

TEST REPORT

of

FCC Part 15 Subpart E §15.407 RSS-247 Issue 2, RSS-Gen Issue 5

FCC ID: TQ8-ATB40S8AN IC Certification: 5074A-AVB40S8KN

Equipment Under Test	:	DIGITAL CAR AVN SYSTEM
FCC Model Name	:	ATB40S8AN
IC Model Name	:	AVB40S8KN
Applicant	:	Hyundai Mobis Co., Ltd.
Manufacturer	:	Hyundai Mobis Co., Ltd.
Date of Receipt	:	2018.09.03
Date of Test(s)	:	2018.09.04 ~ 2018.11.07
Date of Issue	:	2018.11.23

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Murphy Kim	Date:	2018.11.23	
Technical Manager:	Jungmin Yang	Date:	2018.11.23	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

INDEX

Table of contents

1. General Information	3
2. Transmitter Radiated Spurious Emissions	11
3. 26 dB Bandwidth & 99 % Bandwidth	57
4. 6 dB Bandwidth	101
5. Maximum Conducted Output Power	109
6. Peak Power Spectral Density	121
7. Antenna Requirement	149

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

-Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807

-Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Telephone : +82 31 688 0901 FAX : +82 31 688 0921

1.2. Details of Applicant

Applicant	:	Hyundai Mobis Co., Ltd.
Address	:	203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 06141
Contact Person	:	Choe, Seung-hoon
Phone No.	:	+82 31 260 0098

1.3. Details of Manufacturer

Company	:	Same as applicant
Address	:	Same as applicant

1.4. Description of EUT

Kind of Prod	luct	DIGITAL CAR AVN SYSTEM
Model Name		FCC : ATB40S8AN IC : AVB40S8KN
Power Suppl	ly	DC 14.4 V
Frequency Range		2 402 M½ ~ 2 480 M½ (Bluetooth), 2 412 M½ ~ 2 462 M½ (11b/g/n_HT20), 5 745 M½ ~ 5 825 M½ (Band 3: 11a/n_HT20, 11ac_VHT20), 5 755 M½ ~ 5 795 M½ (Band 3: 11n_HT40, 11ac_VHT40), 5 775 M½ (Band 3: 11ac_VHT80), 5 180 M½ ~ 5 240 M½ (Band 1: 11a/n_HT20, 11ac_VHT20), 5 190 M½ ~ 5 230 M½ (Band 1: 11n_HT40, 11ac_VHT40), 5 210 M½ (Band 1: 11ac_VHT80), 5 260 M½ ~ 5 320 M½ (Band 2A: 11a/n_HT20, 11ac_VHT20), 5 270 M½ ~ 5 310 M½ (Band 2A: 11a/n_HT20, 11ac_VHT40), 5 290 M½ (Band 2A: 11a_VHT80), 5 200 M½ ~ 5 720 M½ (Band 2A: 11n_HT40, 11ac_VHT40), 5 200 M½ (Band 2A: 11ac_VHT80), 5 500 M½ ~ 5 720 M½ (Band 2C: 11a/n_HT20, 11ac_VHT20),
		5 510 ₩z ~ 5 710 ₩z (Band 2C: 11n_HT40, 11ac_VHT40), 5 530 ₩z ~ 5 690 ₩z (Band 2C: 11ac VHT80)
Modulation 1	Technique	DSSS, OFDM, GFSK, π/4DQPSK, 8DPSK
Modulation Technique		79 channel (Bluetooth), 11 channel (11b/g/n_HT20), 5 channel (Band 3: 11a/n_HT20, 11ac_VHT20), 2 channel (Band 3: 11n_HT40, 11ac_VHT40), 1 channel (Band 3: 11ac_VHT80), 4 channel (Band 1: 11a/n_HT20, 11ac_VHT20), 2 channel (Band 1: 11n_HT40, 11ac_VHT40), 1 channel (Band 1: 11ac_VHT80), 4 channel (Band 2A: 11a/n_HT20, 11ac_VHT20), 2 channel (Band 2A: 11a/n_HT20, 11ac_VHT20), 2 channel (Band 2A: 11n_HT40, 11ac_VHT40), 1 channel (Band 2A: 11ac_VHT80), 9 channel (Band 2C: 11a/n_HT20, 11ac_VHT20), 4 channel (Band 2C: 11a/n_HT40, 11ac_VHT40), 2 channel (Band 2C: 11ac_VHT80)
Antenna Typ)e	PCB pattern antenna
	Bluetooth	2 400 Mz ~ 2 4835 Mz: 0.29 dB i
Antenna Gain	WLAN	2 400 Mz ~ 2 4835 Mz: -0.70 dB i, 5 150 Mz ~ 5 250 Mz: 3.51 dB i, 5 250 Mz ~ 5 350 Mz: 3.12 dB i, 5 470 Mz ~ 5 725 Mz: 2.28 dB i, 5 725 Mz ~ 5 850 Mz: -0.84 dB i

SGS Korea Co., Ltd. (Gunpo Laboratory)	4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807	http://www.sgsgroup.kr
RTT5041-19(2017.07.10)(0)	Tel. +82 31 428 5700 / Fax. +82 31 427 2370	A4(210 mm × 297 mm)

1.5. Declaration by the Manufacturer

- The EUT is a slave without radar detection and TPC.
- EUT is not supported TDWR(5.6 5.65 $\,{\rm Ghz})$ band.

1.6. Automatically Discontinue Transmission

1.6.1. Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operating failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

1.6.2. Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting form remote device and verify whether it shall resend or discontinue transmission.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

1.7. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	Agilent	E8257D	MY51501169	Jul. 03, 2018	Annual	Jul. 03, 2019
Signal Generator	R&S	SMBV100A	255834	Jun. 15, 2018	Annual	Jun. 15, 2019
Spectrum Analyzer	R&S	FSV30	100955	Mar. 12, 2018	Annual	Mar. 12, 2019
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 21, 2018	Annual	Sep. 21, 2019
Spectrum Analyzer	Agilent	N9030A	US51350132	Sep. 21, 2018	Annual	Sep. 21, 2019
Power Meter	Anritsu	ML2495A	1223004	Jun. 12, 2018	Annual	Jun. 12, 2019
Power Sensor	Anritsu	MA2411B	1207272	Jun. 12, 2018	Annual	Jun. 12, 2019
Attenuator	MCLI	FAS-23-20	23834	Jun. 12, 2018	Annual	Jun. 12, 2019
Coaxial Fixed Attenuator	Agilent	8491A-006	MY39264893	Jan. 15, 2018	Annual	Jan. 15, 2019
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 22, 2018	Annual	Feb. 22, 2019
High Pass Filter	Wainwright Instrument GmbH	WHKX6.0/18G-10SS	51	Jun. 11, 2018	Annual	Jun. 11, 2019
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	11	May 27, 2018	Annual	May 27, 2019
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 15, 2018	Annual	Mar. 15, 2019
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2018	Annual	Aug. 07, 2019
Preamplifier	R&S	SCU-18	10117	Aug. 07, 2018	Annual	Aug. 07, 2019
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 13, 2018	Annual	May 13, 2019
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 23, 2017	Biennial	Aug. 23, 2019
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	01126	Mar. 26, 2018	Biennial	Mar. 26, 2020
Horn Antenna	R&S	HF906	100326	Feb. 14, 2018	Biennial	Feb. 14, 2020
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	BBHA9170431	Sep. 10, 2018	Biennial	Sep. 10, 2020
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESU26	100109	Feb. 07, 2018	Annual	Feb. 07, 2019
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	SUCOFLEX	104 (3 m)	MY3258414	Jul. 04, 2018	Semi- annual	Jan. 04, 2019
Coaxial Cable	SUCOFLEX	104 (10 m)	MY3145814	Jul. 04, 2018	Semi- annual	Jan. 04, 2019
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 01/20	Sep. 04, 2018	Semi- annual	Mar. 04, 2019

1.8. Summary of Test Result

The EUT has been tested according to the following specifications:

APPLIED STANDARD : FCC Part 15 Subpart E, RSS-247 Issue 2, RSS-Gen Issue 5					
Se	ection	Test Item(s)	Result		
15.205(a) 15.209(a) 15.407(b)(1) 15.407(b)(2) 15.407(b)(3) 15.407(b)(4)	RSS-Gen Issue 5 8.9 RSS-247 Issue 2 6.2.1.2 RSS-247 Issue 2 6.2.2.2 RSS-247 Issue 2 6.2.3.2 RSS-247 Issue 2 6.2.4.2	Transmitter radiated spurious emissions	Complied		
15.407(a)	RSS-Gen Issue 5 6.7	26 dB Bandwidth & 99 % Bandwidth	Complied		
15.407(e)	RSS-247 Issue 2 6.2.4.1	6 dB Bandwidth	Complied		
15.407(a)(1) 15.407(a)(2) 15.407(a)(3)	RSS-247 Issue 2 6.2.1.1 RSS-247 Issue 2 6.2.2.1 RSS-247 Issue 2 6.2.3.1 RSS-247 Issue 2 6.2.4.1	Maximum Conducted Output Power	Complied		
6.2.4.1 RSS-247 Issue 2 6.2.1.1 15.407(a)(1) 15.407(a)(2) 15.407(a)(3) RSS-247 Issue 2 6.2.2.1 RSS-247 Issue 2 6.2.2.1 RSS-247 Issue 2 6.2.3.1 RSS-247 Issue 2 6.2.3.1 RSS-247 Issue 2 6.2.3.1 RSS-247 Issue 2 6.2.4.1		Peak Power Spectral Density	Complied		

1.9. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB789033 D02 v02r01 were used in the measurement of the DUT.

1.10. Sample Calculation

Where relevant, the following sample calculation is provided:

1.10.1. Conducted Test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.10.2. Radiation Test

Field strength level (dBµV/m) = Measured level (dBµV) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

1.11. Test Report Revision

Revision	Report number	Date of Issue	Description	
0	F690501/RF-RTL013159	2018.11.23	Initial	

1.12. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty (dB)
Radiated Disturbance, 9 $\rm kHz~$ to 30 $\rm MHz$	± 3.59
Radiated Disturbance, below 1 $\mathbb{G}\mathbb{Z}$	± 5.88
Radiated Disturbance, above 1 $\mathbb{Gl}_{\mathbb{Z}}$	± 5.94

Uncertainty figures are valid to a confidence level of 95 %.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

1.11. Duty Cycle of EUT

Regarding to KDB789033 D02 v02r01, B, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

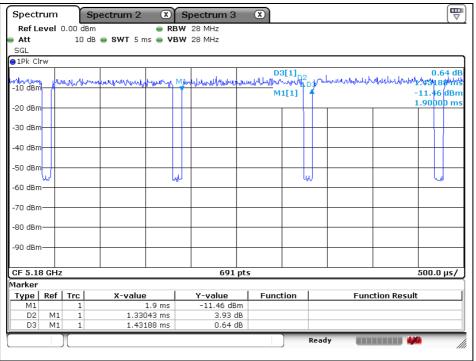
Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value, Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Mode	Data Rate (Mbps)						
11a	6	11n_HT20	MCS0	11n_HT40	MCS0	11ac_VHT80	MCS0
Duty Cycle (%)	93	Duty Cycle (%)	93	Duty Cycle (%)	86	Duty Cycle (%)	77
Correction factor (dB)	0.32	Correction factor (dB)	0.32	Correction factor (dB)	0.64	Correction factor (dB)	1.14

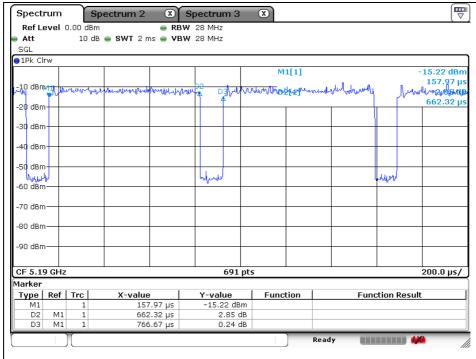
Remark;

- 1. As measured duty cycles of EUT, all of mode and data rate keep constant period and are converted to log scale (power averaging) to compensate correction factor to result of average test items.
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. Correction factor (dB) = $10 \log (1 / \text{Duty cycle})$

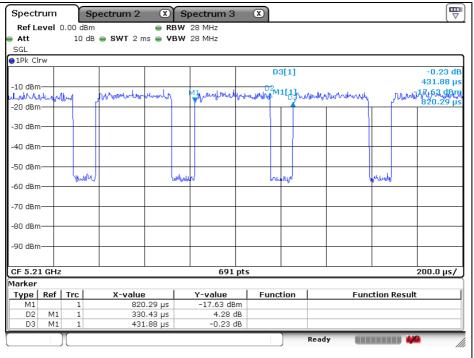
- Test plots


802.11a

Spectrum	Spe	ctrum 2	X	Spectrum 3	X						₽
Ref Level 0.0				🖌 28 MHz							
	10 dB 🧉	SWT 5 r	ns 😑 VBV	V 28 MHz							
SGL											
●1Pk Clrw											
-10 dBm	when	ny manul	meterin	withmation	WR2			munulu	muluu	when y	-11.16 dBn *//1/24058/#
10 0.0.11					DE	D2[1]				2.82 di
-20 dBm					- 4	,					1.42464 m
-30 dBm											
10.10											
-40 dBm											
-50 dBm											
-50 0011		1.64			- W					w	
-60 dBm											
-70 dBm											
0.0 10-1											
-80 dBm											
-90 dBm											
JO GDIN											
CF 5.18 GHz				691	nte						500.0 µs/
Marker				091							000.0 µ37
Type Ref Ti	rr I	X-value		Y-value	1 6	unctio	n 1		Funct	ion Re	sult
M1	1		058 ms	-11.16 dBr		anotic			. and		Juit
D2 M1	1		464 ms	2.82 d							
D3 M1	1	1.53	333 ms	0.49 d	В						
							R	eady			
								,	Statistics of the local division of the loca		


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

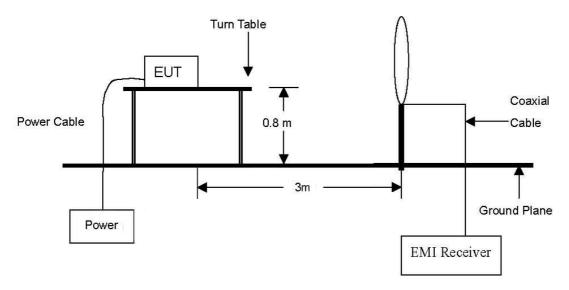
802.11n_HT20


802.11n_HT40

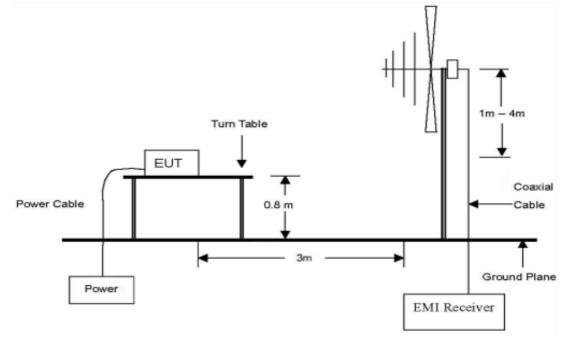
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

802.11ac_VHT80

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

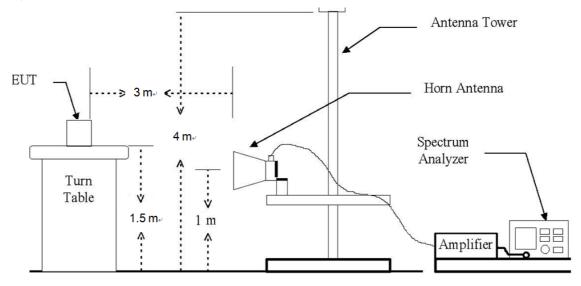


2. Transmitter Radiated Spurious Emissions


2.1. Test Setup

2.1.1. Transmitter radiated spurious emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz$ emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 \oplus emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

2.2. Limit

2.2.1. FCC

According to § 15.407(b)

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dB m/Mz.

(2) For transmitters operating in the 5.25-5.35 \mathbb{G} band: All emissions outside of the 5.15-5.35 \mathbb{G} band shall not exceed an e.i.r.p. of -27 dB m/Mz.

(3) For transmitters operating in the 5.47-5.725 \mathbb{G} band: All emissions outside of the 5.47-5.725 \mathbb{G} band shall not exceed an e.i.r.p. of -27 dB m/Mb.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dB m/Mz at 75 Mz or more above or below the band edge increasing linearly to 10 dB m/Mz at 25 Mz above or below the band edge, and from 25 Mz above or below the band edge increasing linearly to a level of 15.6 dB m/Mz at 5 Mz above or below the band edge, and from 5 Mz above or below the band edge increasing linearly to a level of 27 dB m/Mz at 5 mz above or below the band edge.

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)	Field Strength (µV/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kl/z)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., \S 15.231 and 15.241.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

2.2.2. IC

According to RSS-247 issue2, 6.2.1.2 Frequency band 5 150-5 250 Mb

For transmitters with operating frequencies in the band 5 150-5 250 Mt, all emissions outside the band 5 150-5 350 Mt shall not exceed -27 dB m/Mt e.i.r.p. Any unwanted emissions that fall into the band 5 250-5 350 Mt shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5 % of the occupied bandwidth (i.e. 99% bandwidth), above 5 250 Mt. The 26 dB bandwidth may fall into the 5 250-5 350 Mt band; however, if the occupied bandwidth also falls within the 5 250- 5350 Mt band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5 250-5 350 Mt including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5 250-5 350 Mt band.

6.2.2.2 Frequency band 5 250-5 350 Mtz

Devices shall comply with the following:

a) All emissions outside the band 5 250-5 350 Mz shall not exceed -27 dBm/Mz e.i.r.p.; or

b) All emissions outside the band 5 150-5 350 Mz shall not exceed -27 dBm/Mz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5 150-5 250 Mz. The device, except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

6.2.3.2 Frequency band 5 470-5 600 Mz and 5 650-5 725 Mz

Emissions outside the band 5 470-5 725 Mz shall not exceed -27 dB m/Mz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5 725 Mz can meet the emission limit of -27 dB m/Mz e.i.r.p. at 5 850 Mz instead of 5 725 Mz.

6.2.4.2 Frequency band 5 725-5 850 Mtz

Devices operating in the band 5 725-5 850 Mb with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.

Devices operating in the band 5 725-5 850 Mb with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020.

Devices operating in the band 5 725-5 850 $\$ shall have e.i.r.p. of unwanted emissions comply with the following:

a) 27 dBm/Mb at frequencies from the band edges decreasing linearly to 15.6 dBm/Mb at 5 Mb above or below the band edges;

b) 15.6 dBm/ML at 5 ML above or below the band edges decreasing linearly to 10 dBm/ML at 25 ML above or below the band edges;

c) 10 dBm/Mz at 25 Mz above or below the band edges decreasing linearly to -27 dBm/Mz at 75 Mz above or below the band edges; and

d) -27 dBm/Mz at frequencies more than 75 Mz above or below the band edges.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

2.3. Test Procedures

Radiated spurious emissions from the EUT were measured according to the dictates in section G of KDB 789033 D02 v02r01 and ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Note;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- II.G.4. Unwanted emissions measurements below 1 GHz.

Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

- II.G.5. Unwanted maximum emissions measurements above 1 GHz. Peak emission levels are measured by setting the analyzer as follows: Set to RBW = 1 MHz, VBW ≥ 3 MHz, Detector = Peak, Sweep time = auto, Trace mode= Max hold.

- II.G.6. Average unwanted emissions measurements above 1 GHz.

Set to RBW = 1 MHz, VBW \geq 3 MHz, Detector = power averaging (rms), Averaging type = power averaging (rms), Sweep time = auto, Perform a trace average of at least 100 traces If the transmission is continuous, If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 % duty cycle, at least 200 traces shall be averaged.

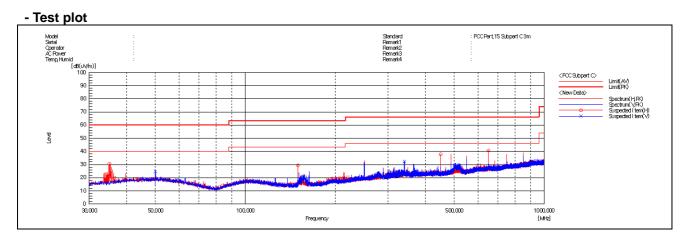
If tests are performed with the EUT transmitting at a duty cycle less than 98 %, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle. The correction factor is computed as follows:

• If power averaging (rms) mode was used in II.G.6.c)(iv), the correction factor is 10 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 %, then 3 dB must be added to the measured emission levels.

- Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is X - axis during radiation test.

2.4. Test result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.


2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 klt to 1 000 Mt was investigated. All reading values are peak values.

Rad	iated Emission	าร	Ant.	Correctio	n Factors	Total	Limi	t
Frequency (Mz)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
35.09	45.20	Peak	Н	12.22	-26.58	30.84	40.00	9.16
50.01	36.90	Peak	V	14.40	-26.44	24.86	40.00	15.14
150.00	46.70	Peak	н	8.20	-25.46	29.44	43.50	14.06
339.88	41.80	Peak	V	14.79	-25.18	31.41	46.00	14.59
450.01	46.40	Peak	н	16.20	-24.81	37.79	46.00	8.21
649.99	45.20	Peak	Н	19.50	-24.03	40.67	46.00	5.33
Above 700.00	Not detected	-	-	-	-	-	-	-

Remark;

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Reported spurious emissions are in <u>11a (Band 2A) / 6 Mbps / Middle channel</u> as worst case among other modes.
- Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

SGS Korea Co., Ltd. (Gunpo Laboratory)	4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807	<u>http://www.sgsgroup.kr</u>
RTT5041-19(2017.07.10)(0)	Tel. +82 31 428 5700 / Fax. +82 31 427 2370	A4(210 mm × 297 mm)

2.4.2. Radiated Spurious Emission above 1 000 Mb

802.11a (Band 1)_6 Mbps

A. Low Channel (5 180 Mz)

Rad	iated Emission	າຣ	Ant.	Со	rrection Fact	ors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 541.70	41.85	Peak	Н	39.70	-21.47	-	60.08	74.00	13.92
*15 540.30	27.19	Average	н	39.70	-21.47	0.32	45.74	54.00	8.26
Above 15 600.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 200 Mz)

Rad	iated Emission	าร	Ant.	Co	rrection Fact	ors	Total Lim		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 661.30	41.95	Peak	Н	39.85	-21.41	-	60.39	74.00	13.61
*15 661.20	26.67	Average	Н	39.84	-21.41	0.32	45.42	54.00	8.58
Above 15 700.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 240 Mb)

Rad	iated Emissior	าร	Ant.	Co	rrection Fact	ors	Total	Lin	nit
Frequency (肔)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 721.60	42.28	Peak	Н	40.04	-21.37	-	60.95	74.00	13.05
*15 719.90	26.91	Average	Н	40.04	-21.37	0.32	45.90	54.00	8.10
Above 15 800.00	Not detected	-	-	-	-	-	-	-	-

802.11a (Band 2A)_6 Mbps

A. Low Channel (5 260 Mz)

Rad	iated Emission	าร	Ant.	Co	rrection Fact	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
10 519.84	39.59	Peak	Н	37.40	-27.81	-	49.18	68.23	19.05
*15 781.50	41.76	Peak	н	40.16	-21.33	-	60.59	74.00	13.41
*15 779.40	26.18	Average	н	40.16	-21.33	0.32	45.33	54.00	8.67
Above 15 800.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 300 Mz)

Rad	iated Emission	าร	Ant.	Co	rrection Fact	ors	Total Lin		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*15 898.40	39.66	Peak	Н	40.10	-21.26	-	58.50	74.00	15.50
*15 902.70	25.12	Average	Н	40.11	-21.26	0.32	44.29	54.00	9.71
Above 16 000.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 320 Mb)

Radi	ated Emissio	ns	Ant.	Cor	rection Fac	tors	Total	Lin	nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 955.10	39.87	Peak	Н	36.54	-21.23	-	55.18	74.00	18.82
*15 960.20	25.49	Average	н	32.88	-21.23	0.32	37.46	54.00	16.54
Above 16 000.00	Not detected	-	-	-	-	-	-	-	-

802.11a (Band 2C)_6 Mbps

A. Low Channel (5 500 Mb)

Rad	iated Emissior	าร	Ant.	Co	rrection Fac	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 501.50	41.41	Peak	Н	41.60	-20.74	-	62.27	68.23	5.96
Above 16 600.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 580 Mz)

Rad	iated Emission	าร	Ant.	Co	Correction Factors			Total Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 737.80	42.19	Peak	Н	41.65	-20.57	-	63.27	68.23	4.96
Above 16 800.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 720 Mz)

Rad	iated Emission	ıs	Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
17 158.10	39.39	Peak	Н	42.22	-20.25	-	61.36	68.23	6.87
Above 17 200.00	Not detected	-	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

802.11a (Band 3)_6 Mbps

A. Low Channel (5 745 Mz)

Rad	iated Emission	าร	Ant.	Co	rrection Fac	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 229.90	40.28	Peak	Н	42.30	-20.18	-	62.40	68.23	5.83
Above 17 300.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mz)

Rad	iated Emission	าร	Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 356.70	41.36	Peak	н	42.55	-20.08	-	63.83	68.23	4.40
Above 17 400.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 825 Mb)

Rad	iated Emissior	าร	Ant.	Co	rrection Fact	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 476.40	40.00	Peak	Н	43.21	-19.97	-	63.24	68.23	4.99
Above 17 500.00	Not detected	-	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

802.11n_HT20 (Band 1)_MCS0

A. Low Channel (5 180 Mb)

Rad	iated Emission	າຣ	Ant.	Со	rrection Fact	tors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 541.50	41.95	Peak	Н	39.70	-21.47	-	60.18	74.00	13.82
*15 540.20	26.93	Average	н	39.70	-21.47	0.32	45.48	54.00	8.52
Above 15 600.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 200 Mtz)

Rad	iated Emissior	าร	Ant.	Co	rrection Fact	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 650.20	43.22	Average	Н	39.80	-21.41	-	61.61	74.00	12.39
*15 655.40	26.63	Peak	Н	39.82	-21.41	0.32	45.36	54.00	8.64
Above 15 700.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 240 Mb)

Rad	iated Emission	าร	Ant.	Со	rrection Fact	ors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
10 480.12	39.06	Peak	Н	37.40	-27.84	-	48.62	68.23	19.61
*15 713.90	42.45	Peak	Н	40.03	-21.37	-	61.11	74.00	12.89
*15 716.50	26.60	Average	Н	40.03	-21.37	0.32	45.58	54.00	8.42
Above 15 800.00	Not detected	-	-	-	-	-	-	-	-

802.11n_HT20 (Band 2A)_MCS0

A. Low Channel (5 260 Mb)

Rad	iated Emission	าร	Ant.	Co	rrection Fact	tors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
10 519.61	39.68	Peak	Н	37.40	-27.81	-	49.27	68.23	18.96
*15 776.00	43.00	Peak	н	40.15	-21.33	-	61.82	74.00	12.18
*15 780.00	26.03	Average	н	40.16	-21.33	0.32	45.18	54.00	8.82
Above 15 800.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 300 Mz)

Rad	iated Emissio	าร	Ant.	Со	rrection Fact	ors	Total	Lin	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)	
10 599.96	39.92	Peak	V	37.40	-27.72	-	49.60	68.23	18.63	
*15 894.10	40.83	Peak	Н	40.10	-21.26	-	59.67	74.00	14.33	
*15 901.70	24.74	Average	Н	40.10	-21.26	0.32	43.90	54.00	10.10	
Above 16 000.00	Not detected	-	-	-	-	-	-	-	-	

C. High Channel (5 320 Mz)

Rad	iated Emissior	าร	Ant.	Co	rrection Fac	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

802.11n_HT20 (Band 2C)_MCS0

A. Low Channel (5 500 Mtz)

Rad	iated Emissior	าร	Ant.	Co	rrection Fact	tors	Total	Lin	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 498.00	41.57	Peak	Н	41.60	-20.74	-	62.43	68.23	5.80
Above 16 500.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 580 Mbz)

Rad	iated Emission	าร	Ant.	Co	Correction Factors			Total Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 748.80	43.51	Peak	Н	41.70	-20.57	-	64.64	68.23	3.59
Above 16 800.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 720 Mb)

Rad	iated Emissior	าร	Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
17 163.60	41.05	Peak	Н	42.23	-20.25	-	63.03	68.23	5.20
Above 17 200.00	Not detected	-	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

802.11n_HT20 (Band 3)_MCS0

A. Low Channel (5 745 Mz)

Rad	iated Emission	าร	Ant.	Correction Factors		tors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 242.80	40.65	Peak	н	42.30	-20.17	-	62.78	68.23	5.45
Above 17 300.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mz)

Rad	iated Emission	าร	Ant.	Co	Correction Factors			Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 355.50	42.62	Peak	н	42.54	-20.07	-	65.09	68.23	3.14
Above 17 400.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 825 Mb)

Rad	iated Emissior	าร	Ant.				Total Lim		nit
Frequency (肔)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 474.60	41.06	Peak	Н	43.20	-19.97	-	64.29	68.23	3.94
Above 17 500.00	Not detected	-	-	-	-	-	-	-	-

802.11n_HT40 (Band 1)_MCS0

A. Low Channel (5 190 Mtz)

Rad	iated Emission	าร	Ant.	Correction Factors		Total	Lin	nit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 230 Mz)

Rad	diated Emissio	ns	Ant.	Co	rrection Fac	tors	Total	Lin	nit
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

802. 11n_HT40 (Band 2A)_MCS0

A. Low Channel (5 270 Mb)

Rad	iated Emission	าร	Ant.	Co	rrection Fact	tors	Total	Lin	nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
10 539.87	40.14	Peak	н	37.40	-27.79	-	49.75	68.23	18.48
*15 802.20	42.95	Peak	Н	40.20	-21.32	-	61.83	74.00	12.17
*15 817.00	25.05	Average	н	40.17	-21.31	0.64	44.55	54.00	9.45
Above 15 900.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 310 Mtz)

Rad	iated Emissior	าร	Ant. Correction Factors				Total	Limit	
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*15 921.80	38.77	Peak	Н	40.14	-21.25	-	57.66	74.00	16.34
*15 941.60	24.35	Average	Н	40.18	-21.23	0.64	43.94	54.00	10.06
Above 16 000.00	Not detected	-	-	-	-	-	-	-	-

802. 11n_HT40 (Band 2C)_MCS0

A. Low Channel (5 510 Mz)

Rad	iated Emissior	าร	Ant.	Ant. Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
16 523.20	38.58	Peak	Н	41.55	-20.72	-	59.41	68.23	8.82
Above 16 600.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (5 550 Mz)

Rad	iated Emission	าร	Ant.	Со	Correction Factors			Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 642.40	41.42	Peak	Н	41.40	-20.64	-	62.18	68.23	6.05
Above 16 700.00	Not detected	-	-	-	-	-	-	-	-

C. High Channel (5 710 Mb)

Rad	iated Emission	ıs	Ant.	Co	Correction Factors			Limit	
Frequency (肔)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 141.00	35.82	Peak	Н	42.16	-20.26	-	57.72	68.23	10.51
Above 17 200.00	Not detected	-	-	-	-	-	-	-	-

802.11n_HT40 (Band 3)_MCS0

A. Low Channel (5 755 Mz)

Radiated Emissions			Ant.	Correction Factors			Total Limit		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 257.20	38.53	Peak	Н	42.31	-20.17	-	60.67	68.23	7.56
Above 17 300.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 795 Mb)

Radiated Emissions			Ant.	Correction Factors			Total Limit		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 376.80	39.72	Peak	Н	42.71	-20.06	-	62.37	68.23	5.86
Above 17 400.00	Not detected	-	-	-	-	-	-	-	-

802.11ac_VHT80 (Band 1)_MCS0

A. Low Channel (5 210 Mz)

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
10 419.84	39.05	Peak	Н	37.40	-27.87	-	48.58	68.23	19.65
Above 10 500.00	Not detected	-	-	-	-	-	-	-	-

802.11ac_VHT80 (Band 2A)_MCS0

A. Middle Channel (5 290 Mtz)

Radiated Emissions			Ant.	Correction Factors			Total Limit		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
10 580.06	40.84	Peak	Н	37.40	-27.74	-	50.50	68.23	17.73
Above 10 600.00	Not detected	-	-	-	-	-	-	-	-

802.11ac_VHT80 (Band 2C)_MCS0

A. Low Channel (5 530 Mb)

Radiated Emissions			Ant.	Correction Factors			Total Limit		nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
16 651.00	33.59	Peak	Н	41.40	-20.63	-	54.36	68.23	13.87
Above 16 700.00	Not detected	-	-	-	-	-	-	-	-

B. High Channel (5 690 Mz)

Radiated Emissions			Ant.	Correction Factors			Total Limit		nit
Frequency (肔)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 025.00	35.29	Peak	н	41.85	-20.37	-	56.77	68.23	11.46
Above 17 100.00	Not detected	-	-	-	-	-	-	-	-

802.11ac_VHT80 (Band 3)_MCS0

A. Middle Channel (5 775 Mb)

Radiated Emissions			Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Duty (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
17 335.00	33.18	Peak	Н	42.47	-20.10	-	55.55	68.23	12.68
Above 17 400.00	Not detected	-	-	-	-	-	-	-	-

Remark;

- 1. "*" means the restricted band.
- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using Peak / average detector mode if frequency was in restricted band. Otherwise the frequency was out of restricted band, only peak detector should be used.
- 3. Band edge measurement. (Actual = Reading + AF + Atten. + AMP + CL + Duty cycle)
- 4. Radiated spurious emission measurement. (Actual = Reading + AF + AMP + CL + Duty cycle)
- 5. If frequency was out of restricted band, the calculation method for peak limit is same as below. $68.23 \text{ dB}\mu\text{V/m} = \text{EIRP} - 20 \log(d) + 104.77 = -27 - 20 \log(3) + 104.77$
- 6. In case of the emissions within ± 75 Mz from band edge of band 3, limit should be adjusted to emission mask of 15.407(4)(i).
- 7. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 8. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.

- Test plots

OFDM: 802.11a(6 Mbps)

Low channel 3rd harmonic (Peak) - Band 1


Low channel 3rd harmonic (Average) - Band 1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle channel 3rd harmonic (Peak) - Band 1

Middle channel 3rd harmonic (Average) - Band 1

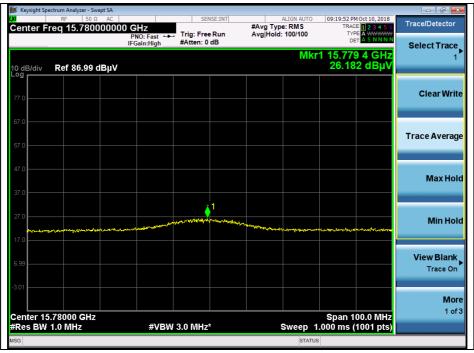
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

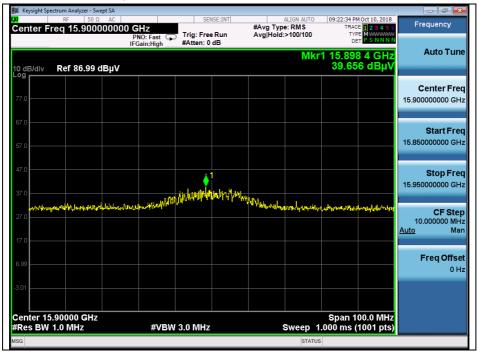
High channel 3rd harmonic (Peak) - Band 1

High channel 3rd harmonic (Average) - Band 1

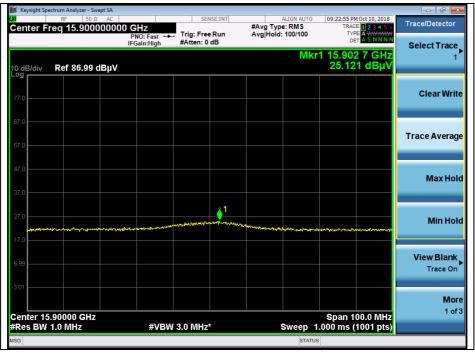
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 2nd harmonic (Peak) - Band 2A


Low channel 3rd harmonic (Peak) - Band 2A


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 3rd harmonic (Average) - Band 2A


Middle channel 3rd harmonic (Peak) - Band 2A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

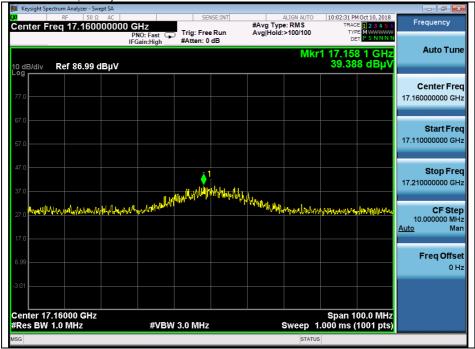
Middle channel 3rd harmonic (Average) - Band 2A

High channel 3rd harmonic (Peak) - Band 2A

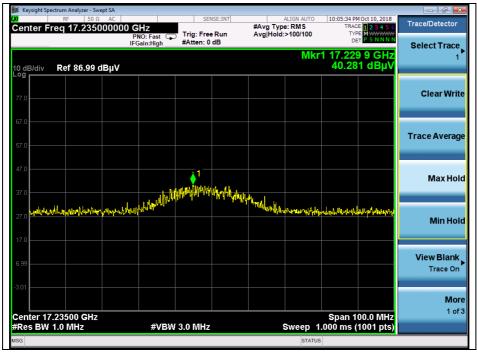
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Average) - Band 2A

Low channel 3rd harmonic (Peak) - Band 2C


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle channel 3rd harmonic (Peak) - Band 2C

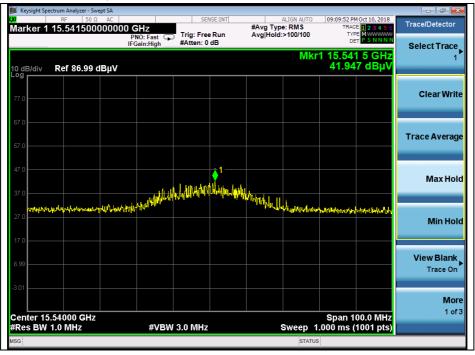

High channel 3rd harmonic (Peak) - Band 2C


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 3rd harmonic (Peak) - Band 3

Middle channel 3rd harmonic (Peak) - Band 3

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High channel 3rd harmonic (Peak) - Band 3

OFDM: 802.11n_HT20(MCS0)

Low channel 3rd harmonic (Peak) - Band 1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


Low channel 3rd harmonic (Average) - Band 1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle channel 3rd harmonic (Peak) - Band 1

Middle channel 3rd harmonic (Average) - Band 1

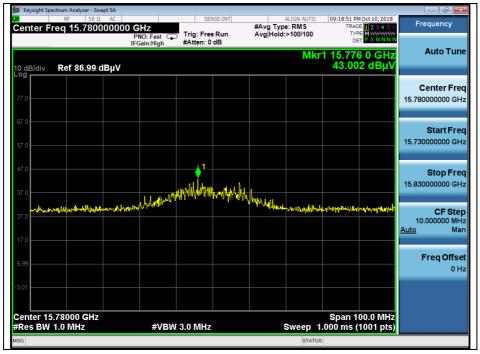

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 2nd harmonic (Peak) - Band 1

High channel 3rd harmonic (Peak) - Band 1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Average) - Band 1


Low channel 2nd harmonic (Peak) - Band 2A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 3rd harmonic (Peak) - Band 2A

Low channel 3rd harmonic (Average) - Band 2A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

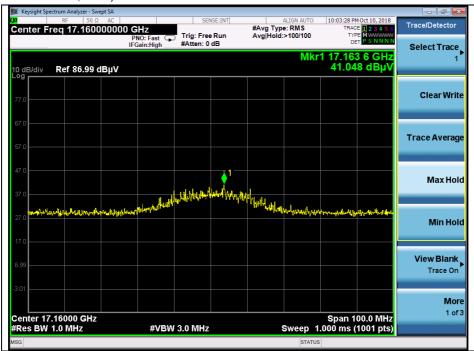
Middle channel 2nd harmonic (Peak) - Band 2A

Middle channel 3rd harmonic (Peak) - Band 2A

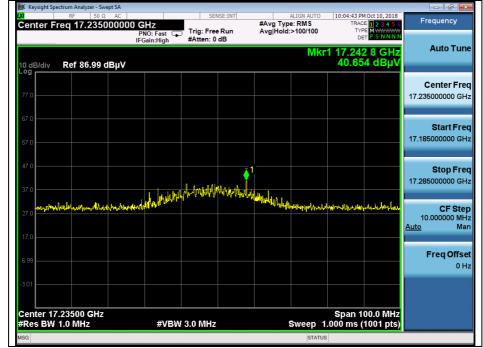
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle channel 3rd harmonic (Average) - Band 2A

Low channel 3rd harmonic (Peak) - Band 2C


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

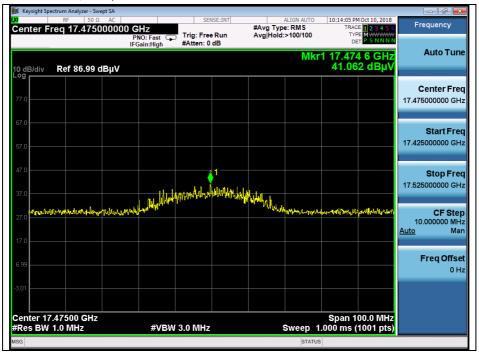
Middle channel 3rd harmonic (Peak) - Band 2C



High channel 3rd harmonic (Peak) - Band 2C

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

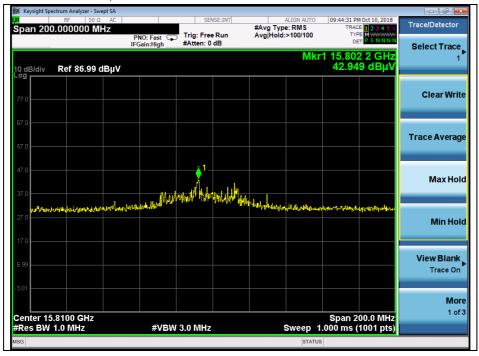
Low channel 3rd harmonic (Peak) - Band 3

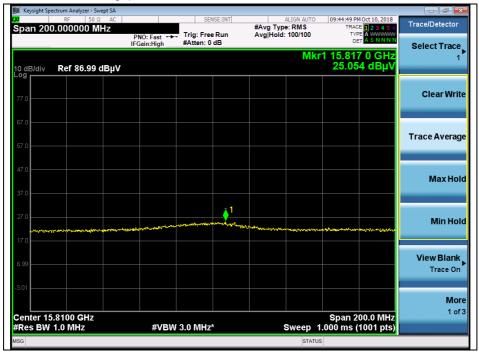

Middle channel 3rd harmonic (Peak) - Band 3

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Peak) - Band 3

OFDM: 802.11n_HT40(MCS0)


Low channel 2nd harmonic (Peak) - Band 2A


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 3rd harmonic (Peak) - Band 2A


Low channel 3rd harmonic (Average) - Band 2A

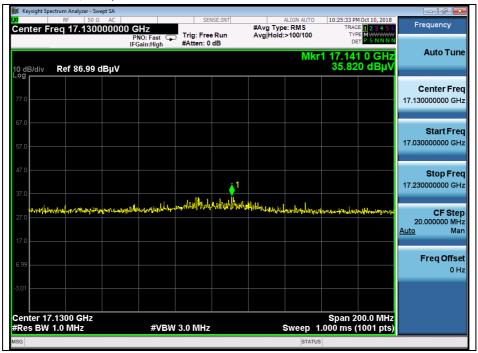

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

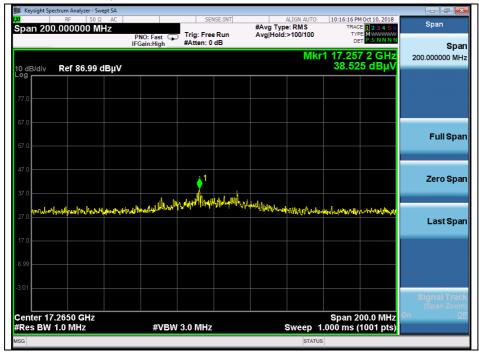
High channel 3rd harmonic (Peak) - Band 2A


High channel 3rd harmonic (Average) - Band 2A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Low channel 3rd harmonic (Peak) - Band 2C


Middle channel 3rd harmonic (Peak) - Band 2C


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Peak) - Band 2C

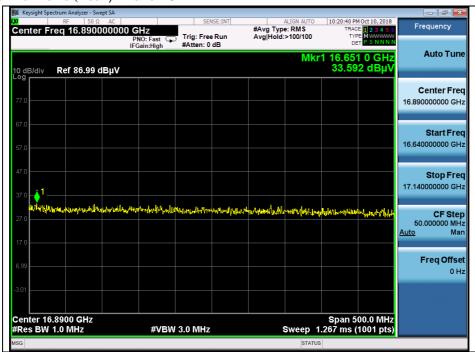
Low channel 3rd harmonic (Peak) - Band 3

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Peak) - Band 3

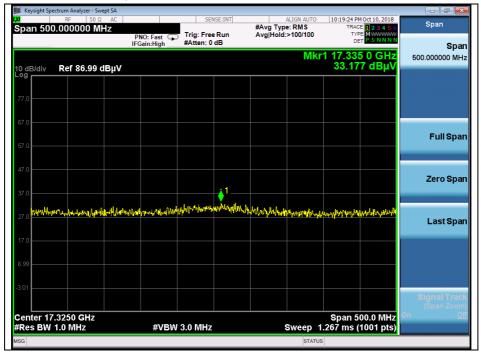
OFDM: 802.11ac_VHT80(MCS0)

Low channel 2nd harmonic (Peak) - Band 1


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle channel 2nd harmonic (Peak) - Band 2A

Low channel 3rd harmonic (Peak) - Band 2C


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High channel 3rd harmonic (Peak) - Band 2C

Middle channel 3rd harmonic (Peak) - Band 3

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

3. 26 dB Bandwidth & 99 % Bandwidth

3.1. Test Setup

3.2. Limit

None; for reporting purpose only.

3.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

3.3.1. 26 dB **Bandwidth**

- 1. This measurement settings are specified in section C.1 of KDB 789033 D02 v02r01.
- 2. Set RBW: approximately 1 % of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

3.2.2. 99 % Bandwidth

3.2.2.1 FCC

- 1. This measurement settings are specified in section D of KDB 789033 D02 v02r01.
- 2. Set center frequency to the nominal EUT channel center frequency.
- 3. Set span = 1.5 times to 5.0 times the OBW.
- 4. Set RBW = 1 % to 5 % of the OBW.
- 5. Set VBW \geq 3 x RBW.
- 6. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 7. Use the 99 % power bandwidth function of the instrument (if available).
- 8. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % occupied bandwidth is the difference between these two frequencies.

In the result,

- DFS requirements are not applicable in the 5 150 $\,\rm Mz\,$ ~ 5 250 $\,\rm Mz$

Remark;

In case of band crossing channels 138, 142 and 144, the measurement is complied with section III.A of KDB 789033 D02 v02r01.

3.2.2.2 IC

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Page: of 149 59

3.4. Test result

Ambient temperature : (23 ± 1) ℃ Relative humidity : 47 % R.H.

Mode	Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)	99 % Bandwidth (Mb)
	U-NII 1	5 180	36	6	21.071	16.961
		5 220	44		21.129	17.077
		5 240	48		21.071	16.961
	U-NII 2A	5 260	52		21.100	17.019
		5 300	60		21.071	17.019
11a		5 320	64		20.985	16.961
Πά	U-NII 2C	5 500	100		21.129	16.961
		5 580	116		21.245	17.019
		5 700	140		21.129	17.019
	U-NII 3	5 745	149		21.013	17.019
		5 785	157		21.245	17.019
		5 825	165		21.129	17.019

Mode	Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mbz)	99 % Bandwidth (肔)
	U-NII 1	5 180	36		21.418	18.119
		5 220	44		21.476	18.119
		5 240	48	MCS0	21.505	18.119
	U-NII 2A	5 260	52		21.592	18.061
		5 300	60		21.476	18.061
11n_HT20		5 320	64		21.620	18.177
111_1120	U-NII 2C	5 500	100		21.650	18.234
		5 580	116		21.650	18.119
		5 700	140		21.823	18.177
	U-NII 3	5 745	149		21.592	18.061
		5 785	157		21.592	18.119
		5 825	165		21.708	18.119

Mode	Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)	99 % Bandwidth (Mb)
	U-NII 1	5 190	38	MCS0	40.380	36.353
		5 230	46		40.290	36.237
	U-NII 2A	5 270	54		40.410	36.237
		5 310	62		40.060	36.122
11n_HT40	U-NII 2C	5 510	102		40.290	36.237
		5 550	110		40.410	36.585
		5 670	134		40.170	36.237
	U-NII 3	5 755	151		40.170	36.585
		5 795	159		40.120	36.585

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

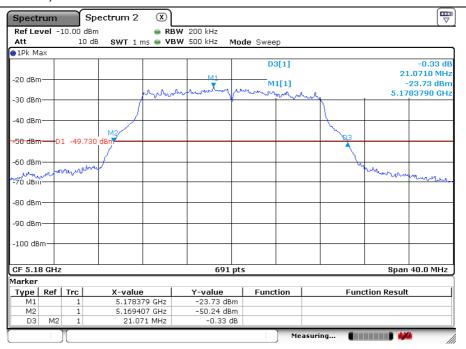
SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

Page: 60 of 149

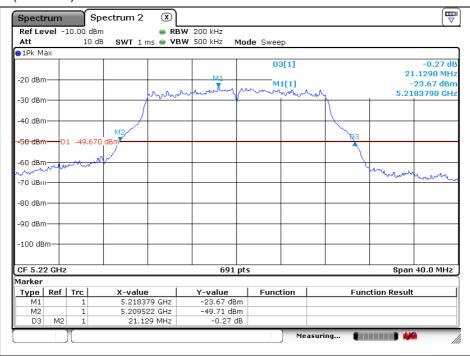
Mode	Band	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)	99 % Bandwidth (Mb)
	U-NII 1	5 210	42		82.200	75.485
	U-NII 2A	5 290	58		82.090	75.716
11ac_VHT80	U-NII 2C	5 530	106	MCS0	81.970	75.716
		5 690	138		82.660	75.948
	U-NII 3	5 775	155		87.970	75.716

Band	Mode	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)
	11a	5 720	144	6	15.478
U-NII 2C (Band-crossing	11n_HT20	5 720	144	MCS0	15.825
channel)	11n_HT40	5 710	142	MCS0	35.030
	11ac_VHT80	5 690	138	MCS0	75.910

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



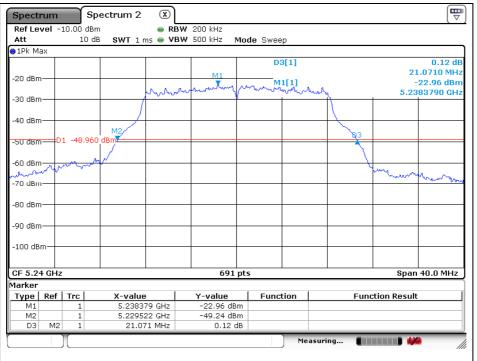
- Test plots


26 dB Bandwidth

802.11a (Band 1)

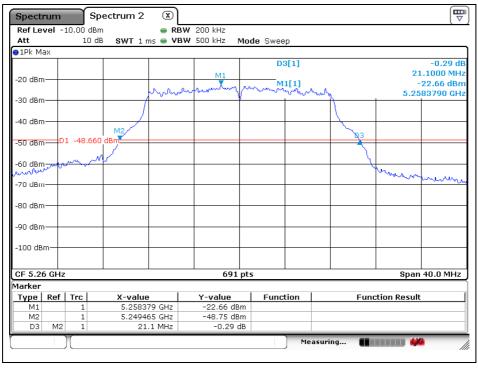
Low Channel (5 180 Mtz)

Middle Channel (5 220 Mtz)



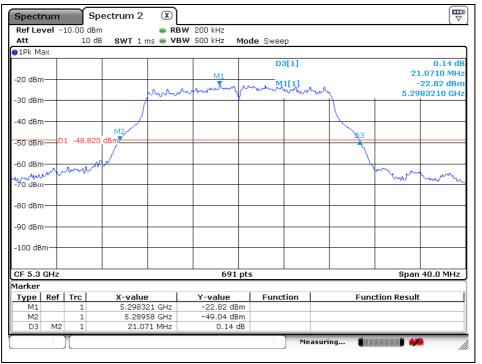
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

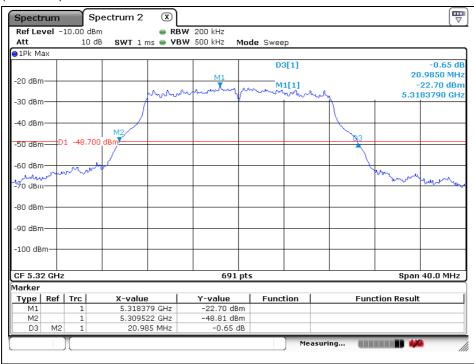
SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr



High Channel (5 240 Mz)

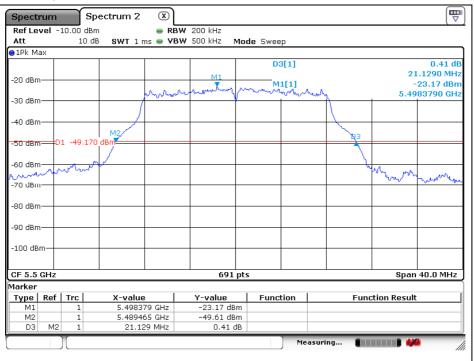
802.11a (Band 2A)


Low Channel (5 260 Mb)

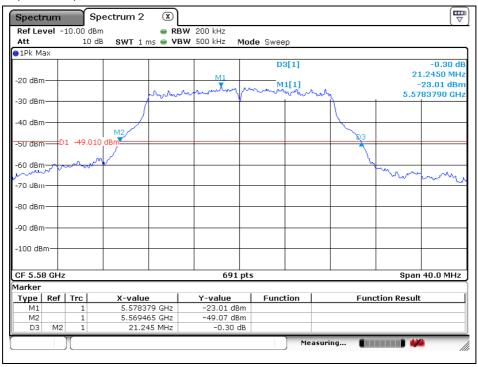

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 300 Mz)

High Channel (5 320 Mz)

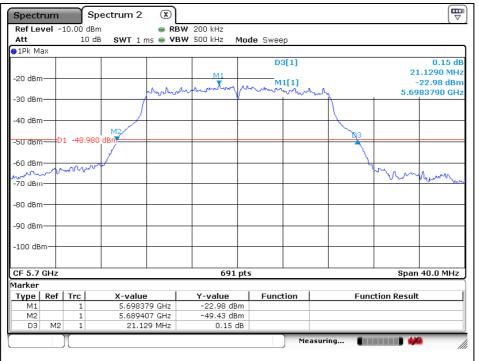


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

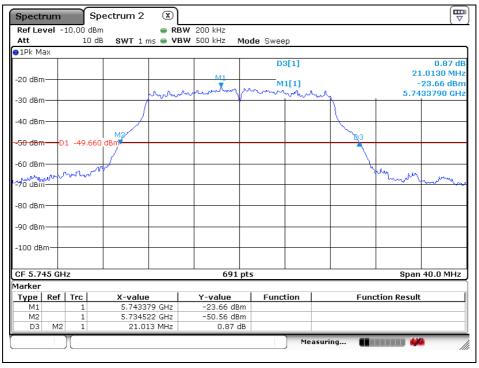


802.11a (Band 2C)

Low Channel (5 500 Mz)

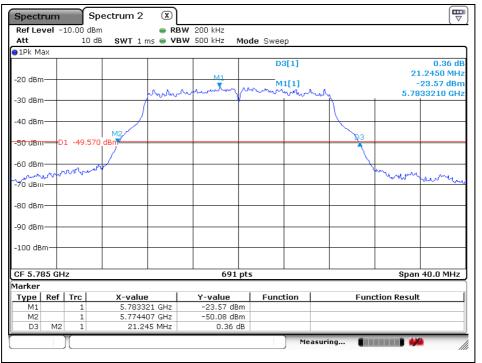

Middle Channel (5 580 Mz)

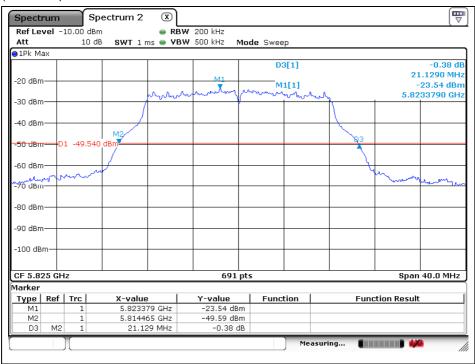
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High Channel (5 700 Mz)

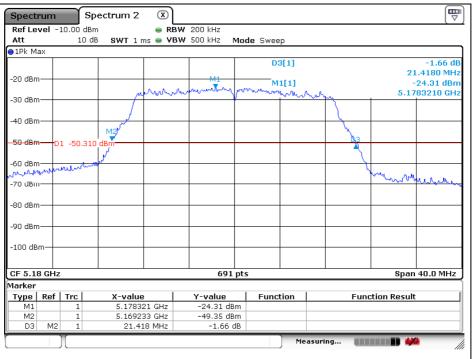
802.11a (Band 3)


Low Channel (5 745 Mtz)

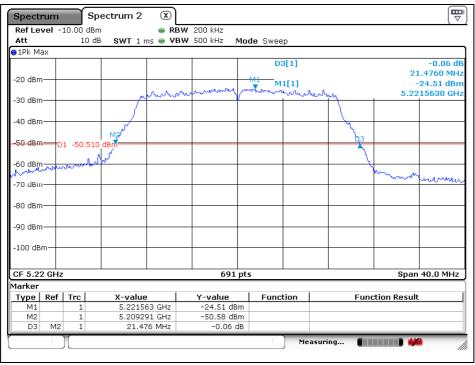

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 785 Mz)

High Channel (5 825 Mz)

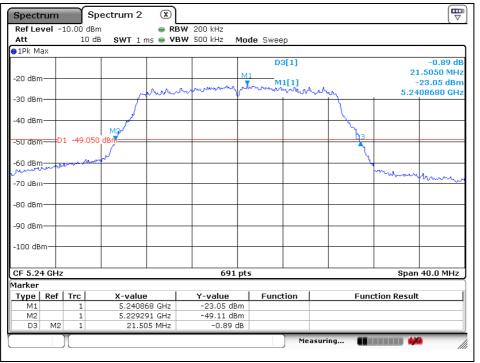


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

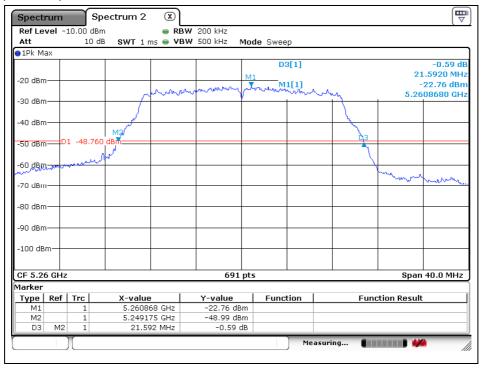


802.11n_HT20 (Band 1)

Low Channel (5 180 Mtz)

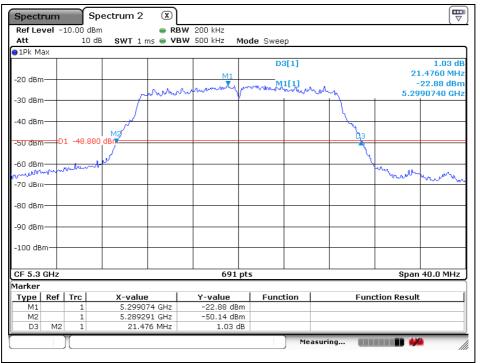

Middle Channel (5 220 Mz)

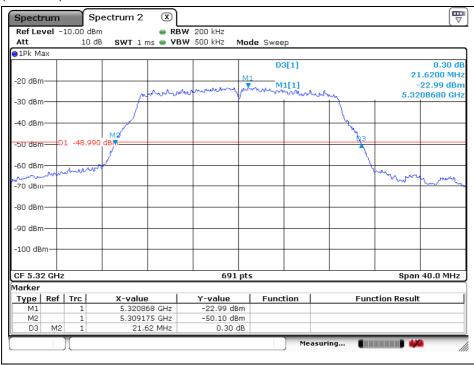
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High Channel (5 240 Mz)

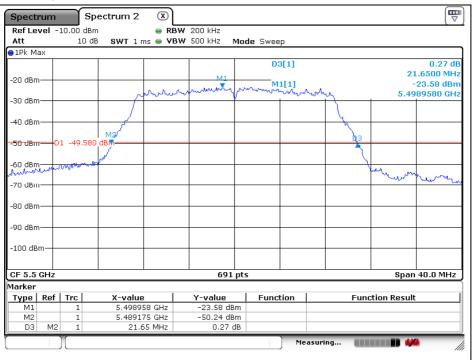
802.11n_HT20 (Band 2A)


Low Channel (5 260 Mz)

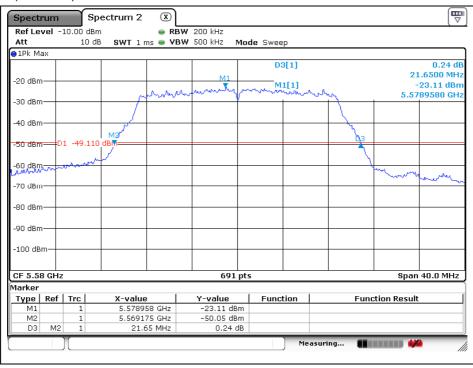

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 300 Mz)

High Channel (5 320 Mz)

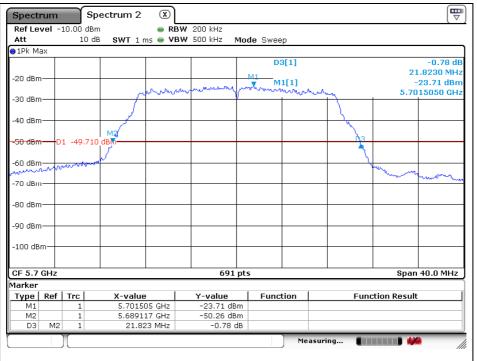


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

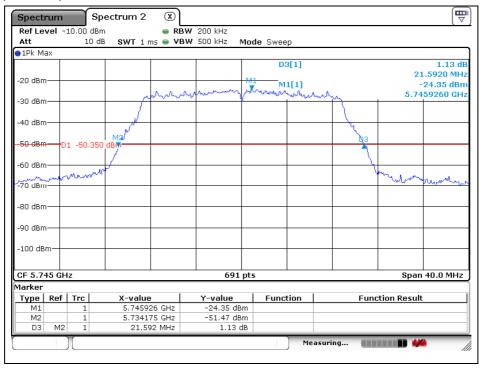


802.11n_HT20 (Band 2C)

Low Channel (5 500 Mtz)


Middle Channel (5 580 Mz)

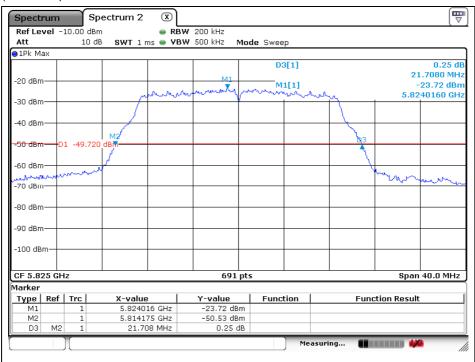
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High Channel (5 700 Mz)

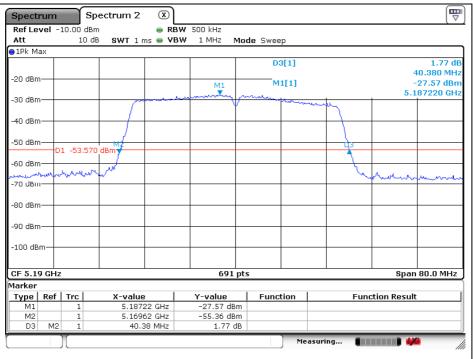
802.11n_HT20 (Band 3)

Low Channel (5 745 Mtz)

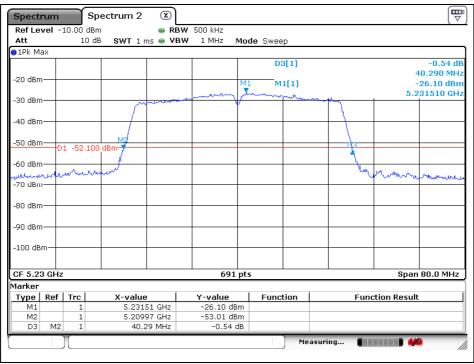

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 785 Mz)

High Channel (5 825 Mz)



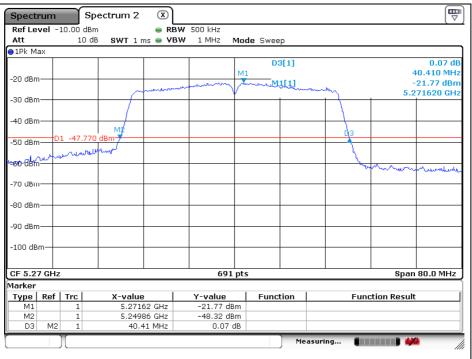
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



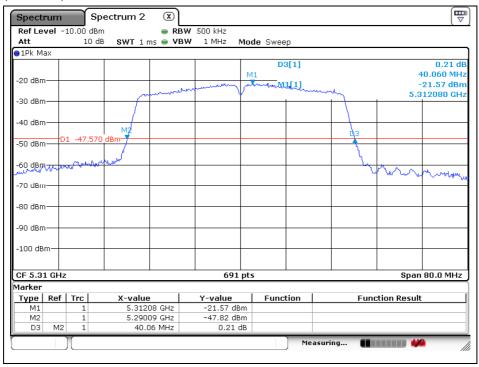
802.11n_HT40 (Band 1)

Low Channel (5 190 Mtz)

High Channel (5 230 Mz)



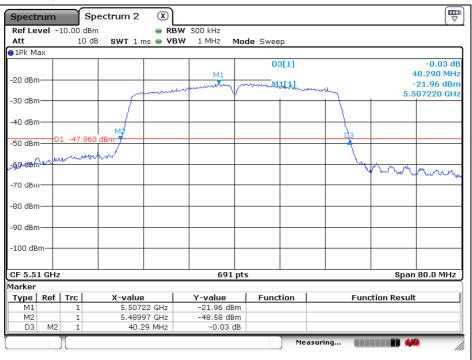
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



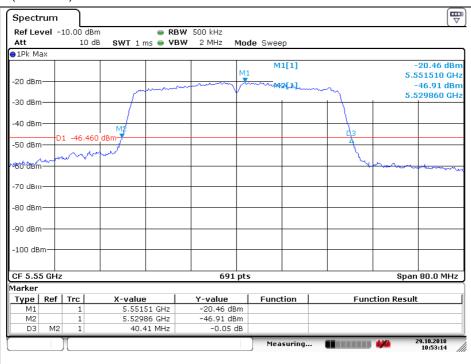
802.11n_HT40 (Band 2A)

Low Channel (5 270 Mtz)

High Channel (5 310 Mb)

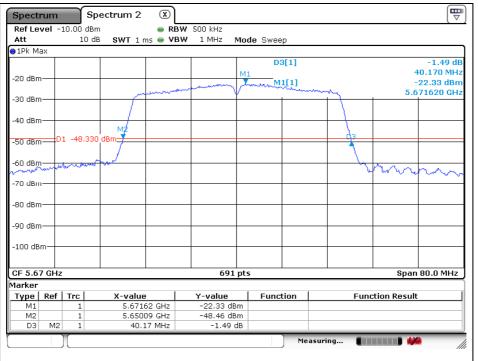


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

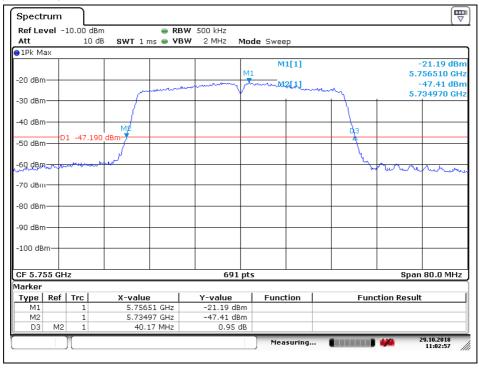


802.11n_HT40 (Band 2C)

Low Channel (5 510 Mtz)

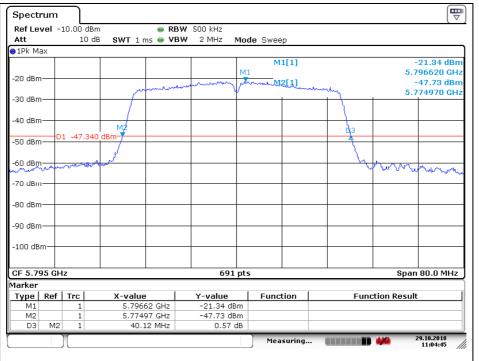

Middle Channel (5 550 Mz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

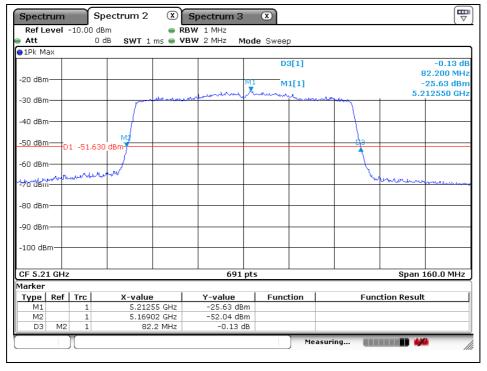


High Channel (5 670 Mz)

802.11n_HT40 (Band 3)


Low Channel (5 755 Mtz)

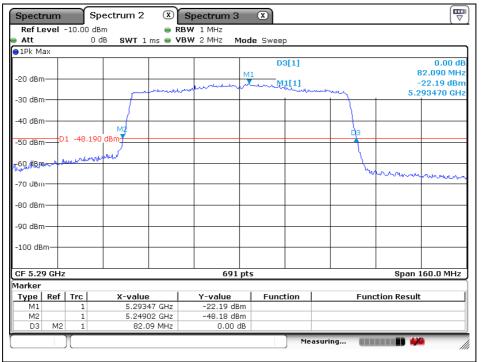
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



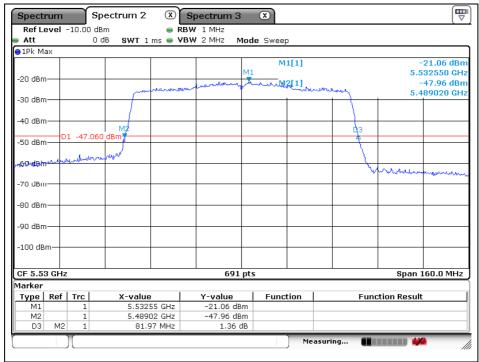
High Channel (5 795 Mz)

802.11ac_VHT80 (Band 1)

Middle Channel (5 210 Mtz)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

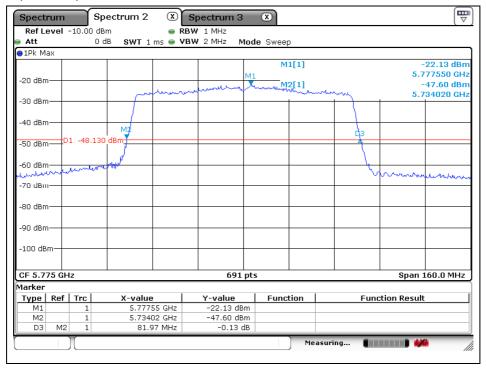

802.11ac_VHT80 (Band 2A)

Middle Channel (5 290 Mtz)

802.11ac_VHT80 (Band 2C)

Low Channel (5 530 Mtz)

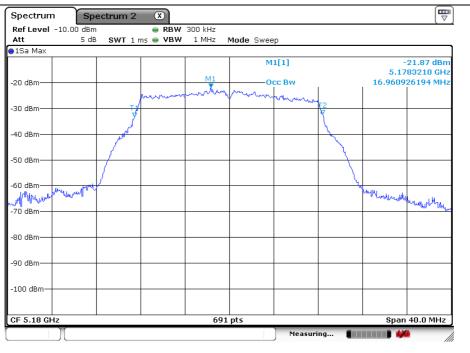
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High Channel (5 690 Mz)

802. 11ac_VHT80 (Band 3)

Middle Channel (5 775 Mz)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

99 % Bandwidth

802.11a (Band 1)

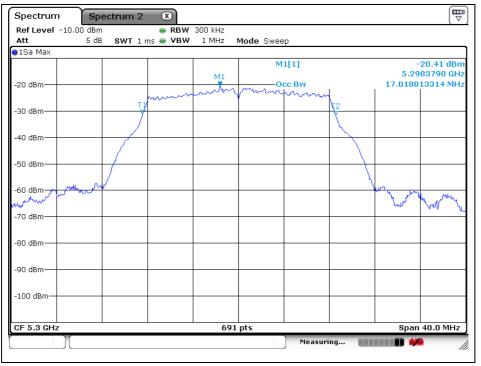
Low Channel (5 180 Mb)

Middle Channel (5 220 Mz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel (5 240 Mz)

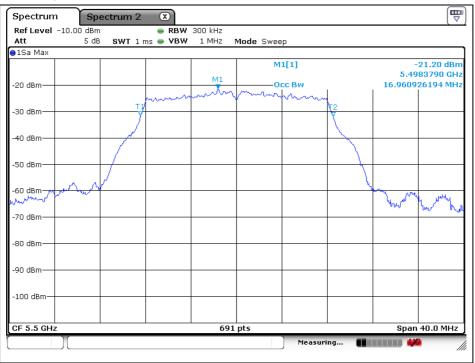
802.11a (Band 2A)


Low Channel (5 260 Mb)

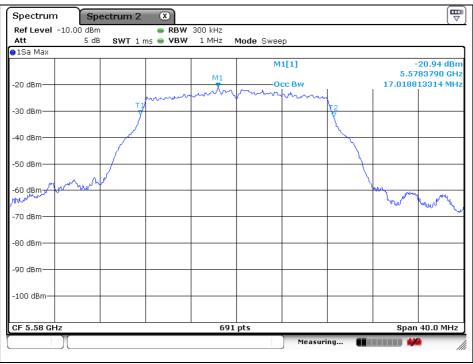
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 300 Mz)

High Channel (5 320 Mb)

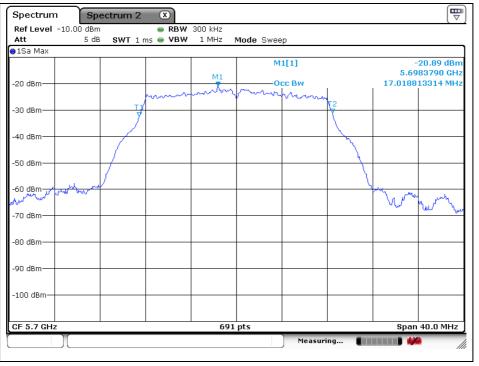


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



802.11a (Band 2C)

Low Channel (5 500 Mz)


Middle Channel (5 580 Mtz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel (5 700 Mz)

802.11a (Band 3)

Low Channel (5 745 Mtz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

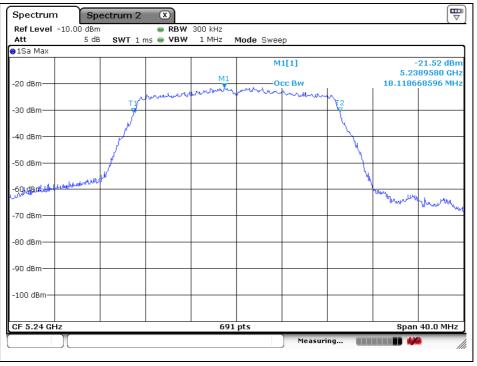
Middle Channel (5 785 Mz)

High Channel (5 825 Mz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

802.11n_HT20 (Band 1)

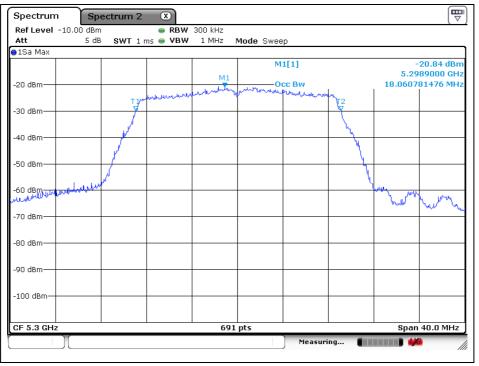
Low Channel (5 180 Mtz)


Middle Channel (5 220 Mz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel (5 240 Mz)

802.11n_HT20 (Band 2A)


Low Channel (5 260 Mtz)

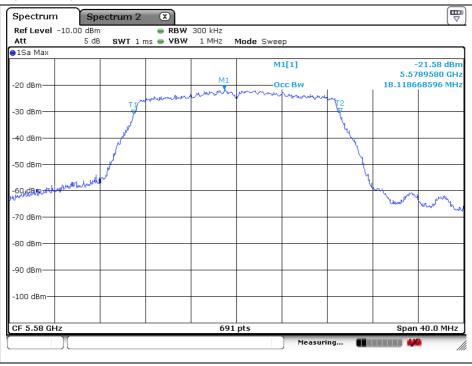
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 300 Mz)

High Channel (5 320 Mz)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



802.11n_HT20 (Band 2C)

Low Channel (5 500 Mtz)


Middle Channel (5 580 Mtz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel (5 700 Mz)

802.11n_HT20 (Band 3)

Low Channel (5 745 Mz)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Middle Channel (5 785 Mz)

High Channel (5 825 Mz)

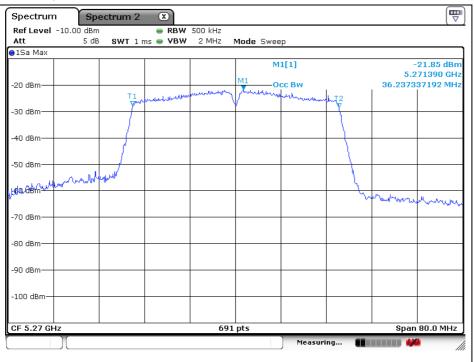
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



802.11n_HT40 (Band 1)

Low Channel (5 190 Mtz)

High Channel (5 230 Mbz)

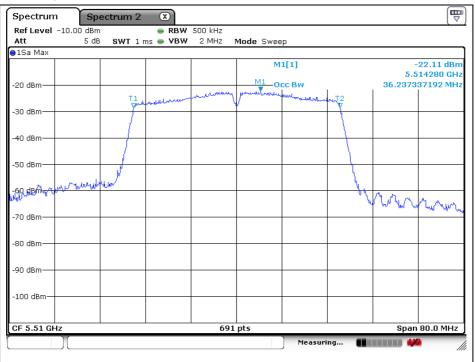


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

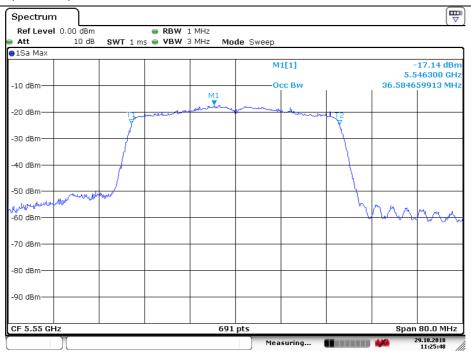
802.11n_HT40 (Band 2A)

Low Channel (5 270 Mtz)

High Channel (5 310 Mbz)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

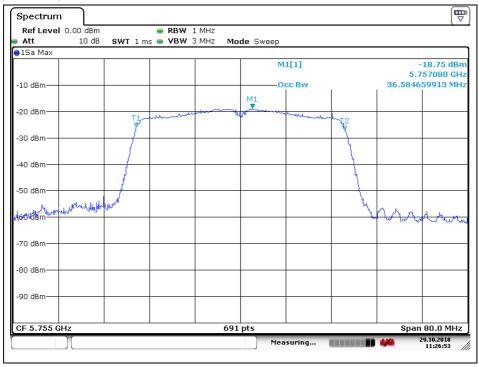


802.11n_HT40 (Band 2C)

Low Channel (5 510 Mtz)

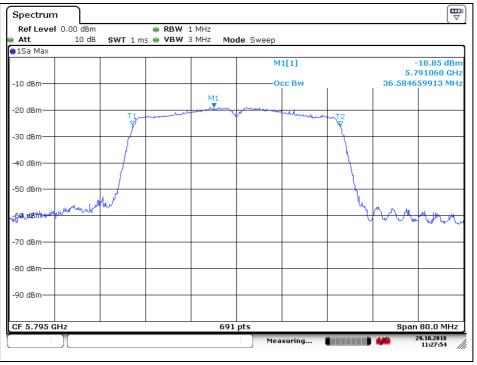
Middle Channel (5 550 Mz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



High Channel (5 670 Mz)

802.11n_HT40 (Band 3)


Low Channel (5 755 Mtz)

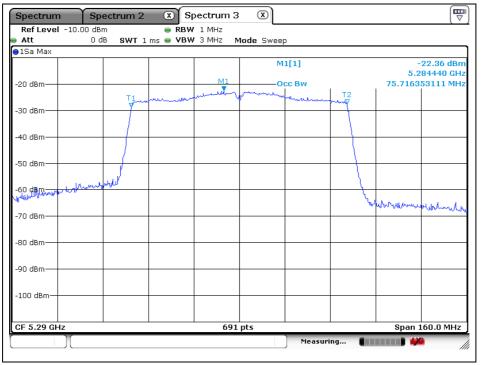
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



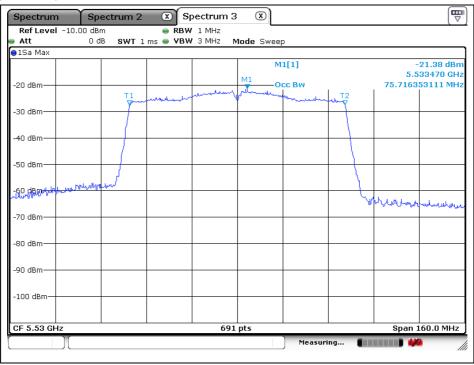
High Channel (5 795 Mz)

802.11ac_VHT80 (Band 1)

Middle Channel (5 210 Mz)

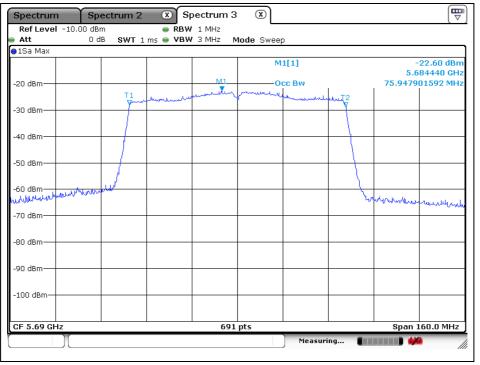


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

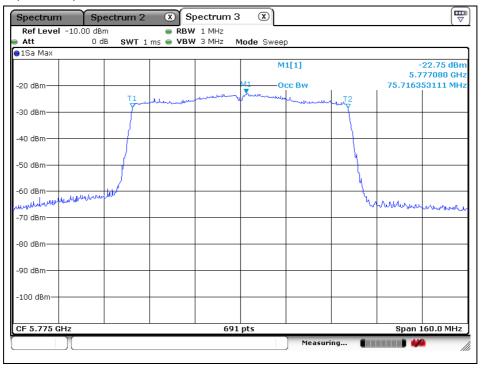

802.11ac_VHT80 (Band 2A)

Middle Channel (5 290 Mz)

802.11ac_VHT80 (Band 2C)


Low Channel (5 530 Mtz)

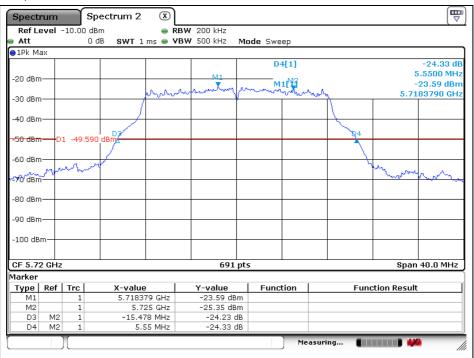
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



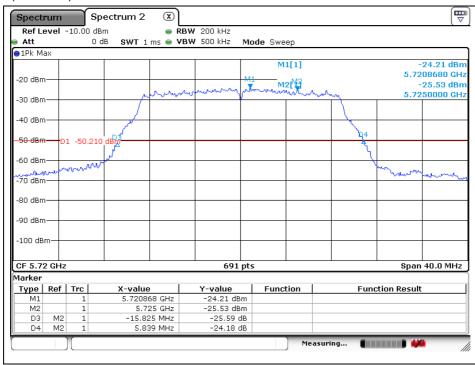
High Channel (5 690 Mb)

802. 11ac_VHT80 (Band 3)

Middle Channel (5 775 Mz)



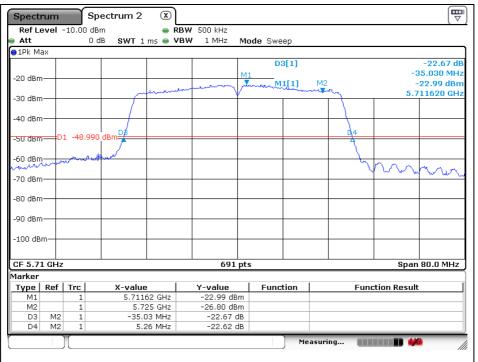
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



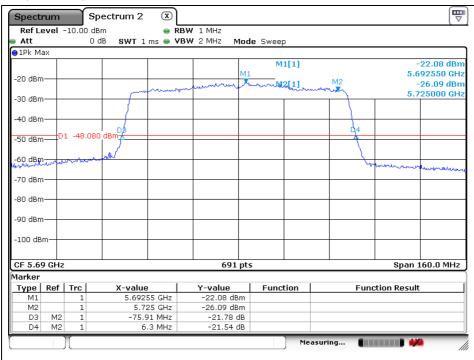
Band-crossing channels

802.11a (5 720 Mbz)

802.11n_HT20 (5 720 Mtz)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2017.07.10)(0) Tel. +82 31 428 5700 / Fax. +82 31 427 2370

802.11n_HT40 (5 710 Mz)

802.11ac_VHT80 (5 690 Mb)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.