

FCC BT REPORT

Certification

Applicant Name: HYUNDAI MOBIS CO., LTD. Date of Issue: October 26, 2018

Address:

Model:

203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majangmyeo, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1809-FC077-R2

FCC ID: TQ8-ATC40S9AN

APPLICANT: HYUNDAI MOBIS CO., LTD.

ATC40S9AN

EUT Type:	Car Audio System
Max. RF Output Power:	3.489 dBm (2.23 mW)
Frequency Range:	2402 MHz - 2480 MHz (Bluetooth)
Modulation type	GFSK(Normal), π /4DQPSK and 8DPSK(EDR)
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s):	Part 15 subpart C 15.247

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Se Wook Park Engineer of Telecommunication testing center

Approved by : Jong Seok Lee Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION	
HCT-RF-1809-FC077	September 14, 2018	- First Approval Report	
HCT-RF-1809-FC077-R1	October 24, 2018	- Revised the Worst case configuration on page 23	
HCT-RF-1809-FC077-R2	October 26, 2018	- Added the AFH mode calculation.	
		- Revised the band edges.	

Table of Contents

1.	EUT DES	CRIPTION
2.	REQUIR	EMENTS FOR BLUETOOTH TRANSMITTER(15.247)5
3.	TEST ME	THODOLOGY6
	EUT CO	NFIGURATION6
	EUT EXE	RCISE
	GENERA	L TEST PROCEDURES
	DESCRI	PTION OF TEST MODES
4.	INSTRU	IENT CALIBRATION
5.	FACILITI	ES AND ACCREDITATIONS
		ES7
	EQUIPM	ENT
6.	ANTENN	A REQUIREMENTS
7.	MEASUF	REMENT UNCERTAINTY
8.	DESCRI	PTION OF TESTS
9.	SUMMA	RY OF TEST RESULTS
10.		TEST RESULT
	10.1	PEAK POWER
	10.2	BAND EDGES
	10.3	FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)
	10.4	NUMBER OF HOPPING FREQUENCY
	10.5	TIME OF OCCUPANCY (DWELL TIME)
	10.6	SPURIOUS EMISSIONS
	10.6.	1 CONDUCTED SPURIOUS EMISSIONS
	10.6.	2 RADIATED SPURIOUS EMISSIONS
	10.6.	3 RADIATED RESTRICTED BAND EDGES
11		LIST OF TEST EQUIPMENT
12		ANNEX A_ TEST SETUP PHOTO

1. EUT DESCRIPTION

Model	ATC40S9AN
ЕИТ Туре	Car Audio System
Power Supply	DC 14.40 V
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	3.489 dBm (2.23 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Bluetooth Version	4.0
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Manufacturer: LG Innotek, Co. Ltd. Antenna type: Bluetooth Single Band Antenna Peak Gain : 0.29 dBi
Date(s) of Tests	July 02, 2018 ~ September 10, 2018

2. REQUIREMENTS FOR BLUETOOTH TRANSMITTER(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

Conducted Antenna Terminal

See Section from 7.8.2 to 7.8.8.(ANSI 63.10-2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been

calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and guasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

* The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

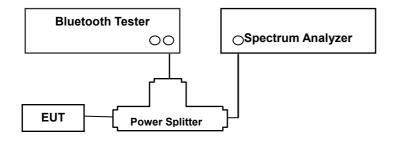
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.71

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

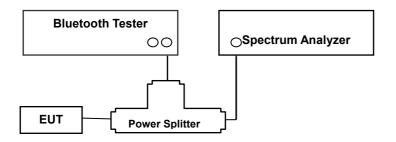
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

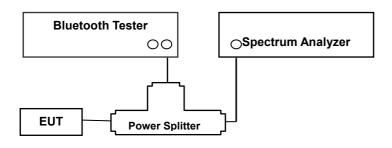
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

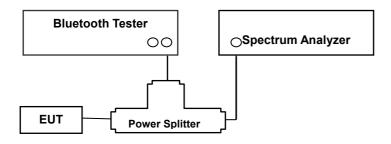
Test Configuration

Test Procedure

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

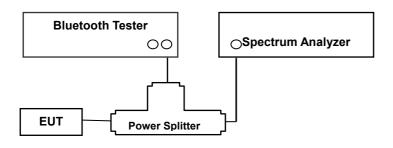
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

* Mon-AFH Mode

- DH 5 (GFSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)

* AFH Mode

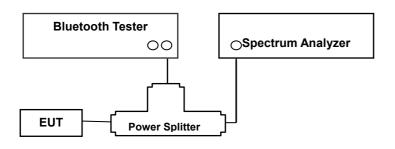
- DH 5 (GFSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.

Dwell time = Tx-time * 106.667 = 308.27 (ms)



8.6. Conducted Spurious Emissions

<u>Limit</u>

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

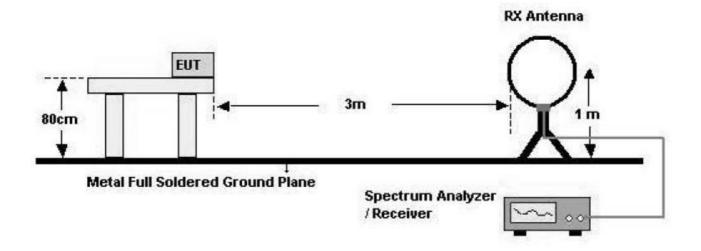
This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	7.18
100	6.35
200	7.04
300	6.58
400	6.26
500	5.95
600	6.17
700	6.34
800	6.72
900	7.08
1000	7.38
2000	7.21
2400*	7.40
2500*	7.44
3000	7.88
4000	8.95
5000	9.57
6000	6.68
7000	9.99
8000	8.34
9000	9.61
10000	10.47
11000	8.96
12000	9.73
13000	8.84
14000	9.50
15000	11.54
16000	8.14
17000	11.73
18000	9.71
19000	10.40
20000	11.69
21000	10.72
22000	12.31
23000	9.85
24000	12.52
25000	11.07
26000	10.50

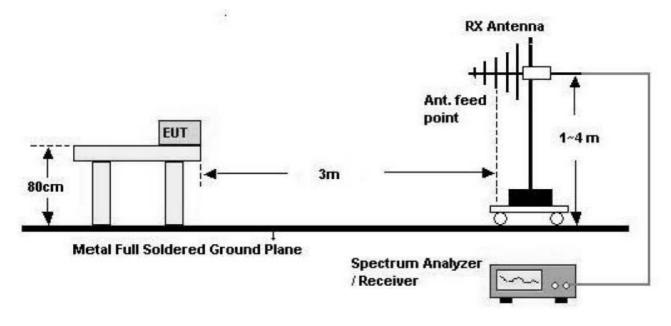
Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Splitter loss

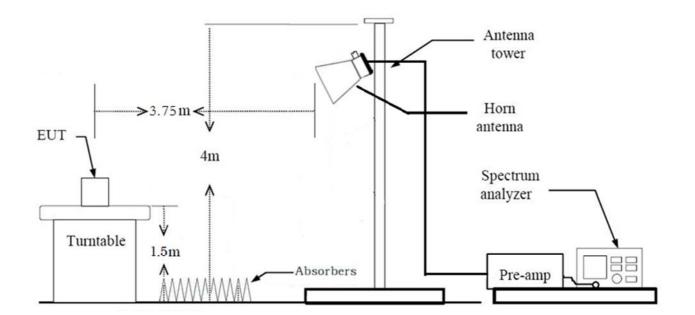

8.7. Radiated Test

|--|

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Test Configuration

Below 30 MHz



30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 *Distance extrapolation factor = 20*log (test distance / specific distance) (dB)
- 7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 9. The unit was tested with its standard battery.
- 10. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 *Distance extrapolation factor = 20*log (test distance / specific distance) (dB)
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds

The actual setting value of VBW = 1 kHz

- 10. Total
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected

- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Worst case configuration and mode

Radiated test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
- 2. EUT Axis
 - Radiated Spurious Emissions : X
 - Radiated Restricted Band Edge : X
- 3. We applied DCCF in the test result which hopping channel number is 20.
- 4. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.
 - GFSK : DH5
 - π/4DQPSK : 2-DH5
 - 8DPSK : 3-DH5

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - π/4DQPSK : 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.

(Worst case : Non-AFH)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii) ≥ 2		Conducted	PASS
Time of Occupancy	§15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)			PASS
Radiated Spurious Emissions	§15.247(d),Radiated Spurious Emissions15.205,cf. Section 8.15.209		Dodietad	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency	Output Power (GFSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	3.408	2.19	
Mid	2441	3.489	2.23	125
High	2480	2.822	1.92	

Channel	Frequency	Output Power (8DPSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	1.535	1.42	
Mid	2441	1.672	1.47	125
High	2480	1.070	1.28	

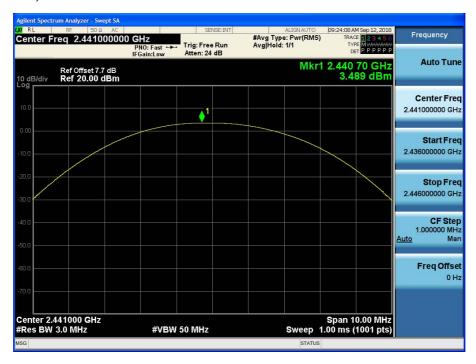
Channel	Frequency		Output Power (π/4DQPSK)					
	(MHZ)	(MHz) (dBm) (mW)						
Low	2402	1.106	1.29					
Mid	2441	1.250	1.33	125				
High	2480	0.571	1.14					

Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.36 dB at 2402 MHz and is 7.44 dB at 2480 MHz.


So, 7.7 dB is offset.(Includes Eut cable loss) And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK) Peak Power (CH.0)

RL	RF 50 Ω AC		SENSE:INT	ALIGN AUT		Frequency
ienter F	req 2.40200000	PNO: Fast ++ IFGain:Low	Trig: Free Run Atten: 24 dB	#Avg Type: Pwr(Rl Avg Hold: 1/1	MS) TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PPPPP	
0 dB/div	Ref Offset 7.7 dB Ref 20.00 dBm			MI	kr1 2.402 01 GHz 3.408 dBm	
10.0			1			Center Fre 2.402000000 GI
0.0						Start Fr 2.397000000 G
						Stop Fr 2.407000000 G
D.O						CF Sto 1.000000 M <u>Auto</u> M
0.0						Freq Offs 0
	102000 GHz				Span 10.00 MHz	
Res BW	3.0 MHz	#VBW	50 MHz	Sweep	o 1.00 ms (1001 pts)	

Test Plots (GFSK) Peak Power (CH.39)

Test Plots (GFSK) Peak Power (CH.78)

RL	RF 50 Ω AC		SENSE:INT	ALIGNAUTO	09:24:20 AM Sep 12, 2018	Barren unter an
enter Fre	q 2.4800000	0 GHz PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg Type: Pwr(RMS) Avg Hold: 1/1	TRACE 123456 TYPE MWWWWW DET PPPPP	Frequency
	Ref Offset 7.7 dB Ref 20.00 dBm	I Sumeow		Mkr1	2.479 95 GHz 2.822 dBm	Auto Tur
0.0			1			Center Fre 2.480000000 GI
0.0						Start Fr 2.475000000 G
						Stop Fr 2.485000000 G
).0).0						CF Sto 1.000000 M <u>Auto</u> M
.0						Freq Offs 0
enter 2.48 Res BW 3.		#VBW	50 MHz	Sweep 1	Span 10.00 MHz .00 ms (1001 pts)	

Test Plots (8DPSK) Peak Power (CH.0)

Test Plots (8DPSK)

Peak Power (CH.39)

Ref Offset 7.7 dB Ref 20.00 dBm	PNO: Fast ↔ IFGain:Low	Atten: 24 dB	Mkr1	2.440	88 GHz 72 dBm	Auto Tun Center Fre
		↓ 1				Center Fre
						2.441000000 GH
						Start Fr 2.436000000 G
					- A	Stop Fr 2.446000000 G
						CF Sto 1.000000 M <u>Auto</u> M
						Freq Offs 0
1000 GHz .0 MHz	#VBM	/ 50 MHz	Sweep 1	Span 1 .00 ms (0.00 MHz 1001 pts)	
				1000 GHz 0 MHz #VBW 50 MHz Sweep 1	0 MHz #VBW 50 MHz Sweep 1.00 ms (0 MHz #VBW 50 MHz Sweep 1.00 ms (1001 pts)

Test Plots (8DPSK) Peak Power (CH.78)



Test Plots (π/4DQPSK) Peak Power (CH.0)

a RL Center Fi	RF 50Ω AC req 2.40200000	00 GHz	SENSE:INT	ALIGNAUTO #Avg Type: Pwr(RMS)	09:24:32 AM Sep 12, 2018 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	 Trig: Free Run Atten: 24 dB 	Avg Hold: 1/1	TYPE MWWWWW DET PPPPP	
0 dB/div	Ref Offset 7.7 dB Ref 20.00 dBm			Mkr1	2.401 97 GHz 1.106 dBm	Auto Tun
10.0						Center Fre 2.402000000 GH
0.00			1			2.402000000 61
10.0						Start Fre 2.397000000 GH
20.0						
0.0						Stop Fre 2.407000000 GH
io.o						CF Ste
i0.0						1.000000 Mi <u>Auto</u> Ma
0.0						Freq Offs
0.0						01
					Out 40.00 Mile	
enter 2.4 Res BW	402000 GHz 3.0 MHz	#VB	N 50 MHz	Sweep 1	Span 10.00 MHz .00 ms (1001 pts)	

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π/4DQPSK) Peak Power (CH.78)

Center F	RF 50Ω AC req 2.480000000) GHz	SENSE:INT	ALIGNAUTO #Avg Type: Pwr(RM:	TRACE 12345	Frequency
		PNO: Fast 🔸 IFGain:Low	. Trig: Free Run Atten: 24 dB	Avg[Hold: 1/1		
10 dB/div	Ref Offset 7.7 dB Ref 20.00 dBm			Mk	1 2.479 88 GHz 0.571 dBm	Auto Tun
-09						Center Fre
10.0			1			2.480000000 GH
0.00			· · · · · · · · · · · · · · · · · · ·			
						Start Fre
10.0						2.475000000 GI
20.0						Stop Fre
/						2.485000000 Gł
30.0						
40.0						CF Ste 1.000000 M
50.0						Auto Ma
30.0						
60.0						Freq Offs
70.0						U
	480000 GHz				Span 10.00 MHz	
≉Res BW	3.0 MHz	#VBN	50 MHz	Sweep	1.00 ms (1001 pts)	£

10.2 BAND EDGES

Without hopping

Outside Frequency Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	58.920	55.145	54.285	20
Upper	59.525	54.159	54.529	20

With hopping

Outside Frequency Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	59.352	54.373	54.151	20
Upper	55.665	53.641	54.275	20

Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

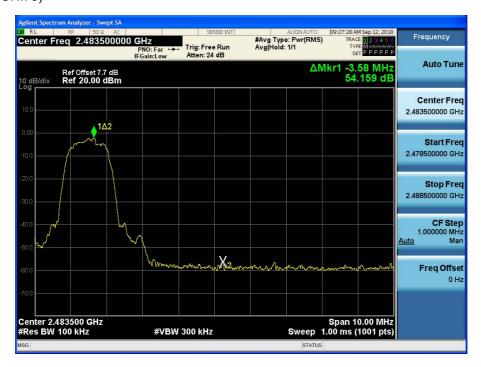
2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

Actual value of loss for the splitter and cable combination is 7.36 dB at 2402 MHz and is 7.44 dB at 2480 MHz.


So, 7.7 dB is offset.(Includes Eut cable loss) And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots without hopping (GFSK) Band Edges (CH.0)

Test Plots without hopping (GFSK) Band Edges (CH.78)



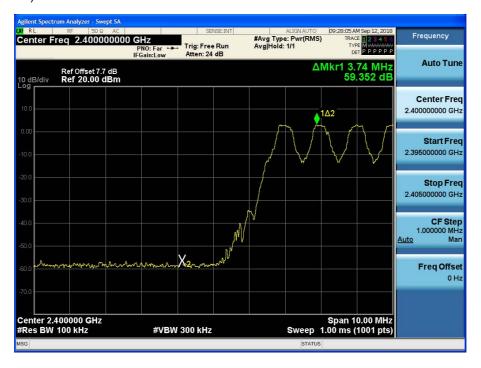
Test Plots without hopping (8DPSK)

Band Edges (CH.0)


Test Plots without hopping (8DPSK) Band Edges (CH.78)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)



Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)

Test Plots with hopping (GFSK) Band Edges (CH.0)

Test Plots with hopping (GFSK) Band Edges (CH.78)



Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

99% BW (kHz)										
Channel GFSK 8DPSK π/4DQPSK										
CH.0	899.31	1214.8	1209.7							
CH.39	899.93	1215.8	1208.0							
CH.78	904.42	1216.6	1207.4							

	20dB BW (kHz)									
Channel GFSK 8DPSK π/4DQPSk										
CH.0	999.1	1343.0	1353.0							
CH.39	991.6	1339.0	1353.0							
CH.78	997.2	1343.0	1354.0							

	Channel Separation(kHz)		Limit
GFSK	8DPSK	(kHz)	
			>25 kHz
998	994	998	or
			>2/3 of the 20dB BW

Test Plots (GFSK)

Channel Separation

			0000	GHZ	Far↔	. Trig: F	ree Run		Avg Hol	pe: Pwr(RMS) d: 1/1	TYP	E 1 2 3 4 5 6 E MWWWWW		equency
						#Atten	: 20 dB			ΔN	kr3 1.0			Auto Tun
کمر	~	-X ₂		~~~		~~		2 ^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3∆4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Center Fre 1000000 G⊦
													2.43	Start Fre
													2.44	Stop Fr 2500000 GI
V 30	kHz	GHz			#VBW		lz	FUNC	TION		3.18 ms	(900 pts)	Auto	CF Ste 300.000 kl
			<u>2.440</u> 1	001 G	Hz Hz (Δ)	-0.0 1.092 0.0	dBm 26 dB	FONG		UNCTION WIDTH	FONCTIO	IN VALUE		Freq Offs
	R	Ref 17 2.441000 μ 30 kHz TRC SCL 1 f	Ref 17.70 d 2.441000 GHz V 30 kHz TRC SCL 1 f	V 30 kHz TRC SCL × 1 f (Δ) 1 f (Δ) 1 f (Δ) 1	Ref Offset 7.7 dB Ref 17.70 dBm 	Ref 17.70 dBm 4 4 2.441000 GHz #VBW V 30 kHz #VBW TRC SCL × 1 f 2.440 001 GHz ×	Ref Offset 7.7 dB Ref 17.70 dBm 4.441000 GHz 8.441000 GHz 8.00 KHz #VBW 100 kH TRC SCL X F (Δ) 2.998 kHz (Δ) -0.00 1 f (Δ) -1.090 MHz (Δ) -0.00 1 f (Δ) -0.00 HHz (Δ) -0.00 HZ (Δ) Hz (Δ) -0.00 HZ (Δ) Hz (Δ) +	Ref Offset 7.7 dB Ref 17.70 dBm 10.7 10	Ref Offset 7.7 dB Ref 17.70 dBm 1Δ2 441000 GHz W 30 kHz #VBW 100 kHz TRC SCI X Y FUNC 1	Ref Offset 7.7 dB Ref 17.70 dBm 1Δ2 4 <td>Ref Offset 7.7 dB Ref 17.70 dBm ΔM 4 1Δ2 1Δ2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 4 6 4 4 6 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>Ref Offset 7.7 dB AMkr3 1.0 Ref 17.70 dBm 0 1000000000000000000000000000000000000</td> <td>Ref Offset 7.7 dB ΔMkr3 1.004 MHz Ref Offset 7.7 dB 0.026 dB 441000 GHz 1Δ2 441000 GHz Span 3.000 MHz 8000 KHz Span 3.000 MHz 8000 KHz Span 3.000 MHz 998 KHz 1002 dB 1 f 102 dB</td> <td>Ref Offset 7.7 dB AMkr3 1.004 MHz 0.026 dB AMkr3 1.004 MHz 0.026 dB 0.026</td>	Ref Offset 7.7 dB Ref 17.70 dBm ΔM 4 1Δ2 1Δ2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 4 6 4 4 6 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ref Offset 7.7 dB AMkr3 1.0 Ref 17.70 dBm 0 1000000000000000000000000000000000000	Ref Offset 7.7 dB ΔMkr3 1.004 MHz Ref Offset 7.7 dB 0.026 dB 441000 GHz 1Δ2 441000 GHz Span 3.000 MHz 8000 KHz Span 3.000 MHz 8000 KHz Span 3.000 MHz 998 KHz 1002 dB 1 f 102 dB	Ref Offset 7.7 dB AMkr3 1.004 MHz 0.026 dB AMkr3 1.004 MHz 0.026 dB 0.026

Test Plots (8DPSK) Channel Separation

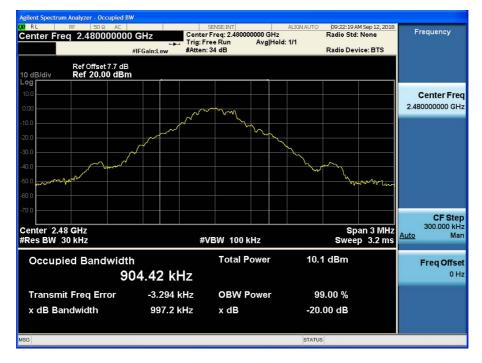
Test Plots (π/4DQPSK)

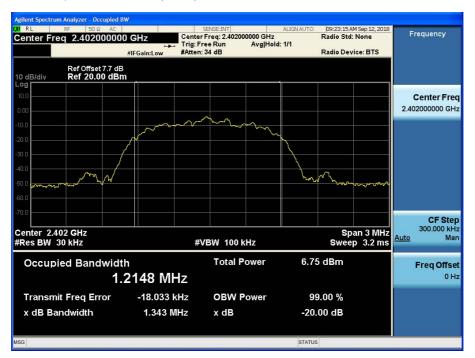
Channel Separation

Ref Offset 7.7 Ref 17.70 d	dB	ain:Low	#Atten: 20	1 <u>Δ2</u>			10 Mkr3 9 -0.	98 kHz 133 dB	Aut	o Tune
<u>∕</u> √X2∖_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Â	1Δ2						
			\sim	*~~~~		~~~~~	304		Cent 2.441000	er Fre 000 GH
									Sta 2.439500	art Fre 000 G⊦
										op Fre
1000 GHz kHz	×	#VBW	/ 100 kHz	FU	NCTION		3.18 ms	(900 pts)	300	CF Ste
f (Δ) f f (Δ) f	2.439 934 998	GHz 3 kHz (∆)	-3.298 dE -0.133	3m dB					Fred	Offs 0 H
	SCL f (Δ) f f (Δ) f f 	KHZ × f (Δ) 1.041 f 2.439.934 f f 2.439.935 f f 2.430.975 984	KHz #VBW SCL × f (Δ) 1.041 MHz f 2.439 934 GHz	KHz #VBW 100 kHz ScLi × Υ f (Δ) -0.399 f 2.439 934 GHz -3.298 df f (Δ) 999 kHz (Δ) f 2.440 975 GHz -3.697 df	KHz #VBW 100 kHz ScL X Y FU f (Δ) -0.399 dB FU -2.298 dBm f 2.439 334 GHz -3.298 dBm -0.133 dB -0.133 dB f 2.440 975 GHz -3.697 dBm -0.133 dB -0.133 dB	x Y FUNCTION f (Δ) 1.041 MHz (Δ) 0.399 dB f 2.439 934 GHz 3.298 dBm f f 2.439 934 GHz 0.313 dB f f 2.440 975 GHz -3.697 dBm -	X Y FUNCTION FUNCTION f (Δ) -0.399 dB FUNCTION f 2.439 934 GHz -3.299 dB FUNCTION f 2.439 934 GHz -3.298 dBm FUNCTION f 2.440 975 GHz -3.697 dBm FUNCTION	V HHz #V BW 100 kHz Sweep 3.18 ms SCL X Y FUNCTION FUNCTION FUNCTION f (Δ) 1.041 MHz (Δ) 0.399 dB f f 2.439 934 GHz 3.298 dBm f f (Δ) 998 kHz (Δ) 0.133 dB f f 2.440 975 GHz -3.697 dBm f 1.440 975 GHz -3.697 dBm 1.440 975 GHz -3.697 GHz -3.697 GHz -3.697 GHz -3.697 GHz -3.697 GHz <t< td=""><td>X HZ ¥VBW 100 kHz Sweep 3.18 ms (900 pts) SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VIDTH f (Δ) 1.041 MHz C399 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.439 934 GHz -3.299 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.439 934 GHz -3.299 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.430 975 GHz -3.697 dBm FUNCTION VIDTH FUNCTION VIDTH FUNCTION VIDTH</td><td>X Y FUNCTION FUNCTION V/DTH FUNCTI</td></t<>	X HZ ¥VBW 100 kHz Sweep 3.18 ms (900 pts) SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VIDTH f (Δ) 1.041 MHz C399 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.439 934 GHz -3.299 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.439 934 GHz -3.299 dB FUNCTION FUNCTION VIDTH FUNCTION VIDTH f 2.430 975 GHz -3.697 dBm FUNCTION VIDTH FUNCTION VIDTH FUNCTION VIDTH	X Y FUNCTION FUNCTION V/DTH FUNCTI

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)


Test Plots (GFSK) 20 dB Bandwidth & Occupied Bandwidth (CH.39)



Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)


Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π/4DQPSK)

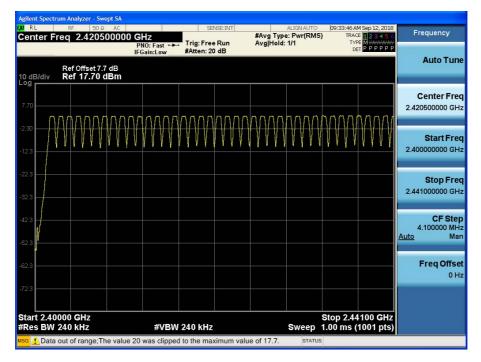
20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π/4DQPSK)

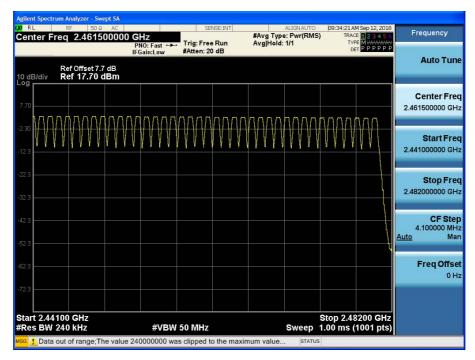
20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

	Result (No. of CH)						
GFSK	8DPSK	π/4DQPSK	– Limit				
79	79	79	>15				


Note :

In case of AFH mode, minimum number of hopping channels is 20.


Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

RL RF 50 Ω AC Center Freq 2.420500000	PNO: Fast +>	Trig: Free			ALIGNAUTO : Pwr(RMS >1/1) TRAC	M Sep 12, 2018 E 1 2 3 4 5 6 E MWWWWW T P P P P P P	Frequency
Ref Offset 7.7 dB 0 dB/div Ref 17.70 dBm	IFGain:Low	#Atten: 20	dB			De		Auto Tune
•g								Center Free 2.420500000 GH
		ᡃᠰ᠊ᢉᡗ᠆ᡎᡃᠬ	ᢣᢉ᠇ᠬᡃᠬᠭ	Mar Jarry	ᡊᢦ᠆ᡎ᠕ᡊ	ᡊ᠕ᠬᡘᡧᠬ	ᠬᢩ᠆ᡝ᠕᠕	Start Fre 2.400000000 GH
32.3								Stop Fre 2.441000000 G⊢
2.3								CF Ste 4.100000 MH Auto Ma
23								Freq Offse 0 ⊦
tart 2.40000 GHz Res BW 240 kHz	#VBW	/ 240 kHz					100 GHz 1001 pts)	

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

enter Freq 2.46	Р	HZ NO: Fast ↔ Gain:Low			#Avg Type Avg Hold:	ALIGNAUTO e: Pwr(RMS) 1/1	TRAC	M Sep 12, 2018 E 1 2 3 4 5 6 PE M W W W W W	Frequency
Ref Offset dB/div Ref 17.7	7.7 dB	Sam.Low	and contractions and						Auto Tur
.70									Center Fre 2.461500000 GH
.30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᠬᢞᠬᢞ᠕᠆ᠰ᠕᠆ᠰ	ᡃᡁᢉᢦᡘᢇᠾᢦᡇᠬ	ᡐ᠆ᡣᡢᡢ᠆ᡝ	and the	ᡏ᠆ᡝ᠆ᠬ	᠂᠂ᠰ᠕᠕᠂᠂			Start Fr 2.441000000 G
2.3									Stop Fr 2.482000000 G
2.3									CF Sto 4.100000 M <u>Auto</u> M
2.3									Freq Offs 0
tart 2.44100 GHz Res BW 240 kHz		#VBW	50 MHz					3200 GHz 1001 pts)	