verify No.577696123802

TEST REPORT

	KCTL Inc. Sinwon-ro, Yeongtong-gu, si, Gyeonggi-do, 16677, Korea 285-0894 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR20-SRF0045-A Page (1) of (16)	KCTL	
1. Client				
∘ Name	: HYUNDAI MOBIS	CO., LTD.		
 Address 	: 203, Teheran-ro, Ga	ingnam-gu, Seoul, 061	41, Korea	
∘ Date of	Receipt : 2019-09-20			
2. Use of Re	port : Certification			
3. Name of F	Product and Model : WIDE	AVN / ATC31HYAN		
4. Manufactu	rer and Country of Origin:Hyund	dai Mobis Co., Ltd. /	Korea	
5. FCC ID	: TQ8-/	ATC31HYAN		
6. Date of Te	est : 2019-10-01 to 2019	9-10-31		
7. Test Stan	7. Test Standards : FCC Part 15 Subpart E, 15.407			
8. Test Resu	Its : Refer to the test re	sult in the test report		
A.55'	Tested by	Technical Manag	ger	
Affirmation	Name : MyeongJun Kwon (Store	are) Name : Heesu Ał	nn (Sighatu/e)	
			2020-02-24	
	KCTL Inc.			
As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.				

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0045-A

Page (2) of (16)

Revision	Page No
Initial report	-
Updated	12 ,14
	Initial report

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

Note. The report No. KR20-SRF0045 is superseded by the report No. KR20-SRF0045-A.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (3) of (16)

CONTENTS

1.	General information	4
2.	Device information	4
2.1	I. Information about derivative model	5
2.2	2. Frequency/channel operations	5
3.	Summary of tests	6
4	Test results	7
4.1	I. DFS (Dynamic Frequency Selection)	7
5.	Measurement equipment	16

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (4) of (16)

1. General information

Client	:	HYUNDAI MOBIS CO., LTD.
Address	:	203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea
Manufacturer	:	Hyundai Mobis Co., Ltd
Address	:	95, Sayang 2-Gil, Munbaek-Myeon, Jincheon-Gun, Chungcheongbuk-Do 27862 Korea
Laboratory	:	KCTL Inc.
Address	:	65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	:	FCC Site Designation No: KR0040, FCC Site Registration No: 687132
		VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
		Industry Canada Registration No. : 8035A
		KOLAS No.: KT231

2. Device information

Equipment under test	:	
Model	:	ATC31HYAN
Derivative model	:	ATC31HCAN, ATC34HCAN
Frequency range	:	2 402 Młz ~ 2 480 Młz (Bluetooth(BDR/EDR))
		2 412 M批 ~ 2 462 M批 (802.11b/g/n_HT20)
		UNII-1: 5 180 № ~ 5 240 № (802.11a/n_HT20/ac_VHT20)
		UNII-1: 5 190
		UNII-1: 5 210 Mz (802.11ac_VHT80)
		UNII-2A: 5 260 Mz ~ 5 320 Mz (802.11a/n_HT20/ac_VHT20)
		UNII-2A: 5 270 Mz ~ 5 310 Mz (802.11n_HT40/ac_VHT40)
		UNII-2A: 5 290 Mz (802.11ac_VHT80)
		UNII-2C: 5 500 Mz ~ 5 720 Mz (802.11a/n_HT20/ac_VHT20)
		UNII-2C: 5 510 Mz ~ 5 710 Mz (802.11n_HT40/ac_VHT40)
		UNII-2C: 5 530 Mz ~ 5 690 Mz (802.11ac_VHT80)
		UNII-3: 5 745 ₩z ~ 5 825 ₩z (802.11a/n_HT20/ac_VHT20)
		UNII-3: 5 755 № ~ 5 795 № (802.11n_HT40/ac_VHT40)
		UNII-3: 5 775 Mt (802.11ac_VHT80)
Modulation technique	:	Bluetooth(BDR/EDR)_ GFSK, π/4DQPSK, 8DPSK
		WIFI(802.11a/b/g/n20/n40/ac20/ac40/ac80)_DSSS, OFDM
Number of channels	:	Bluetooth(BDR/EDR)_79ch
		2.40社 WIFI (802.11b/g/n_HT20)_11ch
		UNII-1: 4 ch (20 Mz), 2 ch (40 Mz), 1 ch (80 Mz)
		UNII-2A: 4 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		UNII-2C: 9 ch (20 Mz), 5 ch (40 Mz), 2 ch (80 Mz)
		UNII-3: 5 ch (20 Mz), 2 ch (40 Mz), 1 ch (80 Mz)
Power source	:	DC 14.4 V

KC	ΤL	Inc.
0:		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0045-A

Page (5) of (16)

Antenna specification Antenna gain		WIFI/Bluetooth(BDR/EDR)_Pattern Antenna 2.4 GHz WIFI (802.11b/g/n_HT20) : -0.70 dBi Bluetooth(BDR/EDR) : 0.29 dBi UNII-1 :3.51 dBi, UNII-2A : 3.12 dBi
0.6		UNII-2C : 2.28 dBi, UNII-3 : -0.84 dBi
Software version	:	MQ4.USA.0000.V028.001.190821
Hardware version	:	MQ4.USA.STD_AVN_G5_WIDE.004.001
Test device serial No.	:	N/A
Operation temperature	:	-20 °C ~70 °C

2.1. Information about derivative model

The difference between basic model and derivative models is:

The derivative models have a different product identification number.

ATC31HCAN (96560 P4710), ATC34HCAN (96560 P4910)

2.2. Frequency/channel operations

This device contains the following capabilities: WIFI(2.4 the band 802.11b/g/n(HT20), 5 the band 802.11a/n(HT20/HT40)/ac(VHT/20/40/80)), Bluetooth(BDR/EDR)

UN	II-2/	4
_		

UNII-2C

Ch.	Frequency (Mtz)
52	5 260
56	5 280
64	5 320

Ch.	Frequency (∰z)
100	5 500
116	5 580
144	5 720

Table 2.2.1. 802.11a/n/ac_HT20/VHT20 mode UNII-2A UNII-2C

Ch.	Frequency (᠍ℤᢧ)
54	5 270
62	5 310

Ch.	Frequency (₩z)
102	5 510
110	5 550
142	5 710

Table 2.2.2. 802.11n/ac_HT40/VHT40 mode

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR20-SRF0045-A

Page (6) of (16)

UNII-2A

UNII-2C

Ch.	Frequency (^{Ml} ℤ)
58	5 290

Ch.	Frequency (MHz)
106	5 530
138	5 690

Table 2.3.3 802.11ac_V	/HT80 mode
------------------------	------------

Notes:

1. The device supports DFS bands between UNII-2A and UNII-2C and operates as a slave device controlled by master.

3. Summary of test	S	
FCC Part section(s)	Parameter	Test results
15.407(h)	DFS -Channel closing transmission time -Channel move time -Non occupied period	Pass

Notes:

- 1. The test procedure(s) in this report were performed in accordance as following.
 - KDB 905462 D02 UNII DFS compliance procedure new rules .
 - KDB 905462 D03 UNII client without radar detection new rules.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (7) of (16)

4 Test results 4.1. DFS (Dynamic Frequency Selection)

Test description

- Applicability of DFS requirements prior to use of a channel

	Operational Mode			
Requirement	Master	Client (without radar detection)	Client (with radar detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

- Applicability of DFS requirements during normal operation

	Operatio	nal Mode	
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the					

several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 ^{Mb} channels and the channel center frequency.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

- Requirements of client devices

a) A Client Device will not transmit before having received appropriate control signals from a Master Device.

b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy

- DFS Response requirement values

Parameter	Value			
Non-occupancy period	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds See Note 1.			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.			

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (9) of (16)

Maximum Transmit Power	Value (see note)				
≥ 200 milliwatt	-64 dBm				
< 200 milliwatt	-62 dBm				
power spectral density < 10 dBm/MHz	<u>-62</u> db <u>111</u>				
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm				
density requirement	-04 00111				
Note 1: This is the level at the input of the receiver assuming a () dBi receive antenna				
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of					
the test transmission waveforms to account for variations in measurement equipment. This will					
ensure that the test signal is at or above the detection threshold level to trigger a DFS response.					

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

- Radar test waveforms

Туре	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
<u>0</u>	<u>1</u>	<u>1428</u>	<u>18</u>	See Note 1	<u>See Note</u> <u>1</u>
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup}_{\left\{\left(\frac{1}{360}\right)} \cdot \left(\frac{19 \cdot 10^{6}}{PRI_{\mu sec}}\right)\right\}}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		gregate (Radar Types	5 1-4)	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Note 2: This report was applied Short Pulse Radar Type 0.

*Short Pulse Radar Test Waveforms

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

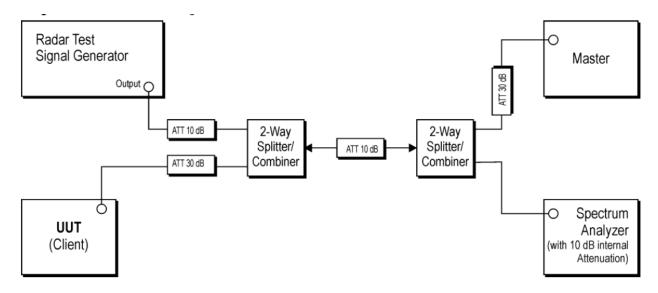
Page (10) of (16)

Radar Type	Pulse Width (μs)	Chirp Width (₩2)	PRI (µs)	Number of Pulses per Burst	Number of Bursts	Minimum percentage of Successful Detection	Number of
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

*Long Pulse Radar Test Waveform

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Rale	Sequence	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

*Frequency Hopping Radar Test Waveform


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (11) of (16)

<u>Test setup</u>

- Setup for Client with injection at the Master

- Spectrum analyzer setting parameter

This setting parameter is shown below and it according to the 905462 D02 UNII DFS Compliance Procedures New Rules.

- 1) RBW/VBW ≥ 3 Mt
- 2) Detector = peak
- 3) Span = zero span

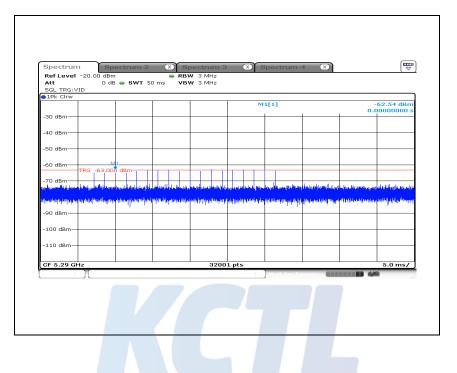
- Conducted test procedure

- 1) One frequency will be chosen from the Operating Channels of the UUT within the 5 250-5 350 Mi₂ or 5 470-5 725 Mi₂ bands.
- 2) The Client Device (EUT) is set up the above diagram and communications between the Master device and the Client is established.
- 3) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
- 4) An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- 5) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 12 seconds for Radar Type 0 to ensure detection occurs.
- 6) After the initial radar burst the channel is monitored for 30 minutes to ensure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels.

- Master device information

Equipment Name	Manufacturer	Model No.	Serial No.	
Access Point	ASUSTeK Computer Inc	RT-AX88U	J9IAHP000993	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A



Page (12) of (16)

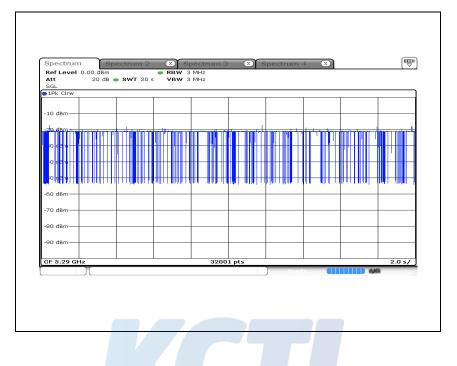
<u>Test result</u>

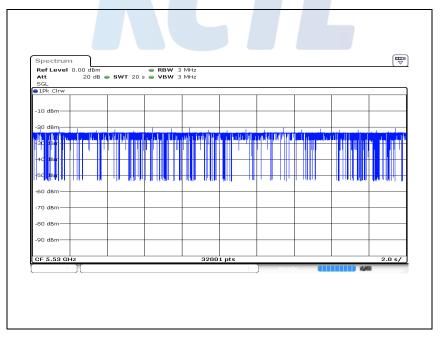
Type0: Plot of radar waveform

5 290 Mb

5 530 MHz

Spectrur		ectrum 2		pectrum 3	x s	pectrum ·	4 X		
Ref Level Att	-20.00 dBm 0 dB			N/3 MHz N/3 MHz					
SGL TRG: \	/ID								
					м	1[1]			62.41 dBn
-30 dBm								0.0	0000000
-40 dBm—									
-50 dBm									
-60 dBm	M	1							
oo abiii	TRG -63.00	dBm							
-70 dBm	an a strand of a	المتعادية المتعادية	ويرور ويلاملان	and a line like one		1.1. 1. 11.1.1 	مريان بنوريون والم	the dillation of a	at the solution of
	an a	n an transformer and		and a second of the					
	or the Allege pre-	and the set of the set		n de transferrie de la	a da a state da la da de	dotte di sinde de la calca da la c	بالمنتقر والارتم	Million and a state of the	and all more thank
-90 dBm—									
-100 dBm—									
-110 dBm—									
CF 5.53 G	 Hz			3200	1 pts				5.0 ms/
	Т					Read			

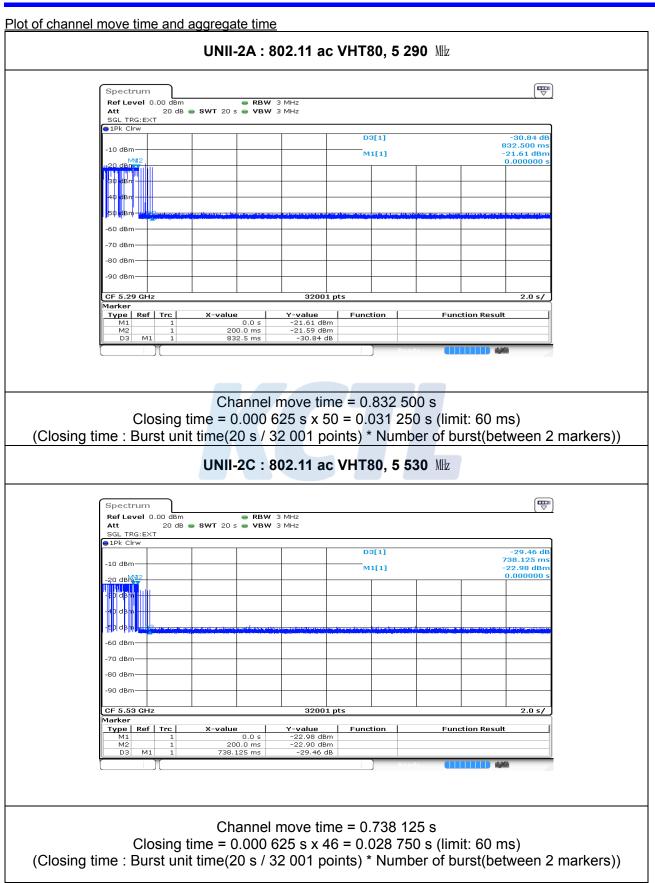

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A


Page (13) of (16)

Plot of LAN traffic

5 290 MHz

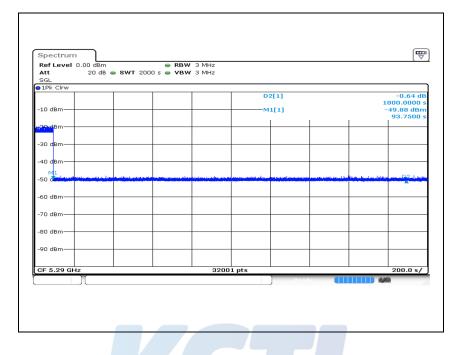
5 530 MHz


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR20-SRF0045-A

Page (14) of (16)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (15) of (16)

Plot of Non-occupancy period

5 290 Mb

5 530 MHz

RefLevel 0.00 Att 2	dBm 0 dB 👄 SWT 2000 :	RBW 3 MHz		
SGL 1Pk Clrw				
10 dBm			D2[1] M1[1]	0.76 d 1800.0000 -51.03 dBr 107.6875
an dam				
.30 dBm				
40 d6 m				
50 dt				P2
60 dBm				
70 dBm				
80 dBm				
90 dBm				
CF 5.53 GHz		32	2001 pts	200.0 s/

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR20-SRF0045-A

Page (16) of (16)

5. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date			
Spectrum Analyzer	R&S	FSV40	100989	20.01.14			
Power divider	Aeroflex/ Weinschel, Inc	1580-1	SC571	20.08.01			
SPLITTER	Mini-Circuits	ZX10-2-98-S	1635-1	20.01.25			
SPLITTER	Mini-Circuits	ZX10-2-98-S	1635-2	20.01.25			
Attenuator	API Inmet	40AH2W-10	17	20.05.15			
Attenuator	HP	8491B	20205	20.01.25			
Step Attenuator	HP	8496A	3308A16640	20.07.30			
Vector Signal Generator	R&S	SMBV100A	257566	20.01.04			

End of test report

