# **TEST REPORT**

# $\mathbf{\overline{U}}$ Dt&C

## DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1802-0035

- 2. Customer
  - Name : Hyundai MOBIS Co., Ltd.
  - Address : 203 Teheran-ro, Gangnam-gu, Seoul, Korea, 135-977
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : DIGITAL CAR AUDIO SYSTEM / ADB40GKAN FCC ID : TQ8-ADB40GKAN
- 5. Test Method Used : ANSI C63.10-2013

Test Specification : FCC Part 15 Subpart C.247

- 6. Date of Test : 2017.12.21~ 2018.01.17
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

| Affirmation | Tested by                                            | Reviewed by                                        |  |  |  |  |  |
|-------------|------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Ammadon     | Name : JungWoo Kim                                   | Name : GeunKi Son (Signature)                      |  |  |  |  |  |
| The tes     | st results presented in this test report are limited | only to the sample supplied by applicant and       |  |  |  |  |  |
| the use of  | this test report is inhibited other than its purpose | e. This test report shall not be reproduced except |  |  |  |  |  |
|             | in full, without the written appro                   | val of DT&C Co., Ltd.                              |  |  |  |  |  |
|             |                                                      |                                                    |  |  |  |  |  |
|             |                                                      |                                                    |  |  |  |  |  |
|             | 2018.02.12.                                          |                                                    |  |  |  |  |  |
|             | DT&C Co                                              | ., Ltd.                                            |  |  |  |  |  |

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

# **Test Report Version**

| Test Report No. | Date          | Description   |
|-----------------|---------------|---------------|
| DRTFCC1802-0035 | Feb. 12, 2018 | Initial issue |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |
|                 |               |               |

# **Table of Contents**

| 1. General Information                                                     | 4    |
|----------------------------------------------------------------------------|------|
| 1.1 Testing Laboratory                                                     | 4    |
| 1.2 Testing Environment                                                    |      |
| 1.3 Measurement Uncertainty                                                | 4    |
| 1.4 Details of Applicant                                                   | 5    |
| 1.5 Description of EUT                                                     | 5    |
| 1.6 Declaration by the applicant / manufacturer                            |      |
| 1.7 Information about the FHSS characteristics                             |      |
| 1.8 Test Equipment List                                                    |      |
| 1.9 Summary of Test Results                                                |      |
| 1.10 Conclusion of worst-case and operation mode                           |      |
| 2. Maximum Peak Output Power Measurement                                   |      |
| 2.1 Test Setup                                                             |      |
| 2.2 Limit                                                                  |      |
| 2.3 Test Procedure                                                         |      |
| 2.4 Test Results                                                           |      |
| 3. 20 dB BW & Occupied BW                                                  |      |
| 3.1 Test Setup                                                             |      |
| 3.2 Limit                                                                  |      |
| 3.3 Test Procedure                                                         |      |
| 3.4 Test Results                                                           |      |
| 4. Carrier Frequency Separation                                            |      |
| 4.1 Test Setup                                                             |      |
| 4.2 Limit                                                                  |      |
| 4.3 Procedure                                                              |      |
| 4.4 Test Results                                                           |      |
| 5. Number of Hopping Frequencies                                           |      |
| 5.1 Test Setup                                                             |      |
| 5.2 Limit                                                                  |      |
| 5.3 Procedure                                                              |      |
| 5.4 Test Results                                                           |      |
| 6. Time of Occupancy (Dwell Time)                                          | . 30 |
| 6.1 Test Setup                                                             |      |
| 6.2 Limit                                                                  |      |
| 6.3 Test Procedure                                                         |      |
| 6.4 Test Results                                                           |      |
| 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | . 36 |
| 7.1 Test Setup                                                             |      |
| 7.2 Limit                                                                  |      |
| 7.3. Test Procedures                                                       | 41   |
| 7.3.1. Test Procedures for Radiated Spurious Emissions                     | 41   |
| 7.3.2. Test Procedures for Conducted Spurious Emissions                    | 42   |
| 7.4. Test Results                                                          |      |
| 7.4.1. Radiated Emissions                                                  | 43   |
| 7.4.2. Conducted Spurious Emissions                                        |      |
| 8. Transmitter AC Power Line Conducted Emission                            | . 46 |
| 8.1 Test Setup                                                             |      |
| 8.2 Limit                                                                  |      |
| 8.3 Test Procedures                                                        | 70   |
| 8.4 Test Results                                                           | 70   |
| 9. Antenna Requirement                                                     | . 71 |
|                                                                            | . 72 |
| APPENDIX II                                                                | . 73 |
|                                                                            |      |

## **1. General Information**

#### **1.1 Testing Laboratory**

#### DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The site is constructed in conformance with the requirements.

| - FCC MRA AG | C MRA Accredited lest firm No. : KR0034 |                  |  |  |
|--------------|-----------------------------------------|------------------|--|--|
| www.dtnc.net | . <u>dtnc.net</u>                       |                  |  |  |
| Telephone    | Telephone : + 82-31-321-2664            |                  |  |  |
| FAX          | :                                       | + 82-31-321-1664 |  |  |

#### **1.2 Testing Environment**

| Ambient Condition                     |                 |  |
|---------------------------------------|-----------------|--|
| Temperature                           | +21 °C ~ +25 °C |  |
| <ul> <li>Relative Humidity</li> </ul> | 37 % ~ 43 %     |  |

#### **1.3 Measurement Uncertainty**

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

| Test items                                                              | Measurement uncertainty                               |
|-------------------------------------------------------------------------|-------------------------------------------------------|
| Transmitter Output Power1.0 dB (The confidence level is about 95 %, k = |                                                       |
| Conducted spurious emission                                             | 1.1 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated spurious emission<br>(1 GHz Below)                             | 5.1 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated spurious emission<br>(1 GHz ~ 18 GHz)                          | 5.4 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated spurious emission<br>(18 GHz Above)                            | 5.3 dB (The confidence level is about 95 %, $k = 2$ ) |

### **1.4 Details of Applicant**

| Applicant      | : | Hyundai MOBIS Co., Ltd.                           |
|----------------|---|---------------------------------------------------|
| Address        | : | 203 Teheran-ro, Gangnam-gu, Seoul, Korea, 135-977 |
| Contact person | : | Seung Hoon Choe                                   |

### 1.5 Description of EUT

| EUT                        | DIGITAL CAR AUDIO SYSTEM                |
|----------------------------|-----------------------------------------|
| Model Name                 | ADB40GKAN                               |
| Add Model Name             | NA                                      |
| Serial Number              | Identical prototype                     |
| Hardware version           | 1.0                                     |
| Software version           | 1.0                                     |
| Power Supply               | DC 14.4 V                               |
| Frequency Range            | 2402 MHz ~ 2480 MHz                     |
| Modulation Technique       | GFSK, π/4-DQPSK, 8DPSK                  |
| Number of Channels         | 79                                      |
| Antenna Type /Antenna Gain | Dielectric Chip Antenna / PK : -0.1 dBi |

### 1.6 Declaration by the applicant / manufacturer

- NA

#### **1.7 Information about the FHSS characteristics**

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
  - A) The hopping sequence is pseudorandom
    - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
      - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc
      - The System receiver have input bandwidths that match the hopping channel badwidths of Their corresponding transmitters and shift frequencies in synchroniztation with the transmit Ted signals.
  - B) All channels are used equally on average
  - C) The receiver input bandwidth equals the transmit bandwidth
  - D) The receiver hops in sequence with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
  of the regulations in Section 15.247 when the transmitter is presented with a continuous data
  (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h) : The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

#### 1.8 Test Equipment List

| Туре               | Manufacturer            | Model                              | Cal.Date<br>(yy/mm/dd) | Next.Cal.<br>Date<br>(yy/mm/dd) | S/N           |
|--------------------|-------------------------|------------------------------------|------------------------|---------------------------------|---------------|
| Spectrum Analyzer  | Agilent<br>Technologies | N9020A                             | 17/07/17               | 18/07/17                        | US47360812    |
| Spectrum Analyzer  | Agilent<br>Technologies | N9020A                             | 17/09/05               | 18/09/05                        | MY46471251    |
| BlueTooth Tester   | TESCOM                  | TC-3000C                           | 17/01/11               | 18/01/11                        | - 3000C000396 |
| Dide looin lester  | TESCOM                  | 10-30000                           | 17/12/26               | 18/12/26                        | - 30000000390 |
| DC Power Supply    | Agilent<br>Technologies | 66332A                             | 17/09/05               | 18/09/05                        | MY43000440    |
| DC Power Supply    | SM techno               | SDP30-5D                           | 17/04/12               | 18/04/12                        | 305DKA013     |
| Multimeter         | FLUKE                   | 17B                                | 17/04/12               | 18/04/12                        | 26030065WS    |
| Dowor Colittor     | Anritsu                 | K241B                              | 17/01/11               | 18/01/11                        | - 1301184     |
| Power Splitter     | Annisu                  | N241D                              | 17/12/27               | 18/12/27                        | - 1301184     |
| Signal Generator   | Rohde Schwarz           | SMBV100A                           | 17/01/04               | 18/01/04                        | 255571        |
| Signal Generator   |                         |                                    | 17/12/27               | 18/12/27                        |               |
| Signal Generator   | Rohde Schwarz           | SMF100A                            | 17/04/21               | 18/04/21                        | 102341        |
| Thermohygrometer   | BODYCOM                 | BJ5478                             | 17/04/11               | 18/04/11                        | 120612-2      |
| Loop Antenna       | Schwarzbeck             | FMZB1513                           | 16/04/22               | 18/04/22                        | 1513-128      |
| BILOG ANTENNA      | Schwarzbeck             | VULB 9160                          | 16/08/05               | 18/08/05                        | 9160-3362     |
| Horn Antenna       | ETS-LINDGREN            | 3117                               | 16/05/03               | 18/05/03                        | 00140394      |
| Horn Antenna       | A.H.Systems Inc.        | SAS-574                            | 17/04/25               | 19/04/25                        | 154           |
| PreAmplifier       | Agilent<br>Technologies | 8449B                              | 17/09/05               | 18/09/05                        | 3008A02108    |
| PreAmplifier       | TSJ                     | MLA-010K01-<br>B01-27              | 17/03/06               | 18/03/06                        | 1844539       |
| EMI Test Receiver  | Rohde Schwarz           | ESR7                               | 17/02/16               | 18/02/16                        | 101061        |
| High-pass filter   | Wainwright              | WHKX12-2580-<br>3000-18000-80SS    | 17/09/05               | 18/09/05                        | 3             |
| High-pass filter   | Wainwright              | WHNX6-6320-<br>8000-26500-<br>40CC | 17/09/05               | 18/09/05                        | 1             |
| Power Meter & Wide | Apritou                 | ML2495A                            | 17/04/11               | 18/04/11                        | 1306007       |
| Bandwidth Sensor   | Anritsu                 | MA2490A                            | 17/04/11               | 18/04/11                        | 1249001       |

Note: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

### 1.9 Summary of Test Results

| FCC Part<br>RSS Std.                                                 | Parameter                          | <b>Limit</b><br>(Using in 2400~ 2483.5 MHz)                                                                                                                                                                         | Test<br>Condition    | Status<br>Note 1 |
|----------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
|                                                                      | Carrier Frequency Separation       | >= 25 kHz or<br>>= Two thirds of the 20 dB BW,<br>whichever is greater.                                                                                                                                             |                      | с                |
| 15.247(a)<br>RSS-247(5.1)                                            | Number of Hopping Frequencies      | >= 15 hops                                                                                                                                                                                                          |                      | С                |
| 1(00-247(0.1)                                                        | 20 dB Bandwidth                    | N/A                                                                                                                                                                                                                 |                      | С                |
|                                                                      | Dwell Time =< 0.4 seconds          |                                                                                                                                                                                                                     |                      | С                |
| 15.247(b)<br>RSS-247(5.4)                                            | Transmitter Output Power           | For FCC<br>=< 1 Watt , if CHs >= 75<br>Others =< 0.125 W<br>For IC<br>if CHs >= 75<br>=< 1 Watt For Conducted Power<br>=< 4 Watt For e.i.r.p,<br>Others<br>=< 0.125 W For Conducted Power.<br>=< 4 Watt For e.i.r.p | Conducted            | С                |
| 15.247(d)<br>RSS-247(5.5)                                            | Conducted Spurious Emissions       | The radiated emission to any<br>100 kHz of out-band shall be at<br>least 20 dB below the highest<br>in-band spectral density.                                                                                       |                      | с                |
| RSS Gen(6.6)                                                         | Occupied Bandwidth (99 %)          | N/A                                                                                                                                                                                                                 |                      | NA               |
| 15.247(d)<br>15.205 & 209<br>RSS-247(5.5)<br>RSS-Gen<br>(8.9 & 8.10) | Radiated Spurious Emissions        | FCC 15.209 Limits                                                                                                                                                                                                   | Radiated             | C Note2          |
| 15.207<br>RSS-Gen(8.8)                                               | AC Conducted Emissions             | FCC 15.207 Limits                                                                                                                                                                                                   | AC Line<br>Conducted | NA Note3         |
| 15.203<br>RSS-Gen(8.3)                                               | Antenna Requirements               | FCC 15.203                                                                                                                                                                                                          | -                    | С                |
| with OAT                                                             | ted emission tests below 30 MHz we | re performed on semi-anechoic cha                                                                                                                                                                                   | mber which is        | correlated       |



#### 1.10 Conclusion of worst-case and operation mode

The EUT has three type of modulation (GFSK,  $\pi$ /4DQPSK and 8DPSK).

Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

Tested frequency information,

- Hopping Function : Enable

|              | TX Frequency (MHz) | RX Frequency (MHz) |  |
|--------------|--------------------|--------------------|--|
| Hopping Band | 2402 ~ 2480        | 2402 ~ 2480        |  |

- Hopping Function : Disable

|                 | TX Frequency (MHz) | RX Frequency (MHz) |
|-----------------|--------------------|--------------------|
| Lowest Channel  | 2402               | 2402               |
| Middle Channel  | 2441               | 2441               |
| Highest Channel | 2480               | 2480               |

## 2. Maximum Peak Output Power Measurement

#### 2.1 Test Setup

Refer to the APPENDIX I.

#### 2.2 Limit

#### FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt.

#### IC Requirements

1. RSS-247(5.4), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W.

#### 2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ;
  Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel
  RBW ≥ 20 dB BW
  VBW ≥ RBW
  Sweep = auto
  Detector function = peak

Trace = max hold

#### 2.4 Test Results

| Modulation      | Tested Channel |       | Average<br>t Power | Peak Output Power |      |  |
|-----------------|----------------|-------|--------------------|-------------------|------|--|
| Woddiation      | lesteu Chaimei | dBm   | mW                 | dBm               | mW   |  |
|                 | Lowest         | 0.98  | 1.25               | 2.36              | 1.72 |  |
| <u>GFSK</u>     | Middle         | 1.85  | 1.53               | 3.25              | 2.11 |  |
|                 | Highest        | 0.98  | 1.25               | 2.62              | 1.83 |  |
|                 | Lowest         | -0.60 | 0.87               | 3.09              | 2.04 |  |
| <u>π/4DQPSK</u> | Middle         | 0.26  | 1.06               | 3.99              | 2.51 |  |
|                 | Highest        | -0.60 | 0.87               | 3.38              | 2.18 |  |
|                 | Lowest         | -0.56 | 0.88               | 3.61              | 2.30 |  |
| <u>8DPSK</u>    | Middle         | 0.31  | 1.07               | 4.53              | 2.84 |  |
|                 | Highest        | -0.61 | 0.87               | 3.96              | 2.49 |  |

Note 1 : The frame average output power was tested using an average power meter for reference only. Note 2 : See next pages for actual measured spectrum plots.



#### Lowest Channel & Modulation : GFSK



#### **Peak Output Power**

#### Middle Channel & Modulation : GFSK





#### Highest Channel & Modulation : GFSK



#### **Peak Output Power**

#### Lowest Channel & Modulation : π/4DQPSK





### Middle Channel & Modulation : π/4DQPSK



#### Peak Output Power

#### Highest Channel & Modulation : π/4DQPSK





#### Lowest Channel & Modulation : 8DPSK



#### **Peak Output Power**

#### Middle Channel & Modulation : 8DPSK





#### Highest Channel & Modulation : 8DPSK





### 3. 20 dB BW & Occupied BW

#### 3.1 Test Setup

Refer to the APPENDIX I.

#### 3.2 Limit

Limit : Not Applicable

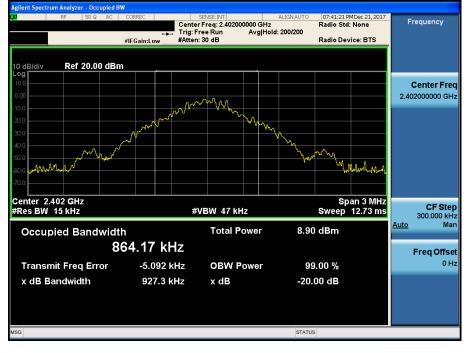
#### 3.3 Test Procedure

- 1. The 20 dB bandwidth & Occupied bandwidth were measured with a spectrum analyzer connected to RF antenna Connector(conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW = 1% to 5% of the 20 dB BW & Occupied BW

VBW ≥ 3 × RBW

Span = between two times and five times the 20 dB bandwidth & Occupied BW

Sweep = auto


Detector function = peak

Trace = max hold

#### 3.4 Test Results

| Modulation      | Tested Channel | 20 dB BW (MHz) | Occupied BW (MHz) |  |
|-----------------|----------------|----------------|-------------------|--|
|                 | Lowest         | 0.927          | -                 |  |
| <u>GFSK</u>     | Middle         | 0.888          | -                 |  |
|                 | Highest        | 0.888          | -                 |  |
|                 | Lowest         | 1.313          | -                 |  |
| <u>π/4DQPSK</u> | Middle         | 1.310          | -                 |  |
|                 | Highest        | 1.275          | -                 |  |
|                 | Lowest         | 1.258          | -                 |  |
| <u>8DPSK</u>    | Middle         | 1.259          | -                 |  |
|                 | Highest        | 1.267          | -                 |  |

#### Lowest Channel & Modulation : GFSK



#### 20 dB Bandwidth

## Middle Channel & Modulation : GFSK

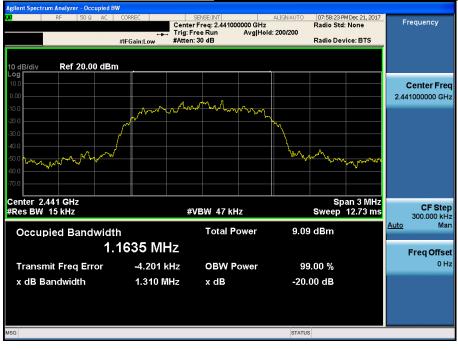






### Highest Channel & Modulation : GFSK




#### 20 dB Bandwidth

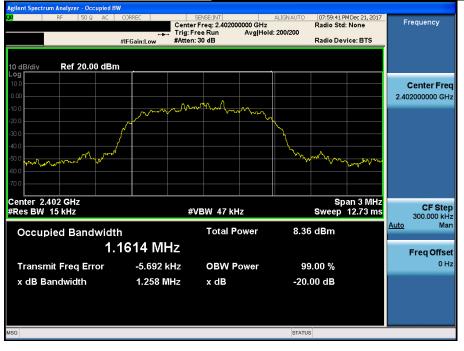
#### 07:58:00 PMDec 21, 2017 Radio Std: None Frequency Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold: 200/200 #Atten: 30 dB #IFGain:Low Radio Device: BTS 0 dB/div Ref 20.00 dBm **Center Freq** 2.402000000 GHz An M Span 3 MHz Sweep 12.73 ms Center 2.402 GHz #Res BW 15 kHz CF Step 300.000 kHz #VBW 47 kHz Man Auto Total Power 8.40 dBm Occupied Bandwidth 1.1600 MHz Freq Offset 0 Hz Transmit Freq Error -6.190 kHz **OBW Power** 99.00 % x dB Bandwidth 1.313 MHz x dB -20.00 dB

#### Lowest Channel & Modulation : π/4DQPSK

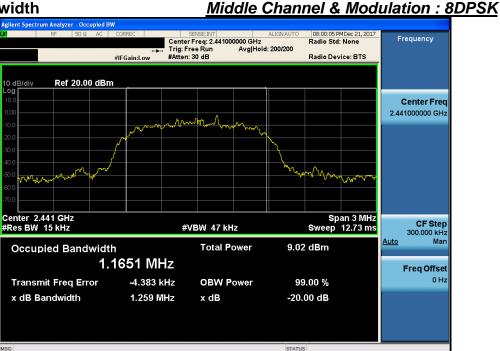


#### Middle Channel & Modulation : π/4DQPSK




#### 20 dB Bandwidth

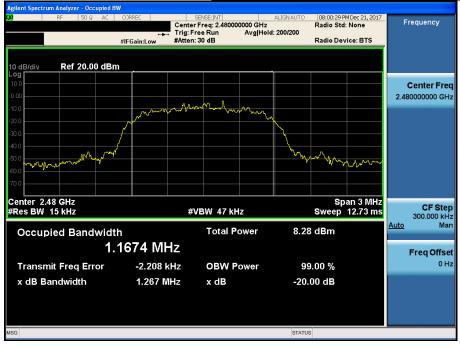
#### Highest Channel & Modulation : π/4DQPSK 07:59:12 PMDec 21, 2017 Radio Std: None Frequency Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hold: 200/200 #Atten: 30 dB #IFGain:Low Radio Device: BTS 0 dB/div Ref 20.00 dBm **Center Freq** 2.48000000 GHz YAA. M M N W. Mon war Span 3 MHz Sweep 12.73 ms Center 2.48 GHz #Res BW 15 kHz CF Step 300.000 kHz #VBW 47 kHz Man Auto Total Power 8.68 dBm Occupied Bandwidth 1.1589 MHz **Freq Offset** 0 Hz Transmit Freq Error -2.639 kHz **OBW Power** 99.00 % x dB Bandwidth 1.275 MHz x dB -20.00 dB






#### Lowest Channel & Modulation : 8DPSK




#### 20 dB Bandwidth



TRF-RF-237(05)180118



#### Highest Channel & Modulation : 8DPSK





### 4. Carrier Frequency Separation

#### 4.1 Test Setup

Refer to the APPENDIX I.

#### 4.2 Limit

Limit :  $\geq$  25 kHz or  $\geq$  Two-Thirds of the 20 dB BW whichever is greater.

#### 4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

 $VBW \ge RBW$ Sweep = autoDetector function = peakTrace = max hold

#### 4.4 Test Results

| Hopping<br>Mode | Modulation | Peak of center channel<br>(MHz) | Peak of adjacent<br>Channel<br>(MHz) | Test Result<br>(MHz) |
|-----------------|------------|---------------------------------|--------------------------------------|----------------------|
| Enable          | GFSK       | 2441.013                        | 2442.013                             | 1.000                |
|                 | π/4-DQPSK  | 2441.007                        | 2442.007                             | 1.000                |
|                 | 8DPSK      | 2441.161                        | 2442.161                             | 1.000                |

#### AFH mode

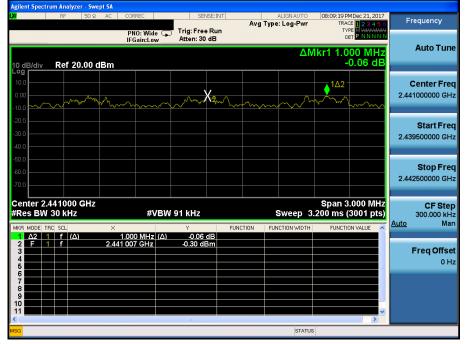
| Hopping<br>Mode | Modulation Peak of center channel (MHz) |          | Peak of adjacent<br>Channel<br>(MHz) | Test Result<br>(MHz) |
|-----------------|-----------------------------------------|----------|--------------------------------------|----------------------|
| Enable          | GFSK                                    | 2410.960 | 2411.960                             | 1.000                |
|                 | π/4-DQPSK                               | 2410.992 | 2411.992                             | 1.000                |
|                 | 8DPSK                                   | 2411.150 | 2412.150                             | 1.000                |

Note 1 : See next pages for actual measured spectrum plots.

- Minimum Standard :

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW




## Carrier Frequency Separation (FH)

#### Hopping mode : Enable & GFSK



#### **Carrier Frequency Separation (FH)**

#### <u>Hopping mode : Enable & π/4DQPSK</u>



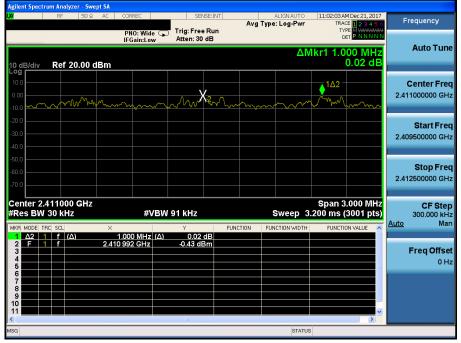


#### **Carrier Frequency Separation (FH)**

#### Hopping mode : Enable & 8DPSK






### Carrier Frequency Separation (AFH) Hoppi

### Hopping mode : Enable & GFSK



#### **Carrier Frequency Separation (AFH)**

#### <u>Hopping mode : Enable & π/4DQPSK</u>





### Carrier Frequency Separation (AFH)

#### Hopping mode : Enable & 8DPSK

| <mark>jlent Spectrum Analyzer - Swept SA</mark><br>RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CORREC                                 | SENSE:INT                              | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:03:13 AM Dec 21, 2017<br>TRACE 1 2 3 4 5 6            | Frequency                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------------------------|----------------------------------------|
| 0 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNO: Wide 🖵<br>IFGain:Low              | Trig: Free Run<br>Atten: 30 dB         | ΔM                              | Ikr1 1.000 MHz<br>-0.03 dB                               | Auto Tun                               |
| og<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                 | 1Δ2<br>WWWW home from from from from from from from from | Center Fre<br>2.411000000 G⊢           |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                        |                                 |                                                          | Start Fre<br>2.409500000 G⊦            |
| 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0 |                                        |                                        |                                 |                                                          | <b>Stop Fre</b><br>2.412500000 GF      |
| enter 2.411000 GHz<br>Res BW 30 kHz<br>KR MODE TRC SCL X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | Y FUN                                  | Sweep 3                         | Span 3.000 MHz<br>.200 ms (3001 pts)<br>FUNCTION VALUE   | CF Ste<br>300.000 kł<br><u>Auto</u> Ma |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000 MHz (Δ)<br>11 150 GHz            | -0.03 dB<br>1.97 dBm                   |                                 |                                                          | Freq Offso<br>0 ⊦                      |
| 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |                                 | ~                                                        |                                        |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | -11                                    | STATUS                          | ,                                                        |                                        |



### **5. Number of Hopping Frequencies**

#### 5.1 Test Setup

Refer to the APPENDIX I.

#### 5.2 Limit

Limit : >= 15 hops

#### 5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to :

| Span for FH mode = 50 MHz  | Start Frequency = 2391.5 MHz, | Stop Frequency = 2441.5 MHz          |
|----------------------------|-------------------------------|--------------------------------------|
|                            | Start Frequency = 2441.5 MHz, | Stop Frequency = 2491.5 MHz          |
| Span for AFH mode = 30 MHz | Start Frequency = 2396.0 MHz, | Stop Frequency = 2426.0 MHz          |
|                            |                               | less than 30% of the channel spacing |
| or the 20 dB bandwidth, v  | vhichever is smaller.         |                                      |
| VBW ≥ RBW                  | Sweep = auto                  |                                      |
| Detector function = peak   | Trace = max hold              |                                      |

#### 5.4 Test Results

#### FH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 79                       |
| Enable       | π/4-DQPSK  | 79                       |
|              | 8DPSK      | 79                       |

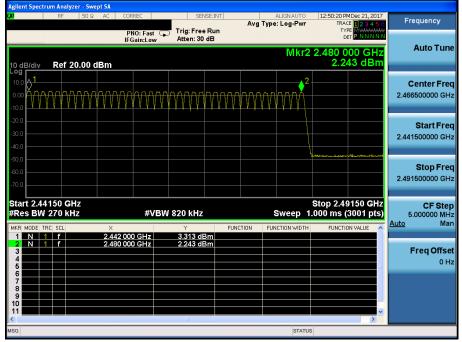
#### AFH mode

| Hopping mode | Modulation | Test Result (Total Hops) |
|--------------|------------|--------------------------|
|              | GFSK       | 20                       |
| Enable       | π/4-DQPSK  | 20                       |
|              | 8DPSK      | 20                       |

Note 1 : See next pages for actual measured spectrum plots.

#### - Minimum Standard :

At least 15 hopes


### Number of Hopping Frequencies 1(FH)

Hopping mode : Enable & GFSK

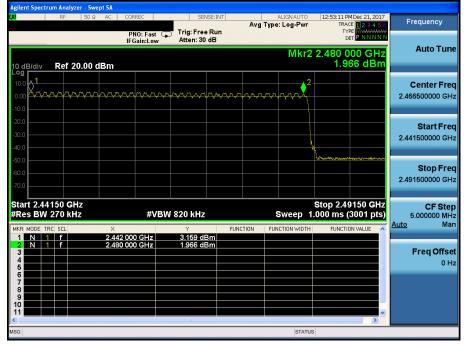
| Agnetic Spectrum Analyzer - She<br>(X) RF 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC CORREC                        | SENSE:INT              | ALIGN AUTO<br>Avg Type: Log-Pwr | 11:25:51 AM Dec 21, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Frequency                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|---------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| 10 dB/div Ref 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PNO: Fast C<br>IFGain:Low<br>IBM | Atten: 30 dB           | Mkr2                            | 2.441 000 GHz<br>3.247 dBm                                   | Auto Tune                                         |
| Log<br>10.0<br>0.00<br>-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |                                 |                                                              | Center Freq<br>2.416500000 GHz                    |
| -20.0<br>-30.0<br>-40.0<br>-50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                        |                                 |                                                              | <b>Start Freq</b><br>2.391500000 GHz              |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                        |                                 |                                                              | <b>Stop Freq</b><br>2.441500000 GHz               |
| Start 2.39150 GHz<br>#Res BW 270 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                |                        | Sweep 1                         | Stop 2.44150 GHz<br>.000 ms (3001 pts)<br>FUNCTION VALUE     | <b>CF Step</b><br>5.000000 MHz<br><u>Auto</u> Man |
| 1 N 1 F<br>2 N 1 F<br>3 4<br>4 5<br>5 1 7<br>8 9<br>9 9<br>10 1<br>11 5<br>4 5<br>5 1 7<br>8 1 | 2.402 000 GHz<br>2.441 000 GHz   | 2.370 dBm<br>3.247 dBm |                                 |                                                              | Freq Offset<br>0 Hz                               |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                        | STATUS                          | 5                                                            |                                                   |

Number of Hopping Frequencies 2(FH)








#### Number of Hopping Frequencies 1(FH)

#### Hopping mode : Enable & π/4DQPSK

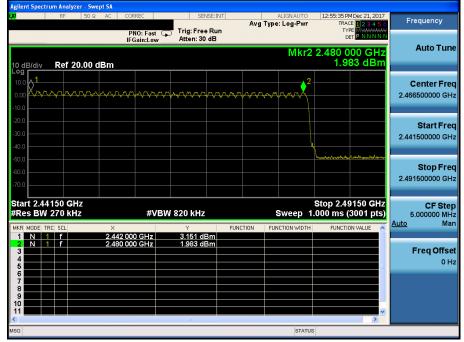
| Agitent Spectrum Analyzer - Sv<br>LXI RF 50 9 |                                | SENSE:INT              | ALIGN AUTO        | 11:29:14 AM Dec 21, 2017               |                                            |
|-----------------------------------------------|--------------------------------|------------------------|-------------------|----------------------------------------|--------------------------------------------|
| <b>W</b> Nr 303                               |                                | Tala Face Day          | Avg Type: Log-Pwr | TRACE 123456<br>TYPE MWWWWW            | Frequency                                  |
| 10 dB/div Ref 20.00                           | PNO: Fast<br>IFGain:Low<br>dBm |                        | Mkr2              | 2.441 000 GHz<br>3.157 dBm             | Auto Tune                                  |
| 10.0<br>0.00                                  |                                | م <u>سم</u> مممم       | مممحمم            | han han have                           | Center Fred<br>2.416500000 GHz             |
| -20.0<br>-30.0<br>-40.0                       |                                |                        |                   |                                        | <b>Start Fred</b><br>2.391500000 GHz       |
| -50.0 44                                      |                                |                        |                   |                                        | Stop Freq<br>2.441500000 GHz               |
| Start 2.39150 GHz<br>#Res BW 270 kHz          | #V<br>×                        | BW 820 kHz             | Sweep 1           | Stop 2.44150 GHz<br>.000 ms (3001 pts) | CF Step<br>5.000000 MHz<br><u>Auto</u> Mar |
| 1 N 1 f<br>2 N 1 f<br>3 4 5                   | 2.402 000 GHz<br>2.441 000 GHz | 2.385 dBm<br>3.157 dBm |                   |                                        | Freq Offset<br>0 Hz                        |
| 6<br>7<br>8<br>9<br>10<br>11                  |                                |                        |                   | ~                                      |                                            |
| K MSG                                         |                                | m                      | STATU             | s                                      |                                            |

#### Number of Hopping Frequencies 2(FH)

#### Hopping mode : Enable & π/4DQPSK

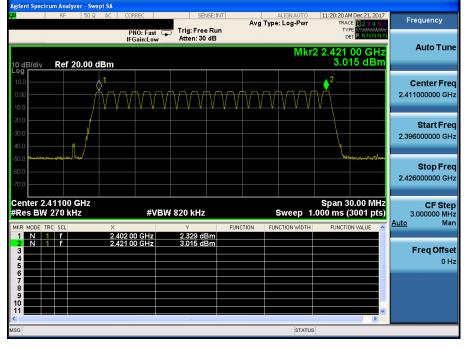





#### Number of Hopping Frequencies 1(FH)

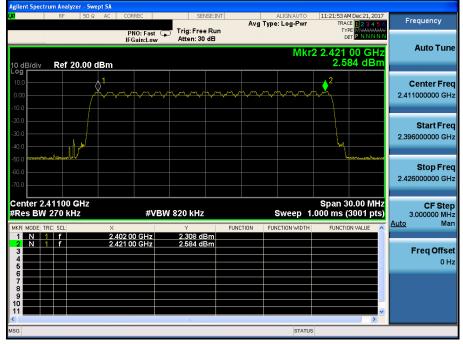
#### Hopping mode : Enable & 8DPSK

| Agilent Sp  |                |           |        |                                                                                                                                               | _        |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
|-------------|----------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|-------|
| L <b>XI</b> | R              | F 50      | IΩ AC  | CORREC                                                                                                                                        |          | SEN        | JSE:INT | Ava    |     | ALIGN AUTO                                                                                                                              |                                                                                                                                                                                                                            | M Dec 21, 2017<br>CE 123456                  | Frequen    | су    |
|             |                |           |        | PNO: Fa                                                                                                                                       |          | Trig: Free |         |        | . , |                                                                                                                                         | TY                                                                                                                                                                                                                         |                                              |            |       |
|             |                |           |        | IFGain:L                                                                                                                                      | ow       | Atten: 30  | dB      |        |     |                                                                                                                                         | 0                                                                                                                                                                                                                          | ET ER DE | Auto       | T     |
|             |                |           |        |                                                                                                                                               |          |            |         |        |     | Mkr2                                                                                                                                    |                                                                                                                                                                                                                            | 000 GHz                                      | Auto       | Tune  |
| 10 dB/di    | iv Re          | ef 20.00  | ) dBm  |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         | 3.1                                                                                                                                                                                                                        | 49 dBm                                       |            |       |
|             |                |           | . 1    |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            | 2                                            |            |       |
| 10.0        |                |           | - 1¢ - |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | Center     |       |
| 0.00        |                |           | mmr    | $\gamma \alpha \gamma \gamma$ | ny ny ny | הלהלעלים   | ጚጚ      |        | γv  | $\gamma \gamma $ | $\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$ | ᡩ᠕᠋ᡎᡘ᠕                                       | 2.41650000 | 0 GHz |
| -10.0       |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
| -20.0       |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | Start      | Freq  |
| -30.0       |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | 2.39150000 |       |
| -40.0       |                | a         | لير    |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | 2.39150000 | U GHZ |
| -50.0       | and the second | السالممعد |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
|             |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | Stop       | Freq  |
| -60.0       |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | 2.44150000 |       |
| -70.0       |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
| Start 2     | 30150          | CH7       |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         | Stop 2.4                                                                                                                                                                                                                   | 4150 GHz                                     |            |       |
| #Res B      |                |           |        | #                                                                                                                                             | VBW      | 820 kHz    |         |        | s   |                                                                                                                                         |                                                                                                                                                                                                                            | (3001 pts)                                   | 5.00000    | Step  |
| MKR MODE    |                |           | ×      |                                                                                                                                               | _        | Y          | 50      | NCTION |     | ICTION WIDTH                                                                                                                            |                                                                                                                                                                                                                            | ON VALUE                                     | Auto       | Man   |
| 1 N         |                |           |        | 02 000 GH                                                                                                                                     | 7        | 2.354 di   |         | NUTION | FUN | CTION WIDTH                                                                                                                             | FUNCT                                                                                                                                                                                                                      | UN VALUE                                     |            |       |
| 2 N         | 1 f            |           |        | 41 000 GH:                                                                                                                                    |          | 3.149 di   |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | Front      | -     |
| 3           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              | FreqC      | 0 Hz  |
| 5           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            | =                                            |            | UHZ   |
| 6           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
| 8           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
| 9           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |
| 11          |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            | ~                                            |            |       |
| <           | _              | _         |        |                                                                                                                                               | _        | Ш          |         | _      | _   |                                                                                                                                         |                                                                                                                                                                                                                            | >                                            |            |       |
| MSG         |                |           |        |                                                                                                                                               |          |            |         |        |     | STATUS                                                                                                                                  | 5                                                                                                                                                                                                                          |                                              |            |       |
| -           |                |           |        |                                                                                                                                               |          |            |         |        |     |                                                                                                                                         |                                                                                                                                                                                                                            |                                              |            |       |


#### Number of Hopping Frequencies 2(FH)

#### Hopping mode : Enable & 8DPSK




#### Number of Hopping Frequencies 1(AFH)

Hopping mode : Enable & GFSK



Number of Hopping Frequencies 1(AFH)





### Number of Hopping Frequencies 1(AFH)

## Hopping mode : Enable & 8DPSK

| gilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                   |                                                            |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------------------------------------------------|-----------------------------------------|
| RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Avg Type: Log-Pwr | 11:23:06 AM Dec 21, 2017<br>TRACE 1 2 3 4 5 6              | Frequency                               |
| 0 dB/div Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PNO: Fast 🖵 Trig: Free Run<br>IFGain:Low Atten: 30 dB |                   | TYPE MUMANAN<br>DET PNNNNN<br>r2 2.421 00 GHz<br>2.719 dBm | Auto Tune                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | $\sqrt{1}$        | 2                                                          | Center Fre<br>2.411000000 GH            |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                   |                                                            | <b>Start Fre</b><br>2.396000000 GH      |
| 50.0 <b>xtructur (147</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                   | Visitanduselaar                                            | <b>Stop Fre</b><br>2.426000000 GH       |
| Center 2.41100 GHz<br>Res BW 270 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #VBW 820 kHz                                          | Sweep 7           | Span 30.00 MHz<br>1.000 ms (3001 pts)                      | CF Ste<br>3.000000 M⊢<br><u>Auto</u> Ma |
| 2         N         1         f         2.4           3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 402 00 GHz 2.127 dBm<br>421 00 GHz 2.719 dBm          |                   |                                                            | <b>Freq Offse</b><br>0 H                |
| 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                   | ~                                                          |                                         |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | STATU             | 1.0                                                        |                                         |

## 6. Time of Occupancy (Dwell Time)

#### 6.1 Test Setup

Refer to the APPENDIX I.

#### 6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

#### 6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 2441 MHz (AFH: 2411MHz)

Span = zero

RBW = 1 MHz (RBW shall be  $\leq$  channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel) Detector function = peak

VBW ≥ RBW

Trace = max hold

#### 6.4 Test Results

FH mode

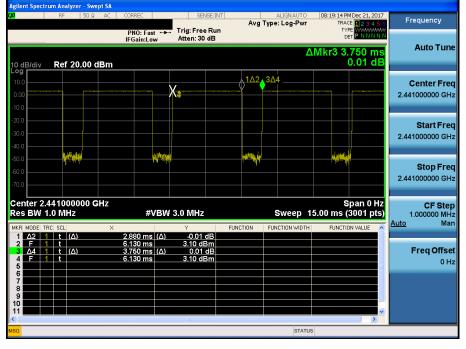
| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time (ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|-----------------------|----------------|----------------------|
|                 | DH 5           | 79                            | 2.880                 | 3.750          | 0.307                |
| Enable          | 2 DH 5         | 79                            | 2.880                 | 3.750          | 0.307                |
|                 | 3 DH 5         | 79                            | 2.880                 | 3.750          | 0.307                |

AFH mode

| Hopping<br>mode | Packet<br>Type | Number of hopping<br>Channels | Burst<br>On Time (ms) | Period<br>(ms) | Test Result<br>(sec) |
|-----------------|----------------|-------------------------------|-----------------------|----------------|----------------------|
| Enable          | DH 5           | 20                            | 2.880                 | 3.750          | 0.154                |
|                 | 2 DH 5         | 20                            | 2.880                 | 3.750          | 0.154                |
|                 | 3 DH 5         | 20                            | 2.880                 | 3.750          | 0.154                |

Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)


- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)
- Hopping Rate = 1600 for FH mode & 800 for AFH mode

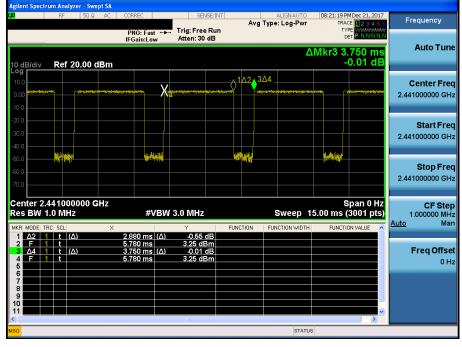
Note 2 : See next pages for actual measured spectrum plots.



#### Hopping mode : Enable & DH5

### Time of Occupancy (FH)

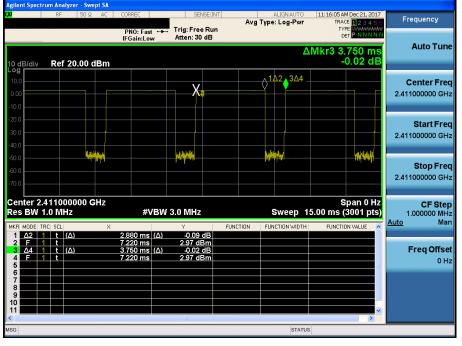



#### Hopping mode : Enable & 2-DH5

#### Time of Occupancy (FH) Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB TYPI DE PNO: Fast +++ Auto Tune ΔMkr3 3.750 ms 0.00 dE 0 dB/div Ref 20.00 dBm **Center Freq** 2.441000000 GHz Start Freq 2.441000000 GHz 1.Phylip distant. Stop Freq 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz CF Step 1.000000 MHz Man Span 0 Hz Sweep 15.00 ms (3001 pts) #VBW 3.0 MHz Auto FUNCTION FUNCTION WID $f(\Delta)$ Δ2 3.24 dBm 0.00 dB 3.24 dBm 1 t 1 t (Δ) 1 t Freq Offset Ť 0 Hz



### Hopping mode : Enable & 3-DH5


### Time of Occupancy (FH)

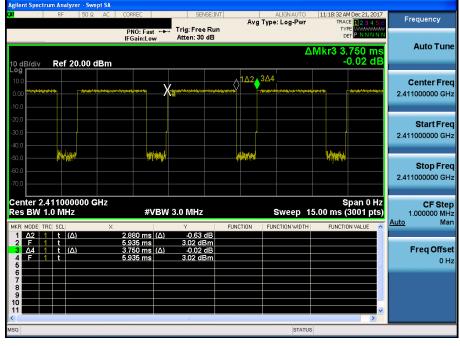




#### Hopping mode : Enable & DH5

#### Time of Occupancy (AFH)




#### Time of Occupancy (AFH)

#### Hopping mode : Enable & 2-DH5 Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB TYPI DE PNO: Fast +++ Auto Tune ΔMkr3 3.750 ms -0.01 dE 0 dB/div Ref 20.00 dBm ♦142 3∆4 **Center Freq** Х 2.411000000 GHz Start Freq 2.411000000 GHz White Stop Freq 2.411000000 GHz Center 2.411000000 GHz Res BW 1.0 MHz CF Step 1.000000 MHz Man Span 0 Hz Sweep 15.00 ms (3001 pts) #VBW 3.0 MHz Auto FUNCTION FUNCTION WID t (Δ) Δ2 3.04 dBn -0.01 dE 3.04 dBn 1 t 1 t (Δ) 1 t s s(∆) 3.750 m 5.710 m Freq Offset . ∆4 F 0 Hz



### Hopping mode : Enable & 3-DH5

### Time of Occupancy (AFH)





# 7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

### 7.1 Test Setup

Refer to the APPENDIX I.

#### 7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency (MHz) | Limit (uV/m)  | Measurement Distance (meter) |
|-----------------|---------------|------------------------------|
| 0.009 ~ 0.490   | 2400/F (kHz)  | 300                          |
| 0.490 ~ 1705    | 24000/F (kHz) | 30                           |
| 1705 ~ 30.0     | 30            | 30                           |
| 30 ~ 88         | 100 **        | 3                            |
| 88 ~ 216        | 150 **        | 3                            |
| 216 ~ 960       | 200 **        | 3                            |
| Above 960       | 500           | 3                            |

\*\* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

| MHz               | MHz                 | MHz                   | MHz             | GHz          | GHz           |
|-------------------|---------------------|-----------------------|-----------------|--------------|---------------|
| 0.009 ~ 0.110     | 8.41425 ~ 8.41475   | 108 ~ 121.94          | 1300 ~ 1427     | 4.5 ~ 5.15   | 14.47 ~ 14.5  |
| 0.495 ~ 0.505     | 12.29 ~ 12.293      | 123 ~ 138             | 1435 ~ 1626.5   | 5.35 ~ 5.46  | 15.35 ~ 16.2  |
| 2.1735 ~ 2.1905   | 12.51975 ~ 12.52025 | 149.9 ~ 150.05        | 1645.5 ~ 1646.5 | 7.25 ~ 7.75  | 17.7 ~ 21.4   |
| 4.125 ~ 4.128     | 12.57675 ~ 12.57725 | 156.52475 ~ 156.52525 | 1660 ~ 1710     | 8.025 ~ 8.5  | 22.01 ~ 23.12 |
| 4.17725 ~ 4.17775 | 13.36 ~ 13.41       | 156.7 ~ 156.9         | 1718.8 ~ 1722.2 | 9.0 ~ 9.2    | 23.6 ~ 24.0   |
| 4.20725 ~ 4.20775 | 16.42 ~ 16.423      | 162.0125 ~ 167.17     | 2200 ~ 2300     | 9.3 ~ 9.5    | 31.2 ~ 31.8   |
| 6.215 ~ 6.218     | 16.69475 ~ 16.69525 | 167.72 ~ 173.2        | 2310 ~ 2390     | 10.6 ~ 12.7  | 36.43 ~ 36.5  |
| 6.26775 ~ 6.26825 | 16.80425 ~ 16.80475 | 240 ~ 285             | 2483.5 ~ 2500   | 13.25 ~ 13.4 | Above 38.6    |
| 6.31175 ~ 6.31225 | 25.5 ~ 25.67        | 322 ~ 335.4           | 2655 ~ 2900     |              |               |
| 8.291 ~ 8.294     | 37.5 ~ 38.25        | 399.90 ~ 410          | 3260 ~ 3267     |              |               |
| 8.362 ~ 8.366     | 73 ~ 74.6           | 608 ~ 614             | 3332 ~ 3339     |              |               |
| 8.37625 ~ 8.38675 | 74.8 ~ 75.2         | 960 ~ 1240            | 3345.8 ~ 3358   |              |               |
|                   |                     |                       | 3600 ~ 4400     |              |               |

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.