHz	V	5.10 dB
Radiated Emission, above 1 GHz	Н	3.70 dB
	V	3.90 dB

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence.

Report Number:F690501-RF-RTL003920-1Page:6of29

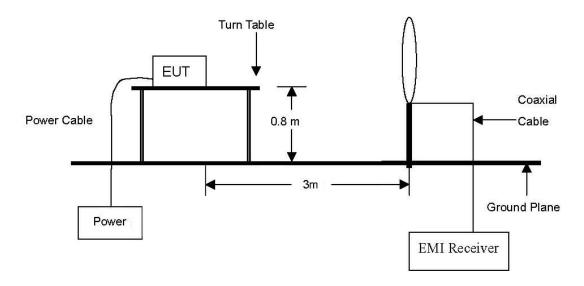
1.8. Test Report Revision

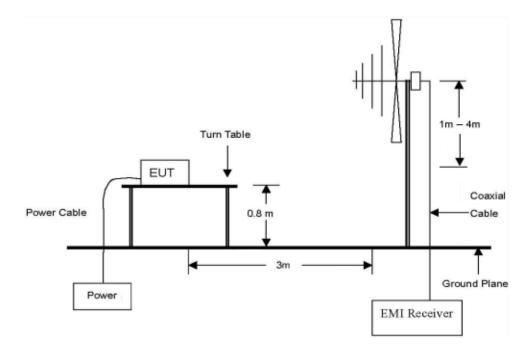
Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL003920	2023.03.17	Initial
1	F690501-RF-RTL003920-1	2023.04.21	Revised the standard rule of chapter 2 and 3.

1.9. Description of Variant Models

Model name		Description
Basic model	FOB-4F89U44	- Basic model
	FOB-4F89U43	
	FOB-4F90U33	
	FOB-4F90U42	
	FOB-4F91U41	
	FOB-4F92U31	- Same as basic model, but the difference in the number of
Variant models	FOB-4F92U301	external buttons of the product
	FOB-4F92U40	
	FOB-4F93U21	
	FOB-4F93U30	
	FOB-4F94U20	

Note;

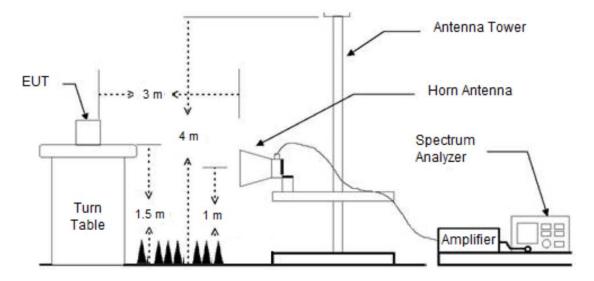

- The all test items performed with basic model


2. Maximum Peak Power and Radiated Emissions

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 ${\rm Mt}$

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\rm Me$ to 1 $\,\rm Gh$.



Report Number: F690501-RF-RTL003920-1

Page: 8 of 29

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

2.2. Limit

2.2.1. FCC

2.2.1.1. Maximum Peak Power

According to \$15.519(e), there is a limit on the peak level of the emissions contained within a 50 Mb bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dB m EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in \$15.521(g).

2.2.1.2. Radiated Emissions at or below 960 Mb

According to \$15.519(c), the radiated emissions at or below 960 Mb from a device operating under the provisions of this section shall not exceed the emission levels in \$15.209(a).

According to §15.521(c), Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in § 15.209(a), rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of this part.

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., \S 15.231 and 15.241.

2.2.1.3. Radiated Emissions above 960 Mb

According to §15.519(c), the radiated emissions above 960 Mb from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 Mb:

Frequency in Mz	EIRP in dB m
960-1 610	-75.3
1 610-1 990	-63.3
1 990-3 100	-61.3
3 100-10 600	-41.3
Above 10 600	-61.3

According to \$15.519(d), in addition to the radiated emission limits specified in the table in paragraph I of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kl_2 :

Frequency in Mb	EIRP in dB m
1 164-1 240	-85.3
1 559-1 610	-85.3

According to §15.521(h), The highest frequency employed in § 15.33 to determine the frequency range over which radiated measurements are made shall be based on the center frequency, f^c , unless a higher frequency is generated within the UWB device. For measuring emission levels, the spectrum shall be investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the frequency range shown in § 15.33(a) or up to $f^c + 3/(\text{pulse width in seconds})$, whichever is higher. There is no requirement to measure emissions beyond 40 GHz provided f^c is less than 10 GHz; beyond 100 GHz if f^c is at or above 10 GHz and below 30 GHz; or beyond 200 GHz if f^c is at or above 30 GHz.

2.2.2. IC

2.2.2.1. Maximum Peak Power

According to RSS-220 Issue 1 5.3.1(g), the peak level of the transmissions shall not exceed the peak equivalent of the average limit contained within any 50 M bandwidth, as defined in section 4 of the Annex.

According to RSS-220 Issue 1 section 4 of the Annex, peak measurements shall be made in addition to average measurements. Transmissions shall not exceed 0 dB m e.i.r.p. in any 50 Mb bandwidth when the average limit is -41.3 dB m/Mb. This is the equivalent peak limit as calculated by combining the 6 dB peak-to-average conversion with a resolution bandwidth (RBW) scaling factor of 20 log (1 Mb/50 Mb). Only the 50 Mb bandwidth, centred on the frequency f_M where the highest power occurs, needs to be measured to satisfy the peak requirements for all frequencies. A different resolution bandwidth and a correspondingly different peak limit may also be used, in which case the RBW may be set anywhere between 1 Mb and 50 Mb. The peak e.i.r.p. limit is then calculated as 20 log(RBW/50) dB m where the RBW is in Mb. This may be converted to a peak field strength level at 3 metres using E(dBµV/m) = P(e.i.r.p.(dB m)) + 95.2. If the RBW is greater than 3 Mb, the application for certification shall contain a detailed description of the test procedure, the calibration of the test set-up and the instrumentation used in the testing.

2.2.2.2. Radiated Emissions at or Below 960 Mt

According to RSS-220 Issue 1 3.4, radiated emissions at or below 960 Mb for all subclasses of UWB device shall not exceed the following limits. Measurements of radiated emissions at and below 960 Mb are to be made using a CISPR quasi-peak detector. CISPR measurement bandwidth specifications are to be used.

Frequency (쌘)	Field Strength (Microvolts/m)	Measurement Distance (Metres)	E.i.r.p. (dBnW)
0.009-0.490	2 400/F	300	10 log (17.28 / F ²)
0.490-1.705	(F in k⊞) 24 000/F		(F in 朏) 10 log (17.28 / F²)
0.490-1.703	(F in k批)	30	(Fin ₩z)
1.705-30.0	30	30	-45.7
30-88	100	3	-55.2
88-216	150	3	-51.7
216-960	200	3	-49.2

Note 1: The emission limits for the ranges 9-90 klz and 110-490 klz are based on measurements employing a linear average detector.

2.2.2.3. Radiated Emissions Above 960 Mb

According to RSS-220 Issue 1 5.3.1(d), radiated emissions above 960 Mb from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 Mb.

Hand-held (Outdoor) Communication, Measurement, Location Sensing, and Tracking Devices						
Frequency	EIRP in a Resolution Bandwidth of 1 Mb					
960-1 610 Mb	-75.3 dB m					
1.61-4.75 GHz	-70.0 dB m					
4.75-10.6 GHz	-41.3 dB m					
Above 10.6 GHz	-61.3 dB m					

According to RSS-220 Issue 1 5.3.1(e), in addition to the limits specified in paragraph (d) of this section, radiated emissions shall not exceed the following average limits when measured using a resolution bandwidth greater than or equal to 1 klz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used.

Frequency	EIRP in a Resolution Bandwidth of 1 朏
1 164-1 240 Mz	-85.3 dB m
1 559-1 610 Mbz	-85.3 dB m

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 $\ensuremath{\mathbb{M}}$

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 Mb to 1 000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

2.3.3. Test Procedures for emission above 1 $\ { m G}{ m tz}$

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 0.5 and 1 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna is a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

1. Peak power Measurement

- The Peak power measurement refer to section 10.3.5 and 10.3.6

The RBW = less than 50 Mz (but no less than 1 Mz), VBW is set to at least 1 Mz (3 Mz is recommended),

When this approach is employed, the peak emissions EIRP limit (0 dBm / 50 Mb) is converted to a limit commensurate with the RBW by employing a [20 log (RBW / 50 Mb)] relationship.

When a resolution bandwidth of less than 50 \mathbb{M} is used, this measurement shall be performed over a 50 \mathbb{M} span centered on the frequency associated with the highest detected average emission level.

2. Average Measurement

- The Average Measurement refer to section 10.3.7

Set the RBW to 1 MHz (1 kHz for emission in the GPS bands), VBW to be at least 1 MHz (3 kHz for emission in the GPS bands), Detector = RMS, Sweep time = no more than a 1 ms integration period over each measurement bin.

2.4. Test Result

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

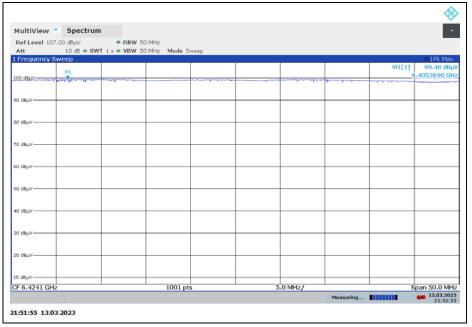
2.4.1. Maximum peak power and Average emission

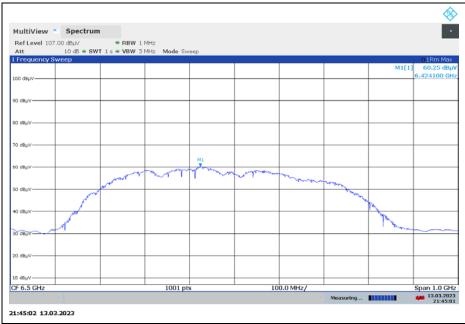
All emissions tested both horizontal and vertical. The following table shows the highest levels of radiated emissions on the worst polarization.

Frequency (觃)	Reading (dB _# V)	Ant. Pol.	Detect Mode	AF (dB/m)	AMP+CL (dB)	E (dBµN/m)	CF (dB)	E.I.R.P. (dB m)	Limit (dB m)	Margin (dB)
6 405.37	99.48	Н	Peak	34.90	-33.58	100.80	-104.80	-4	0	4
6 424.10	60.25	н	Average	34.90	-33.52	61.63	-104.80	-43.17	-41.3	1.87

Remark;

1. E $(dB\mu N/m)$ = Reading $(dB\mu N)$ + Antenna Factor (dB/m) + Amp (dB) + Cable Loss (dB).


- 2. E.I.R.P. (dB m) = E (dB μ V/m) + 20 log D 104.8; where D is the measurement distance in meters.
- 3. CF (dB) (E.I.R.P.) = 20 log D 104.8;
- 4. All the emissions were measured at a 1 meter test distance.
- 5. AF = Antenna Factor, AMP = Amplifier, CL = Cable Loss.


Report Number: F690501-RF-RTL003920-1

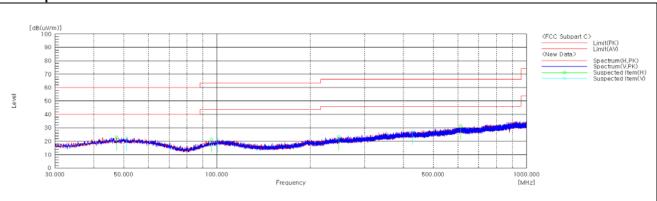
- Test plots

Maximum Peak power

Average emission

Report Number: F690501-RF-RTL003920-1

2.4.2. Radiated Spurious Emission below 960 Mb


The frequency spectrum from 9 kl/z to 960 M/z was investigated. All reading values are peak values.

Radia	ated Emissio	ns	Ant	Correction Factors		Correction Factors		Correction Factors		Total	Lim	it
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
47.30	30.90	Peak	н	19.63	-27.57	22.96	40.00	17.04				
51.10	30.60	Peak	V	19.68	-27.49	22.79	40.00	17.21				
427.58	31.20	Peak	V	22.00	-25.72	27.48	46.00	18.52				
613.01	32.40	Peak	Н	25.20	-26.06	31.54	46.00	14.46				
Above 700.00	Not Detected	-	-	-	-	-	-	-				

Remark;

- Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 2. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

2.4.3. Radiated Spurious Emission above 960 Mb

All emissions tested both horizontal and vertical. The following table shows the highest levels of radiated emissions on the worst polarization.

Frequency	Reading	Ant.	AF	AMP+CL	E (dBµN	CF	E.I.R.P.		nit m)	Maı (d	r gin B)
(MHz)	(dBµV)	Pol.	(dB/m)	(dB)	`/m)	(dB)	(dB m)	FCC	IC	FCC	IC
978.60	26.15	Н	28.03	-38.55	15.63	-110.82	-95.19	-75	.30	19	.89
1 022.57	38.17	Н	24.24	-40.50	21.91	-110.82	-88.91	-75	.30	13	.61
*1 197.16	6.04	Н	25.10	-39.86	-8.72	-110.82	-119.54	-85	.30	34	.24
*1 571.72	6.85	Н	25.34	-38.72	-6.53	-110.82	-117.35	-85	.30	32	.05
1 746.42	36.64	V	26.87	-38.68	24.83	-110.82	-85.99	-63.30	-70	22.69	15.99
2 006.70	36.43	Н	27.89	-37.63	26.69	-110.82	-84.13	-61.30	-70	22.83	14.13
3 278.20	34.53	V	30.70	-37.14	28.09	-110.82	<u>-82.73</u>	-41.30	-70	41.43	12.73
5 282.35	31.22	V	33.83	-34.88	30.17	-110.82	-80.65	-41	.30	39	.35
10 662.16	26.76	Н	37.90	-31.04	33.62	-110.82	-77.20	-61	.30	15	.90
Above 10 700.00	Not detected	-	-	-	-	-	-	-	-		

Remark;

1. E $(dB\mu N/m)$ = Reading $(dB\mu N)$ + Antenna Factor (dB/m) + Amp (dB) + Cable Loss (dB).

2. E.I.R.P. (dB m) = E (dB μ N/m) + 20 log D - 104.8; where D is the measurement distance in meters.

- 3. CF (dB) (E.I.R.P.) = 20 log D 104.8
- 4. All the emissions above 960 Mb were measured at a 0.5 meter test distance.
- 5. "*" means the GPS band.
- 6. Measurement In frequency 1 162-1 240 Mz and 1 559-1 610 Mz, RBW is set to 1 ktz.
- 7. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
- 8. AF = Antenna Factor, AMP = Amplifier, CL = Cable Loss.

Report Number: F690501-RF-RTL003920-1

Page: 18 of 2	9
---------------	---

- Test plots

960 MHz ~ 1 000 MHz

 $1\ 000\ \text{Mz}$ ~ $1\ 610\ \text{Mz}$

Report Number: F690501-RF-RTL003920-1

$1\ 610\ \text{Mz}$ ~ $1\ 990\ \text{Mz}$

1 990 MHz ~ 3 100 MHz

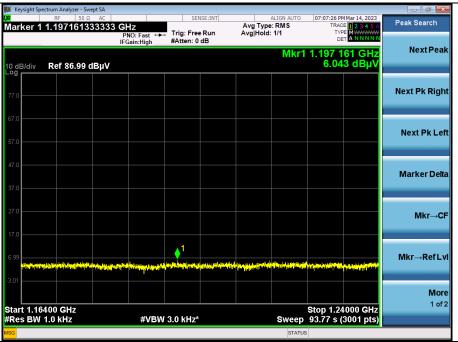
Report Number: F690501-RF-RTL003920-1

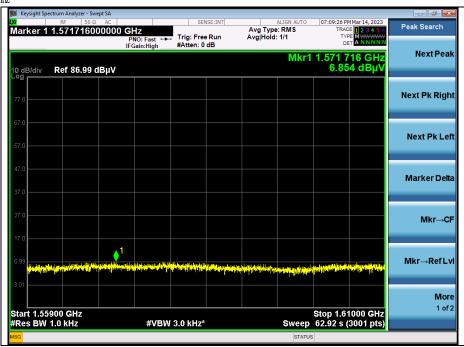
3 100 MHz ~ 4 750 MHz

4 750 MHz ~ 10 600 MHz

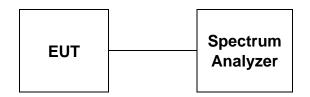
Report Number: F690501-RF-RTL003920-1

10 600 MHz ~ 18 000 MHz




Report Number: F690501-RF-RTL003920-1

- GPS Band



3. 10 dB Bandwidth

3.1. Test Setup

3.2. Limit

3.2.1. FCC

According to \$15.503(a), for the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna.

According to \$15.519(b), the UWB bandwidth of a device operating under the provisions of this section must be contained between 3 100 Mb and 10,600 Mb.

According to §15.521(e), The frequency at which the highest radiated emission occurs, f^M, must be contained within the UWB bandwidth.

3.2.2. IC

According to 2 of RSS-220 Issue 1, a UWB device is an intentional radiator that has either a -10 $\rm dB$ bandwidth of at least 500 Mb or a -10 dB fractional bandwidth greater than 0.2. There are eight distinct subclasses of UWB device.

3.3. Test Procedure

10 dB Bandwidth

The test follows section 10.1 of ANSI C63.10-2013.

The frequency at which the maximum power level is measured with the peak detector is designated f_M . The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 Mb resolution bandwidth and a video bandwidth of 1 Mb or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 Mb segments above and below f_M , where the peak power falls by 10 dB relative to the level at f_M , are designated as f_H and f_L , respectively:

a) For the lowest frequency bound f_L , the emission is searched from a frequency lower than f_M that has, by inspection, a peak power much lower than 10 dB less than the power at f_M and increased toward f_M until the peak power indicates 10 dB less than the power at f_M . The frequency of that segment is recorded.

b) This process is repeated for the highest frequency bound f_H , beginning at a frequency higher than f_M that has, by inspection, a peak power much lower than 10 dB below the power at f_M . The frequency of that segment is recorded.

c) The two recorded frequencies represent the highest f_H and lowest f_L bounds of the UWB transmission, and the -10 dB bandwidth (B – 10) is defined as ($f_H - f_L$). The center frequency (f_c) is mathematically determined from ($f_H - f_L$) / 2.

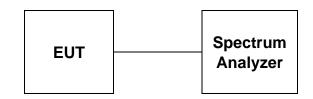
Report Number: F690501-RF-RTL003920-1


3.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Frequency (肔)	f _M (M⊞z)	f∟ (M⊞z)	f _н (M⊞z)	fc (MEz)	10 dB Bandwidth (ᠬᡅ)	Minimum Bandwidth (畑)	Remark
6 489.6	6 572.5	6 223.9	6 772.4	6 498.2	548.5	500	Pass

- Test plot


10 dB Bandwidth

4.99 % Bandwidth

4.1. Test Setup

4.2. Limit

Limit: Not Applicable

4.3. Test Procedure

99 % Bandwidth

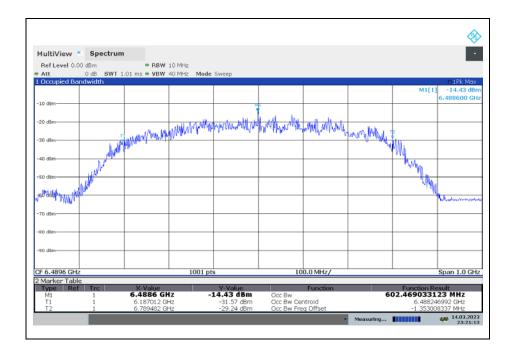
• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied / x $\rm dB$ bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

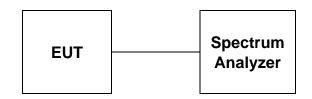
For the 99 % emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99 % emission bandwidth).


Report Number: F690501-RF-RTL003920-1

4.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Frequency (雕)	99 % Bandwidth (觃)	Remark
6 489.6	602.47	99 % Occupied bandwidth


- Test plot

5. Cease Transmission Time

5.1. Test Setup

5.2. Limit

5.2.1. FCC

According to §15.519(a)(1), a UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

5.2.2. IC

According to 5.3.1(b) of RSS-220 Issue 1, the device is to transmit only when it is sending information to an associated receiver. The device shall cease transmission of information within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB device at least every 10 seconds or the UWB device shall cease transmitting any information other than periodic signals used for the establishment or re-establishment of a communication link with an associated receiver.

5.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 1 MHz, VBW = 3 MHz, Span = 0 Hz.

Report Number: F690501-RF-RTL003920-1

Page: 28 of 29

5.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Frequency	Transmission Time	Limit	Remark
(账)	(ាន)	(sec)	
6 489.6	230	10	Pass

- Test plot

	Spectru								
		● RBW 1 M							SGL
Att Zero Span	0 dB 🖶 SW	T 10 s ● VBW 3 M	1H2						Count 1 O 1Pk Ma
								D2[1] -0.96
									230.00 11 -32.53 d
10 dBm									1.0100
20 dBm									
30 d8m	1 B ²								
40 diim	11								
40 dism									
50 d8m									
SU dBm									
60 dBm									
50 dBm									
70 d8m									
/U dBm									
manda		اسهلهمد سلالهم وغلاقتهم	muter Haters	mapment	martherenal	udammaterly .	hardwar	and the second second	mounder
io usin									
90 d8m									
an anu-									

Remark;

The EUT transmit only 230 $\,{\rm ms}\,$ when sending information to an associated receiver.

6. Antenna Requirement

6.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.519 (a)(2), the use of antennas mounted on outdoor structures, e.g., antenna mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

6.2. Antenna Connected Construction

Antenna used in this product is PCB Pattern antenna with gain of -3.13 dB i.

- End of the Test Report -