TEST REPORT

Dt&C

DT&C Co., Lto	l.
---------------	----

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC2112-0163			
2. Customer			
Name : HYUNDAI MOBIS CO., LTD.			
Address : 203, Teheran-ro Gangnam-gu, Seoul, South Korea, 135-977			
3. Use of Report : FCC Original Grant			
4. Product Name / Model Name : DISPLAY CAR SYSTEM / DA330I6GG			
FCC ID : TQ8- DA330I6GG			
5. FCC Regulation(s) : FCC Part 15.407			
Test Method Used : KDB789033 D02v02r01, ANSI C 63.10-2013			
6. Date of Test : 2021.11.03 ~ 2021.12.10			
7. Location of Test : I Permanent Testing Lab I On Site Testing			
8. Testing Environment : Refer to appended test report.			
9. Test Result : Refer to the attached test result.			
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.			
Affirmation Tested by Reviewed by			
Name : ChangWon Lee (Signature) Name : JaeJin Lee			
2021 . 12 . 22 .			
DT&C Co., Ltd.			

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2112-0163	Dec. 22, 2021	Initial issue	ChangWon Lee	JaeJin Lee

CONTENTS

1. EUT DESCRIPTION	4
2. Information about test items	5
2.1 Transmitting configuration of EUT	5
2.2 Tested Channel Information	5
2.3 Testing Environment.	
2.4 EMI Suppression Device(s)/Modifications	
2.5 Measurement Uncertainty	
4. TEST METHODOLOGY	
4.1 EUT configuration	
4.2 EUT exercise	
4.4 Description of test modes	
5. INSTRUMENT CALIBRATION	
6. FACILITIES AND ACCREDITATIONS	9
6.1 Facilities	9
6.2 Equipment	
7. ANTENNA REQUIREMENTS	9
8. TEST RESULT 1	0
8.1 Emission Bandwidth (26 dB Bandwidth)1	0
8.2 Minimum Emission Bandwidth (6 dB Bandwidth)2	29
8.3 Maximum Conducted Output Power3	36
8.4 Maximum Power Spectral Density4	10
8.5 Radiated Spurious Emission Measurements6	67
8.6 AC Conducted Emissions7	' 4
9. LIST OF TEST EQUIPMENT7	'5
APPENDIX I7	'6
APPENDIX II	7
APPENDIX III	0

1. EUT DESCRIPTION

Equipment Class	Unlicensed National Information Infrastructure TX(NII)	
Product Name	DISPLAY CAR SYSTEM	
Model Name	DA330I6GG	
Add Model Name	DA340I6GG	
Firmware Version Identification Number	1.0	
EUT Serial Number	No specified	
Power Supply	DC 14.4 V	
Modulation Technique	OFDM	
Antenna Specification	Antenna type: Pattern Antenna Antenna gain U-NII 1: -0.61 dBi U-NII 2A: -0.18 dBi U-NII 2C: -0.77 dBi U-NII 3: -0.18 dBi	

Band	Mode	Tx. frequency(MHz)	Max. conducted power(dBm)
	802.11a	5 180 ~ 5 240	8.68
	802.11n(HT20)	5 180 ~ 5 240	8.83
U-NII 1	802.11ac(VHT20)	5 180 ~ 5 240	8.97
U-INII I	802.11n(HT40)	5 190 ~ 5 230	4.72
	802.11ac(VHT40)	5 190 ~ 5 230	4.88
	802.11ac(VHT80)	5 210	5.61
	802.11a	5 260 ~ 5 320	8.73
	802.11n(HT20)	5 260 ~ 5 320	8.77
	802.11ac(VHT20)	5 260 ~ 5 320	9.03
U-NII 2A	802.11n(HT40)	5 270 ~ 5 310	7.42
	802.11ac(VHT40)	5 270 ~ 5 310	7.48
	802.11ac(VHT80)	5 290	7.65
	802.11a	5 500 ~ 5 720	5.96
	802.11n(HT20)	5 500 ~ 5 720	5.93
U-NII 2C	802.11ac(VHT20)	5 500 ~ 5 720	6.19
U-INII 2C	802.11n(HT40)	5 510 ~ 5 710	5.86
	802.11ac(VHT40)	5 510 ~ 5 710	5.73
	802.11ac(VHT80)	5 530 ~ 5 690	5.88
	802.11a	5 745 ~ 5 825	3.07
	802.11n(HT20)	5 745 ~ 5 825	2.87
U-NII 3	802.11ac(VHT20)	5 745 ~ 5 825	3.01
U-INII S	802.11n(HT40)	5 755 ~ 5 795	2.56
	802.11ac(VHT40)	5 755 ~ 5 795	2.55
	802.11ac(VHT80)	5 775	2.87

2. Information about test items

2.1 Transmitting configuration of EUT

Mode	Data rate
802.11a	6 ~ 54 Mbps
802.11n(HT20)	MCS 0 ~ 7
802.11ac(VHT20)	MCS 0 ~ 8
802.11n(HT40)	MCS 0 ~ 7
802.11ac(VHT40)	MCS 0 ~ 9
802.11ac(VHT80)	MCS 0 ~ 9

2.2 Tested Channel Information

5GHz Band	802.11a/n(HT20) /802.11ac(VHT20)		802.11n(HT40) /802.11ac(VHT40)		802.11ac(VHT80)	
	Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]
	36	5180	38	5190	42	5210
U-NII 1	40	5200	-	-	-	-
	48	5240	46	5230	-	-
	52	5260	54	5270	58	5290
U-NII 2A	60	5300	-	-	-	-
	64	5320	62	5310	-	-
	100	5500	102	5510	106	5530
U-NII 2C	116	5580	110	5550	-	-
	144	5720	142	5710	138	5690
	149	5745	151	5755	155	5775
U-NII 3	157	5785	-	-	-	-
	165	5825	159	5795	-	-

2.3 Testing Environment

Temperature	: +20 °C ~ +26 °C
Relative humidity content	: +38 % ~ +44 %
Details of power supply	: DC 14.4 V

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

3. SUMMARY OF TESTS

FCC Part Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.407(a)	Emission Bandwidth (26 dB Bandwidth)	N/A		С
15.407(e)	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5725 ~ 5850 MHz		С
15.407(a)	Maximum Conducted Output Power	FCC Part 15.407(a) (Refer to the section 8.3)	Conducted	С
15.407(a)	Peak Power Spectral Density	FCC Part 15.407(a) (Refer to the section 8.4)		С
15.407(h)	Dynamic Frequency Selection	FCC 15.407(h) (Refer to the DFS test report)	-	C Note 3
15.205 15.209 15.407(b)	Undesirable Emissions	FCC Part 15.209, 15.407(b) (Refer to the section 8.5)	Radiated	С
15.207	AC Conducted Emissions	FCC 15.207 (Refer to the section 8.6)	AC Line Conducted	NA Note 4
15.203	Antenna Requirements	FCC 15.203 (Refer to the section 7)	-	С

Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: Refer to the DFS test report.

Note 4: This device is installed in a car. Therefore the power source is a battery of car.

4. TEST METHODOLOGY

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB 7899033 D02v02r01 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01.

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 m or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle. The worst case data rate was determined as below test mode according to the power measurements.

Test mode	Mode	Worst case data rate
TM 1	802.11a	6 Mbps
TM 2	802.11ac(VHT20)	MCS 0
ТМ 3	802.11ac(VHT40)	MCS 0
TM 4	802.11ac(VHT80)	MCS 0

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

	www.dtnc.net			
	Telephone	:	+ 82-31-321-2664	
	FAX	:	+ 82-31-321-1664	

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, loop, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is permanently printed on the PCB. (Refer to Internal Photo file.) Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 Emission Bandwidth (26 dB Bandwidth)

Test Requirements

- Emission Bandwidth (26 dB Bandwidth)

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

- Emission Bandwidth (26 dB Bandwidth)

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02v02r01.

- 1. Set resolution bandwidth (RBW) = approximately **1 %** of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

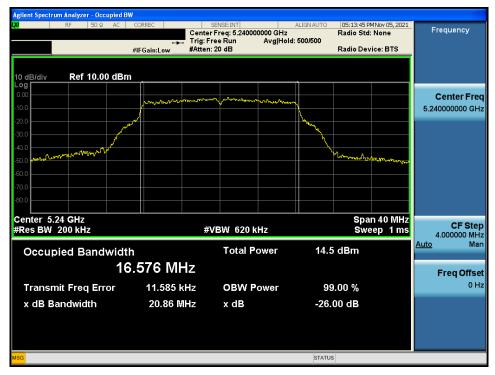
Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Test Results: Comply

Test Mode	Band	Channel	Frequency(MHz)	26 dB BW(MHz)
		36	5 180	20.94
	U-NII 1	40	5 200	21.06
		48	5 240	20.86
	U-NII 2A	52	5 260	20.99
TM 1		60	5 300	21.06
		64	5 320	21.14
		100	5 500	21.13
	U-NII 2C	116	5 580	21.04
		144	5 720	20.95
		36	5 180	21.58
	U-NII 1	40	5 200	21.39
		48	5 240	21.36
	U-NII 2A	52	5 260	21.37
TM 2		60	5 300	21.43
		64	5 320	21.32
	U-NII 2C	100	5 500	21.47
		116	5 580	21.37
		144	5 720	21.32
	U-NII 1	38	5 190	39.41
		46	5 230	39.55
ТМ 3	U-NII 2A	54	5 270	39.72
		62	5 310	39.69
	U-NII 2C	102	5 510	39.45
		110	5 550	39.72
		142	5 710	39.70
TM 4	U-NII 1	42	5 210	80.93
	U-NII 2A	58	5 290	81.07
	U-NII 2C	106	5 530	81.60
		138	5 690	81.40

Result Plots

26 dB Bandwidth


Test Mode: TM 1 & Ch.36

26 dB Bandwidth

Test Mode: TM 1 & Ch.48


26 dB Bandwidth

Test Mode: TM 1 & Ch.60

26 dB Bandwidth



Test Mode: TM 1 & Ch.100

26 dB Bandwidth


Test Mode: TM 2 & Ch.36

26 dB Bandwidth

Test Mode: TM 2 & Ch.48

26 dB Bandwidth

Test Mode: TM 2 & Ch.60

26 dB Bandwidth

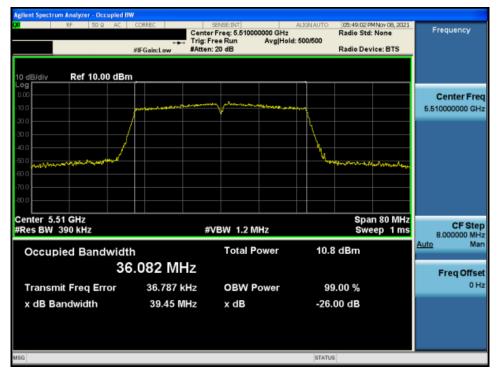
Test Mode: TM 2 & Ch.100

26 dB Bandwidth



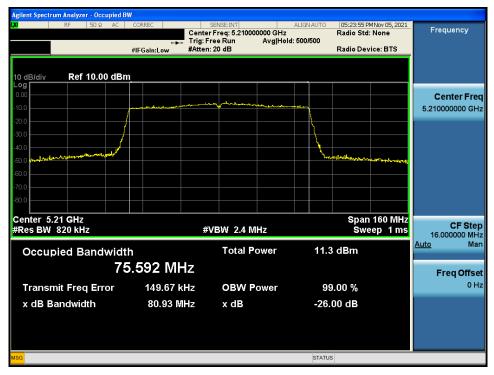
Test Mode: TM 3 & Ch.38

26 dB Bandwidth

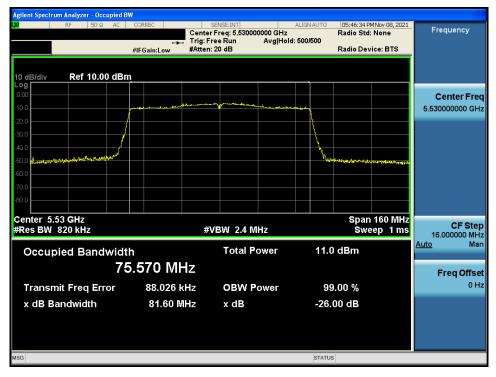

Test Mode: TM 3 & Ch.54

26 dB Bandwidth

Test Mode: TM 3 & Ch.102



26 dB Bandwidth



Test Mode: TM 4 & Ch.42

26 dB Bandwidth

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

Test Requirements

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth \geq 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Mode	Band	Channel	Frequency(MHz)	6 dB BW(MHz)
TM 1	U-NII 3	149	5 745	16.35
		157	5 785	16.38
		165	5 825	16.33
		149	5 745	17.62
TM 2	U-NII 3	157	5 785	17.57
		165	5 825	17.59
ТМ 3	U-NII 3	151	5 755	35.89
11/1 3		159	5 795	35.52
TM 4	U-NII 3	155	5 775	75.49

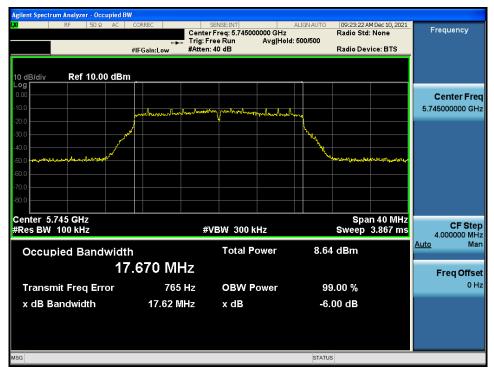
Test Results: Comply

Result Plots

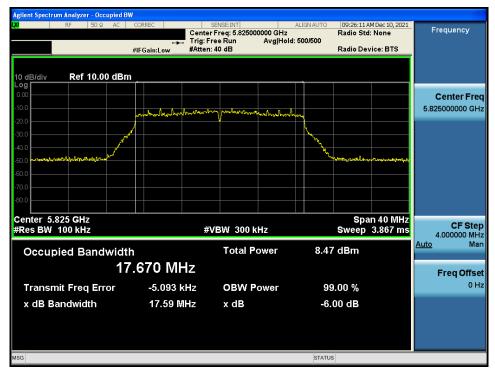
6 dB Bandwidth

Test Mode: TM 1 & Ch.149

6 dB Bandwidth



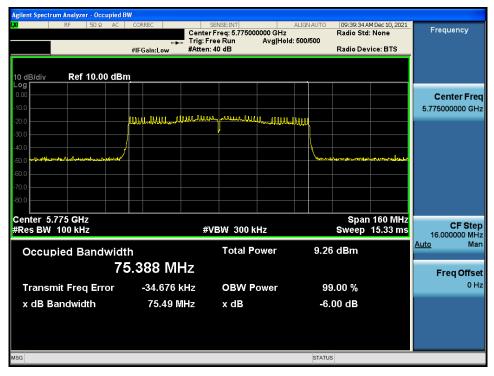
🛈 Dt&C


🛈 Dt&C

Test Mode: TM 2 & Ch.149

6 dB Bandwidth


Dt&C


6 dB Bandwidth

Test Mode: TM 3 & Ch.151

6 dB Bandwidth

8.3 Maximum Conducted Output Power

Test Requirements

Part. 15.407(a)

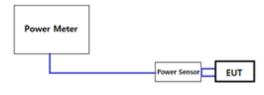
(1) For the band 5.150 GHz - 5.250 GHz.

(i) For an outdoor access point operating in the band 5.150 GHz - 5.250 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.150 GHz - 5.250 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.150 GHz - 5.250 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.150 GHz - 5.250 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


- (2) For the 5.250 GHz 5.350 GHz
- (3) and 5.470 GHz 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (4) For the band 5.725 GHz 5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- Output power Limit Calculation

Band	Power Limit [mW]	I imit		Determined Limit [dBm]	
U-NII 1	250 23.97 -0.6		-0.61	23.97	
			·		
David	Power Limit [mW]	Calculated	Antenna Gain (Worst case)	Determined Limit	
Band	Least 26 dBc BW [MHz]	Limit [dBm]	[dBi]	[dBm]	
	250	23.97	0.40	22.07	
U-NII 2A	20.99	24.22	-0.18	23.97	
U-NII 2C	250	23.97	0.77	00.07	
	20.95	24.21	-0.77	23.97	

Band	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain [dBi]	Determined Limit [dBm]
U-NII 3	1 000	30.00	-0.18	30.00

Test Configuration

Method PM-G

Test Procedure

Method PM-G of KDB789033 D02

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Test Results: Comply

Mode	Band	Channel	Frequency (MHz)	Conducted Output Power(dBm)
		36	5 180	8.68
	U-NII 1	40	5 200	8.54
		48	5 240	8.40
		52	5 260	8.49
	U-NII 2A	60	5 300	8.73
802.11a		64	5 320	8.19
002.11d		100	5 500	5.96
	U-NII 2C	116	5 580	5.93
		144	5 720	5.50
		149	5 745	3.07
	U-NII 3	157	5 785	2.78
		165	5 825	2.68
		36	5 180	8.83
	U-NII 1	40	5 200	8.65
		48	5 240	8.68
		52	5 260	8.77
	U-NII 2A	60	5 300	8.52
802.11n		64	5 320	8.36
(HT20)		100	5 500	5.68
	U-NII 2C	116	5 580	5.93
		144	5 720	5.87
		149	5 745	2.87
	U-NII 3	157	5 785	2.68
		165	5 825	2.53
		36	5 180	8.45
	U-NII 1	40	5 200	8.64
		48	5 240	8.97
		52	5 260	9.03
	U-NII 2A	60	5 300	8.74
802.11ac		64	5 320	8.58
(VHT20)		100	5 500	5.75
	U-NII 2C	116	5 580	5.81
		144	5 720	6.19
		149	5 745	3.01
	U-NII 3	157	5 785	2.75
		165	5 825	2.73

Mode	Band	Channel	Frequency (MHz)	Conducted Output Power(dBm)
	U-NII 1	38	5 190	4.72
	0-1111 1	46	5 230	4.68
	U-NII 2A	54	5 270	7.42
000 44 -	U-INII ZA	62	5 310	7.16
802.11n (HT40)		102	5 510	5.86
(111-40)	U-NII 2C	110	5 550	5.61
		142	5 710	5.21
	U-NII 3	151	5 755	2.51
	0-1111 3	159	5 795	2.56
	U-NII 1	38	5 190	4.88
		46	5 230	4.64
	U-NII 2A	54	5 270	7.48
000 44	U-INII ZA	62	5 310	7.11
802.11ac (VHT40)		102	5 510	5.52
(01140)	U-NII 2C	110	5 550	5.73
		142	5 710	5.38
	U-NII 3	151	5 755	2.23
	0-1111 3	159	5 795	2.55
	U-NII 1	42	5 210	5.61
000 44	U-NII 2A	58	5 290	7.65
802.11ac (VHT80)	U-NII 2C	106	5 530	5.88
(01100)	U-INII 20	138	5 690	5.68
	U-NII 3	155	5 775	2.87

Test requirements

Part. 15.407(a)

(1) For the band 5.150 GHz - 5.250 GHz.

(i) For an outdoor access point operating in the band 5.150 GHz - 5.250 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. ^{note1}

(ii) For an indoor access point operating in the band 5.150 GHz - 5.250 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(iii) For fixed point-to-point access points operating in the band 5.150 GHz - 5.250 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.150 GHz - 5.250 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

- (2) For the 5.250 GHz 5.350 GHz and 5.470 GHz 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.^{note1}
- (3) For the band 5.725 GHz 5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.^{note1,note2}
- **Note1**: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- **Note2**: Fixed point to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Band	Limit [dBm]	Antenna Gain (Worst case) [dBi]	Determined Limit [dBm]	
U-NII 1	11	-0.61	11	
U-NII 2A	11	-0.18	11	
U-NII 2C	11	-0.77	11	
U-NII 3	30	-0.18	30	

- Peak Power Spectral Density Limit Calculation

Test Configuration

Refer to the APPENDIX I.

Test procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02v02r01

- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA - 1, SA - 2, SA - 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:

 a) If Method SA 2 or SA 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15 GHz 5.25 GHz, 5.25 GHz 5.35 GHz, and 5.47 GHz 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a). For devices operating in the band 5.725 GHz 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:</p>
 - a) Set RBW ≥ 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

Test results: Comply

Test Mode	Band	Channel	Frequency (MHz)	Reading (dBm)	TF Note 2 (dB)	Power Spectral Density(dBm)	Limit (dBm)
		36	5 180	-2.53		-2.32	11.00
	U-NII 1	40	5 200	-2.83		-2.62	11.00
		48	5 240	-2.88		-2.67	11.00
		52	5 260	-2.87		-2.66	11.00
	U-NII 2A	60	5 300	-2.64	0.21	-2.43	11.00
TM 1		64	5 320	-3.03		-2.82	11.00
		100	5 500	-5.16		-4.95	11.00
	U-NII 2C	116	5 580	-5.46		-5.25	11.00
		144	5 720	-4.76		-4.55	11.00
		149	5 745	-17.21		-10.01	30.00
	U-NII 3	157	5 785	-16.96	7.20	-9.76	30.00
		165	5 825	-17.49		-10.29	30.00
		36	5 180	-3.32		-3.10	11.00
	U-NII 1	40	5 200	-3.09		-2.87	11.00
TM 0		48	5 240	-3.23		-3.01	11.00
		52	5 260	-3.31		-3.09	11.00
	U-NII 2A	60	5 300	-2.95	0.22	-2.73	11.00
		64	5 320	-3.08		-2.86	11.00
1 1VI 2		100	5 500	-5.97		-5.75	11.00
	U-NII 2C	116	5 580	-5.82	-	-5.60	11.00
		144	5 720	-5.36	-	-5.14	11.00
		149	5 745	-17.80		-10.59	30.00
	U-NII 3	157	5 785	-17.41	7.21	-10.20	30.00
TM 2		165	5 825	-17.87		-10.66	30.00
		38	5 190	-10.32		-9.88	11.00
	U-NII 1	46	5 230	-10.03	-	-9.59	11.00
		54	5 270	-7.49	-	-7.05	11.00
	U-NII 2A	62	5 310	-7.52	0.44	-7.08	11.00
TM 3		102	5 510	-9.43		-8.99	11.00
	U-NII 2C	110	5 550	-9.31		-8.87	11.00
		142	5 710	-9.04		-8.60	11.00
		151	5 755	-21.61		-14.18	30.00
	U-NII 3	159	5 795	-21.15	7.43	-13.72	30.00
	U-NII 1	42	5 210	-12.86		-11.99	11.00
	U-NII 2A	58	5 290	-10.34		-9.47	11.00
TM 4		106	5 530	-12.83	0.87	-11.96	11.00
	U-NII 2C	138	5 690	-12.62	1	-11.75	11.00
	U-NII 3	155	5 775	-24.37	7.86	-16.51	30.00

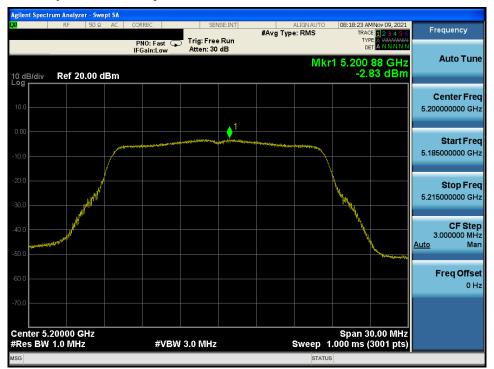
Note 1: Power Spectral Density = Reading(Measurement Data) + TF

Note 2: "U-NII 1, 2A, 2C [TF] = DCCF"

"U-NII 3 [TF] = 10*LOG(500 kHz/100 kHz) + DCCF"

Where, TF = Total Factor, DCCF = Duty Cycle Correction Factor

For Duty Cycle, please refer to appendix II.


RESULT PLOTS

Maximum Power Spectral Density

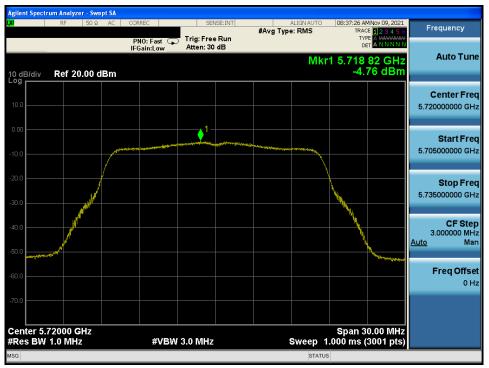
Test Mode: TM 1 & Ch.36

0 08:28:43 AMM TRACE ov 09.2021 Frequency #Avg Type: RMS Trig: Free Run Atten: 30 dB TYP PNO: Fast 😱 IFGain:Low Auto Tune Mkr1 5.178 89 GHz -2.53 dBm 10 dB/div Ref 20.00 dBm **Center Freq** 5.18000000 GHz **P** Start Freq 5.165000000 GHz Stop Freq 5.195000000 GHz CF Step 3.000000 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 5.18000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (3001 pts) #VBW 3.0 MHz STATUS

Maximum Power Spectral Density Test Mode: TM 1 & Ch.40

Test Mode: TM 1 & Ch.52

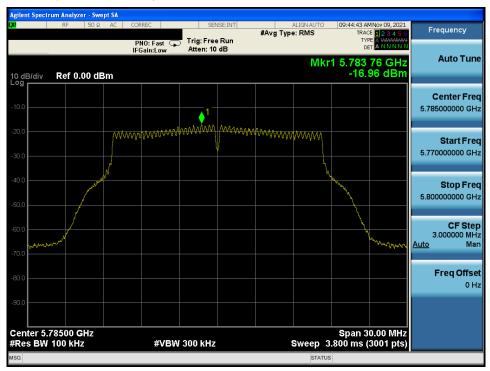
Maximum Power Spectral Density

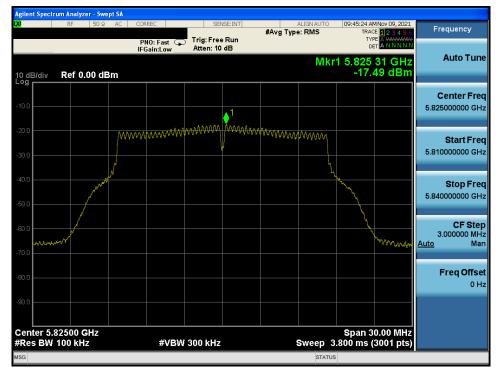


Test Mode: TM 1 & Ch.100

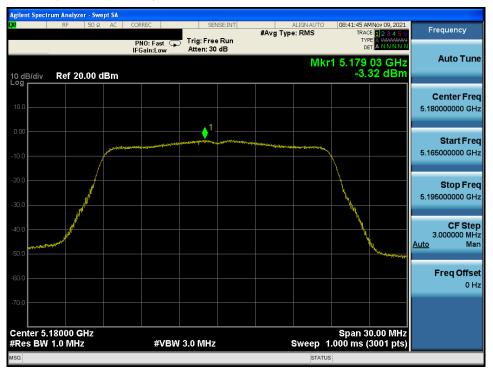


Maximum Power Spectral Density




Test Mode: TM 1 & Ch.149

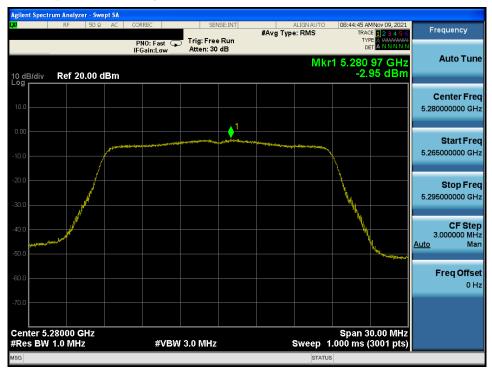
Maximum Power Spectral Density





Test Mode: TM 2 & Ch.36

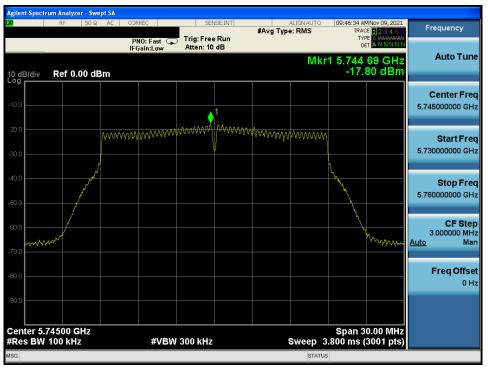
Maximum Power Spectral Density



Test Mode: TM 2 & Ch.52

Maximum Power Spectral Density

Test Mode: TM 2 & Ch.100



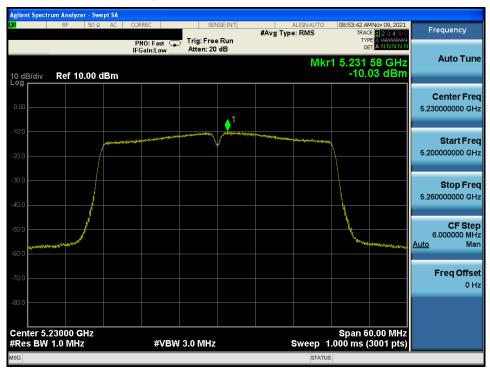
Maximum Power Spectral Density



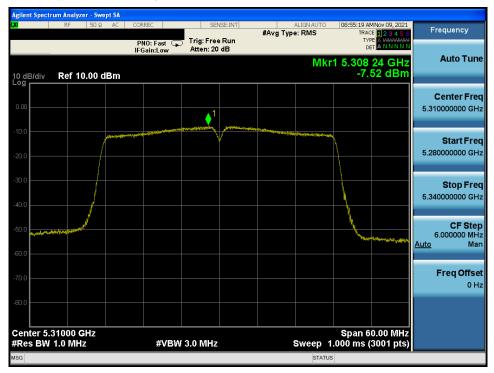


Test Mode: TM 2 & Ch.149

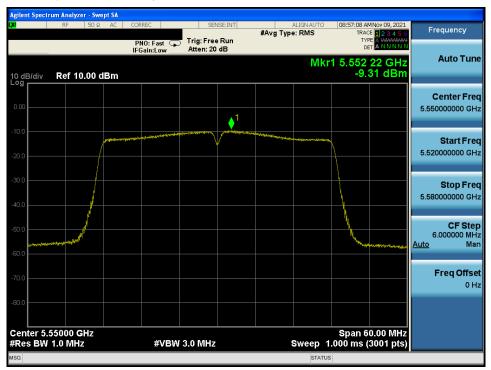
Maximum Power Spectral Density

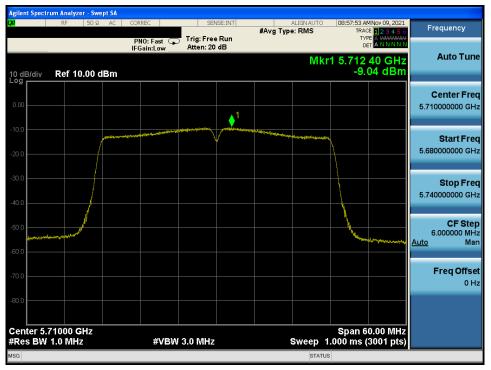


Test Mode: TM 3 & Ch.38

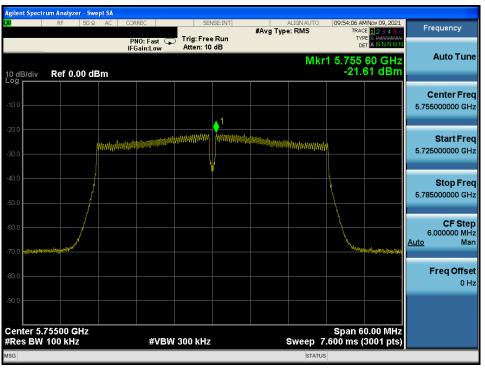

Maximum Power Spectral Density

Test Mode: TM 3 & Ch.54

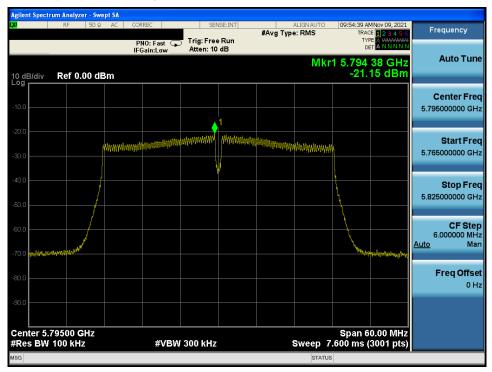

Maximum Power Spectral Density



Test Mode: TM 3 & Ch.102



Maximum Power Spectral Density

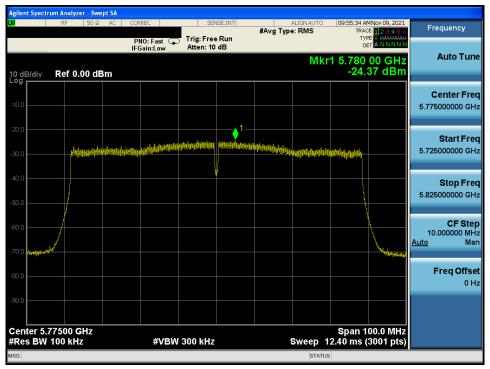


Test Mode: TM 3 & Ch.151

Maximum Power Spectral Density

Test Mode: TM 4 & Ch.42

Maximum Power Spectral Density



Test Mode: TM 4 & Ch.106

Maximum Power Spectral Density

8.5 Radiated Spurious Emission Measurements

Test Requirements

• FCC Part 15.209(a) and (b)

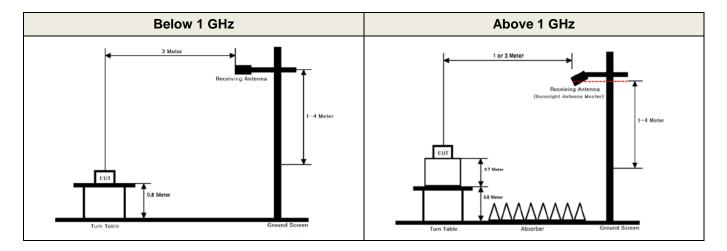
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2 400 / F (kHz)	300
0.490 – 1.705	24 000 / F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 MHz - 72 MHz, 76 MHz - 88 MHz, 174 MHz - 216 MHz or 470 MHz - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.0125 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 690 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.


• FCC Part 15.407 (b): Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15 GHz 5.25 GHz band: all emissions outside of the 5.15 GHz 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25 GHz 5.35 GHz band: all emissions outside of the 5.15 GHz 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47 GHz 5.725 GHz band: all emissions outside of the 5.47 GHz 5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725 GHz 5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

(9)

Test Configuration

Test Procedure

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turn table shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1m or 3 m away from the receiving antenna, which is varied from 1m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02v02r01

► General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
- (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission not on an average across on and off times of the transmitter.

Measurements below 1 000 MHz

a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".

b) Compliance shall be demonstrated using **CISPR quasi-peak detection**; however, **peak detection** is permitted as an alternative to quasi-peak detection.

▶ Measurements Above 1 000 MHz (Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
 b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) **RBW** = 1 **MHz**.
 - (ii) VBW \geq 3 MHz.
 - (iii) Detector = Peak.
 - (iv) Sweep time = Auto.
 - (v) Trace mode = Max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

► Measurements Above 1000 MHz (Method AD)

- (i) **RBW = 1 MHz.**
- (ii) VBW ≥ 3 MHz.
- (iii) Detector = RMS, if span / (# of points in sweep) ≤ RBW / 2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging. Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = Auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.
 - If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Please refer to Appendix II for the duty cycle correction factor

Test Results: Comply

Test Notes

1. The radiated emissions were investigated 9 kHz to 40 GHz. And no other spurious and harmonic emissions were found below listed frequencies. 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL + HL + AL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor.

3. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance correction factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

4. The limit is converted to field strength.

E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

Unwanted Emissions data(9 kHz ~ 40 GHz) : TM1

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 127.53	V	Х	PK	50.21	2.54	N/A	N/A	52.75	74.00	21.25
	5 180	5 127.32	V	Х	AV	38.68	2.54	0.21	N/A	41.43	54.00	12.57
U-NII 1		10 359.75	V	Х	PK	43.55	8.66	N/A	N/A	52.21	68.20	15.99
	5 200	10 400.00	V	Х	PK	44.11	8.67	N/A	N/A	52.78	68.20	15.42
	5 240	10 480.06	V	Х	PK	43.90	8.70	N/A	N/A	52.60	68.20	15.60
	5 260	10 519.70	V	Х	PK	44.55	8.71	N/A	N/A	53.26	68.20	14.94
	5 300	10 600.32	V	Х	PK	44.51	8.62	N/A	N/A	53.13	74.00	20.87
	5 300	10 599.84	V	Х	AV	35.36	8.62	0.21	N/A	44.19	54.00	9.81
U-NII 2A		5 372.54	V	Х	PK	49.01	3.79	N/A	N/A	52.80	74.00	21.20
2/1	E 220	5 373.31	V	Х	AV	38.49	3.80	0.21	N/A	42.50	54.00	11.50
	5 320	10 640.04	V	Х	PK	44.43	8.46	N/A	N/A	52.89	74.00	21.11
		10 639.94	V	Х	AV	33.97	8.46	0.21	N/A	42.64	54.00	11.36
		5 458.79	V	Х	PK	49.30	3.55	N/A	N/A	52.85	74.00	21.15
		5 457.21	V	Х	AV	38.92	3.56	0.21	N/A	42.69	54.00	11.31
	5 500	5 464.89	V	Х	PK	49.61	3.53	N/A	N/A	53.14	68.20	15.06
		10 999.97	V	Х	PK	45.20	8.05	N/A	N/A	53.25	74.00	20.75
U-NII 2C		11 000.09	V	Х	AV	36.25	8.05	0.21	N/A	44.51	54.00	9.49
20	5 580	11 159.07	V	Х	PK	45.22	8.45	N/A	N/A	53.67	74.00	20.33
	5 200	11 160.11	V	Х	AV	35.84	8.45	0.21	N/A	44.50	54.00	9.50
	5 720	11 440.06	V	Х	PK	45.04	9.01	N/A	N/A	54.05	74.00	19.95
	5720	11 439.97	V	Х	AV	35.70	9.01	0.21	N/A	44.92	54.00	9.08
		5 699.16	V	Х	PK	49.97	3.16	N/A	N/A	53.13	68.20	15.07
	5 745	5 722.89	V	Х	PK	48.60	3.63	N/A	N/A	52.23	78.20	25.97
	5745	11 490.01	V	Х	PK	46.06	9.08	N/A	N/A	55.14	74.00	18.86
		11 489.85	V	Х	AV	37.05	9.08	0.21	N/A	46.34	54.00	7.66
U-NII 3	E 70E	11 569.65	V	Х	PK	45.56	9.11	N/A	N/A	54.67	74.00	19.33
U-INII 3	5 785	11 569.98	V	Х	AV	35.53	9.11	0.21	N/A	44.85	54.00	9.15
		5 851.77	V	Х	PK	49.39	4.06	N/A	N/A	53.45	78.20	24.75
	E 925	5 875.50	V	Х	PK	49.53	4.64	N/A	N/A	54.17	68.20	14.03
	5 825	11 649.72	V	Х	PK	45.98	9.03	N/A	N/A	55.01	74.00	18.99
		11 649.67	V	Х	AV	35.51	9.03	0.21	N/A	44.75	54.00	9.25

Unwanted Emissions	data(9 kHz	~ 40 GHz) :	TM2
--------------------	------------	-------------	-----

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5 180	5 124.85	V	Х	PK	49.71	2.53	N/A	N/A	52.24	74.00	21.76
		5 122.54	V	Х	AV	38.83	2.53	0.22	N/A	41.58	54.00	12.42
U-NII 1		10 360.20	V	Х	PK	44.21	8.66	N/A	N/A	52.87	68.20	15.33
	5 200	10 399.65	V	Х	PK	43.93	8.67	N/A	N/A	52.60	68.20	15.60
	5 240	10 479.54	V	Х	PK	44.33	8.70	N/A	N/A	53.03	68.20	15.17
	5 260	10 519.73	V	Х	PK	44.22	8.71	N/A	N/A	52.93	68.20	15.27
	5 300	10 599.42	V	Х	PK	44.68	8.62	N/A	N/A	53.30	74.00	20.70
	5 300	10 599.99	V	Х	AV	35.41	8.62	0.22	N/A	44.25	54.00	9.75
U-NII 2A		5 354.11	V	Х	PK	48.46	3.77	N/A	N/A	52.23	74.00	21.77
2/(5 320	5 354.11	V	Х	AV	37.93	3.77	0.22	N/A	41.92	54.00	12.08
	5 320	10 640.24	V	Х	PK	44.51	8.46	N/A	N/A	52.97	74.00	21.03
		10 640.06	V	Х	AV	35.11	8.46	0.22	N/A	43.79	54.00	10.21
	5 500	5 456.91	V	Х	PK	49.39	3.56	N/A	N/A	52.95	74.00	21.05
		5 456.33	V	Х	AV	38.93	3.56	0.22	N/A	42.71	54.00	11.29
		5 469.79	V	Х	PK	49.11	3.52	N/A	N/A	52.63	68.20	15.57
		10 999.88	V	Х	PK	44.84	8.05	N/A	N/A	52.89	74.00	21.11
U-NII 2C		10 999.94	V	Х	AV	36.44	8.05	0.22	N/A	44.71	54.00	9.29
20	5 580	11 160.51	V	Х	PK	45.19	8.46	N/A	N/A	53.65	74.00	20.35
	5 560	11 159.98	V	Х	AV	35.90	8.45	0.22	N/A	44.57	54.00	9.43
	F 700	11 440.23	V	Х	PK	44.67	9.01	N/A	N/A	53.68	74.00	20.32
	5 720	11 440.00	V	Х	AV	35.75	9.01	0.22	N/A	44.98	54.00	9.02
		5 713.63	Н	Х	PK	49.58	3.21	N/A	N/A	52.79	68.20	15.41
	E 74E	5 721.87	Н	Х	PK	48.49	3.57	N/A	N/A	52.06	78.20	26.14
	5 745	11 489.82	V	Х	PK	45.47	9.08	N/A	N/A	54.55	74.00	19.45
		11 489.89	V	Х	AV	36.93	9.08	0.22	N/A	46.23	54.00	7.77
U-NII 3	5 785	11 569.61	V	Х	PK	44.24	9.11	N/A	N/A	53.35	74.00	20.65
U-INII 3	0 / 00	11 570.10	V	Х	AV	35.06	9.11	0.22	N/A	44.39	54.00	9.61
		5 854.53	Н	Х	PK	48.73	4.08	N/A	N/A	52.81	78.20	25.39
	5 825	5 873.99	н	Х	PK	48.71	4.62	N/A	N/A	53.33	68.20	14.87
		11 650.07	V	Х	PK	44.94	9.02	N/A	N/A	53.96	74.00	20.04
		11 649.80	V	Х	AV	35.60	9.03	0.22	N/A	44.85	54.00	9.15

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5 190	5 149.49	V	Х	PK	49.59	2.63	N/A	N/A	52.22	74.00	21.78
U-NII 1		5 149.30	V	Х	AV	38.79	2.63	0.49	N/A	41.91	54.00	12.09
U-INIT I		10 380.57	V	Х	PK	43.13	8.67	N/A	N/A	51.80	68.20	16.40
	5 230	10 459.80	V	Х	PK	43.63	8.70	N/A	N/A	52.33	68.20	15.87
	5 270	10 539.74	V	Х	PK	44.71	8.71	N/A	N/A	53.42	68.20	14.78
		5 374.41	V	Х	PK	49.12	3.80	N/A	N/A	52.92	74.00	21.08
U-NII 2A	5 310	5 377.65	V	Х	AV	38.17	3.80	0.49	N/A	42.46	54.00	11.54
2/1	5 5 10	10 620.15	V	Х	PK	45.88	8.54	N/A	N/A	54.42	74.00	19.58
		10 620.12	V	Х	AV	35.84	8.54	0.49	N/A	44.87	54.00	9.13
		5 459.69	V	Х	PK	49.02	3.55	N/A	N/A	52.57	74.00	21.43
	5 510	5 456.77	V	Х	AV	38.87	3.56	0.49	N/A	42.92	54.00	11.08
		5 464.61	V	Х	PK	49.86	3.54	N/A	N/A	53.40	68.20	14.80
		11 020.12	V	Х	PK	44.94	8.12	N/A	N/A	53.06	74.00	20.94
U-NII 2C		11 019.90	V	Х	AV	36.56	8.12	0.49	N/A	45.17	54.00	8.83
	5 550	11 099.97	V	Х	PK	45.44	8.18	N/A	N/A	53.62	74.00	20.38
	5 550	11 100.10	V	Х	AV	36.41	8.18	0.49	N/A	45.08	54.00	8.92
	5 710	11 419.89	V	Х	PK	44.96	8.99	N/A	N/A	53.95	74.00	20.05
	5710	11 419.90	V	Х	AV	35.61	8.99	0.49	N/A	45.09	54.00	8.91
		5 693.94	Н	Х	PK	48.86	3.16	N/A	N/A	52.02	68.20	16.18
	5 755	5 722.04	Н	Х	PK	48.47	3.58	N/A	N/A	52.05	78.20	26.15
	5755	11 509.51	V	Х	PK	45.17	9.10	N/A	N/A	54.27	74.00	19.73
		11 510.06	V	Х	AV	36.40	9.10	0.49	N/A	45.99	54.00	8.01
U-NII 3		5 853.34	Н	Х	PK	49.04	4.07	N/A	N/A	53.11	78.20	25.09
	5 795	5 865.97	Н	Х	PK	48.42	4.40	N/A	N/A	52.82	68.20	15.38
	5795	11 590.00	V	Х	PK	43.81	9.09	N/A	N/A	52.90	74.00	21.10
		11 589.94	V	Х	AV	35.00	9.09	0.49	N/A	44.58	54.00	9.42

Unwanted Emissions data(9 kHz ~ 40 GHz) : TM3

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
U-NII 1	5 210	5 146.17	V	Х	PK	49.42	2.62	N/A	N/A	52.04	74.00	21.96
		5 146.85	V	Х	AV	38.60	2.62	0.87	N/A	42.09	54.00	11.91
		10 420.05	V	Х	PK	44.18	8.68	N/A	N/A	52.86	68.20	15.34
U-NII 2A		5 351.10	V	Х	PK	48.34	3.77	N/A	N/A	52.11	74.00	21.89
	5 290	5 351.98	V	Х	AV	37.99	3.77	0.87	N/A	42.63	54.00	11.37
2/(10 579.76	V	Х	PK	44.76	8.66	N/A	N/A	53.42	68.20	14.78
	5 530	5 456.35	V	Х	PK	48.80	3.56	N/A	N/A	52.36	74.00	21.64
		5 450.66	V	Х	AV	38.60	3.58	0.87	N/A	43.05	54.00	10.95
		5 469.07	V	Х	PK	48.59	3.52	N/A	N/A	52.11	68.20	16.09
U-NII 2C		11 060.14	V	Х	PK	46.04	8.21	N/A	N/A	54.25	74.00	19.75
20		11 059.99	V	Х	AV	36.84	8.21	0.87	N/A	45.92	54.00	8.08
	5 690	11 379.94	V	Х	PK	44.36	8.90	N/A	N/A	53.26	74.00	20.74
		11 379.87	V	Х	AV	35.28	8.90	0.87	N/A	45.05	54.00	8.95
	5 775	5 714.40	Н	Х	PK	47.78	3.21	N/A	N/A	50.99	68.20	17.21
		5 720.00	Н	Х	PK	47.75	3.48	N/A	N/A	51.23	78.20	26.97
U-NII 3		5 853.00	Н	Х	PK	48.48	4.07	N/A	N/A	52.55	78.20	25.65
		5 868.23	Н	Х	PK	48.16	4.50	N/A	N/A	52.66	68.20	15.54
		11 549.62	V	Х	PK	44.84	9.13	N/A	N/A	53.97	74.00	20.03
		11 550.03	V	Х	AV	35.32	9.13	0.87	N/A	45.32	54.00	8.68

Unwanted Emissions data(9 kHz ~ 40 GHz) : TM4

8.6 AC Conducted Emissions

Test Requirements and limit, §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

- NA

Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

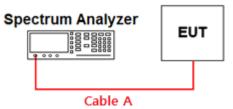
4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Measurement Data

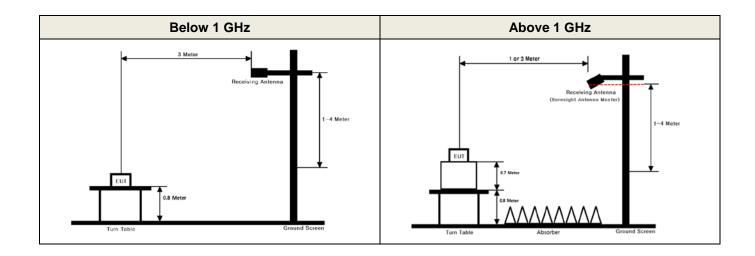
- NA

Dt&C

9. LIST OF TEST EQUIPMENT


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	MY50200867
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	US47360812
Spectrum Analyzer	KEYSIGHT	N9030B	20/12/16	21/12/16	MY55480168
DC Power Supply	Agilent Technologies	66332A	21/06/24	22/06/24	US37473627
DC Power Supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DMG305
DC Power Supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DNF079
Multimeter	FLUKE	17B+	20/12/16	21/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	21/06/24	22/06/24	N/A
Thermohygrometer	XIAOMI	MHO-C201	20/12/16	21/12/16	00089675
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	20/12/16	21/12/16	3362
Horn Antenna	ETS-Lindgren	3117	21/06/24	22/06/24	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	21/06/24	22/06/24	155
PreAmplifier	tsj	MLA-0118-B01-40	20/12/16	21/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	21/06/24	22/06/24	16966-10728
PreAmplifier	H.P	8447D	20/12/16 21/12/16		2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935- 1000-15000-40SS	21/06/24	22/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	21/06/24	22/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5- 6SS	21/06/24	22/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	21/06/24	22/06/24	16012202
Attenuator	SRTechnology	F01-B0606-01 21/06/24 22/06/		22/06/24	13092403
Attenuator	Aeroflex/Weinschel	56-3	21/06/24	22/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	21/06/24	22/06/24	2
Attenuator	Aeroflex/Weinschel	86-10-11	21/06/24	22/06/24	408
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	21/06/24	22/06/24	1306007 1249001
Cable	DT&C	Cable	21/01/08	22/01/08	G-1
Cable	DT&C	Cable	21/01/08	22/01/08	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	21/01/08	22/01/08	G-3
Cable	DT&C	Cable	21/01/08	22/01/08	G-4
Cable	Radiall	TESTPRO3	21/01/08	22/01/08	M-01
Cable	DT&C	Cable	21/01/08	22/01/08	M-02
Cable	HUBER+SUHNER	SUCOFLEX 104	21/01/08	22/01/08	M-03
Cable	Junkosha	MWX221	21/01/08	22/01/08	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-09
Cable	Junkosha	MWX241	21/01/08	22/01/08	mmW-1
Cable	Junkosha	MWX241	21/01/08	22/01/08	mmW-4
Cable	DT&C	Cable	21/01/05	22/01/05	RFC-45
Test Software	tsj ent antennas were calibrate	Raidated Emission Measurement	NA	NA	Version 2.00.0177

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.


APPENDIX I

Test set up Diagram

Conducted Measurement

Radiated Measurement

APPENDIX II

Duty Cycle Information

Test Procedure

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02v02r01

- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW \geq RBW. Set detector = peak.
- 4. Note : The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (*T* = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)

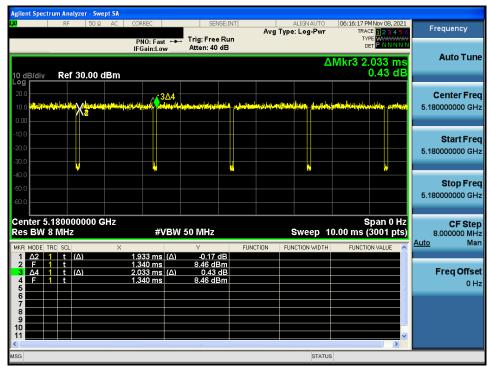
Test Results:

Dutv	cycle
Duty	0,010

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	$x = T_{on} / (T_{on+off})$	DCCF = 10 log(1/x) (dB)
TM 1	6Mbps	2.063	2.167	0.952 0	0.21
TM 2	MCS0	1.933	2.033	0.950 8	0.22
TM 3	MCS0	0.942	1.054	0.894 1	0.49
TM 4	MCS0	0.459	0.560	0.818 9	0.87

Note1: Where, T = Transmission duration / x = Duty cycle Note2: Please refer to the appendix II for duty cycle plots.

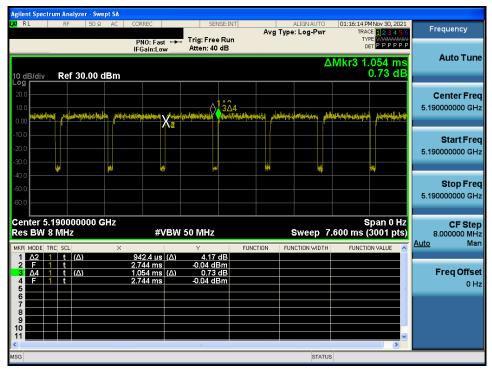
Dt&C

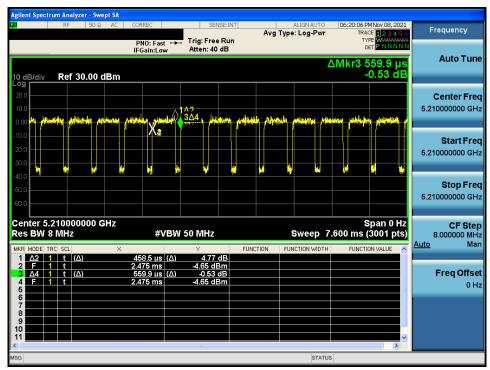

Test Plot:

Duty Cycle

ent Spectrum Analyzer - Swept SA 04 PMNov 08, 2021 06:15 Avg Type: Log-Pwr IRACE 12345 TYPE WWWWWWW DET P NNNN Frequency Trig: Free Run Atten: 40 dB PNO: Fast ++-Auto Tune ΔMkr3 2.167 ms -0.38 dB Ref 30.00 dBm **Center Freq** 384 5.180000000 GHz X Start Freq 5.18000000 GHz Stop Freq 5.180000000 GHz Center 5.180000000 GHz Res BW 8 MHz Span 0 Hz Sweep 10.00 ms (3001 pts) CF Step 8.000000 MHz #VBW 50 MHz <u>Auto</u> Man FUNCTION 2.063 ms (∆) 2.113 ms 2.167 ms (∆) 2.113 ms 0.49 dB 9.09 dBm -0.38 dB 9.09 dBm Δ2 1 t (Δ) 1 t 1 t (Δ) 1 t Freq Offset ∆4 F 0 Hz STATUS

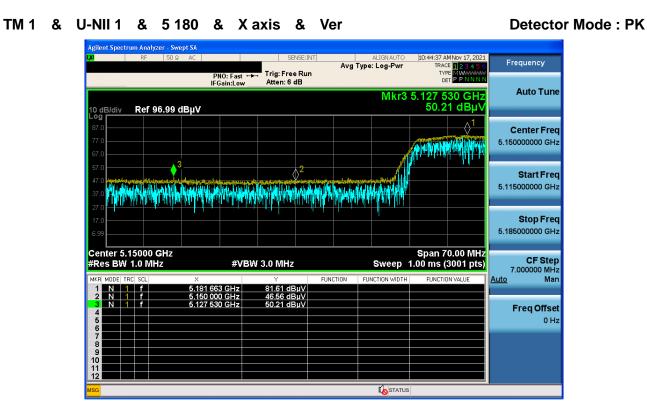
Duty Cycle


Test Mode: TM 2 & Ch.36


Duty Cycle

🛈 Dt&C

Test Mode: TM 3 & Ch.38



Duty Cycle

APPENDIX III

Unwanted Emissions (Radiated) Test Plot:

TM 1 & U-NII 1 & 5 180 & X axis & Ver

Agilent Spectrum Analyzer - Swept SA

Detector Mode : AV

LXI RF	50 Ω AC	PNO: Fast ↔	SENSE:I	Avg T	ALIGN AUTO (pe: RMS old: 200/200	10:52:34 AMNov TRACE 1 2 TYPE A W	3456	Frequency
10 dB/div Re	f 96.99 dBµV	IFGain:Low	Atten: 6 dB		Mkr3	5.127 320 38.675 d	GHz	Auto Tune
Log 87.0 77.0 67.0						\ ¹		Center Freq 5.15000000 GHz
57.0 47.0 37.0	3		¢ ²					Start Freq 5.115000000 GHz
27.0 17.0 6.99								Stop Freq 5.185000000 GHz
Center 5.1500 #Res BW 1.0	MHz	#VBV	V 3.0 MHz*	FUNCTION	Sweep	Span 70.00 1.00 ms (300 FUNCTION VAL	1 pts)	CF Step 7.000000 MHz Auto Man
MKR MODE THC Solution 1 N 1 f f 2 N 1 f f 3 N 1 f f 4 5 - - 6 7 - - 8 - - 9 - 10 - - 11 11 - - - 12 -	5.179 5.150	003 GHz 0000 GHz 7 320 GHz	74,142 dBµV 38,050 dBµV 38,675 dBµV			TORE FOR YAL		<u>Auto</u> Mar Freq Offsel 0 Hz
MSG								