

Report Number: F690501-RF-RTL003250

of

FCC Part 15 Subpart C §15.209 and §15.231 IC RSS-210 Issue 10 and RSS-Gen Issue 5

> FCC ID: TQ8-FOB-4F71 IC Certification: 5074A-FOB4F71

Equipment Under Test	:	FOB Smart Key
Model Name	:	FOB-4F71
Variant Model Name(s)	:	Refer to the page 3
Applicant	:	Hyundai Mobis Co., Ltd.
Manufacturer	:	Hyundai Mobis Co., Ltd.
Date of Receipt	:	2022.06.02
Date of Test(s)	:	2022.06.08 ~ 2022.06.18
Date of Issue	:	2022.06.22

In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation.

1) The results of this test report are effective only to the items tested.

2) The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received.

3) This test report cannot be reproduced, except in full, without prior written permission of the Company.

4) The data marked 💥 in this report was provided by the customer and may affect the validity of the test results.

We are responsible for all the information of this test report except for the data(%) provided by the customer.

Technical Tested by: Manager: Taek Kim **Jinhyoung Cho** SGS Korea Co., Ltd. Gunpo Laboratory

RTT7081-02(2020.10.05)(0)

Report Number:	F690501-RF-RTL003250	Page:	2	of	24	

INDEX

Table of Contents	Page
1. General Information	3
2. Field Strength of Fundamental and Spurious Emission	7
3. Bandwidth of Operation Frequency	16
4. Occupied Bandwidth	18
5. Transmission Time	20
6. Duty Cycle Correction Factor	22
7. Antenna Requirement	24

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil. Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Telephone	:	+82 31 688 0901
FAX	:	+82 31 688 0921

1.2. Details of Applicant

Applicant	:	Hyundai Mobis Co., Ltd.
Address	:	203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 135-977
Contact Person	:	Seung-hoon, Choe
Phone No.	:	+82 31 260 0098

1.3. Details of Manufacturer

Company	:	Same as applicant
Address	:	Same as applicant

1.4. Description of EUT

Kind of Product	FOB Smart Key	
Model Name	FOB-4F71	
Variant Model Name	FOB-4F70	
Serial Number	Conducted: 001, Radiated: 002	
Power Supply	DC 3.0 V	
Frequency Range	Tx: 433.92 Mbz, Rx: 125.00 kbz	
Modulation Type FSK		
Number of Channel 1		
Antenna Type	Antenna Type PCB Pattern Antenna	
Antenna Gain [*] -11.61 dB i		
H/W Version	1.00	
S/W Version	1.00	

Report Number: F690501-RF-RTL003250

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMBV100A	255834	May 25, 2022	Annual	May 25, 2023
Spectrum Analyzer	R&S	FSV30	103210	Dec. 08, 2021	Annual	Dec. 08, 2022
Spectrum Analyzer	Agilent	N9020A	MY53421758	Aug. 27, 2021	Annual	Aug. 27, 2022
DC Power Supply	Agilent	U8002A	MY50020026	Dec. 01, 2021	Annual	Dec. 01, 2022
Preamplifier	H.P.	8447F	2944A03909	Aug. 06, 2021	Annual	Aug. 06, 2022
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 13, 2022	Annual	Jun. 13, 2023
High Pass Filter	Wainwright Instrument GmbH	WHKX10-900-1000- 18000-40SS	7	Mar. 04, 2022	Annual	Mar. 04, 2023
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 23, 2021	Biennial	Aug. 23, 2023
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	01126	Feb. 07, 2022	Annual	Feb. 07, 2023
Horn Antenna	R&S	HF906	100326	Feb. 18, 2022	Annual	Feb. 18, 2023
EMI Test Receiver	R&S	ESU26	100109	Jan. 18, 2022	Annual	Jan. 18, 2023
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/38 330516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/38 330516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	MWX221-NMSNMS (4 m)	J1023142	Apr. 04, 2022	Semi- Annual	Oct. 04, 2022
Coaxial Cable	micro-coax UTiflex	142A SERIES 502839-8 (10 m)	90000034	Apr. 04, 2022	Semi- Annual	Oct. 04, 2022
Coaxial Cable	RFONE	PL360P-292M292M-1.5 M-A	20200324002	Feb. 18, 2022	Semi- Annual	Aug. 18, 2022

Note;

- Operating software of EUT has integrated test interface. No additional software was used.

- For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

Report Number: F690501-RF-RTL003250

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C, IC RSS-210 Issue 10 and RSS-Gen Issue 5					
Section in FCC	Section in IC	Test Item(s)	Result		
15.209(a) 15.231(b)	RSS-210 Issue 10 A.1, Table A1 RSS-Gen Issue 5 8.9	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied		
15.231(c)	-	Bandwidth of Operation Frequency	Complied		
-	RSS-210 Issue 10 A.1.3 RSS-Gen Issue 5 6.7	Occupied Bandwidth	Complied		
15.231(a)	RSS-210 Issue 10 A.1.1	Transmission Time	Complied		
15.207	RSS-Gen Issue 5 8.8	AC Power Line Conducted Emission	N/A ¹⁾		

Note;

1) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

1.7. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty		
Occupied Bandwidth	3.9	0 kHz	
Radiated Emission, 9 kHz to 30 MHz	Н	3.30 dB	
	V	3.30 dB	
Radiated Emission, below 1 GHz	Н	4.80 dB	
	V	5.20 dB	
Radiated Emission, above 1 GHz	Н	3.90 dB	
	V	4.00 dB	

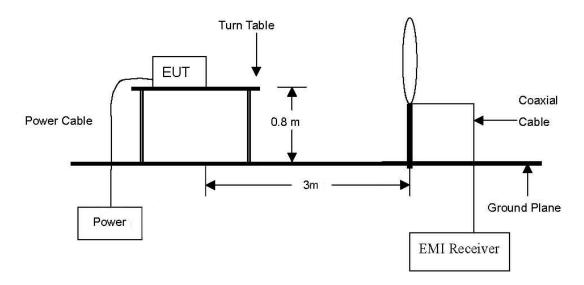
All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence.

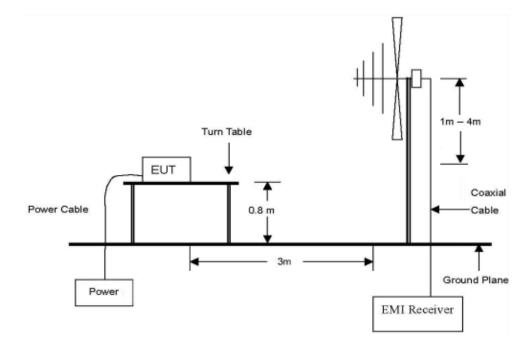
Report Number: F690501-RF-RTL003250	Page:	6	of	24
-------------------------------------	-------	---	----	----

1.8. Test Report Revision

Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL003250	2022.06.22	Initial

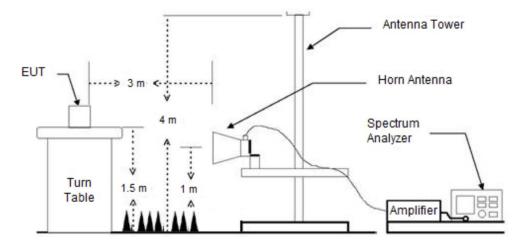
1.9. Description of Variant Model


Model name		Description
Basic model	FOB-4F71	- Basic model
Variant model	FOB-4F70	 Same as basic model, but the difference in the number of external buttons of the product


2. Field Strength of Fundamental and Spurious Emission

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 $\ensuremath{\mathbb{Mk}}$.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 ML to 1 GHz.

Report Number: F690501-RF-RTL003250	Page:	8	of	24
-------------------------------------	-------	---	----	----

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gl_2 to the 10th harmonic of the highest fundamental frequency or 40 Gl_2 , whichever is lower.

2.2. Limit

2.2.1. FCC

2.2.1.1. Radiated Emission Limits; general requirements.

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (版)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009-0.490	2 400/F(kliz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., \S 15.231 and 15.241.

2.2.1.2. Periodic Operation in the band 40.66-40.70 Mb and above 70 Mb.

According to §15.231(b), in addition to the provisions of Section §15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (脞)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹linear interpolations

Where F is the frequency in Mz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 Mz, μ /m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 Mz, μ /m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

Report Number: F690501-RF-RTL003250

2.2.2. IC

2.2.2.1. Transmitter Emission Limits

According to RSS-Gen Issue 5, 8.9.

Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5 - General field strength limits at frequencies above 30 Mb

Frequency (账)	Field Strength (<i>µ</i> //m at 3 m)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 Mb

Frequency	Magnetic Field Strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz 1	6.37/F (F in 朏)	300
490-1 705 kHz	63.7/F (F in 址)	30
1.705-30 Mz	0.08	30

Note 1: The emission limits for the ranges 9-90 klz and 110-490 klz are based on measurements employing a linear average detector.

2.2.2.2. Momentarily Operated Devices

According to A.1 of RSS-210 Issue 10.

The operation of momentarily operated devices is permitted in the bands specified in tables A1 and A2 of this annex, but is prohibited in the restricted frequency bands listed in RSS-Gen.

The frequency bands and field strength limits in tables A1 and A2 are reserved exclusively for the transmission of a control signal, such as those used with alarm systems, door openers, remote switches, etc. Data may be sent with a control signal. Radio control of toys or model aircraft, as well as continuous transmissions (such as voice or video), are not permitted, except as provided in section A.1.4 below.

Table A1 - Permissible Field Strength Limits for Momentarily Operated Devices

Fundamental Frequency (ሙ), Excluding Restricted Frequency Bands Specified in RSS-Gen	Field Strength of the Fundamental Emissions (ﷺ at 3 m)
70-130	1,250
130-174	1,250 to 3,750*
174-260**	3,750
260-470**	3,750 to 12,500*
Above 470	12,500

* Linear interpolation with frequency, f, in Mz:

For 130-174 Mz: Field Strength $(\mu N/m) = (56.82 \text{ x f}) - 6136$ For 260-470 Mz: Field Strength $(\mu N/m) = (41.67 \text{ x f}) - 7083$

** Frequency bands 225-328.6 Mb and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 Mb to 1 000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 (Hz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 (Hz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurements below 1 GHz resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

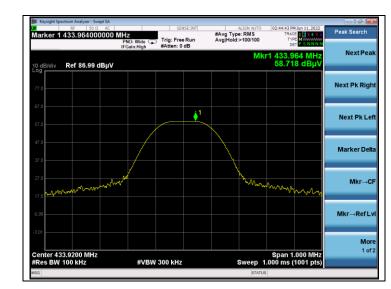
2.3.3. Test Procedures for emission above 1 (Hz

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mz for Peak detection at frequency above 1 Gz.

2.4. Test Result

Ambient temperature	:	(23 =	±1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Field Strength of Fundamental


All emissions tested both horizontal and vertical. The following table shows the highest levels of radiated emissions on the worst polarization.

Frequency (Mtz)	Reading (dBµV)	Detect Mode	Ant. Pol.	AF (dB/m)	CL (dB)	DF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.96	58.72	Peak	V	22.10	4.05	-	84.87	100.83	15.96
433.96	-	Average	-	-	-	-7.13	77.74	80.83	3.09

Remark;

- To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is <u>Y axis</u>.
- Definition of DUT for three orthogonal planes is described in the test setup photos.
- 2. 3 m Limit (dB μ V/m) = 20log [41.67(F(ME)) 7083] = 80.83
- 3. Peak Result = Reading + Antenna Factor + Cable Loss
- 4. Average Result = Peak Result + DF
- 5. DF (Duty Cycle Correction Factor): $20\log (T_{on} / 100 \text{ ms}) = 20\log (44.0 / 100) = -7.13$
 - $-T_{on} = 44.0$ ms.

- T_{on+off} = 100 ms (pulse train is 100 ms instead of 173.50 ms).

2.4.2. Radiated Spurious Emission

The following table shows the highest levels of radiated emissions. The frequency spectrum from 9 kHz to 4 400 MHz was investigated.

Radia	ted Emissic	ons	Ant.	Correction Factors		Total	Lim	it	
Frequency (胜)	Reading (dBµV)	Detect Mode	Ant. Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*1 301.66	62.86	Peak	V	25.10	-37.65	-	50.31	74.00	23.69
*3 905.70	49.74	Peak	V	32.19	-31.57	-	<u>50.36</u>	74.00	23.64
Above 4 000.00	Not detected	-	-	-	-	-	-	-	-

Remark;

2.

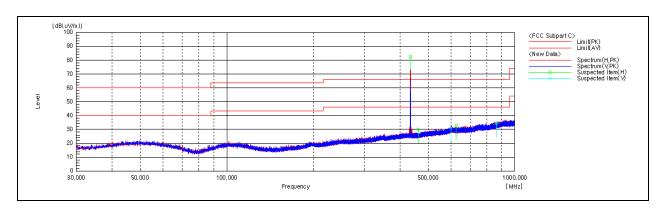
1. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z).

Definition of DUT for three orthogonal planes is described in the test setup photos.

- $3 \text{ m Limit} (dB\mu V/m) = 20 \log [41.67(F_{(Mt)}) 7083] 20 dB\mu V/m = 60.83 dB\mu V/m.$
- 3. Correction Factors = AF + AMP + CL.
- 4. Peak Result = Reading + Correction Factors.
- 5. Average Result = Peak Result + DF.
- 6. DF (Duty Cycle Correction Factor): $20\log (T_{on} / 100 \text{ ms}) = 20\log (44.0 / 100) = -7.13$

- T_{on} = 44.0 ms.

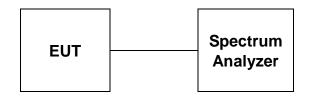
- T_{on+off} = 100 ms (pulse train is 100 ms instead of 173.50 ms).


- 7. "*" means the restricted band.
- 8. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.
- 9. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.

Report Number: F690501-RF-RTL003250

- Test plots

3rd harmonic


9th harmonic

3. Bandwidth of Operation Frequency

3.1. Test Setup

3.2. Limit

According to \$15.231(c), the bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 Mb and below 900 Mb. For devices operating above 900 Mb, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

3.3. Test Procedure

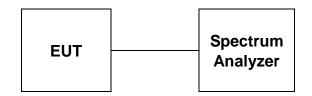
- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW ⁽¹⁾
- 3. The bandwidth of fundamental frequency was measured and recorded.

Report Number: F690501-RF-RTL003250

Page: 17 of 24

3.4. Test Result

Ambient temperature	:	(23 ±	:1) ℃
Relative humidity	:	47	% R.H.


Frequency (账)	Bandwidth of Operation Frequency (雌)	Limit (朏)	Remark
433.92	95.26	1 084.80	The point 20 dB down from the modulated carrier

Ref Level	10.00 dB 20 d		BW 3 kHz BW 10 kHz Mor	de Sweep	
TDF	200	6 0H1 3.0 m5 • 1	on round mot	ac sweep	
1Pk View					
				D3[1]	0.02 d
0 dBm			MI		95.260 kH
U dBm			Λ	[M1[1]	-0.71 dBr
-10 dBm			Λ	()	433.880040 MH
-TO UDIT				11	
-20 dBm			MP Shares	J de	
D	1 -20.71	U dBm	1		
-30 dBm			5	1	
-50 0011				N	
-40 dBm					
		pul		1	man
-SQ.dBm	man	mann			www.
- DOM / DIG IT			1		
-60 dBm					
-70 dBm					
-80 dBm					
CF 433.92 M			1001 pts		Span 500.0 kHz
darker	ΠZ		1001 pts	•	Span 300.0 KHz
	Terel	Museline I	Y-value	Function	Function Result
Type Ref M1	1	X-value 433.88004 MHz	-0.71 dBm	Function	Function Result
M1 M2	1	433.88004 MHz 433.87369 MHz	-20.68 dBm		
D3 M2	1	95.26 kHz	0.02 dB		
D3 m2	-	90.20 KH2	0.02 00		

4. Occupied Bandwidth

4.1. Test Setup

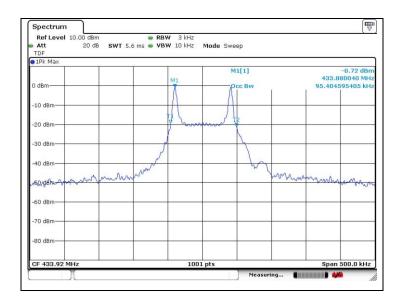
4.2. Limit

According to A.1.3 of RSS-210 Issue 10, the occupied bandwidth of momentarily operated devices shall be less than or equal to 0.25 % of the centre frequency for devices operating between 70 Mb and 900 Mb. For devices operating above 900 Mb, the occupied bandwidth shall be less than or equal to 0.5 % of the centre frequency.

4.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW I
- 3. The bandwidth of fundamental frequency was measured and recorded.

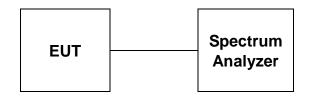
Report Number: F690501-RF-RTL003250


Page: 19 of

24

4.4. Test Result

Ambient temperature	:	(23 1	±1) ℃
Relative humidity	:	47	% R.H.


Frequency	Occupied Bandwidth	Limit	Remark
(账)	(朏)	(組2)	
433.92	95.40	1 084.80	99 % Occupied bandwidth

5. Transmission Time

5.1. Test Setup

5.2. Limit

5.2.1. FCC

According to §15.231(a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

5.2.2. IC

According to A.1.1(a) of RSS-210 Issue 10, a manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.

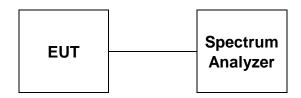
5.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 1 Mb, VBW = 1 Mb, Span = 0 Hz, Sweep Time = 10 sec.
- 3. The bandwidth of fundamental frequency was measured and recorded.

Report Number:	F690501-RF-RTL003250
----------------	----------------------

5.4. Test Result

Ambient temperature	:	(23 ±	:1) ℃
Relative humidity	:	47	% R.H.


Frequency	Transmission Time	Limit	Remark
(雁)	(sec)	(sec)	
433.92	0.380	Same or less than 5	Pass

1Pk Clrw						
			M1[1]		-42.56 dBn 2.38000	
-20 dBm			D2[1]		-0.23 di	
			0211		380.00 ms	
-30 dBm						
-40 dBm	M1 U2					
-50 dBm						
-60 dBm						
-70 dBm						
-80 dBm	opening of the helps of the	yanga maganda sa karana karana	adulation and a state of the second		where we had a faith to see	
-90 dBm						
-100 dBm						

6. Duty Cycle Correction Factor

6.1. Test Setup

6.2. Limit

None (No dedicated Limit specified in the Rules).

6.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW = 1 MHz, VBW = 1 MHz, Span = 0 Hz, Sweep Time = 500 msec.

Report Number: F690501-RF-RTL003250

6.4. Test Result

Ambient temperature	:	((23 =	±1)℃
Relative humidity	:	4	47	% R.H.

CALCULATION:

Average Reading = Peak Reading $(dB\mu V/m)$ + 20log (Duty Cycle).

In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured;

T _{on+off}	Ton	$M \% = (T_{on} / T_{on+off}) * 100 \%$	Duty Correction Factor
100 ms	44.0 ms	44.0	-7.13 dB

 $T_{\text{on+off}} = 100 \text{ ms.}$

 $T_{\text{on}}=44.0\ \text{ms}.$

Duty Cycle = $20\log (T_{on} / T_{on+off}) = 20\log (0.440) = -7.13 dB.$

Remark;

- T_{on+off} = 100 ms (pulse train is 100 ms instead of 173.50 ms).

30 d	B 👄 SWT 500 ms 👄 '	VBW 1 MHz			
1					
1					
	T T				
			D3[1]		0.00 di 173.500 m
-		-	544543		-0.51 dBn
M1	00		MILTI		74.000 m
1 T	4				74.000 m
					Austrantee
- ALARAN AN	Jeffed Brad harden and and and and and and and and and an	Party Service Petroventin	Alter and read	wants-downth/conterioration	Chamber Mitteres
-					-
D MILLS		1001 mt			50.0 ms/
2 19112		1001 pt:	3		30.0 msy
of Trol	Y-ualuo	X-ualuo I	Eurotion	Eurotion Bo	cult
			ranction	Function Re	Juit
M1 1	44.0 ms	-0.01 dB			
M1 1	173.5 ms	-0.00 dB			
	2 MHz	2 MHz 2 MHz 3 1 74.0 ms 1 1 44.0 ms	w U2 U3 w U2 U3 duard www.dr.duardeedeedeedeedeedeedeedeedeedeedeedeedee	w U2 U2 U2 dup dup dup dup dup dup dup dup dup dup dup dup dup dup dup dup dup dup dup	M1 D2 D3 M1 D2 D3 M1 D2 D3 M2 D3 D3 M3 D2 D3 M3 D2 D3 M3 D2 D3 M3 D3 D3 M3 D3 D3 M3 D3 D3 M4 D3 D3 M4 D3 D3 M4 1 44.0 ms -0.01 d8

7. Antenna Requirement

7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction

Antenna used in this product is PCB Pattern Antenna with gain of -11.61 dB i.

- End of the Test Report -