### Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China

Phone:86-755-26748099

Fax:86-755-26748089

http://www.szhtw.com.cn





Luy Or:





#### FCC PART 15 SUBPART C TEST REPORT

**FCC PART 15.247** 

Report Reference No...... WE08110001

Compiled by

( position+printed name+signature)..: File administrators Tracy Qi

Supervised by

( position+printed name+signature)..: Test Engineer Tracy Qi

Approved by

( position+printed name+signature)..: Manager Jimmy Li

Testing Laboratory Name ...... Shenzhen Huatongwei International Inspection Co., Ltd

Address...... Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Applicant's name...... Invengo Information Technology Co., Ltd.

**Test specification:** 

Standard ...... FCC Part 15.247: Operation within the bands 920-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz Direct Sequence System

TRF Originator...... Shenzhen Huatongwei International Inspection CO., Ltd

Master TRF...... Dated 2006-06

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description .....: Reader

Trade Mark ...... /

Model/Type reference...... XCRF-502E

Listed Models ...... /

permitted)

Result...... Positive

### TEST REPORT

| Test Report No. : | WE08110001 | Nov 20, 2008  |  |  |
|-------------------|------------|---------------|--|--|
| l rest Report No  |            | Date of issue |  |  |

Equipment under Test : Reader

Model /Type : XCRF-502E

Listed Models : /

Applicant : Invengo Information Technology Co., Ltd.

Address : 3/F, No T2-B, High-Tech Industrial Park South, Shenzhen,

China

| Test Result according to the standards on page 4: | ive |
|---------------------------------------------------|-----|
|---------------------------------------------------|-----|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

V1.0 Page 3 of 37 Report No.: WE08110001

## **Contents**

| <u>1.</u> | TEST STANDARDS                                      | <u> 4</u> |
|-----------|-----------------------------------------------------|-----------|
|           |                                                     |           |
| <u>2.</u> | SUMMARY                                             | <u>5</u>  |
| 2.1.      | General Remarks                                     | 5         |
| 2.2.      | Equipment Under Test                                | 5         |
| 2.3.      | Short description of the Equipment under Test (EUT) | 5         |
| 2.4.      | EUT operation mode                                  | 5         |
| 2.5.      | EUT configuration                                   | 5         |
| 2.6.      | Related Submittal(s) / Grant (s)                    | 6         |
| 2.7.      | Modifications                                       | 6         |
| <u>3.</u> | TEST ENVIRONMENT                                    | 7         |
| 3.1.      | Address of the test laboratory                      | 7         |
| 3.2.      | Test Facility                                       | 7         |
| 3.3.      | Environmental conditions                            | 8         |
| 3.4.      | Configuration of Tested System                      | 8         |
| 3.5.      | Test Description                                    | 9         |
| 3.6.      | Statement of the measurement uncertainty            | 9         |
| 3.7.      | Equipments Used during the Test                     | 10        |
| <u>4.</u> | TEST CONDITIONS AND RESULTS                         | 11        |
| 4.1.      | Conducted Emissions Test                            | 11        |
| 4.2.      | Radiated Emission Test                              | 14        |
| 4.3.      | Maximum Peak Output Power                           | 17        |
| 4.4.      | Hopping Channel                                     | 20        |
| 4.5.      | Channel Separation                                  | 21        |
| 4.6.      | Band Edge Measurement                               | 22        |
| 4.7.      | 20dB Bandwidth Measurement                          | 24        |
| 4.8.      | Operation Frequency                                 | 26        |
| 4.9.      | Dwell Time                                          | 27        |
| APPE      | ENDIX 1PHOTOGRAPHS OF SET UP                        | 29        |
| APPE      | NDIX 2PHOTOGRAPHS OF EUT                            | 31        |

V1.0 Page 4 of 37 Report No.: WE08110001

### 1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

V1.0 Page 5 of 37 Report No.: WE08110001

### 2. SUMMARY

#### 2.1. General Remarks

Date of receipt of test sample : Nov 11, 2008

Testing commenced on : Nov 13, 2008

Testing concluded on : Nov 19, 2008

### 2.2. Equipment Under Test

#### Power supply system utilised

Power supply voltage : ● 120V / 60 Hz o 115V / 60Hz

o 12 V DC o 24 V DC

o Other (specified in blank below)

### 2.3. Short description of the Equipment under Test (EUT)

902~928 MHz lower power, RFID reader, It is designed by way of utilizing the FHSS technology to achieve the system operation.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

### 2.4. EUT operation mode

The EUT has been tested under typical operating condition.

### 2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

o - supplied by the manufacturer

o - supplied by the lab

o Power Cable Length (m): /

Shield: /

Detachable: /

o Multimeter Manufacturer : /

Model No.: /

V1.0 Page 6 of 37 Report No.: WE08110001

### 2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: TQ4YWGIT-R5678904 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

### 2.7. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 7 of 37 Report No.: WE08110001

### 3. TEST ENVIRONMENT

### 3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

#### 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: August 02, 2007. Valid time is until March 04, 2009.

#### A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is from Aug 24, 2005 to Sept 30, 2009.

#### FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date September 2009.

#### IC-Registration No.: 5377

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377 on November 28<sup>th</sup>, 2005.

#### **ACA**

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

#### NEMKO-Aut. No.: ELA125

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025:2005 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10, the Authorization is valid through April 25, 2009.

#### VCCI

The 3m Semi-anechoic chamber  $(12.2m\times7.95m\times6.7m)$  and Shielded Room  $(8m\times4m\times3m)$  of Shenzhen Huatongwei International Inspection Co., Ltd has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: December 20, 2006. Valid time is until December 19, 2009.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: December 20, 2006. Valid time is until December 19, 2009.

#### **IECEE CB**

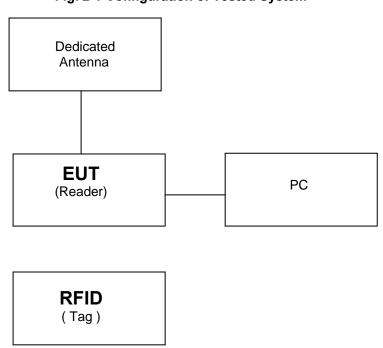
Shenzhen Huatongwei International Inspection Co Ltd has been assessed and determined to fully comply with the requirements of ISO/IEC 17025: 2005-05, The Basic Rules, IECEE 01: 2006-10 and Rules of Procedure IECEE 02: 2006-10, and the relevant IECEE CB-Scheme Operational Documents. It is therefore entitled to operate as a CB Testing Laboratory under the responsibility of Nemko A/S. This certificate remains valid until May 25th 2009 at which time it will be reissued by the IECEE Executive Secretary upon successful completion of the normally scheduled 3-year Reassessment Program administered by the IECEE CB Scheme.

#### DNV

Shenzhen Huatongwei International Inspection Co Ltd has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025(2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until 09 July, 2010.

#### 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:


Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

### 3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System



**Table 2-1 Equipment Used in Tested System** 

| No | Product | Manufacturer | Model No.      | Serial No. | FCC ID |
|----|---------|--------------|----------------|------------|--------|
| 1  | PC      | DELL         | DIMENSION 2350 | OD0120     | DoC    |

#### 3.5. Test Description

| FCC PART 15                     |                                                    |      |
|---------------------------------|----------------------------------------------------|------|
| FCC Part 15.207                 | AC Power Conducted Emission                        | PASS |
| FCC Part 15.247                 | Channel Separation                                 | PASS |
| FCC Part 15.247                 | Hopping Channels                                   | PASS |
| FCC Part 15.247                 | 20dB Bandwidth                                     | PASS |
| FCC Part 15.247(b)              | Maximum Peak Output Power                          | PASS |
| FCC Part 15.247                 | Operation Frequency                                | PASS |
| FCC Part 15.247                 | Spurious Emission                                  | PASS |
| FCC Part 15.109/ 15.205/ 15.209 | Radiated Emissions                                 | PASS |
| FCC Part 15.247                 | Out of Band Emission and Restricted Band Radiation | PASS |
| FCC Part 15.247                 | Dwell Time                                         | PASS |

Remark: The measurement uncertainty is not included in the test result.

#### 3.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

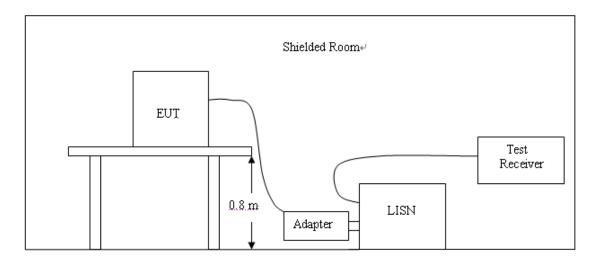
| Test                  | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------|------------|----------------------------|-------|
| Radiated Emission     | 30~1000MHz | 4.22dB                     | (1)   |
| Radiated Emission     | 1~12.75GHz | 4.35dB                     | (1)   |
| Conducted Disturbance | 0.15~30MHz | 3.29dB                     | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 3.7. Equipments Used during the Test

| AC Power Conducted Emission |                      |                 |            |            |           |
|-----------------------------|----------------------|-----------------|------------|------------|-----------|
| Item                        | Test Equipment       | Manufacturer    | Model No.  | Serial No. | Last Cal. |
| 1                           | EMI TEST RECEIVER    | ROHDE & SCHWARZ | ESCS30     | 100038     | 2008/11   |
| 2                           | ARTIFICIAL MAINS     | ROHDE & SCHWARZ | ESH2-Z5    | 100028     | 2008/11   |
| 3                           | PULSE LIMITER        | ROHDE & SCHWARZ | ESHSZ2     | 100044     | 2008/11   |
| 4                           | EMI TEST<br>SOFTWARE | ROHDE & SCHWARZ | ES-K1 1.71 | N/A        | 2008/11   |

| Radiated Emissions |                            |                 |            |              |         |
|--------------------|----------------------------|-----------------|------------|--------------|---------|
| Item               | Test Equipment             | Model No.       | Serial No. | Last Cal.    |         |
| 1                  | ULTRA-BROADBAND<br>ANTENNA | ROHDE & SCHWARZ | HL562      | 100015       | 2008/11 |
| 2                  | EMI TEST RECEIVER          | ROHDE & SCHWARZ | ESI 26     | 100009       | 2008/11 |
| 3                  | RF TEST PANEL              | ROHDE & SCHWARZ | TS / RSP   | 335015/ 0017 | 2008/11 |
| 4                  | TURNTABLE                  | ETS             | 2088       | 2149         | 2008/11 |
| 5                  | ANTENNA MAST               | ETS             | 2075       | 2346         | 2008/11 |
| 6                  | EMI TEST<br>SOFTWARE       | ROHDE & SCHWARZ | ESK1       | N/A          | 2008/11 |


| Maximum Peak Output Power / Hopping Channel / 20dB Bandwidth / Band Edge Measurement |      |                   |                 |           |            |           |
|--------------------------------------------------------------------------------------|------|-------------------|-----------------|-----------|------------|-----------|
|                                                                                      | Item | Test Equipment    | Manufacturer    | Model No. | Serial No. | Last Cal. |
|                                                                                      | 1    | EMI TEST RECEIVER | ROHDE & SCHWARZ | ESCI      | 100106     | 2008/11   |

V1.0 Page 11 of 37 Report No.: WE08110001

### 4. TEST CONDITIONS AND RESULTS

#### 4.1. Conducted Emissions Test

#### **TEST CONFIGURATION**

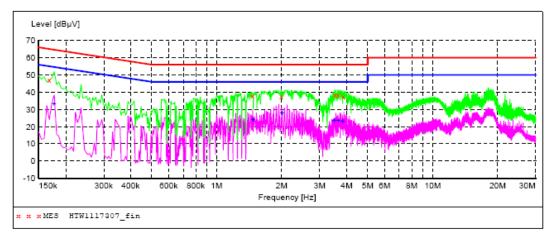


#### **TEST PROCEDURE**

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2 Support equipment, if needed, was placed as per ANSI C63.4.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4 The EUT received DC8V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

### Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:


| Francis            | Maximum RF Line Voltage (dBμV) |      |        |         |  |
|--------------------|--------------------------------|------|--------|---------|--|
| Frequency<br>(MHz) | CLASS A                        |      | C      | CLASS B |  |
| (141112)           | Q.P.                           | Ave. | Q.P.   | Ave.    |  |
| 0.15 - 0.50        | 79                             | 66   | 66-56* | 56-46*  |  |
| 0.50 - 5.00        | 73                             | 60   | 56     | 46      |  |
| 5.00 - 30.0        | 73                             | 60   | 60     | 50      |  |

<sup>\*</sup> Decreasing linearly with the logarithm of the frequency

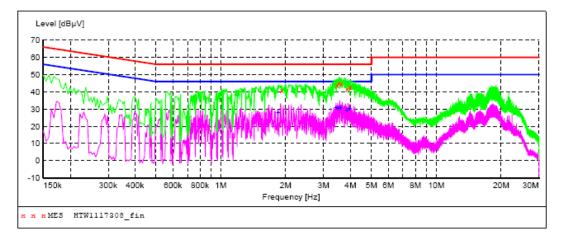
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

#### **TEST RESULTS**

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage



#### MEASUREMENT RESULT: "HTW1117307\_fin"


| 11/17/2008 9:<br>Frequency<br>MHz | 58AM<br>Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
|-----------------------------------|-----------------------|--------------|---------------|--------------|----------|------|-----|
| 0.168000                          | 47.00                 | 10.6         | 65            | 18.1         | QP       | N    | GND |
| 1.468500                          | 37.90                 | 10.7         | 56            | 18.1         | QP       | N    | GND |
| 1.995000                          | 37.50                 | 10.7         | 56            | 18.5         | QP       | N    | GND |
| 3.525000                          | 38.60                 | 10.7         | 56            | 17.4         | QP       | N    | GND |
| 3.651000                          | 38.70                 | 10.7         | 56            | 17.3         | QP       | N    | GND |
| 3.849000                          | 37.50                 | 10.7         | 56            | 18.5         | QP       | N    | GND |

### MEASUREMENT RESULT: "HTW1117307\_fin2"

| 11/17/2008 9:58AM |                  |               |              |               |              |          |      |     |
|-------------------|------------------|---------------|--------------|---------------|--------------|----------|------|-----|
|                   | Frequency<br>MHz | Level<br>dBµV | Transd<br>dB | Limit<br>dBµV | Margin<br>dB | Detector | Line | PE  |
|                   | 0.177000         | 33.10         | 10.6         | 55            | 21.5         | AV       | N    | GND |
|                   | 1.477500         | 24.30         | 10.7         | 46            | 21.7         | AV       | N    | GND |
|                   | 2.008500         | 27.80         | 10.7         | 46            | 18.2         | AV       | N    | GND |
|                   | 3.511500         | 23.70         | 10.7         | 46            | 22.3         | AV       | N    | GND |
|                   | 3.655500         | 23.60         | 10.7         | 46            | 22.4         | AV       | N    | GND |
|                   | 3 831000         | 23 40         | 10.7         | 46            | 22.6         | ΔV       | N    | GND |

Page 1/1 11/17/2008 9:58AM HTW1117307

# SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

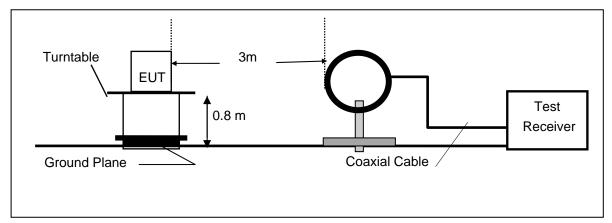


#### MEASUREMENT RESULT: "HTW1117308 fin"

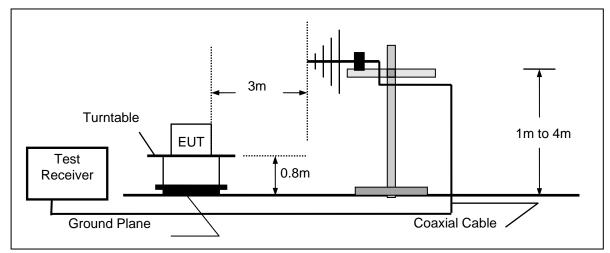
| 11/17/2008 10<br>Frequency<br>MHz                                    |                                                    | Transd<br>dB                         | Limit<br>dBµV              | Margin<br>dB                                 | Detector                         | Line                             | PE                                     |
|----------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------------|
| 1.918500<br>3.466500<br>3.534000<br>3.633000<br>3.858000<br>3.988500 | 41.00<br>43.70<br>45.30<br>44.60<br>41.70<br>42.70 | 10.7<br>10.7<br>10.7<br>10.7<br>10.7 | 56<br>56<br>56<br>56<br>56 | 15.0<br>12.3<br>10.7<br>11.4<br>14.3<br>13.3 | QP<br>QP<br>QP<br>QP<br>QP<br>OP | L1<br>L1<br>L1<br>L1<br>L1<br>L1 | GND<br>GND<br>GND<br>GND<br>GND<br>GND |

#### MEASUREMENT RESULT: "HTW1117308 fin2"

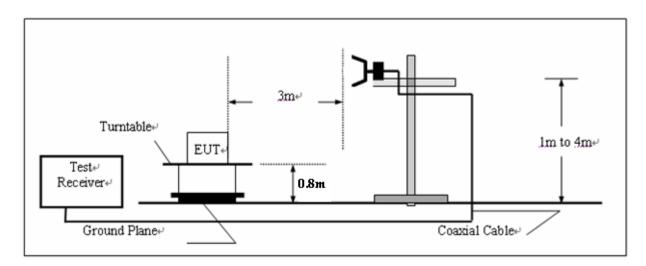
| 11 | 11/17/2008 10:03AM |       |        |       |        |          |      |     |
|----|--------------------|-------|--------|-------|--------|----------|------|-----|
|    | Frequency          | Level | Transd | Limit | Margin | Detector | Line | PΕ  |
|    | MHz                | dΒμV  | dB     | dBµV  | dB     |          |      |     |
|    |                    |       |        |       |        |          |      |     |
|    | 1.846500           | 28.00 | 10.7   | 46    | 18.0   | AV       | L1   | GND |
|    | 3.430500           | 30.80 | 10.7   | 46    | 15.2   | AV       | L1   | GND |
|    | 3.520500           | 30.40 | 10.7   | 46    | 15.6   | AV       | L1   | GND |
|    | 3.606000           | 30.90 | 10.7   | 46    | 15.1   | AV       | L1   | GND |
|    | 3.844500           | 29.40 | 10.7   | 46    | 16.6   | AV       | L1   | GND |
|    | 3.961500           | 30.40 | 10.7   | 46    | 15.6   | AV       | L1   | GND |
|    |                    |       |        |       |        |          |      |     |


Page 1/1 11/17/2008 10:03AM HTW1117308

V1.0 Page 14 of 37 Report No.: WE08110001


#### 4.2. Radiated Emission Test

### **TEST CONFIGURATION**


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz



(C) Radiated Emission Test Set-Up, Frequency above 1000MHz



#### **TEST PROCEDURE**

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from  $0^{\circ}$  to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

#### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

#### **RADIATION LIMIT**

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency<br>(MHz) | Distance<br>(Meters) | Radiated<br>(dBµV/m) | Radiated<br>(μV/m) |
|--------------------|----------------------|----------------------|--------------------|
| 30-88              | 3                    | 40.0                 | 100                |
| 88-216             | 3                    | 43.5                 | 150                |
| 216-960            | 3                    | 46.0                 | 200                |
| Above 960          | 3                    | 54.0                 | 500                |

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

V1.0 Page 16 of 37 Report No.: WE08110001

#### **TEST RESULTS**

#### **Below 1GHz:**

| Frequency<br>(MHz) | Ant/CL/<br>Amp.CF |            | Meter Reading<br>at 3m(dBµV) |          | Emission<br>at 3m(dB |          |
|--------------------|-------------------|------------|------------------------------|----------|----------------------|----------|
| (141112)           | (dB)              | Horizontal | Vertical                     | (dBµV/m) | Horizontal           | Vertical |
| 30.00              | 20.70             | *          | *                            | 40.00    | *                    | *        |
| 99.98              | 14.80             | 20.10      | 20.20                        | 43.50    | 34.90                | 35.00    |
| 376.01             | 18.80             | 16.40      | 16.00                        | 46.00    | 35.20                | 34.80    |
| 399.34             | 20.20             | 17.40      | 19.70                        | 46.00    | 37.60                | 39.90    |
| 500.42             | 20.10             | 17.70      | 15.70                        | 46.00    | 37.80                | 35.80    |
| 733.69             | 23.90             | 13.50      | 13.00                        | 46.00    | 37.40                | 36.90    |
| 1000.00            | 24.30             | *          | *                            | 54.00    | *                    | *        |

#### REMARKS:

#### **Spurious Emssion on Transmitting:**

| Freq.       | Ant.Pol. | DetectorMode | Reading | Ant./CL/   | Actual FS | Limit3m  | Safe Margin |
|-------------|----------|--------------|---------|------------|-----------|----------|-------------|
| (MHz)       | H/V      | (PK/AV)      | (dBuV)  | Amp. CF(dB | (dBuV/m)  | (dBuV/m) | (dB)        |
| Below 1 GHz | V        | Peak         |         |            |           |          | At least 20 |
| Below 1 GHz | Н        | Peak         |         |            |           |          | dB down     |
| Above 1 GHz | V        | Peak         |         |            |           |          | than the    |
| Above 1 GHz | Н        | Peak         |         |            |           |          | Limit       |

#### Remark:

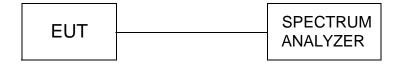
- (1) Measuring frequencies from 25 MHz to the 10 GHz.
- (2) Datum of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) The IF bandwidth of EMI Test Receiver between 25MHz to 1GHz was 120KHz and 1 MHz for above 1 GHz

#### Spurious Emission on Receiving:

| Freq.       | Ant.Pol. | DetectorMode | Reading | Ant./CL/   | Actual FS | Limit3m  | Safe Margin |
|-------------|----------|--------------|---------|------------|-----------|----------|-------------|
| (MHz)       | H/V      | (PK/AV)      | (dBuV)  | Amp. CF(dB | (dBuV/m)  | (dBuV/m) | (dB)        |
| Below 1 GHz | V        | Peak         |         |            |           |          | At least 20 |
| Below 1 GHz | Н        | Peak         |         |            |           |          | dB down     |
| Above 1 GHz | V        | Peak         |         |            |           |          | than the    |
| Above 1 GHz | Н        | Peak         |         |            |           |          | Limit       |

#### Remark:

- (1) Measuring frequencies from 25 MHz to the 10 GHz.
- (2) Datum of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) The IF bandwidth of EMI Test Receiver between 25MHz to 1GHz was 120KHz and 1 MHz for above 1 GHz


<sup>1. \*</sup> Undetectable

<sup>2.</sup> The IF bandwidth of EMI Test Receiver was 120KHz for measuring from 30 MHz to 1 GHz and 1 MHz for measuring above 1 GHz

V1.0 Page 17 of 37 Report No.: WE08110001

#### 4.3. Maximum Peak Output Power

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

1. Connect the EUT to Spectrum Analyzer through a 10 dB attenuator.

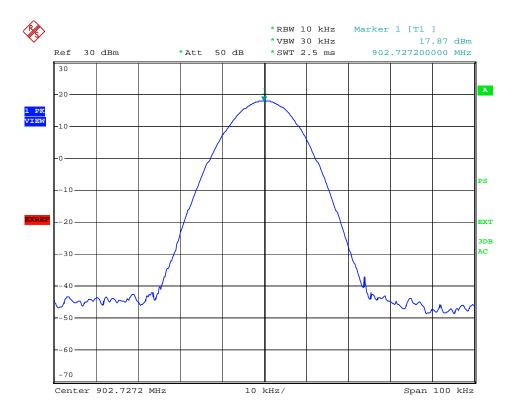
2. The spectrum shall be set as follows:

Span: 1.5 times channel integration bandwidth.

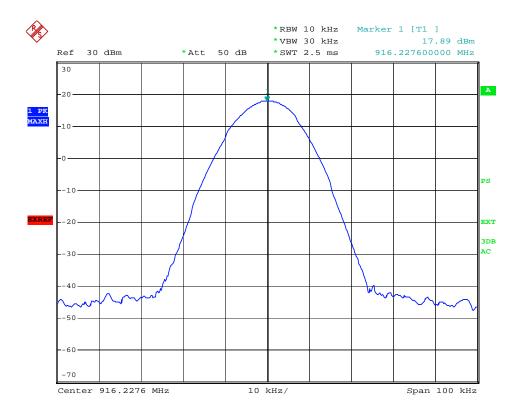
RBW: 10 KHz VBW: 30 KHz Detector: Peak

Sweep: Single trace

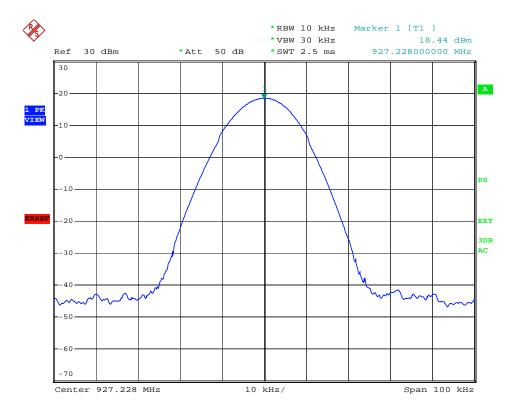
- 3 Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 4. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 5. The peak output power is the channel power integrated over 99% bandwidth.


#### **LIMIT**

The Maximum Peak Output Power Measurement is 30dBm.


### **TEST RESULTS**

| Company      | Invengo Information Technology Co., Ltd. | Test Date     | 11/18/2008 |
|--------------|------------------------------------------|---------------|------------|
| Product Name | Reader                                   | Test By       | Tracy Qi   |
| Model Name   | XCRF-502E                                | TEMP&Humidity | 25 °C, 53% |

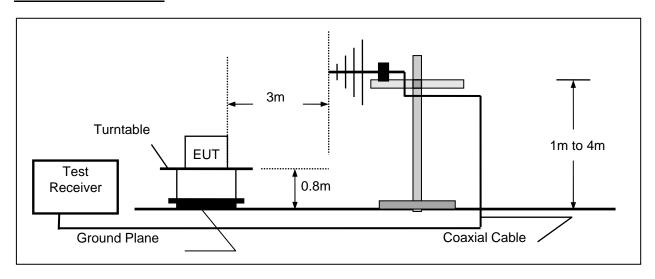

| Channel | Channel<br>Frequency<br>(MHz) | Peak Power<br>Output<br>(dBm) | Peak Power<br>Limit<br>(dBm) | Pass / Fail |
|---------|-------------------------------|-------------------------------|------------------------------|-------------|
| Low     | 902.75                        | 27.87                         | 30                           | PASS        |
| Mid     | 914.75                        | 27.89                         | 30                           | PASS        |
| High    | 927.25                        | 28.44                         | 30                           | PASS        |



Date: 18.NOV.2008 07:55:37



Date: 18.NOV.2008 07:57:05




Date: 18.NOV.2008 07:58:05

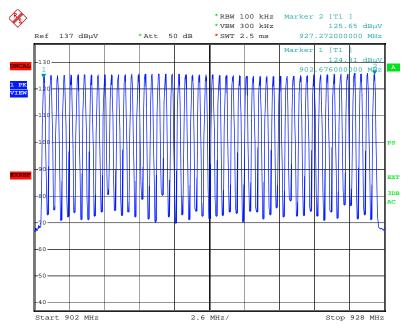
V1.0 Page 20 of 37 Report No.: WE08110001

### 4.4. Hopping Channel

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as Normal Operation mode
- 3. Set SPA Start Frequency = 902 MHz, Stop Frequency= 928 MHz, RBW= 100 KHz, VBW= 300 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

### <u>LIMIT</u>

Per 15.247 (a)(1)( i ) At least 50 hopping Frequencies for 20 dB channel bandwidth less than 250 KHz

#### **TEST RESULTS**

Total 50 Channels

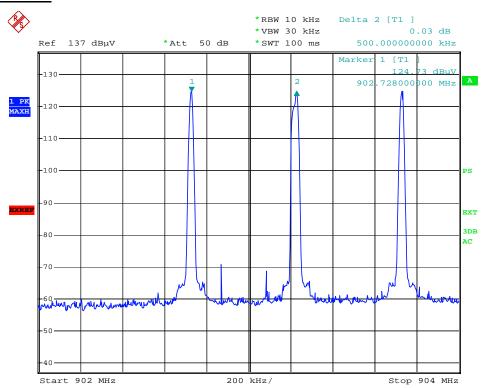


V1.0 Page 21 of 37 Report No.: WE08110001

### 4.5. Channel Separation

#### **TEST CONFIGURATION**

The same as described in Section 4.4


#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as Normal Operation mode
- 3. Set Start Frequency = 902MHz, Stop Frequency = 904 MHz, RBW= 10 KHz, VBW= 30 KHz
- 4. Set SPA Trace 1 Max hold, then View.

#### **LIMIT**

Per 15.247 (a)(1) At least 25 KHz or 20 dB bandwidth of the hopping Channel, whichever is greater

#### **TEST RESULTS**



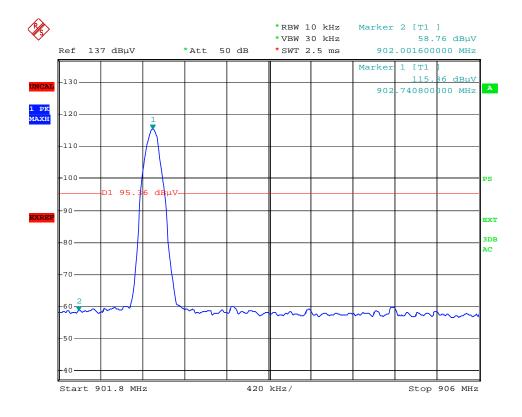
Date: 18.NOV.2008 08:29:54

V1.0 Page 22 of 37 Report No.: WE08110001

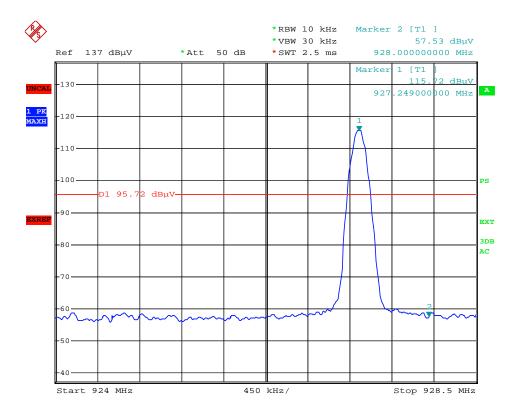
### 4.6. Band Edge Measurement

#### **TEST CONFIGURATION**

The same as described in Section 4.4


#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as Continuous Transmitting Mode.
- 3. Set SPA Center Frequency = Bottom Channel for lowest frequency band edge ( Top Channel for highest frequency band edge ) RBW= 10 KHz, VBW= 30 KHz
- 4. Set SPA Trace 1 Max hold, then View.


#### LIMIT

Per 15.247 (c) In any 100 KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100 KHz bandwidth within the band that contains the highest level of the desired power.

#### **TEST RESULTS**



Date: 18.NOV.2008 08:15:03



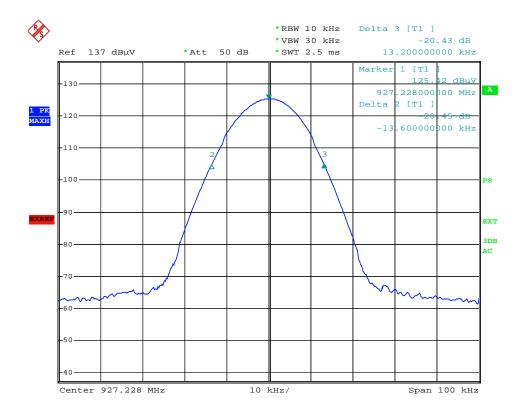
Date: 18.NOV.2008 08:17:08

V1.0 Page 24 of 37 Report No.: WE08110001

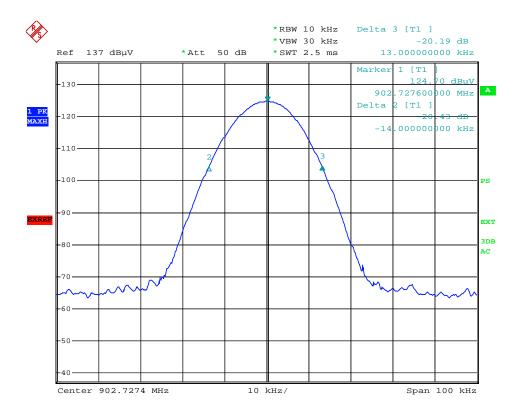
#### 4.7. 20dB Bandwidth Measurement

#### **TEST CONFIGURATION**

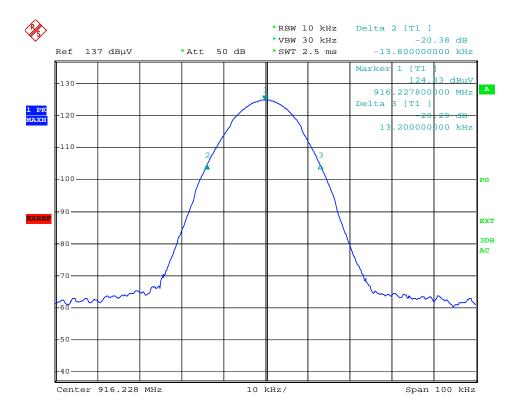
The same as described in Section 4.4


#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as continuous transmitting mode
- 3. Set SPA Center Frequency = Operation Frequency, RBW, VBW= 30 KHz, Span =500 KHz.
- 4. Set SPA Trace 1 Max hold, then View.


#### LIMIT

Per 15.247 (a)(1) At least 25 KHz or 20 dB bandwidth of the hopping Channel, whichever is greater


#### **TEST RESULTS**



Date: 18.NOV.2008 08:05:01



Date: 18.NOV.2008 08:07:49



V1.0 Page 26 of 37 Report No.: WE08110001

### 4.8. Operation Frequency

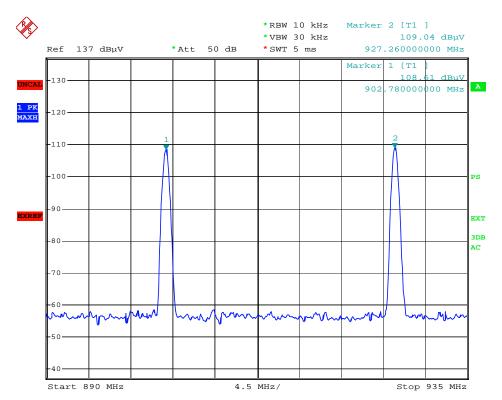
#### **TEST CONFIGURATION**

The same as described in Section 4.4

#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as Continuous Transmitting Mode.
- 3. Set SPA Start Frequency = 902MHz, Stop Frequency = 908 MHz, RBW= 10 KHz, VBW= 30 KHz,
- 4. Set SPA Trace 1 Max hold, then View.

#### **LIMIT**


Per 15.247 The operation frequencies shall lie wholly within 902 MHz to 928 MHz

#### **TEST RESULTS**

| Limits and Measurement Result Of Operation Frequency |                    |          |  |  |  |
|------------------------------------------------------|--------------------|----------|--|--|--|
| Applicable Limits                                    | Measurement Result |          |  |  |  |
| Applicable Limits                                    | Test Data          | Criteria |  |  |  |
| Per 15.247 The operation frequencies shall lie       | FI=902.780 MHz     | PASS     |  |  |  |
| wholly within 902 MHz to 928 MHz                     | Ft=927.260 MHz     | PA33     |  |  |  |

#### Notes:

FI means the lowest band edge frequency of the bottom channel; Ft means the highest band edge frequency of the top channel



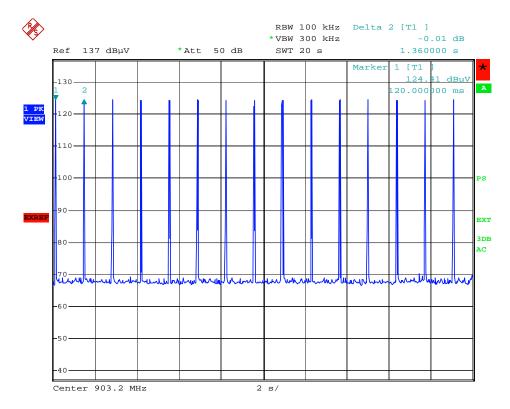
Date: 18.NOV.2008 08:20:28

V1.0 Page 27 of 37 Report No.: WE08110001

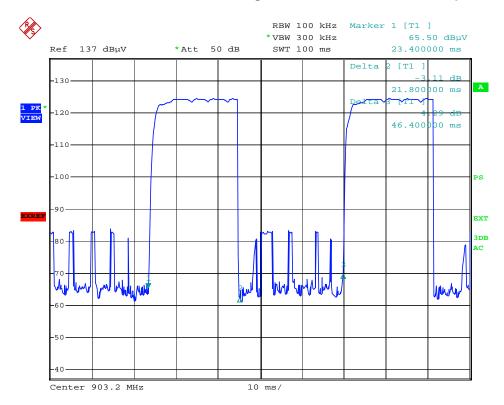
#### 4.9. Dwell Time

#### **TEST CONFIGURATION**

The same as described in Section 4.4


#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as Normal Operation mode
- 3. Set SPA Span= 0 Hz, RBW= 100 KHz, VBW= 300 KHz
- 4. Set SPA Trace 1 Max hold, then View.


#### **LIMIT**

Per 15.247 (a)(1) ( ii ) The average time of occupancy on any frequency shall not be greater than 0.4 seconds

#### **TEST RESULTS**



Date: 18.NOV.2008 15:33:10



Date: 18.NOV.2008 15:31:14

In 20 s total 15 times be found, per transmitting time are 21.8 ms.

Dwell Time:

15 \* 21.8 = 327 ms < 400 ms (Limit)

Test result: Pass

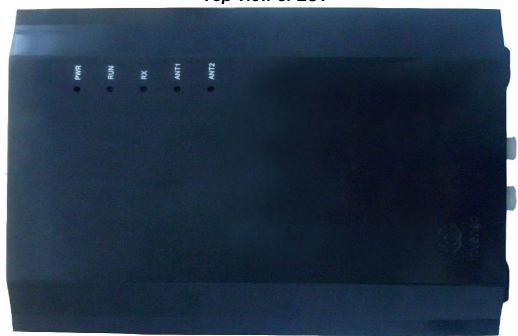
### **APPENDIX 1--PHOTOGRAPHS OF SET UP**







### **Conducted Emission**




V1.0 Page 31 of 37 Report No.: WE08110001

#### **APPENDIX 2--PHOTOGRAPHS OF EUT**

### **External Photos of EUT**

Top View of EUT



**Bottom View of EUT** 



V1.0 Page 32 of 37 Report No.: WE08110001

Front View of EUT



Back View of EUT



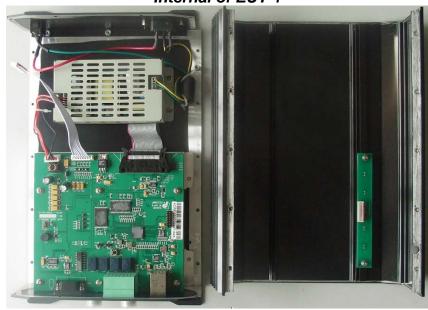
Left View of EUT



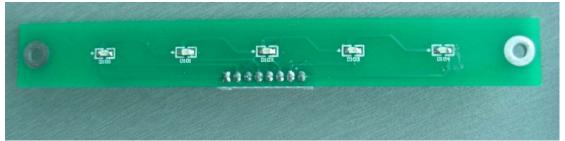






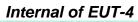

Antenna of System




V1.0 Page 34 of 37 Report No.: WE08110001

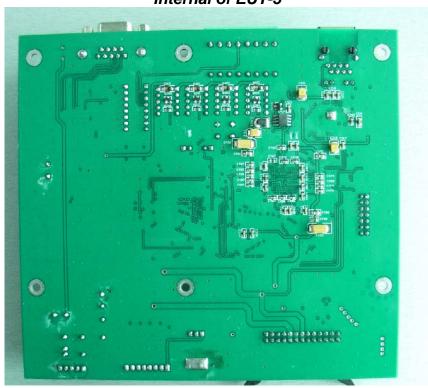
### **Internal Photos of EUT**

Internal of EUT-1




Internal of EUT-2

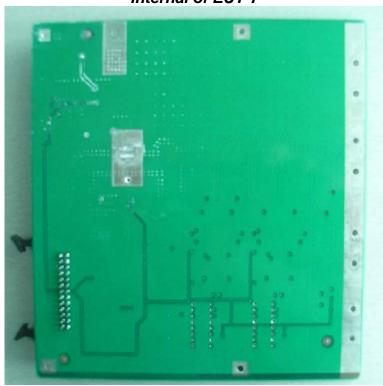



Internal of EUT-3



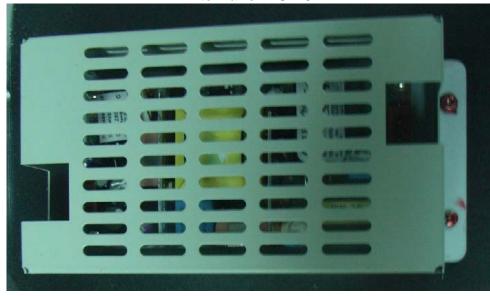






Internal of EUT-5



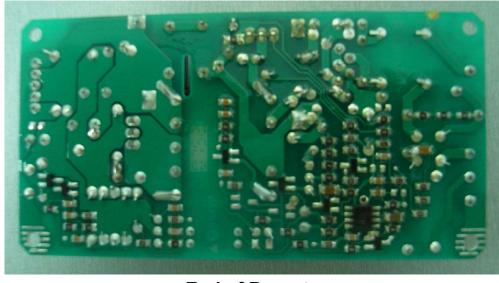
# Internal of EUT-6




Internal of EUT-7



V1.0 Page 37 of 37 Report No.: WE08110001


Internal of EUT-8



Internal of EUT-9



Internal of EUT-10



.....End of Report.....