

# **TEST REPORT**

# FCC MPE Test for ACB16H6GG

## Certification

APPLICANT HYUNDAI MOBIS CO., LTD

REPORT NO. HCT-RF-1911-FC002

**DATE OF ISSUE**November 05, 2019



#### HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401



REPORT NO. HCT-RF-1911-FC002

DATE OF ISSUE November 05, 2019

FCC ID TQ8-ACB16H6GG

| Applicant                                  | HYUNDAI MOBIS CO., LTD<br>203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea                              |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Eut Type<br>Model Name<br>Additional Model | Car Audio System<br>ACB16H6GG<br>ACB17H6GG, ACB16H6GN, ACB16H6GP, ACB16H6MG, ACB16H6EG,<br>ACB16H6EP, ACB17H6EP |
| Date of Receipt                            | October 10, 2019                                                                                                |
| Frequency range                            | 2 402 MHz ~ 2 480 MHz(Bluetooth)                                                                                |
|                                            | This test results were applied only to the test methods required by the                                         |

This test results were applied only to the test methods required by the standard.

Tested by Se Wook Park

Technical Manager Jong Seok Lee

HCT CO., LTD.

Soo Chon Lee

SocChan Lee

(CEO



#### **REVISION HISTORY**

The revision history for this test report is shown in table.

| Revision No. | Date of Issue     | Description     |
|--------------|-------------------|-----------------|
| 0            | November 05, 2019 | Initial Release |

The measurements shown in this report were made in accordance with the procedures specified in § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

F-TP22-03 (Rev. 01) Page 3 of 5



# **RF Exposure Statement**

#### 1. Limit

According to § 1.1310, § 2.1091 RF exposure is calculated.

#### (B) Limits for General Population/Uncontrolled Exposures

| Frequency range<br>(MHz) | Electric field<br>Strength (V/m) | Magneticfield<br>Strength (A/m) | Powerdensity<br>(mW/cm²) | Averagingtime<br>(minutes) |
|--------------------------|----------------------------------|---------------------------------|--------------------------|----------------------------|
| 0.3 -                    |                                  |                                 |                          |                            |
| 1.34                     | 614                              | 1.63                            | *(100)                   | 30                         |
| 1.34 - 30                | 824/f                            | 2.19/f                          | *(180/ f <sup>2</sup> )  | 30                         |
| 30 - 300                 | 27.5                             | 0.073                           | 0.2                      | 30                         |
| 300 - 1500               |                                  |                                 | f/1500                   | 30                         |
| 1500 -                   |                                  |                                 | 1.0                      | 30                         |
| 100.000                  |                                  |                                 |                          |                            |

F = frequency in MHz

#### 2. Maximum Permissible Exposure Prediction

Prediction of MPE limit at a given distance

$$S = PG/4\pi R^2$$

S = Power density

P = Power input to antenna

G = Power gain to the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

F-TP22-03 (Rev. 01) Page 4 of 5

<sup>\* =</sup> Plane-wave equivalent power density



## 3. RESULTS

#### 3-1. Bluetooth

| Average output Power at antenna input terminal              | 4.00        | dBm                |
|-------------------------------------------------------------|-------------|--------------------|
| Average output Power at antenna input terminal              | 2.51        | mW                 |
| Prediction distance                                         | 20.00       | cm                 |
| Prediction frequency                                        | 2402 – 2480 | MHz                |
| Antenna Gain(typical)                                       | -0.01       | dBi                |
| Antenna Gain(numeric)                                       | 0.998       | -                  |
| Power density at prediction frequency(S)                    | 0.00050     | mW/cm²             |
| MPE limit for uncontrolled exposure at prediction frequency | 1.000       | mW/cm <sup>2</sup> |

## 2.1091

| EIRP      | 3.99  | (dBm) |
|-----------|-------|-------|
| ERP       | 1.84  | (dBm) |
| ERP       | 0.002 | (W)   |
| ERP Limit | 3.00  | (W)   |
| MARGIN    | 32.93 | (dB)  |

F-TP22-03 (Rev. 01) Page 5 of 5