TEST REPORT

FCC/IC BT Test for ATC41HSAN&ATC41HSKN

Certification

APPLICANT HYUNDAI MOBIS CO., LTD.

REPORT NO. HCT-RF-2003-FI011

DATE OF ISSUE April 14, 2020

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

TEST REPORT FCC/IC BT Test for ATC41HSAN&ATC41HSKN

REPORT NO. HCT-RF-2003-FI011 DATE OF ISSUE 14 April 2020 Additional Model FCC: VT260HSAN, IC: VT260HSKN

Applicant	HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea
EUT Type Car Audio System Model Name FCC: ATC41HSAN, IC: ATC41HSKN	
FCC ID	TQ8-ATC41HSAN
IC	5074A-ATC41HSKN
Max. RF Output Power 4.129 dBm (2.59 mW)	
FCC Classification	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s)	Part 15 subpart C 15.247
IC Rule Part(s) RSS-247 Issue 2 (February 2017), RSS-Gen Issue 5_Amendment 1 (Marc	
	This test results were applied only to the test methods required by the standard

This test results were applied only to the test methods required by the standard.

Tested by Jeong Ho Kim

Technical Manager Jong Seok Lee

HCT CO., LTD. Soo Chan Lee

F-TP22-03 (Rev.02)

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 14, 2020	Initial Release

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

According to the Evaluation report, all of the data contained herein is reused from the reference. FCC ID : TQ8-ATB41HSAN report.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance.

CONTENTS

1. EUT DESCRIPTION 5 6 2. Requirements for Bluetooth transmitter(15.247) **3. TEST METHODOLOGY** 7 EUT CONFIGURATION 7 EUT EXERCISE 7 **GENERAL TEST PROCEDURES** 7 DESCRIPTION OF TEST MODES 8 4. INSTRUMENT CALIBRATION 8 5. FACILITIES AND ACCREDITATIONS 8 FACILITIES 8 EQUIPMENT 8 9 6. ANTENNA REQUIREMENTS 7. MEASUREMENT UNCERTAINTY 10 8. DESCRIPTION OF TESTS 11 9. SUMMARY OF TEST RESULTS 33 10. TEST RESULT 34 **10.1 PEAK POWER** 34 10.2 BAND EDGES 40 10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW) 47 **10.4 NUMBER OF HOPPING FREQUENCY** 55 10.5 TIME OF OCCUPANCY (DWELL TIME) 59 **10.6 SPURIOUS EMISSIONS** 65 **10.6.1 CONDUCTED SPURIOUS EMISSIONS** 65 **10.6.2 RADIATED SPURIOUS EMISSIONS** 73 10.6.3 RADIATED RESTRICTED BAND EDGES 79 **10.7 RECEIVER SPURIOUS EMISSIONS** 83 **11. LIST OF TEST EQUIPMENT** 84 12. ANNEX A_ TEST SETUP PHOTO 86

1. EUT DESCRIPTION

FCC Model	ATC41HSAN
IC Model	ATC41HSKN
FCC Additional Model	VT260HSAN
IC Additional Model	VT260HSKN
EUT Type	Car Audio System
Power Supply	DC 14.4 V
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	4.129 dBm (2.59 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: Bluetooth Single Band Antenna Peak Gain : -0.38 dBi
Date(s) of Tests	February 25, 2020 ~ March 20, 2020
PMN (Product Marketing Number)	ATC41HSKN, VT260HSKN
HVIN (Hardware Version Identification Number)	ATC41HSKN, VT260HSKN
FVIN (Firmware Version Identification Number)	N/A
HMN (Host Marketing Name)	N/A

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

• RSS-247 5.1 (a): The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the RSS-GEN issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

According to RSS-GEN(Issue 5) Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

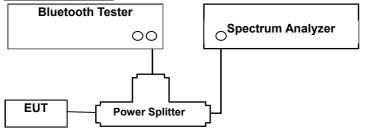
ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

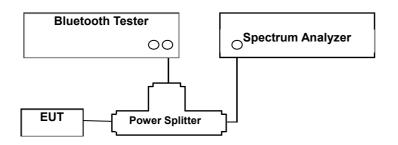
The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW \geq RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)


= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

8.2. Conducted Band Edge(Out of Band Emissions) Limit

According to § 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

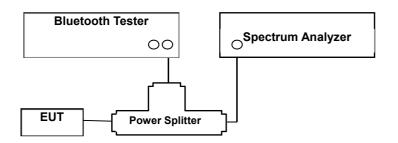
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold

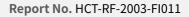


8.3. Frequency Separation & 20 dB Bandwidth

Limit

According to § 15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

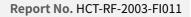


Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW \ge RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

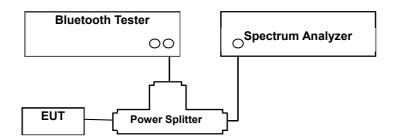


Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1% to 5% of the OBW.
- 3) VBW \geq 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

Limit

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

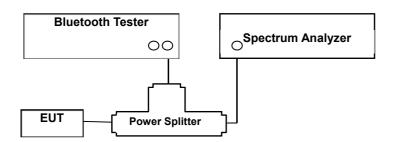
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- 2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

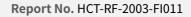
The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π /4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)

(2) AFH Mode

- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

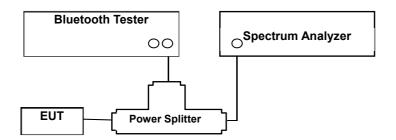

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance.

Each tx-time per appearance of DH5 is 2.890 ms. Dwell time = Tx-time x 106.667 = 308.27 (ms)

F-TP22-03 (Rev. 02)

Page 17 of 86



8.6. Conducted Spurious Emissions

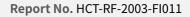
Limit

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	6.93
100	7.01
200	7.19
300	7.19
400	7.25
500	7.28
600	7.28
700	7.32
800	7.34
900	7.38
1000	7.40
2000	7.67
2400	7.76
2500	7.78
3000	7.88
4000	8.04
5000	8.23
6000	8.30
7000	8.45
8000	8.57
9000	8.69
10000	8.83
11000	8.91
12000	9.07
13000	9.26
14000	9.20
15000	9.30
16000	9.35
17000	9.42
18000	9.54
19000	9.60
20000	9.78
21000	9.97
22000	10.03
23000	10.06
24000	10.14
25000	10.27
26000	10.37

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Cable loss(2 EA) + Splitter loss(6 dB) + EUT Cable(For Conducted)

8.7. Radiated Test

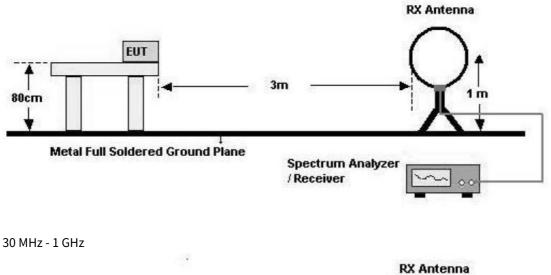
<u>Limit</u>

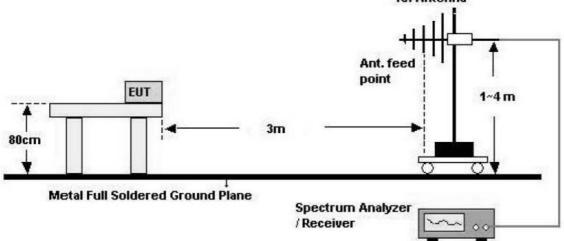
FCC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

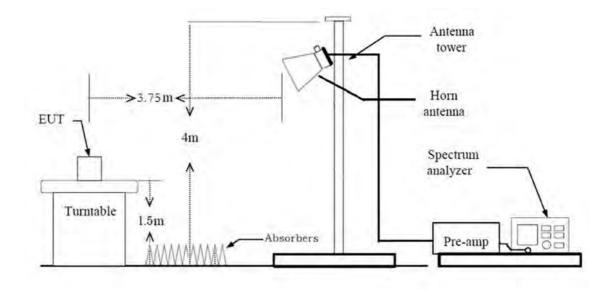
IC

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 - 30	0.08	30


FCC&IC


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

```
Measurement Distance : 3 m
```

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.

3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

In general, (1) is used mainly

6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

7. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 9. The unit was tested with its standard battery.
- 10. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.13 (On Page. 25)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

1. Radiated test is performed with hopping off.

- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.

9. Spectrum Setting

- (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
- (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.13 (On Page. 25)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Total
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 12. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = τ [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 13. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
 - c. Worst Case Dwell Time = τ [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

8.8. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a) 56 to 46 ^(a)		
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.

- For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected

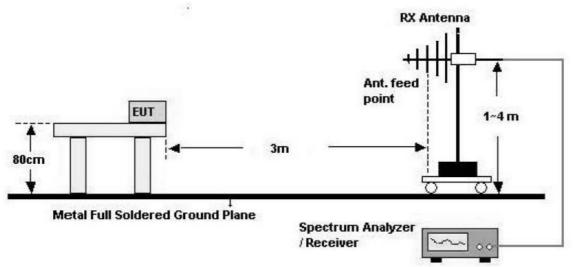
- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

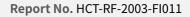
Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Receiver Spurious Emissions

	٠		•	
		m	٦I	t
L				L


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

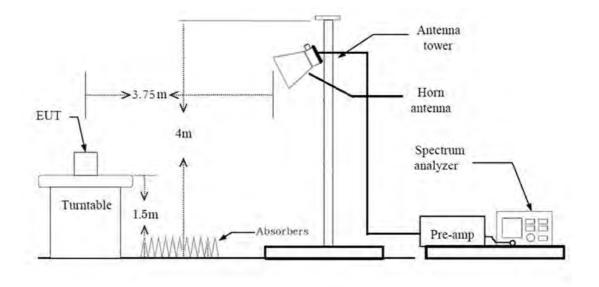

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

Test Procedure of Receiver Spurious Emissions (Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.


- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak

- Trace = Maxhold
- RBW = 1 MHz
- VBW \geq 3 x RBW
- (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

8.10. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 2. EUT Axis

- Radiated Spurious Emissions : X

- Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5

- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

5. ATC41HSAN(FCC)&ATC41HSKN(IC), VT260HSAN(FCC)&VT260HSKN(IC) were tested and the worst

case results are reported.

(Worst case : ATC41HSAN(FCC)&ATC41HSKN(IC))

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

1. The EUT was configured with data rate of highest power.

- GFSK : DH5
- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5

2. AFH & Non-AFH were tested and the worst case results are reported.

(Worst case : Non-AFH)

```
3. ATC41HSAN(FCC)&ATC41HSKN(IC), VT260HSAN(FCC)&VT260HSKN(IC) were tested and the worst case results are reported.
```

(Worst case : ATC41HSAN(FCC)&ATC41HSKN(IC))

9. SUMMARY OF	TEST RESUL	۲S

Test Description	FCC Part Section(s)	IC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§ 15.247(a)(1)	RSS-247, 5.1	N/A	condition	PASS
Occupied Bandwidth	N/A	RSS-GEN, 6.7	N/A		N/A
Conducted Maximum Peak Output Power	§ 15.247(b)(1)	RSS-247, 5.1 b)	< 0.125 W	Conducted	PASS
Carrier Frequency Separation	§ 15.247(a)(1)	RSS-247, 5.1 b)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	≥ 15		PASS
Time of Occupancy	§ 15.247(a)(1)(iii)	RSS-247, 5.1 d)	< 400 ms		PASS
Conducted Spurious Emissions	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	RSS-247, 5.5	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§ 15.207(a)	RSS-GEN, 8.8	cf. Section 8.8		N/A (Note1)
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	RSS-GEN, 8.9 RSS-GEN, 8.10	cf. Section 8.7	Radiated	PASS
Receiver Spurious Emissions	N/A	RSS-GEN, 7	cf. Section 8.9		PASS

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	Output Power (GFSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	3.636	2.31	
Mid	2441	4.129	2.59	125
High	2480	3.729	2.36	

Channel	Frequency (MHz)	Output Power (8DPSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	0.827	1.21	
Mid	2441	1.765	1.50	125
High	2480	1.853	1.53	

Channel	Frequency (MHz)	Output Power (π/4DQPSK)		Limit
		(dBm)	(mW)	(mW)
Low	2402	0.420	1.10	
Mid	2441	1.406	1.38	125
High	2480	1.503	1.41	

Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.76 dB at 2400 MHz and is 7.78 dB at 2500 MHz.

So, 7.78 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)

Test Plots (GFSK) Peak Power (CH.39)

Test Plots (GFSK) Peak Power (CH.78)

Test Plots (8DPSK) Peak Power (CH.0)

Test Plots (8DPSK)

Peak Power (CH.39)

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK)

Peak Power	(CH.0)
i canti otter j	(0110)

Test Plots (π/4DQPSK) Peak Power (CH.39)

RL RF 500 AC Center Freq 2.441000000		ig: Free Run	#Avg Type: RMS Avg[Hold: 1/1	03:46:52 PM Feb 26, 203 TRACE 2 3 4 TYPE M 1000 DET P P P P F	
		tten: 14 dB	Avg Hold: 1/1	DET PPPF	
e dB/dly Ref Offset 7.78 dB			Mki	1 2.441 04 GH 1.406 dBi	z Auto Tuni m
000		∮ ¹			Center Free 2.441000000 GH
10.0					2.441000000 GH
300					Start Free 2.436000000 GH
300					Stop Free
-40.0					2,446000000 GH
ອຸ່ມທີ່ ອາດ					CF Stej 1.000000 MH Auto Ma
70 0					Freq Offse 0 H
sa a					
Center 2.441000 GHz #Res BW 3.0 MHz	#VBW 50	MHz	Sweep	Span 10.00 MH 1.000 ms (1001 pt	lz s)

Test Plots (π/4DQPSK)

Peak Power	(CH.78)
------------	---------

10.2 BAND EDGES

Without hopping

Outeide Frequency Dand	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	61.116	58.638	59.444	20
Upper	63.540	62.876	62.913	20

With hopping

Outeide Frequency Dand	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	63.363	60.644	57.221	20
Upper	60.351	58.298	58.352	20

Note :

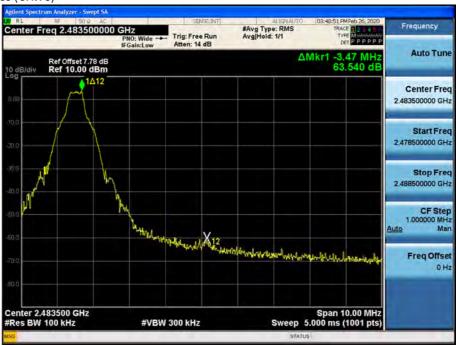
1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

Actual value of loss for the splitter and cable combination is 7.76 dB at 2400 MHz and is 7.78 dB at 2500 MHz.

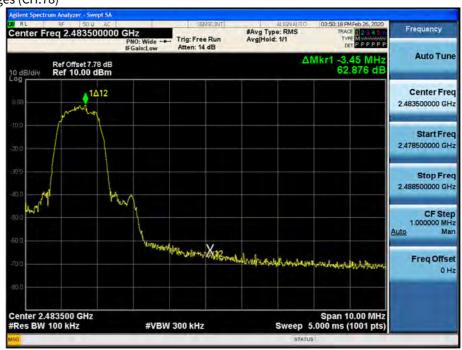
So, 7.78 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.



Test Plots without hopping (GFSK)

Band Edges (CH.0)

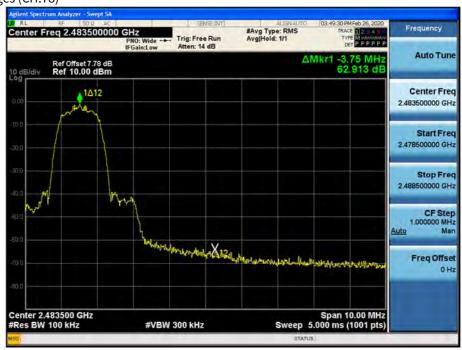

Test Plots without hopping (GFSK) Band Edges (CH.78)



Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK) Band Edges (CH.78)



Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)

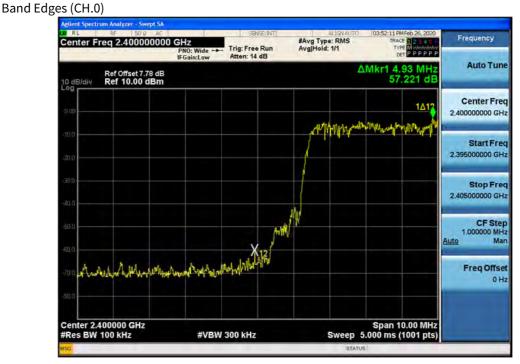
Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)


Test Plots with hopping (8DPSK)

Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Test Plots with hopping (π /4DQPSK)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

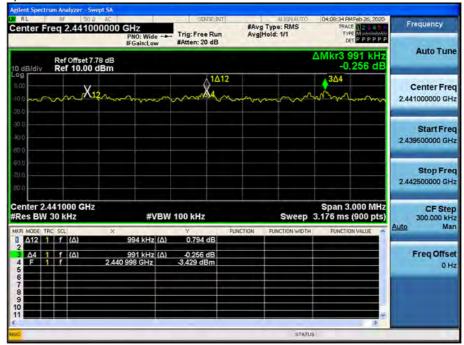
99% BW (kHz)							
Channel	GFSK	8DPSK	π/4DQPSK				
CH.0	898.42	1216.7	1212.9				
CH.39	900.97	1218.5	1209.0				
CH.78	899.20	1215.7	1210.2				

20dB BW (kHz)							
Channel	GFSK	8DPSK	π/4DQPSK				
CH.0	992.7	1341	1356				
CH.39	1001.0	1343	1356				
CH.78	997.6	1341	1365				

	Channel Separation(kHz)					
GFSK	8DPSK	(kHz)				
			>25 kHz			
998	991	991	or			
			>2/3 of the 20dB BW			

Test Plots (GFSK)

Channel Separation


Test Plots (8DPSK) Channel Separation

RL		RF		AC 00000	CH-z		SBN9E:11		ALIGNAUTO		Feb 26, 2020	Frequency
anten	110			00000	PNO: Wid IFGain:Lo		Trig: Free Run #Atten: 20 dB		Hold: 1/1	TVP	E MINNINA P P P P P P P	
dB/di			Offset 7.						ΔN	/kr3 1.0 -0.	11 MHz 874 dB	Auto Tun
	~~~	~	V	en_	~~~~	~~~	10	-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	304	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Fre 2.441000000 GH
												Start Fre 2.439500000 GH
10 10 18												Stop Fr 2,442500000 G
enter Res B			00 GHz Hz		#\	/BW	100 kHz		Sweep	Span 3. 3.176 ms		CF Ste 300.000 ki
A MODE				×	991 kHz	(Δ)	Y 0.692 dB	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> M
	1		(Δ)	1 2.440	011 MHz 995 GHz	( <u>(</u> )	-0.874 dB -3.563 dBm					Freq Offs 0 H



#### Test Plots (π/4DQPSK)

#### **Channel Separation**





#### Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)



# Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)





#### Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

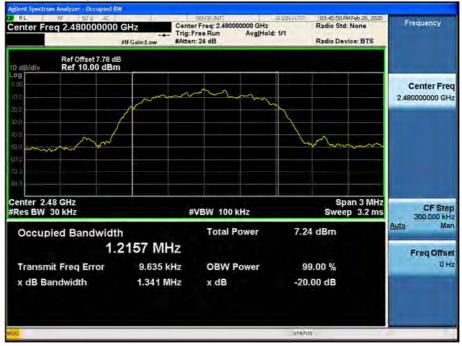


#### Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)



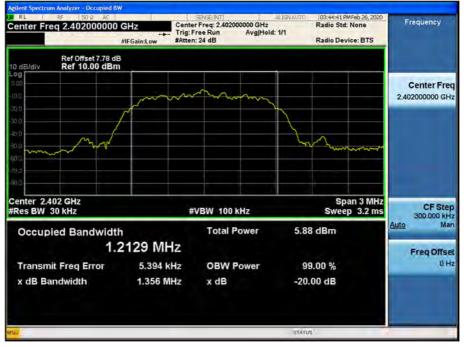



#### Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)



#### Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.78)



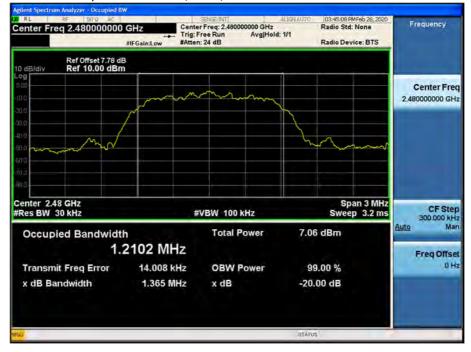


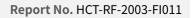
#### Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)



# Test Plots ( $\pi$ /4DQPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)






# Test Plots (π/4DQPSK)

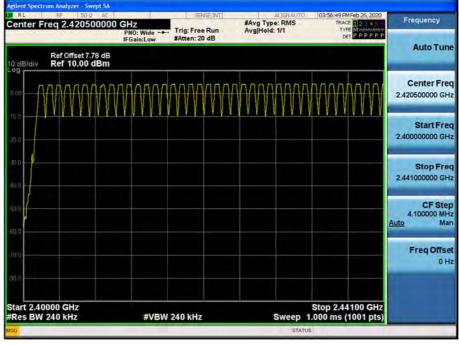
20 dB Bandwidth & Occupied Bandwidth (CH.78)







# **10.4 NUMBER OF HOPPING FREQUENCY**


	Result (No. of CH)					
GFSK	8DPSK	π/4DQPSK	Limit			
79	79	79	>15			

# Note :

In case of AFH mode, minimum number of hopping channels is 20.




# Test Plots (GFSK) Number of Channels (2.4 GHz - 2.441 GHz)



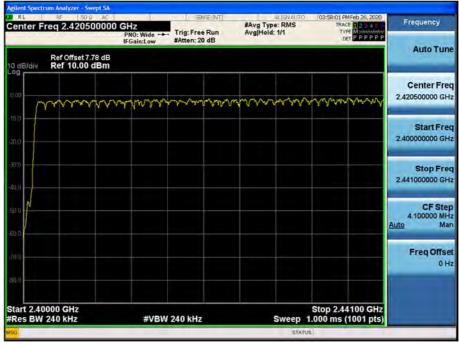
#### Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)





# Test Plo Number


of Channels (2.4 GHz Agilent Spectrum Analyzer - Swept Si 27 RL BF SO2 AC Center Freq 2.4205000	00 GHz PNO: Wide	SBNSEIWT	alignauto #Avg Type: RMS AvgjHold: 1/1	03:59:41 PM Feb 26, 2020 TRACE 2 2 3 4 5 TYPE MVHWWWW DET P. P. P. P. P. P.	Frequency
Ref Offset 7.78 dE	a cumicou				Auto Tune
	www	man m	hardalar	wwwwww	Center Fre 2.420500000 GH
-10.0					Start Free 2,400000000 GH
-3010					Stop Free 2.441000000 GH:
-500 -					CF Step 4,100000 MH Auto Mar
.709					Freq Offse 0 H:
Start 2.40000 GHz #Res BW 240 kHz	#VBW 24	0 kHz		Stop 2.44100 GHz .000 ms (1001 pts)	

Number of Channels (2.441 GHz - 2.4835 GHz)

	NO: Wide Trig: Free Run	#Avg Type: RMS Avg[Hold: 1/1	04:00:16 PM Feb 26, 2020 TRACE 2 3 4 9 F TYPE Multiple DET P P P P P P	Frequency
Ref Offset 7.78 dB 0 dB/div Ref 10.00 dBm	Gain:Low #Atten: 20 dB			Auto Tun
000 2.00 2.00 2.00 2.00 2.00 2.00 2.00	and the second	www.www.ww	www	Center Fre 2.462250000 GH
100				Start Fre 2,441000000 GH
eo			4	Stop Fr 2.483500000 G
				CF St 4.250000 M Auto M
10 ė				Freq Offs 0
Start 2.44100 GHz Res BW 240 kHz	#VBW 240 kHz	S Sweep 1.0	top 2.48350 GHz 00 ms (1001 pts)	



# Test Plots (π/4DQPSK) Number of Channels (2.4 GHz - 2.441 GHz)



# Test Plots ( $\pi/4DQPSK$ )

Number of Channels (2.441 GHz - 2.4835 GHz)

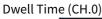
enter Freq 2.462250000 G	Z Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	03:58:36 PM Feb 26, 2020 TRACE 2 3 4 5 F TYPE Multiplication	Frequency
	NO: Wide Trig: Free Run Gain:Low #Atten: 20 dB	Avginut. W	DETPPPPP	Auto Tur
	www.www.www.	a Maria Maria Maria	man	Center Fre 2.462250000 G
ф				Start Fr 2.441000000 G
0				Stop Fr 2.483500000 G
u 			Jun	CF St 4.250000 M Auto N
ė				Freq Offs 0
art 2.44100 GHz Res BW 240 kHz	#VBW 240 kHz	Sween 1.00	op 2.48350 GHz 10 ms (1001 pts)	

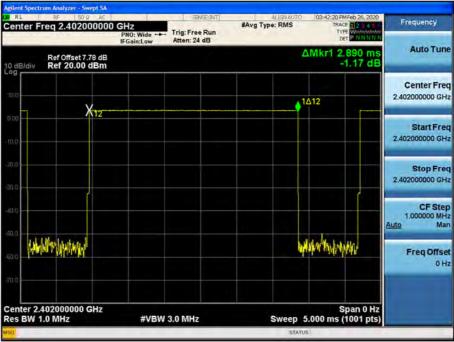


# 10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.890	2.890	2.890
(ms)	Mid	2.885	2.890	2.890
	High	2.885	2.890	2.890

#### Non-AFH Mode


Tablef	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	308.27	308.27	308.27	31.6	
(ms)	Mid	307.73	308.27	308.27	31.6	400
	High	307.73	308.27	308.27	31.6	

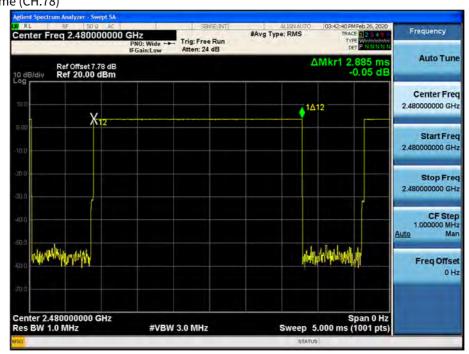

#### AFH Mode

Tablef	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	154.13	154.13	154.13	8.0	
(ms)	Mid	153.87	154.13	154.13	8.0	400
	High	153.87	154.13	154.13	8.0	



# Test Plots (GFSK)






# Test Plots (GFSK) Dwell Time (CH.39)


	50 P AC 441000000 GH	2 D: Wide	SENSEINT Trig: Free Run Atten: 24 dB	#Avg Type: RM		Feb 26, 2020	Frequency
0 dB/div Ref 2	fset 7.78 dB 0.00 dBm	ain:Low	Atten. 24 65		ΔMkr1 2.		Auto Tun
10.0		X				1012	Center Fre 2.441000000 GH
000		X12					Start Fre 2.441000000 GH
80 0							Stop Fre 2.441000000 GH
io o							CF Ste 1.000000 MH Auto Ma
60.0	hundhiliyin	NIMA				Halpha	Freq Offse 0 H
Center 2.441000		#VBW	3.0 MHz	Swe	S ep 5.000 ms (	pan 0 Hz	



#### Test Plots (GFSK) Dwell Time (CH.78)



# Test Plots (8DPSK) Dwell Time (CH.0)






#### Test Plots (8DPSK)

Dwell Time (CH.39)



# Test Plots (8DPSK) Dwell Time (CH.78)





#### Test Plots (π/4DQPSK)

Dwell Time (CH.0)

gilent Spectrum Analyzer - Swept SA R L RF 50 Q AC	SENSE:INT	ALIGNAUTO	03:42:50 PM Feb 26, 2020	
Center Freq 2.402000000		#Avg Type: RMS	TRACE	Frequency
Ref Offset 7.78 dB 0 dB/div Ref 20.00 dBm	- Gameow	۵	Mkr1 2.890 ms 0.65 dB	Auto Tun
10.0				Center Fre 2.402000000 GH
noo X12	an a	1Δ12	Journal and the second	Start Fre 2.402000000 GH
ño				Stop Fre 2.402000000 GH
00				CF Ste 1.000000 MF Auto Ma
50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		yatyind balandar		Freq Offse 0 H
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 5	Span 0 Hz .000 ms (1001 pts)	
50		STATUS		

Test Plots (π/4DQPSK) Dwell Time (CH.39)





# Test Plots (π/4DQPSK)

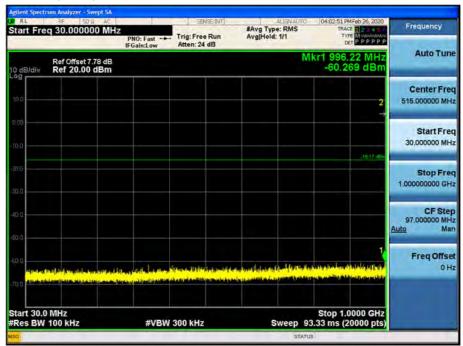
Dwell Time (CH.78)

enter Freq 2.480000000 GP	Z NO: Wide Gain:Low Atten: 24 dB	ALIGNAUTO 03:43:08 PM Feb 26 #Avg Type: RMS TRACE 02 Type: What DET P.V.	
Ref Offset 7.78 dB 0 dB/div Ref 20.00 dBm		ΔMkr1 2.890 1.71	ms Auto Tune dB
10.0		▲1∆12	Center Free 2.480000000 GH
1000 X12	an a		Start Fre 2.480000000 GH
άρ			Stop Fre 2.480000000 GH
ωο			CF Ste 1.000000 MH Auto Ma
an Irrana Maria		Marchallender	Freq Offse 0 H
enter 2.480000000 GHz		Span	0 Hz
tes BW 1.0 MHz	#VBW 3.0 MHz	Sweep 5.000 ms (1001 status	praj

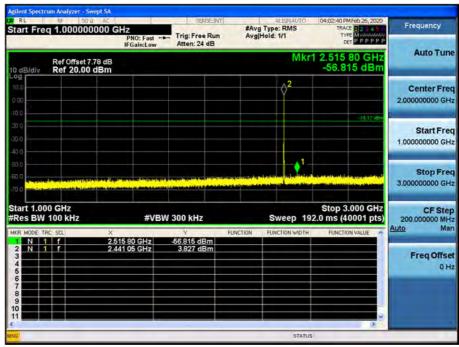


# **10.6 SPURIOUS EMISSIONS**

# **10.6.1 CONDUCTED SPURIOUS EMISSIONS**


Test Result : please refer to the plot below.

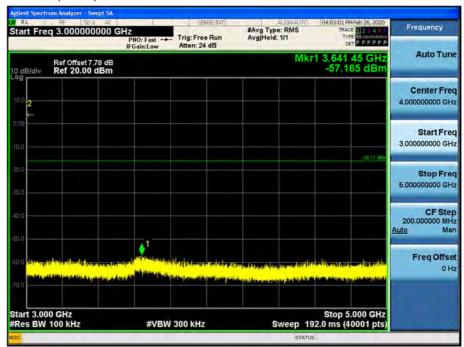
In order to simplify the report, attached plots were only the worst case channel and data rate.



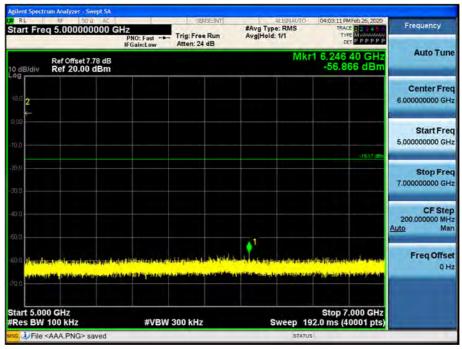

#### Test Plots (GFSK)- 30 MHz - 1 GHz

Spurious Emission (CH.39)




# Test Plots (GFSK)- 1 GHz – 3 GHz

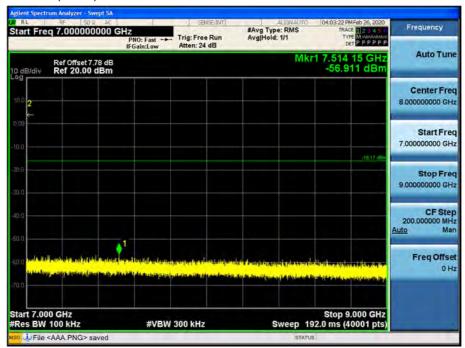




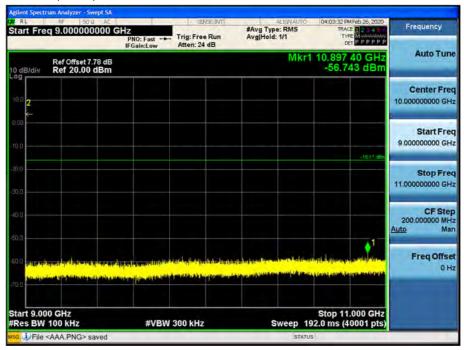

# Test Plots(GFSK)- 3 GHz - 5 GHz

Spurious Emission (CH.39)




# Test Plots (GFSK)- 5 GHz - 7 GHz

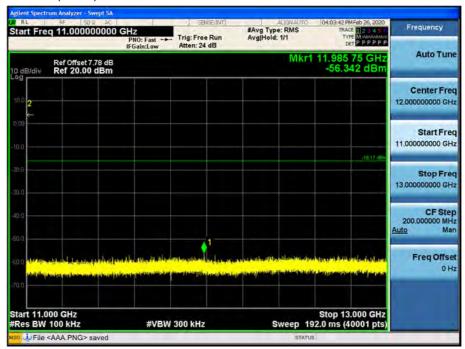




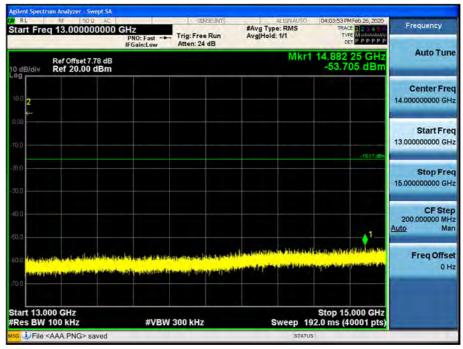

# Test Plots(GFSK)- 7 GHz - 9 GHz

Spurious Emission (CH.39)




# Test Plots(GFSK)- 9 GHz - 11 GHz

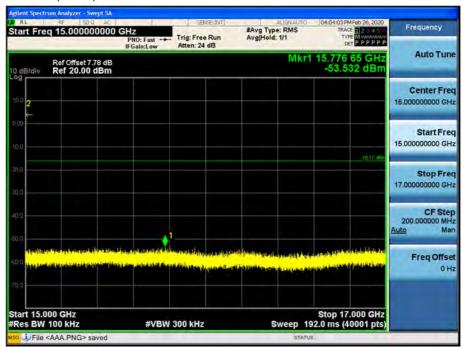




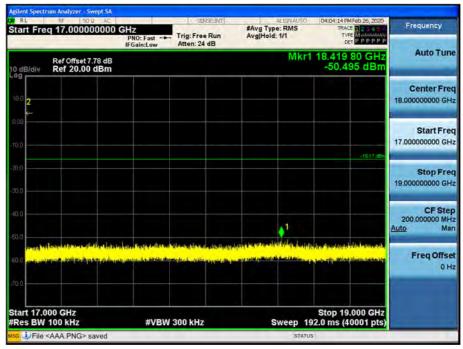

#### Test Plots(GFSK) 11 GHz - 13 GHz

Spurious Emission (CH.39)




# Test Plots (GFSK)- 13 GHz - 15 GHz

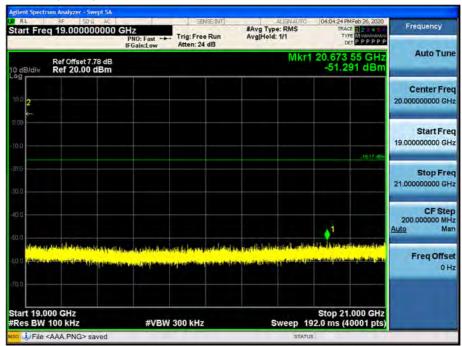




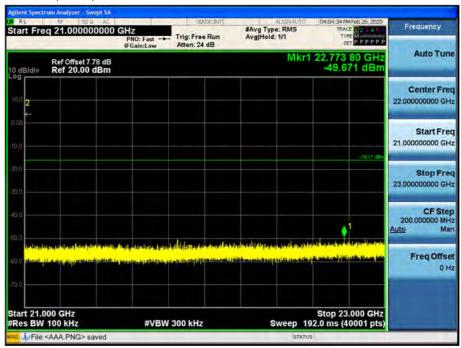

#### Test Plots(GFSK)- 15 GHz - 17 GHz

Spurious Emission (CH.39)




# Test Plots(GFSK)- 17 GHz - 19 GHz






#### Test Plots (GFSK)- 19 GHz - 21 GHz

Spurious Emission (CH.39)



# Test Plots (GFSK)- 21 GHz - 23 GHz





# Test Plots (GFSK)- 23 GHz - 25 GHz

RL RF 50 Q		SENSE:INT	] ALIGNAUTO	04:04:45 PM Feb 26, 2020	Frequency
tart Freq 23.000000	PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	TYPE M MANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	requency
Ref Offset 7.78 c 0 dB/div Ref 20.00 dB			Mkr	1 24.966 95 GHz -46.122 dBm	Auto Tune
10.0 <b>2</b>					Center Free 24.000000000 GH
0.09				-15.17 cgm	Start Free 23.000000000 GH
30.0					Stop Fre 25.00000000 GH
40.0 50.0 mill allord out in shall harboard	ing the star of the start of the second	international and the provident of the second	and the stand of the state of a state of a	ales in the second second second	CF Ste 200.000000 MH <u>Auto</u> Ma
ED D HALF problem for the set of some part	<mark>y a fille de la deserva de la constante de la const</mark>	a angun dipinahinanahi	an a	nangasatin nanéhéhénéséhéhéh	Freq Offse 0 H
70 0 Start 23.000 GHz #Res BW 100 kHz	#\/B\\	300 kHz	Swaap 4	Stop 25.000 GHz 92.0 ms (40001 pts)	



## **10.6.2 RADIATED SPURIOUS EMISSIONS**

#### Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz dBuV/m dBm/m dBm (H/V) dBuV/m dBuV/m dB									
No Critical peaks found									

#### Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

#### Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
No Critical peaks found									

#### Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Detect

ΡK

 $\mathsf{AV}$ ΡK

AV

ΡK

AV

ΡK

AV

53.98

25.04

Margin

[dB]

29.51

34.27

24.55

29.31

29.54

34.30

24.18

28.94



7206

## Frequency Range : Above 1 GHz

40.15

	Aode: CH Low					
				Duty Cycle		
Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Correction	Total	Limit
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]
4804	42.64	1.83	V	0.00	44.47	73.98
4804	42.64	1.83	V	-24.76	19.71	53.98
7206	39.78	9.65	V	0.00	49.43	73.98
7206	39.78	9.65	V	-24.76	24.67	53.98
4804	42.61	1.83	Н	0.00	44.44	73.98
4804	42.61	1.83	Н	-24.76	19.68	53.98
7206	40.15	9.65	н	0.00	49.80	73.98

9.65

Operation M	1ode: CH Mid	(GFSK)								
				Duty Cycle						
Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Correction	Total	Limit	Margin			
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect		
4882	41.25	2.31	V	0.00	43.56	73.98	30.42	PK		
4882	41.25	2.31	V	-24.76	18.80	53.98	35.18	AV		
7323	38.94	9.96	V	0.00	48.90	73.98	25.08	PK		
7323	38.94	9.96	V	-24.76	24.14	53.98	29.84	AV		
4882	41.91	2.31	Н	0.00	44.22	73.98	29.76	PK		
4882	41.91	2.31	Н	-24.76	19.46	53.98	34.52	AV		
7323	38.75	9.96	Н	0.00	48.71	73.98	25.27	PK		
7323	38.75	9.96	Н	-24.76	23.95	53.98	30.03	AV		
Operation M	Dperation Mode: CH High(GFSK)									

Н

-24.76

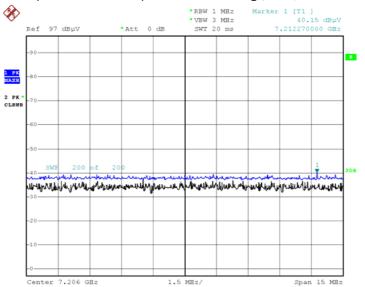
				Duty Cycle				
Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Correction	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4960	41.21	2.26	V	0.00	43.47	73.98	30.51	PK
4960	41.21	2.26	V	-24.76	18.71	53.98	35.27	AV
7440	38.63	9.78	V	0.00	48.41	73.98	25.57	PK
7440	38.63	9.78	V	-24.76	23.65	53.98	30.33	AV
4960	41.36	2.26	Н	0.00	43.62	73.98	30.36	PK
4960	41.36	2.26	Н	-24.76	18.86	53.98	35.12	AV
7440	38.71	9.78	Н	0.00	48.49	73.98	25.49	PK
7440	38.71	9.78	Н	-24.76	23.73	53.98	30.25	AV



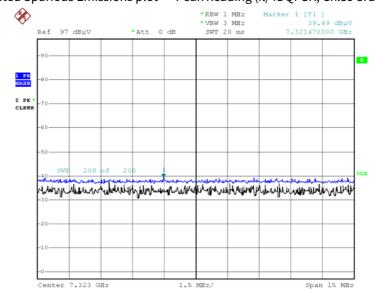
Operation M	lode: CH Lov	ν(π/4DQPSK)						
Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4804	42.45	1.83	V	0.00	44.28	73.98	29.70	PK
4804	42.45	1.83	V	-24.76	19.52	53.98	34.46	AV
7206	39.55	9.65	V	0.00	49.20	73.98	24.78	PK
7206	39.55	9.65	V	-24.76	24.44	53.98	29.54	AV
4804	42.53	1.83	Н	0.00	44.36	73.98	29.62	PK
4804	42.53	1.83	Н	-24.76	19.60	53.98	34.38	AV
7206	39.24	9.65	н	0.00	48.89	73.98	25.09	PK
7206	39.24	9.65	Н	-24.76	24.13	53.98	29.85	AV
Operation M	1ode: CH Mid	(π/4DQPSK)						
Frequency	0	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4882	40.91	2.31	V	0.00	43.22	73.98	30.76	PK
4882	40.91	2.31	V	-24.76	18.46	53.98	35.52	AV
7323	39.49	9.96	V	0.00	49.45	73.98	24.53	PK
7323	39.49	9.96	V	-24.76	24.69	53.98	29.29	AV
4882	40.93	2.31	Н	0.00	43.24	73.98	30.74	PK
4882	40.93	2.31	Н	-24.76	18.48	53.98	35.50	AV
7323	38.90	9.96	Н	0.00	48.86	73.98	25.12	PK
7323	38.90	9.96	Н	-24.76	24.10	53.98	29.88	AV
Operation M	lode: CH Hig	h (π/4DQPSK)						
Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Duty Cycle Correction		Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4960	40.96	2.26	V	0.00	43.22	73.98	30.76	PK
4960	40.96	2.26	V	-24.76	18.46	53.98	35.52	AV
7440	38.70	9.78	V	0.00	48.48	73.98	25.50	PK
7440	38.70	9.78	V	-24.76	23.72	53.98	30.26	AV
4960	41.30	2.26	Н	0.00	43.56	73.98	30.42	PK
4960	41.30	2.26	Н	-24.76	18.80	53.98	35.18	AV
7440	38.87	9.78	Н	0.00	48.65	73.98	25.33	PK
7440	38.87	9.78	Н	-24.76	23.89	53.98	30.09	AV

#### Operation Mode: CH Low( $\pi$ /4DQPSK)




[MHz] dBuV [dB] [H/V] [dB] [dBuV/m] [dBuV/m] [dB] Detect   4804 41.96 1.83 V 0.00 43.79 73.98 30.19 PK   4804 41.96 1.83 V -24.76 19.03 53.98 34.95 AV   7206 39.62 9.65 V 0.00 49.27 73.98 24.71 PK   7206 39.62 9.65 V -24.76 24.51 53.98 29.47 AV   4804 42.15 1.83 H 0.00 43.98 73.98 29.47 AV   4804 42.15 1.83 H 0.00 43.98 73.98 30.00 PK   4804 42.15 1.83 H -24.76 19.22 53.98 34.76 AV   7206 39.62 9.65 H 0.00 49.27 73.98 24.71 PK   7206 39.62 9.65 H 0.00 49.27 53.98 29.47 AV   7206	Operation M	lode: CH Lov	i(8DPSK)						
Image   Image <th< td=""><td>Frequency</td><td>0</td><td></td><td></td><td>Correction</td><td>Total</td><td></td><td></td><td></td></th<>	Frequency	0			Correction	Total			
4804   41.96   1.83   V   -24.76   19.03   53.98   34.95   AV     7206   39.62   9.65   V   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   V   -24.76   24.51   53.98   29.47   AV     4804   42.15   1.83   H   0.00   43.98   73.98   30.00   PK     4804   42.15   1.83   H   -24.76   19.22   53.98   34.76   AV     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   -24.76   24.51   53.98   29.47   AV     Operation Mode: CH Mid(8DPSK)     Margin   [dB]   Dity Cycle   Correction   Total   Limit   Margin   [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.52   AV <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[dBuV/m]</td> <td></td> <td></td>							[dBuV/m]		
7206   39.62   9.65   V   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   V   -24.76   24.51   53.98   29.47   AV     4804   42.15   1.83   H   0.00   43.98   73.98   30.00   PK     4804   42.15   1.83   H   -24.76   19.22   53.98   34.76   AV     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   -24.76   24.51   53.98   29.47   AV     Operation Mode: CH Mid(8DPSK)    Total   Limit   Margin   [dBuV/m]   [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   35.52   AV     7323   39.25   9.96	4804	41.96	1.83	V	0.00	43.79	73.98	30.19	PK
7206   39.62   9.65   V   -24.76   24.51   53.98   29.47   AV     4804   42.15   1.83   H   0.00   43.98   73.98   30.00   PK     4804   42.15   1.83   H   -24.76   19.22   53.98   34.76   AV     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   0.00   49.27   73.98   29.47   AV     Operation Mode: CH MidSDPSK)    73.98   29.47   AV     Spectad BauV   Reading (BBUV   A.F+C.L-A.G+D.F   ANT. POL   Duty Cycle Correction [GBUV/m]   Total [GBUV/m]   [dBUV/m]   [dBU   PK     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   25.52   AV     7323   39.25   9.96   V<	4804	41.96	1.83	V	-24.76	19.03	53.98	34.95	AV
4804   42.15   1.83   H   0.00   43.98   73.98   30.00   PK     4804   42.15   1.83   H   -24.76   19.22   53.98   34.76   AV     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   0.47.76   24.51   53.98   29.47   AV     Operation Mode: CH Mid(BDPSK)     Total   Limit   Margin   [dBuV/m]   [dBuV/m]   [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   29.53   AV     7323   39.25   9.96   V   -24.76   18.91   53.98   29.53   AV     4882	7206	39.62	9.65	V	0.00	49.27	73.98	24.71	PK
4804   42.15   1.83   H   -24.76   19.22   53.98   34.76   AV     7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   -24.76   24.51   53.98   29.47   AV     Operation Wde: CH MidSDPSK)    4.54.76   24.51   53.98   29.47   AV     Operation Mde: CH MidSDPSK)    Margin   [dB]   [dB]   [dB]   [dB]   [dB]   [dB]   [dB]   [dB]   [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   35.52   AV     7323   39.25   9.96   V   -24.76   18.46   53.98   30.31   PK     4882   41.36   2.31   H   0.00   49.32   73.98   30.31   PK	7206	39.62	9.65	V	-24.76	24.51	53.98	29.47	AV
7206   39.62   9.65   H   0.00   49.27   73.98   24.71   PK     7206   39.62   9.65   H   -24.76   24.51   53.98   29.47   AV     Operation Mote: CH Mid (8DPSK)   Imit   5.98   29.47   AV     Frequency   Reading   A.F+C.L-A.G+D.F   Imit   Imit   Margin   Imit   Margin   Imit   Margin   Imit   Imit   Margin   Imit   Imit   Margin   Imit   Imit <t< td=""><td>4804</td><td>42.15</td><td>1.83</td><td>Н</td><td>0.00</td><td>43.98</td><td>73.98</td><td>30.00</td><td>PK</td></t<>	4804	42.15	1.83	Н	0.00	43.98	73.98	30.00	PK
T206   39.62   9.65   H   -24.76   24.51   53.98   29.47   AV     Operation Wode: CH Mid(BDPSK)     Frequency   Reading   A.F+C.L-A.G+D.F   ANT. POL   Duty Cycle   Total   Limit   Margin   [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   0.00   43.22   73.98   35.52   AV     7323   39.25   9.96   V   0.00   49.21   73.98   24.77   PK     7323   39.25   9.96   V   0.00   49.21   73.98   24.77   PK     7323   39.25   9.96   V   -24.76   18.91   53.98   29.53   AV     4882   41.36   2.31   H   -24.76   18.91   53.98   29.42   AV     7323   39.36   9.96   H   -24.76   18.91   53.98   29.42 <td>4804</td> <td>42.15</td> <td>1.83</td> <td>Н</td> <td>-24.76</td> <td>19.22</td> <td>53.98</td> <td>34.76</td> <td>AV</td>	4804	42.15	1.83	Н	-24.76	19.22	53.98	34.76	AV
Operation Mode: CH Mid(8DPSK)   Duty Cycle (MHz)   Total   Limit   Margin (dB)   Margin (dB)     [MHz]   dBuV   (dB)   [H/V]   Duty Cycle Correction   Total   Limit   Margin     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   35.52   AV     7323   39.25   9.96   V   0.00   49.21   73.98   24.77   PK     7323   39.25   9.96   V   -24.76   18.91   53.98   29.53   AV     4882   41.36   2.31   H   -24.76   18.91   53.98   30.31   PK     4882   41.36   2.31   H   -24.76   18.91   53.98   35.07   AV     7323   39.36   9.96   H   -24.76   18.91   53.98   29.42   AV     Operation Mode: CH High(8DPSK)   [dB]   [dH/V] <td>7206</td> <td>39.62</td> <td>9.65</td> <td>Н</td> <td>0.00</td> <td>49.27</td> <td>73.98</td> <td>24.71</td> <td>PK</td>	7206	39.62	9.65	Н	0.00	49.27	73.98	24.71	PK
Frequency [MHz]   Reading dBuV   A.F+C.L-A.G+D.F [dB]   ANT. POL [H/V]   Duty Cycle Correction [dB]   Total [dBuV/m]   Limit limit [dBuV/m]   Margin [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   35.52   AV     7323   39.25   9.96   V   -24.76   24.45   53.98   24.77   PK     7323   39.25   9.96   V   -24.76   24.45   53.98   29.53   AV     4882   41.36   2.31   H   0.00   43.67   73.98   30.31   PK     4882   41.36   2.31   H   -24.76   18.91   53.98   35.07   AV     7323   39.36   9.96   H   -24.76   24.56   53.98   29.42   AV     Operation   Margin   [dB]   [H/V]   [dB]   [dB]   [dB]   [dB] <t< td=""><td>7206</td><td>39.62</td><td>9.65</td><td>Н</td><td>-24.76</td><td>24.51</td><td>53.98</td><td>29.47</td><td>AV</td></t<>	7206	39.62	9.65	Н	-24.76	24.51	53.98	29.47	AV
Frequency [MHz]   Reading dBuV   A.F+C.L-A.G+D.F [dB]   ANT. POL [H/V]   Correction [dB]   Total [dBU/m]   Limit dBU/m]   Margin [dB]   Detect     4882   40.91   2.31   V   0.00   43.22   73.98   30.76   PK     4882   40.91   2.31   V   -24.76   18.46   53.98   35.52   AV     7323   39.25   9.96   V   0.00   49.21   73.98   24.77   PK     7323   39.25   9.96   V   -24.76   24.45   53.98   29.53   AV     4882   41.36   2.31   H   0.00   43.67   73.98   30.31   PK     4882   41.36   2.31   H   -24.76   18.91   53.98   35.07   AV     7323   39.36   9.96   H   -24.76   18.91   53.98   24.66   PK     7323   39.36   9.96   H   0.00   49.32   73.98   24.66   PK	Operation M	1ode: CH Mid	(8DPSK)						
[HH1] [HV1] <td< td=""><td>Frequency</td><td>•</td><td></td><td>ANT. POL</td><td>Correction</td><td></td><td></td><td>-</td><td></td></td<>	Frequency	•		ANT. POL	Correction			-	
4882 40.91 2.31 V -24.76 18.46 53.98 35.52 AV   7323 39.25 9.96 V 0.00 49.21 73.98 24.77 PK   7323 39.25 9.96 V -24.76 24.45 53.98 29.53 AV   4882 41.36 2.31 H 0.00 43.67 73.98 30.31 PK   4882 41.36 2.31 H -24.76 18.91 53.98 35.07 AV   7323 39.36 9.96 H -24.76 18.91 53.98 35.07 AV   7323 39.36 9.96 H 0.00 49.32 73.98 24.66 PK   7323 39.36 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Mode: CH High(8DPSK)   -24.76 18.01 Imit Margin [dB] Detect   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK <td< td=""><td>[MHz]</td><td>dBuV</td><td>[dB]</td><td>[H/V]</td><td>[gB]</td><td>[dBuV/m]</td><td>[dBuV/m]</td><td>[dB]</td><td>Detect</td></td<>	[MHz]	dBuV	[dB]	[H/V]	[gB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
7323   39.25   9.96   V   0.00   49.21   73.98   24.77   PK     7323   39.25   9.96   V   -24.76   24.45   53.98   29.53   AV     4882   41.36   2.31   H   0.00   43.67   73.98   30.31   PK     4882   41.36   2.31   H   -24.76   18.91   53.98   35.07   AV     7323   39.36   9.96   H   -24.76   18.91   53.98   24.66   PK     7323   39.36   9.96   H   -24.76   24.56   53.98   29.42   AV     Operation   Node: CH Hight   BUPSK)   Total   Limit   Margin   Margin     [MHz]   dBuV   [dB]   [H/V]   [dB]   [dB]//(B]   [dB]//(B]   [dB]//(B]   [dB]//(B]   [dB]//(B]   [dB]//(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   [dB]///(B]   <	4882	40.91	2.31	V	0.00	43.22	73.98	30.76	PK
7323   39.25   9.96   V   -24.76   24.45   53.98   29.53   AV     4882   41.36   2.31   H   0.00   43.67   73.98   30.31   PK     4882   41.36   2.31   H   -24.76   18.91   53.98   35.07   AV     7323   39.36   9.96   H   0.00   49.32   73.98   24.66   PK     7323   39.36   9.96   H   -24.76   24.56   53.98   29.42   AV     Operation Note: CH High   BDPSK)   -24.76   24.56   53.98   29.42   AV     Frequency   Reading   A.F+C.L-A.G+D.F   ANT. POL   Duty Cycle Correction [dBuV/m]   [dBuV/m]   [dB]   Detect     4960   41.51   2.26   V   0.00   43.77   73.98   30.21   PK     4960   41.51   2.26   V   -24.76   19.01   53.98   34.97   AV     7440   38.52   9.78	4882	40.91	2.31	V	-24.76	18.46	53.98	35.52	AV
4882 41.36 2.31 H 0.00 43.67 73.98 30.31 PK   4882 41.36 2.31 H -24.76 18.91 53.98 35.07 AV   7323 39.36 9.96 H 0.00 49.32 73.98 24.66 PK   7323 39.36 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Mode: CH High 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Mode: CH High 9.96 H -24.76 24.56 53.98 29.42 AV   Prequency Reading A.F+C.L-A.G+D.F ANT. POL Duty Cycle Total Limit Margin [dB] Detect   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V -24.76 19.01 53.98 34.97 AV   7440 38.52 9.78 V -24.76 19.01 53.98 30.24 AV	7323	39.25	9.96	V	0.00	49.21	73.98	24.77	PK
4882 41.36 2.31 H -24.76 18.91 53.98 35.07 AV   7323 39.36 9.96 H 0.00 49.32 73.98 24.66 PK   7323 39.36 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Wode: CH Hig   (BDPSK)   Frequency Reading A.F+C.L-A.G+D.F ANT. POL Duty Cycle Total Limit Margin Detect   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 48.30 73.98 30.21 PK   7440 38.52 9.78 V 0.00 48.30 73.98 30.44 AV   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   7440 38.52 9.78 <	7323	39.25	9.96	V	-24.76	24.45	53.98	29.53	AV
7323 39.36 9.96 H 0.00 49.32 73.98 24.66 PK   7323 39.36 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Mode: CH Hig/(8DPSK)   Frequency Reading A.F+C.L-A.G+D.F ANT. POL Duty Cycle Correction Total Limit Margin Margin Detect   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V -24.76 19.01 53.98 34.97 AV   7440 38.52 9.78 V -24.76 19.01 53.98 30.44 AV   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H	4882	41.36	2.31	Н	0.00	43.67	73.98	30.31	PK
7323 39.36 9.96 H -24.76 24.56 53.98 29.42 AV   Operation Wode: CH Hig 8DPSK)   Frequency Reading A.F+C.L-A.G+D.F ANT. POL Duty Cycle Correction Total Limit Margin Margin Detect   [MHz] dBuV [dB] [dB] [H/V] [dB] [dBuV/m] [dB] Detect   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 48.30 73.98 34.97 AV   7440 38.52 9.78 V 0.00 48.30 73.98 30.24 PK   4960 41.43 2.26 H 0.00 48.30 73.98 30.44 AV   7440 38.52 9.78 V 24.76 23.54 53.98 30.29 PK   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H	4882	41.36	2.31	Н	-24.76	18.91	53.98	35.07	AV
Operation Node: CH High(8DPSK)     Frequency   Reading   A.F+C.L-A.G+D.F   ANT. POL   Duty Cycle Correction   Total   Limit   Margin   Detect     4960   41.51   2.26   V   0.00   43.77   73.98   30.21   PK     4960   41.51   2.26   V   0.00   43.77   73.98   34.97   AV     7440   38.52   9.78   V   0.00   48.30   73.98   25.68   PK     7440   38.52   9.78   V   -24.76   23.54   53.98   30.44   AV     4960   41.43   2.26   H   0.00   48.30   73.98   25.68   PK     7440   38.52   9.78   V   -24.76   23.54   53.98   30.44   AV     4960   41.43   2.26   H   0.00   43.69   73.98   30.29   PK     4960   41.43   2.26   H   -24.76   18.93   53.98   35.05 <t< td=""><td>7323</td><td>39.36</td><td>9.96</td><td>Н</td><td>0.00</td><td>49.32</td><td>73.98</td><td>24.66</td><td>PK</td></t<>	7323	39.36	9.96	Н	0.00	49.32	73.98	24.66	PK
Frequency   Reading   A.F+C.L-A.G+D.F   ANT. POL   Duty Cycle Correction   Total   Limit   Margin   Detect     (MHz)   dBuV   [dB]   [dB]   [dB]   [dB]   [dB]   [dB]   Detect     4960   41.51   2.26   V   0.00   43.77   73.98   30.21   PK     4960   41.51   2.26   V   0.00   48.30   73.98   34.97   AV     7440   38.52   9.78   V   0.00   48.30   73.98   25.68   PK     7440   38.52   9.78   V   0.00   48.30   73.98   30.44   AV     4960   41.43   2.26   H   0.00   43.69   73.98   30.44   AV     4960   41.43   2.26   H   0.00   43.69   73.98   30.29   PK     4960   41.43   2.26   H   0.00   43.69   73.98   35.05   AV     7440   38.62<				Н	-24.76	24.56	53.98	29.42	AV
Frequency   Reading   A.F+C.L-A.G+D.F   ANT. POL   Correction   Total   Limit   Margin   Detect     [MHz]   dBuV   [dB]   [H/V]   [dB]	Operation M	1ode: CH Hig	h(8DPSK)						
4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V 0.00 43.77 73.98 30.21 PK   4960 41.51 2.26 V -24.76 19.01 53.98 34.97 AV   7440 38.52 9.78 V 0.00 48.30 73.98 25.68 PK   7440 38.52 9.78 V -24.76 23.54 53.98 30.44 AV   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H 0.00 43.69 73.98 35.05 AV   4960 41.43 2.26 H 0.00 48.40 73.98 25.58 PK   4960 41.43 2.26 H 0.00 48.40 73.98 25.58 PK   7440 38.62	Frequency	Reading	A.F+C.L-A.G+D.F	ANT. POL	Correction		Limit	Margin	
496041.512.26V-24.7619.0153.9834.97AV744038.529.78V0.0048.3073.9825.68PK744038.529.78V-24.7623.5453.9830.44AV496041.432.26H0.0043.6973.9830.29PK496041.432.26H-24.7618.9353.9835.05AV744038.629.78H0.0048.4073.9825.58PK	[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
7440 38.52 9.78 V 0.00 48.30 73.98 25.68 PK   7440 38.52 9.78 V -24.76 23.54 53.98 30.44 AV   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H -24.76 18.93 53.98 35.05 AV   4960 41.43 2.26 H 0.00 43.69 73.98 30.29 PK   4960 41.43 2.26 H 0.00 43.69 73.98 35.05 AV   7440 38.62 9.78 H 0.00 48.40 73.98 25.58 PK	4960	41.51	2.26	V	0.00	43.77	73.98	30.21	PK
7440   38.52   9.78   V   -24.76   23.54   53.98   30.44   AV     4960   41.43   2.26   H   0.00   43.69   73.98   30.29   PK     4960   41.43   2.26   H   -24.76   18.93   53.98   35.05   AV     4960   41.43   2.26   H   -24.76   18.93   53.98   35.05   AV     7440   38.62   9.78   H   0.00   48.40   73.98   25.58   PK	4960	41.51	2.26	V	-24.76	19.01	53.98	34.97	AV
4960   41.43   2.26   H   0.00   43.69   73.98   30.29   PK     4960   41.43   2.26   H   -24.76   18.93   53.98   35.05   AV     7440   38.62   9.78   H   0.00   48.40   73.98   25.58   PK	7440	38.52	9.78	V	0.00	48.30	73.98	25.68	PK
4960   41.43   2.26   H   -24.76   18.93   53.98   35.05   AV     7440   38.62   9.78   H   0.00   48.40   73.98   25.58   PK	7440	38.52	9.78	V	-24.76	23.54	53.98	30.44	AV
7440 38.62 9.78 H 0.00 48.40 73.98 25.58 PK	4960	41.43	2.26	Н	0.00	43.69	73.98	30.29	PK
	4960	41.43	2.26	Н	-24.76	18.93	53.98	35.05	AV
7440 38.62 9.78 H -24.76 23.64 53.98 30.34 AV	7440	38.62	9.78	Н	0.00	48.40	73.98	25.58	PK
	7440	38.62	9.78	Н	-24.76	23.64	53.98	30.34	AV

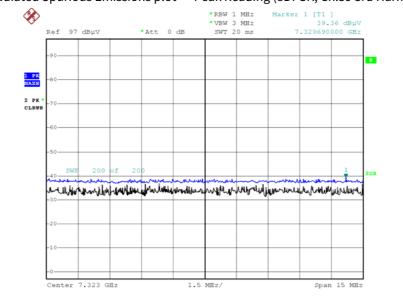
#### Operation Mode: CH Low(8DPSK)




#### RESULT PLOTS

Radiated Spurious Emissions plot – Peak Reading (GFSK, Ch.0 3rd Harmonic, X-H)




Date: 12.MAR.2020 17:28:26



Radiated Spurious Emissions plot – Peak Reading (π/4DQPSK, Ch.39 3rd Harmonic, X-V)

Date: 13.MAR.2020 14:54:58





Radiated Spurious Emissions plot - Peak Reading (8DPSK, Ch.39 3rd Harmonic, X-H)

Date: 13.MAR.2020 14:49:00

#### Note:

Plot of worst case are only reported.



## **10.6.3 RADIATED RESTRICTED BAND EDGES**

Operation Mode Operating Frequency Channel No

Normal(GFSK) 2402 MHz, 2480 MHz CH 0, CH 78

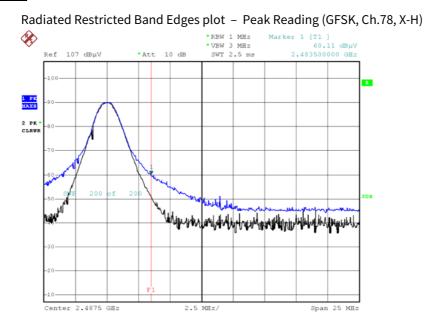
Frequency	Reading	※ A.F+C.L -AMP+ATT+D.F		Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dB]
2390.0	48.47	2.61	Н	0	51.08	73.98	22.90	PK
2390.0	48.47	2.61	Н	-24.76	26.32	53.98	27.66	AV
2390.0	47.41	2.61	V	0	50.02	73.98	23.96	PK
2390.0	47.41	2.61	V	-24.76	25.26	53.98	28.72	AV
2483.5	60.11	3.13	н	0	63.24	73.98	10.74	PK
2483.5	60.11	3.13	н	-24.76	38.48	53.98	15.50	AV
2483.5	53.72	3.13	V	0	56.85	73.98	17.13	PK
2483.5	53.72	3.13	V	-24.76	32.09	53.98	21.89	AV

Operation Mode Operating Frequency Channel No  $EDR(\pi/4DQPSK)$ 

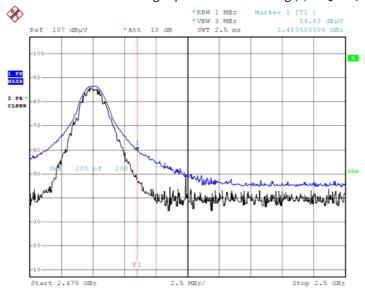

2402 MHz, 2480 MHz	
CH 0, CH 78	

Frequency	Reading	※ A.F+C.L -AMP+ATT+D.F		Duty Cycle Correction		Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]		[dBuV/m]	[dB]	[dB]
2390.0	47.63	2.61	Н	0	50.24	73.98	23.74	PK
2390.0	47.63	2.61	Н	-24.76	25.48	53.98	28.50	AV
2390.0	47.65	2.61	V	0	50.26	73.98	23.72	PK
2390.0	47.65	2.61	V	-24.76	25.50	53.98	28.48	AV
2483.5	59.63	3.13	Н	0	62.76	73.98	11.22	PK
2483.5	59.63	3.13	Н	-24.76	38.00	53.98	15.98	AV
2483.5	53.18	3.13	V	0	56.31	73.98	17.67	PK
2483.5	53.18	3.13	V	-24.76	31.55	53.98	22.43	AV




Operation M	ode		EDF	EDR(8DPSK)							
Operating Fr	requency		240	2402 MHz, 2480 MHz							
Channel No				CH 0, CH 78							
Frequency	Reading	※ A.F+C.L -AMP+ATT+D.F	ANT. POL	Duty Cycle Correction	Total	Limit	Margin	Detec			

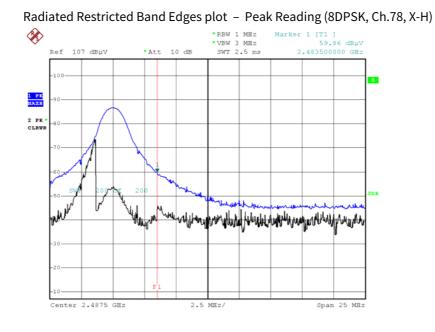
Frequency	Reading	※ A.F+C.L -AMP+ATT+D.F		Duty Cycle Correction		Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]			[dBuV/m]	[dB]	[dB]
2390.0	47.84	2.61	Н	0	50.45	73.98	23.53	PK
2390.0	47.84	2.61	Н	-24.76	25.69	53.98	28.29	AV
2390.0	47.45	2.61	V	0	50.06	73.98	23.92	PK
2390.0	47.45	2.61	V	-24.76	25.30	53.98	28.68	AV
2483.5	59.86	3.13	н	0	62.99	73.98	10.99	PK
2483.5	59.86	3.13	Н	-24.76	38.23	53.98	15.75	AV
2483.5	53.63	3.13	V	0	56.76	73.98	17.22	PK
2483.5	53.63	3.13	V	-24.76	32.00	53.98	21.98	AV






#### **RESULT PLOTS**

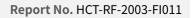



Date: 12.MAR.2020 15:03:32



#### Radiated Restricted Band Edges plot – Peak Reading ( $\pi$ /4DQPSK, Ch.78, X-H)

Date: 12.MAR.2020 15:12:44






Date: 12.MAR.2020 15:14:41

#### Note:

Plot of worst case are only reported.





### **10.7 RECEIVER SPURIOUS EMISSIONS**

## Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

## Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

## Frequency Range : Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							



# **11. LIST OF TEST EQUIPMENT**

#### **Conducted Test**

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/11/2019	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/18/2019	Annual	100584
ESPAC	SU-642 /Temperature Chamber	08/14/2019	Annual	93000718
Agilent	N9020A / Signal Analyzer	05/23/2019	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	05/09/2019	Annual	MY49432108
Agilent	N1911A / Power Meter	04/10/2019	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/10/2019	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/24/2019	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/18/2019	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/02/2019	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
Rohde & Schwarz	CBT / Bluetooth Tester	05/16/2019	Annual	100422

#### Note:

**1**. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.



#### **Radiated Test**

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
TNM system	FBSM-01B / Amp & Filter Bank Switch Controller	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	04/26/2019	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/02/2019	Biennial	01039
Schwarzbeck	BBHA 9120D / Horn Antenna	06/28/2019	Biennial	1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/29/2019	Biennial	BBHA9170342
Rohde & Schwarz	FSP(9 kHz ~ 40 GHz) / Spectrum Analyzer	07/16/2019	Annual	100843
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	01/21/2020	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/18/2019	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/26/2019	Annual	3000C000276
TNM system	FBSM-05B / HPF(3~18GHz) + LNA1(1~18GHz)	01/21/2020	Annual	F6
TNM system	FBSM-05B / ATT(10dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / ATT(3dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / LNA1(1~18GHz)	01/21/2020	Annual	25540
TNM system	FBSM-05B / HPF(7~18GHz) + LNA2(6~18GHz)	01/21/2020	Annual	28550
TNM system	FBSM-05B / Thru(30MHz ~ 18GHz)	01/21/2020	Annual	None

#### Note:

**1**. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).



# **12. ANNEX A_ TEST SETUP PHOTO**

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2003-FI011-P