Conducted Spurious Emissions

Conducted Spurious Emissions

TM 3 \& Lowest

Reference

Low Band-edge

Conducted Spurious Emissions

Conducted Spurious Emissions

TM 3 \& Middle
Reference

Conducted Spurious Emissions

Conducted Spurious Emissions

TM 3 \& Highest
Reference

High Band-edge

Conducted Spurious Emissions

Conducted Spurious Emissions

8.5 Radiated spurious emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30 \sim 88$	$100 * *$	3
$88 \sim 216$	$150 * *$	3
$216 \sim 960$	$200 * *$	3
Above 960	500	3

** Except as provided in 15.209 (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

- FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{G H z}$	$\mathbf{G H z}$
$0.009 \sim 0.110$	$8.41425 \sim 8.41475$	$108 \sim 121.94$	$1300 \sim 1427$	$4.5 \sim 5.15$	$14.47 \sim 14.5$
$0.495 \sim 0.505$	$12.29 \sim 12.293$	$123 \sim 138$	$1435 \sim 1626.5$	$5.35 \sim 5.46$	$15.35 \sim 16.2$
$2.1735 \sim 2.1905$	$12.51975 \sim 12.52025$	$149.9 \sim 150.05$	$1645.5 \sim 1646.5$	$7.25 \sim 7.75$	$17.7 \sim 21.4$
$4.125 \sim 4.128$	$12.57675 \sim 12.57725$	$156.52475 \sim$	$1660 \sim 1710$	$8.025 \sim 8.5$	$22.01 \sim 23.12$
$4.17725 \sim 4.17775$	$13.36 \sim 13.41$	156.52525	$1718.8 \sim 1722.2$	$9.0 \sim 9.2$	$23.6 \sim 24.0$
$4.20725 \sim 4.20775$	$16.42 \sim 16.423$	$156.7 \sim 156.9$	$2200 \sim 2300$	$9.3 \sim 9.5$	$31.2 \sim 31.8$
$6.215 \sim 6.218$	$16.69475 \sim 16.69525$	$162.0125 \sim 167.17$	$2310 \sim 2390$	$10.6 \sim 12.7$	$36.43 \sim 36.5$
$6.26775 \sim 6.26825$	$16.80425 \sim 16.80475$	$167.72 \sim 173.2$	$2483.5 \sim 2500$	$13.25 \sim 13.4$	Above 38.6
$6.31175 \sim 6.31225$	$25.5 \sim 25.67$	$240 \sim 285$	$2655 \sim 2900$		
$8.291 \sim 8.294$	$37.5 \sim 38.25$	$322 \sim 335.4$	$3260 \sim 3267$		
$8.362 \sim 8.366$	$73 \sim 74.6$	$399.90 \sim 410$	$3332 \sim 3339$		
$8.37625 \sim 8.38675$	$74.8 \sim 75.2$	$608 \sim 614$	$3345.8 \sim 3358$		
	$960 \sim 1240$	$3600 \sim 4400$			

- FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in $\S 15.35$ apply to these measurements.
- Test Configuration

Refer to the APPENDIX I.
\square Test Procedure

1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz , the table height is 80 cm and above 1 GHz , the table height is 1.5 m .
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.

- KDB558074 D01v05r02 - Section 8.6

- ANSI C63.10-2013 - Section 11.12

Peak Measurement

RBW = As specified in below table, VBW $\geq 3 \times$ RBW, Sweep $=$ Auto, Detector $=$ Peak, Trace mode $=$ Max Hold until the trace stabilizes.

Frequency	RBW
$9-150 \mathrm{kHz}$	$200-300 \mathrm{~Hz}$
$0.15-30 \mathrm{MHz}$	$9-10 \mathrm{kHz}$
$30-1000 \mathrm{MHz}$	$100-120 \mathrm{kHz}$
$>1000 \mathrm{MHz}$	1 MHz

Average Measurement:

1. RBW $=1 \mathrm{MHz}$ (unless otherwise specified).
2. VBW $\geq 3 \times$ RBW.
3. Detector $=$ RMS (Number of points $\geq 2 \times$ Span $/$ RBW)
4. Averaging type $=$ power. (i.e., RMS)
5. Sweep time = auto.
6. Perform a trace average of at least 100 traces.
7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log (1 / D)$, where D is the duty cycle.
2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is $20 \log (1 / D)$, where D is the duty cycle.
3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	Ton(ms)	Ton+off (ms)	$\mathbf{D}=T_{\text {on }}$ (Ton+off)	DCCF = 10 log(1/D) (dB)
TM 1	1 Mbps	12.420	12.510	0.9928	$\mathrm{~N} / \mathrm{A}$
TM 2	6 Mbps	2.064	2.165	0.9533	0.21
TM 3	MCS 0	0.249	0.350	0.7122	1.47

Note1: Where, T= Transmission duration / D= Duty cycle
Note2: Please refer to the appendix I for duty cycle plots.

■ Test Results: Comply

Radiated Spurious Emissions data($9 \mathrm{kHz} \sim 25 \mathrm{GHz}$) : TM 1 \& MN: ADB10S2ANO

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \mathrm{T} . \mathrm{F} \\ (\mathrm{~dB} / \mathrm{m}) \end{gathered}$	DCCF (dB)	$\begin{aligned} & \text { DCF } \\ & \text { (dB) } \end{aligned}$	Result (dBuV/m)	$\underset{(\mathrm{dBuV} / \mathrm{m})}{\text { Limit }}$	Margin (dB)
Lowest	2389.32	V	X	PK	50.00	5.23	N/A	N/A	55.23	74.00	18.77
	2388.91	V	X	AV	39.57	5.23	N/A	N/A	44.80	54.00	9.20
	4824.31	V	X	PK	49.82	1.59	N/A	N/A	51.41	74.00	22.59
	4823.76	V	X	AV	39.02	1.58	N/A	N/A	40.60	54.00	13.40
	7234.68	V	X	PK	49.94	8.97	N/A	N/A	58.91	74.00	15.09
	7234.77	V	X	AV	41.23	8.97	N/A	N/A	50.20	54.00	3.80
Middle	4873.74	V	X	PK	46.88	1.82	N/A	N/A	48.70	74.00	25.30
	4873.58	V	X	AV	36.71	1.82	N/A	N/A	38.53	54.00	15.47
	7309.47	V	X	PK	48.05	9.72	N/A	N/A	57.77	74.00	16.23
	7309.75	V	X	AV	39.31	9.73	N/A	N/A	49.04	54.00	4.96
Highest	2484.03	V	X	PK	49.64	5.79	N/A	N/A	55.43	74.00	18.57
	2483.86	V	X	AV	38.88	5.79	N/A	N/A	44.67	54.00	9.33
	4923.76	V	X	PK	50.29	2.10	N/A	N/A	52.39	74.00	21.61
	4923.53	V	X	AV	39.77	2.10	N/A	N/A	41.87	54.00	12.13
	7385.03	V	X	PK	48.91	9.78	N/A	N/A	58.69	74.00	15.31
	7384.68	V	X	AV	40.43	9.78	N/A	N/A	50.21	54.00	3.79

Note.

1. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

Margin $=$ Limit - Result $/ \quad$ Result $=$ Reading + T.F + DCCF + DCF / T.F $=$ AF + CL - AG
Where, T.F = Total Factor, $\mathrm{AF}=$ Antenna Factor, $\mathrm{CL}=$ Cable Loss, $\mathrm{AG}=$ Amplifier Gain,
DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : TM 2 \& MN: ADB10S2ANO

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \text { T.F } \\ (\mathrm{dB} / \mathrm{m}) \end{gathered}$	DCCF (dB)	DCF (dB)	Result (dBuV/m)	$\underset{(\mathrm{dBuV} / \mathrm{m})}{\operatorname{Limit}_{\text {(}}^{2}}$	$\underset{\text { (dB) }}{\text { Margin }}$
Lowest	2389.32	V	X	PK	52.40	5.23	N/A	N/A	57.63	74.00	16.37
	2389.59	V	X	AV	41.82	5.24	0.21	N/A	47.27	54.00	6.73
	4823.67	V	X	PK	49.49	1.58	N/A	N/A	51.07	74.00	22.93
	4823.82	V	X	AV	39.37	1.58	0.21	N/A	41.16	54.00	12.84
	7235.63	V	X	PK	54.44	8.98	N/A	N/A	63.42	74.00	10.58
	7235.95	V	X	AV	38.75	8.99	0.21	N/A	47.95	54.00	6.05
Middle	4873.82	V	X	PK	50.10	1.82	N/A	N/A	51.92	74.00	22.08
	4874.16	V	X	AV	39.52	1.83	0.21	N/A	41.56	54.00	12.44
	7311.36	V	X	PK	51.51	9.74	N/A	N/A	61.25	74.00	12.75
	7311.13	V	X	AV	36.63	9.74	0.21	N/A	46.58	54.00	7.42
Highest	2483.67	V	X	PK	49.13	5.79	N/A	N/A	54.92	74.00	19.08
	2484.12	V	X	AV	39.86	5.79	0.21	N/A	45.86	54.00	8.14
	4923.69	V	X	PK	50.10	2.10	N/A	N/A	52.20	74.00	21.80
	4924.19	V	X	AV	39.54	2.10	0.21	N/A	41.85	54.00	12.15
	7386.15	V	X	PK	53.00	9.78	N/A	N/A	62.78	74.00	11.22
	7386.10	V	X	AV	37.53	9.78	0.21	N/A	47.52	54.00	6.48

Note.

1. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

Margin = Limit - Result / Result $=$ Reading + T.F+ DCCF + DCF / T.F = AF + CL -AG
Where, T.F = Total Factor, $\mathrm{AF}=$ Antenna Factor, $\quad \mathrm{CL}=$ Cable Loss, $\mathrm{AG}=$ Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : TM 3 \& MN: ADB10S2ANO

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \text { T.F } \\ (\mathrm{dB} / \mathrm{m}) \end{gathered}$	DCCF (dB)	DCF (dB)	Result (dBuV/m)	$\underset{(\mathrm{dBuV} / \mathrm{m})}{\operatorname{Limit}_{\text {(}}^{2}}$	$\underset{\text { (dB) }}{\text { Margin }}$
Lowest	2389.05	V	X	PK	50.84	5.23	N/A	N/A	56.07	74.00	17.93
	2389.45	V	X	AV	40.66	5.23	1.47	N/A	47.36	54.00	6.64
	4824.47	V	X	PK	50.07	1.59	N/A	N/A	51.66	74.00	22.34
	4823.51	V	X	AV	39.14	1.58	1.47	N/A	42.19	54.00	11.81
	7236.36	V	X	PK	50.30	8.99	N/A	N/A	59.29	74.00	14.71
	7236.03	V	X	AV	36.74	8.99	1.47	N/A	47.20	54.00	6.80
Middle	4873.82	V	X	PK	49.86	1.82	N/A	N/A	51.68	74.00	22.32
	4874.43	V	X	AV	39.44	1.83	1.47	N/A	42.74	54.00	11.26
	7310.99	V	X	PK	50.27	9.74	N/A	N/A	60.01	74.00	13.99
	7310.55	V	X	AV	35.97	9.73	1.47	N/A	47.17	54.00	6.83
Highest	2483.84	V	X	PK	50.42	5.79	N/A	N/A	56.21	74.00	17.79
	2483.74	V	X	AV	39.63	5.79	1.47	N/A	46.89	54.00	7.11
	4923.86	V	X	PK	49.99	2.10	N/A	N/A	52.09	74.00	21.91
	4923.97	V	X	AV	39.47	2.10	1.47	N/A	43.04	54.00	10.96
	7385.76	V	X	PK	50.14	9.78	N/A	N/A	59.92	74.00	14.08
	7386.14	V	X	AV	36.37	9.78	1.47	N/A	47.62	54.00	6.38

Note.

1. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

Margin $=$ Limit - Result / Result $=$ Reading + T.F+ DCCF + DCF / T.F = AF + CL -AG
Where, T.F = Total Factor, $\mathrm{AF}=$ Antenna Factor, $\quad \mathrm{CL}=$ Cable Loss, $\mathrm{AG}=$ Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
3. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

Radiated Spurious Emissions data(9 kHz ~25 GHz) : TM 1 \& MN: ADB40S2AN

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \mathrm{T} . \mathrm{F} \\ (\mathrm{~dB} / \mathrm{m}) \end{gathered}$	$\underset{\text { (dB) }}{\text { DCCF }}$	$\begin{aligned} & \text { DCF } \\ & \text { (dB) } \end{aligned}$	Result (dBuV/m)	$\underset{(\mathrm{dBuV} / \mathrm{m})}{\mathrm{Limit}}$	$\underset{\text { (dB) }}{\substack{\text { Margin }}}$
Lowest	2388.98	V	X	PK	48.99	5.23	N/A	N/A	54.22	74.00	19.78
	2389.63	V	X	AV	39.11	5.24	N/A	N/A	44.35	54.00	9.65
	4824.32	V	X	PK	49.05	1.56	N/A	N/A	50.61	74.00	23.39
	4824.08	V	X	AV	38.70	1.56	N/A	N/A	40.26	54.00	13.74
	7234.57	V	X	PK	48.60	8.97	N/A	N/A	57.57	74.00	16.43
	7234.82	V	X	AV	39.54	8.97	N/A	N/A	48.51	54.00	5.49
Middle	4874.24	V	X	PK	49.60	1.80	N/A	N/A	51.40	74.00	22.60
	4874.31	V	X	AV	38.95	1.80	N/A	N/A	40.75	54.00	13.25
	7309.91	V	X	PK	48.33	9.73	N/A	N/A	58.06	74.00	15.94
	7309.41	V	X	AV	39.34	9.72	N/A	N/A	49.06	54.00	4.94
Highest	2484.62	V	X	PK	48.56	5.81	N/A	N/A	54.37	74.00	19.63
	2484.27	V	X	AV	38.89	5.81	N/A	N/A	44.70	54.00	9.30
	4923.54	V	X	PK	49.75	2.07	N/A	N/A	51.82	74.00	22.18
	4924.45	V	X	AV	39.08	2.07	N/A	N/A	41.15	54.00	12.85
	7384.45	V	X	PK	48.59	9.78	N/A	N/A	58.37	74.00	15.63
	7384.38	V	X	AV	39.29	9.78	N/A	N/A	49.07	54.00	4.93

Note.
4. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
5. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG
Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
6. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

Radiated Spurious Emissions data(9 kHz ~25 GHz) : TM 2 \& MN: ADB40S2AN

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \text { T.F } \\ (\mathrm{dB} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { DCCF } \\ \text { (dB) } \end{gathered}$	DCF (dB)	Result (dBuV/m)	$\underset{\text { (dBuV/m) }}{\text { Limit }}$	$\underset{\text { (dB) }}{\text { Margin }}$
Lowest	2389.75	V	X	PK	50.28	5.24	N/A	N/A	55.52	74.00	18.48
	2389.29	V	X	AV	40.32	5.23	0.21	N/A	45.76	54.00	8.24
	4823.62	V	X	PK	49.28	1.56	N/A	N/A	50.84	74.00	23.16
	4824.44	V	X	AV	38.76	1.56	0.21	N/A	40.53	54.00	13.47
	7235.56	V	X	PK	53.27	8.98	N/A	N/A	62.25	74.00	11.75
	7236.35	V	X	AV	37.39	8.99	0.21	N/A	46.59	54.00	7.41
Middle	4874.06	V	X	PK	49.70	1.80	N/A	N/A	51.50	74.00	22.50
	4874.23	V	X	AV	39.11	1.80	0.21	N/A	41.12	54.00	12.88
	7311.00	V	X	PK	53.21	9.74	N/A	N/A	62.95	74.00	11.05
	7310.61	V	X	AV	37.08	9.74	0.21	N/A	47.03	54.00	6.97
Highest	2483.68	V	X	PK	48.83	5.80	N/A	N/A	54.63	74.00	19.37
	2483.76	V	X	AV	39.59	5.80	0.21	N/A	45.60	54.00	8.40
	4923.56	V	X	PK	50.09	2.07	N/A	N/A	52.16	74.00	21.84
	4924.03	V	X	AV	39.03	2.07	0.21	N/A	41.31	54.00	12.69
	7385.56	V	X	PK	53.79	9.78	N/A	N/A	63.57	74.00	10.43
	7386.34	V	X	AV	37.20	9.78	0.21	N/A	47.19	54.00	6.81

Note.
4. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
5. Sample Calculation.

Margin = Limit - Result / Result $=$ Reading + T.F+ DCCF + DCF / T.F = AF + CL -AG
Where, T.F = Total Factor, $\mathrm{AF}=$ Antenna Factor, $\quad \mathrm{CL}=$ Cable Loss, $\mathrm{AG}=$ Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
6. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

Radiated Spurious Emissions data(9 kHz ~25 GHz) : TM 3 \& MN: ADB40S2AN

Tested Frequency	Frequency (MHz)	$\begin{gathered} \text { ANT } \\ \text { Pol } \end{gathered}$	EUT Position (Axis)	Detector Mode	Reading (dBuV)	$\begin{gathered} \text { T.F } \\ (\mathrm{dB} / \mathrm{m}) \end{gathered}$	DCCF (dB)	DCF (dB)	Result (dBuV/m)	$\underset{(\mathrm{dBuV} / \mathrm{m})}{\operatorname{Limit}_{\text {(}}^{2}}$	$\underset{\text { (dB) }}{\text { Margin }}$
Lowest	2388.68	V	X	PK	50.87	5.23	N/A	N/A	56.10	74.00	17.90
	2389.16	V	X	AV	40.03	5.23	1.47	N/A	46.73	54.00	7.27
	4823.81	V	X	PK	48.89	1.56	N/A	N/A	50.45	74.00	23.55
	4824.12	V	X	AV	38.95	1.56	1.47	N/A	41.98	54.00	12.02
	7235.94	V	X	PK	52.96	8.98	N/A	N/A	61.94	74.00	12.06
	7236.02	V	X	AV	36.97	8.99	1.47	N/A	47.43	54.00	6.57
Middle	4873.94	V	X	PK	49.51	1.80	N/A	N/A	51.31	74.00	22.69
	4874.31	V	X	AV	39.77	1.80	1.47	N/A	43.04	54.00	10.96
	7311.07	V	X	PK	52.85	9.74	N/A	N/A	62.59	74.00	11.41
	7310.84	V	X	AV	37.98	9.74	1.47	N/A	49.19	54.00	4.81
Highest	2485.46	V	X	PK	50.62	5.82	N/A	N/A	56.44	74.00	17.56
	2484.39	V	X	AV	39.42	5.81	1.47	N/A	46.70	54.00	7.30
	4923.62	V	X	PK	50.86	2.07	N/A	N/A	52.93	74.00	21.07
	4923.67	V	X	AV	39.73	2.07	1.47	N/A	43.27	54.00	10.73
	7385.94	V	X	PK	53.93	9.78	N/A	N/A	63.71	74.00	10.29
	7386.17	V	X	AV	37.59	9.78	1.47	N/A	48.84	54.00	5.16

Note.
4. The radiated emissions were investigated up to 25 GHz . And no other spurious and harmonic emissions were found above listed frequencies.
5. Sample Calculation.

Margin $=$ Limit - Result / Result $=$ Reading + T.F+ DCCF + DCF / T.F = AF + CL -AG
Where, T.F = Total Factor, $\mathrm{AF}=$ Antenna Factor, $\quad \mathrm{CL}=$ Cable Loss, $\mathrm{AG}=$ Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor
6. Information of Distance Factor.

For finding emissions, the test distance might be reduced from 3 m to 1 m . In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor $=20 \log ($ applied distance $/$ required distance $)=20 \log (1 \mathrm{~m} / 3 \mathrm{~m})=-9.54 \mathrm{~dB}$

8.6 Power-line conducted emissions

■ Test Requirements and limit, $\S 15.207$
For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mathrm{uH} / 50$ ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range $(M H z)$	Conducted Limit (dBuV)	
	Quasi-Peak	Average
$0.15 \sim 0.5$	66 to $56{ }^{*}$	56 to $46{ }^{*}$
$0.5 \sim 5$	56	46
$5 \sim 30$	60	50

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

\square Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to the test power supply.
3. The measurement results are obtained as described below:
4. Detectors - Quasi Peak and Average Detector.

- Test Results: NA

FCC ID: TQ8-ADB10S2AN0

9. LIST OF TEST EQUIPMENT

Type	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date ($\mathrm{y} / \mathrm{mm} / \mathrm{dd}$)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY49060056
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48010133
DC Power Supply	Agilent Technologies	66332A	19/12/16	20/12/16	US37476998
DC Power Supply	SM techno	SDP30-5D	19/06/24	20/06/24	305DMG305
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/06/25	20/06/25	N/A
Loop Antenna	ETS-Lindgren	6502	19/09/18	21/09/18	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Horn Antenna	ETS-Lindgren	3115	19/01/11	21/01/11	9202-3820
Horn Antenna	A.H.Systems Inc.	SAS-574	19/07/03	21/07/03	155
PreAmplifier	tsj	MLA-0118-B01-40	19/12/16	20/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	19/06/27	20/06/27	16966-10728
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000-15000-40SS	19/06/26	20/06/26	8
High Pass Filter	Wainwright Instruments	$\begin{aligned} & \text { WHKX10-2838-3300- } \\ & \text { 18000-60SS } \end{aligned}$	19/06/26	20/06/26	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	19/06/27	20/06/27	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	19/06/27	20/06/27	16012202
Attenuator	SRTechnology	F01-B0606-01	19/06/27	20/06/27	13092403
Attenuator	Aeroflex/Weinschel	20515	19/06/27	20/06/27	Y2370
Attenuator	SMAJK	SMAJK-2-3	19/06/27	20/06/27	2
Attenuator	SMAJK	SMAJK-50-10	19/06/25	20/06/25	15081903
Power Meter \& Wide Bandwidth Sensor	Anritsu	$\begin{aligned} & \hline \text { ML2495A } \\ & \text { MA2490A } \end{aligned}$	19/06/24	20/06/24	$\begin{aligned} & 1306007 \\ & 1249001 \end{aligned}$
EMI Receiver	ROHDE\&SCHWARZ	ESW44	19/07/30	20/07/30	101645
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
Cable	DT\&C	Cable	20/01/13	21/01/13	G-13
Cable	DT\&C	Cable	20/01/13	21/01/13	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	20/01/13	21/01/13	G-15
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	M-01
Cable	Junkosha	MWX315	20/01/16	21/01/16	M-05
Cable	Junkosha	MWX221	20/01/16	21/01/16	M-06
Cable	Radiall	TESTPRO3	20/01/15	21/01/15	RF-65

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017
Note 2: The cable is not a regular calibration item, so it has been calibrated by DT \& C itself.

APPENDIX I

Test set up diagrams

- Radiated Measurement

- Conducted Measurement

Cable A

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	9.63	15	11.67
1	9.91	20	12.46
$2.412 \& 2.437 \& 2.462$	10.41	25	12.8
5	10.48	-	-
10	10.60	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test.
Path loss (S/A's correction factor) = Cable A

APPENDIX II

Duty cycle plots

- Test Procedure

Duty Cycle was measured using section 6.0 b) of KDB558074 D01v05r02 :
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector $=$ peak or average .

The zero-span measurement method shall not be used unless both RBW and VBW are $>50 / \mathrm{T}$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz , then the zero-span method of measuring duty cycle shall not be used if $\mathrm{T} \leq 16.7$ microseconds.)

Duty Cycle

TM $1 \quad$ \& Middle

Duty Cycle
TM 2

Duty Cycle

APPENDIX III

Unwanted Emissions (Radiated) Test Plot _ MN: ADB10S2AN0

TM 1 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 1 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 1 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 1 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 2 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 2 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 2 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 2 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 3 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 3 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 1 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 2 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Highest \& X axis \& Ver

TM 1 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 1 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 1 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 1 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 2 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 2 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 2 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 2 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Lowest \& X axis \& Ver
Detector Mode : PK

TM 3 \& Lowest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Highest \& X axis \& Ver
Detector Mode : PK

TM 3 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 1 \& Highes \& X axis \& Ver
Detector Mode : AV

TM 2 \& Highest \& X axis \& Ver
Detector Mode : AV

TM 3 \& Middle \& X axis \& Ver
Detector Mode : AV

